〕Open access • Journal Article • DOI:10.1016/0167-2789(83)90125-2

The dimension of chaotic attractors - Source link

J. Doyne Farmer, Edward Ott, James A. Yorke

Institutions: Los Alamos National Laboratory, University of Maryland, College Park
Published on: 01 May 1983 - Physica D: Nonlinear Phenomena (Springer, New York, NY)
Topics: Effective dimension, Complex dimension, Hausdorff dimension, Dimension function and Correlation dimension

Related papers:

- Measuring the Strangeness of Strange Attractors
- Determining Lyapunov exponents from a time series
- Characterization of Strange Attractors
- Ergodic theory of chaos and strange attractors
- Detecting strange attractors in turbulence

$$
\therefore 1,2 x \pm 121-6
$$

MASTER

$$
\begin{aligned}
& \text { ¡以!.: (101! }
\end{aligned}
$$

title THE DIMENSION OF CHAOTIC ATTRACTORS

AUTMOR(S) J. I FP : Farmet, Fdward Ott, and lames A. Yorke Wotiee

> FORTIONS OF THIS REPORT ANE ILLEPIEL is hais been raproduced fromi thio bast avaliabio copy to permit the broadost poaslbls avalf sbility.

 the published form of inis coniribulion. or to allow other io do eo. for U g Gowarnmant purpenes

September. 1982

The Dimension of Chaotic Attractors

J. Doync Farmer Center for Nonlinear Studies Theoretical Division, MS B25B Los Alamos National Laboratory Los Alamos, Now Mexico 87545
Edward Ott
Laboratory of Plasma and Fusion Energy Studies University of Maryland College Park, Maryland
and
James A. Yortr:
Institute for Physical Science and Technology
and
Department of Mathematies
University of Maryland
College l’ark, Marylind

Abstract

Dimension is perhaps the most baste properly of an attractor. lin this piaper we discuss a variety of different dennitions of dimensinn, compule their values for a typical example, and review previous work on the dimension of ehimetic: allfris" tors. The relovant deflnitions of dimension are of two genernl tsper, those that depend only on metric properties, and those that depend on probabilistic propertles (that in, they depend on the frequency with which a iypisal trijeretory -jiplts dafferent regions of the attractor). Hoth our example and the previnus work that we review support the conclusion thal all of the :robabilistife dimen slons tako on the same value, which we eall the "dimension of Tho haturil mend ure", and all of the metric dimensinns lake on a common valur, which we rill the "fiactal dimension". Furthermnre, the dimension of the niluril measure is: typleally equal to the l.yapunov dimension, which is denned in lorms of lisupmos numbers, and thus is usually far easier to caleulnti thin any whir deflmitem Because It is compulable and more phymanlly relen, nt, we forl that the diment slon of the ralural mansure is morit importint thian lin. fractal dimension.

 a conference held In las Alimos, Niny ede-El, 1 DיI2.

Table of Contents

J. Introduction

II. Definitions of Dimension

Ill. Lyapunov Numbers and Dimension
IV. Gencrailized Haker's Transformation: Scaling Properties
V. Distribution of Probability
V. Computation of Probabilistic Dimensions
VII. The Core of Altractors
VIII. An Altractor that is a Nowhere Differentiable Torus
IX. Review of Numerical Exporiments
X. Conclusions

I. Introduction

It is the purpt. of this paper lo discuss and review questions relating to the dimension of chaotic ,ttractors. Before doing so, however, we should first say what we mean by the word 'attractor'.

1.1. Attracitore

In this paper we consider dynamical systems such as maps (discrele time, n)

$$
\varepsilon_{n+1}=F\left(x_{n}\right)
$$

or ordinary differential equalions (continuous tirnc, t)

$$
\frac{d x(t)}{d t}=G(x(t)) .
$$

where in both cases x is a vector. Thus given an initial value of x (al $n=0$ for the map or $t=0$ for the differential equations) an orbit is generaled ($\left(x_{1}, x_{2}, \ldots, x_{i}\right.$.) for the map and $x(t)$ for the differential equations). We shull be ir!erested in attractors for such systems. looscly speaking, an altractor is somelhing that "attracts" initial conditions from a region around il on:e transients have died oul. More preciscly, an aftractor is a compact sel, Λ, with the property thal there is is neighborhood of A such that for almost every ${ }^{1}$ initial condition the limit sel of the orbil as n or $t \rightarrow+\infty$ is A. Thus, almosl gevery Lrajectory in this neighborhood of A passes arbitrarily close to every point of A The barin of altraetion of A is the rlosure of the set of initial conditions that approach A.

We are primarily interested in chaotic attractors. We give a definition of chans In Sce. III, but the reader may also wish to sec the reviews given in referonees '! 4).

2.2. Thy Sludy Dimension?

The dimension of an attractor is clearly the first level of knowledger neecessury to characterize its propertics. Generally speaking, we may think of the dimernsion as glving, in some way, the amount of information necessary to speceify the posilion of a poiril on the attractor to within a given accuracy (cf. Sec. II). The diminnson is also a lower bound on the number of essential variables needed to modil the dynamics.

For simple altractors, deflning and determining thr dimension is eisy l'or example, using any roasonable deflnition of dimension, a stationary lime inderper dent equillbrium (nxed poinl) has dimension zero, a stable perioder nserillialieit (limit cycle) has dinension one, and a doubly perindie altrinctor (2 Iorus) has: dimonsion two. It is because their structure is very regular that the dimerision theser simplo altractors Lakes on inteper values.

Chnotic (strange) allractors, however, ofton have it struelure that is hol simiple; they are often nol manifolds, and frequently hive a highly frimbured chatia. Ecr. For chaolic atleactors, intuilion based oriproperlies of regular, simonth tainiples does nol apply. The most useful motions of dimensinn lake on vilums that are typleally not integers.

To fully understand the properties of a chaotie altractor, one must take mata account not only the attracter ltsolf, but also the "ribitribution" on "denselty" , f frolnts on the attractor. Thas is more procisely diseussed in temme of the matural

[^0]mearure associated with a given altractor The natural measure provides a notion of the relative probability of occurence of different regions of the attractor. Just as chaotic aitractors can have very complicated properties, the natural measures of chaotic attractors often have complicated propertics that make the relevant essignment of a dimension a nontrivial problem.

Precise definitions of such terms as "natural measuie" follow, but we would Arst like to give an example in order to molivate the sentral questions we are eddressing in this paper.

Consider the following two dimensional mape:

$$
\begin{array}{lr}
x_{n+1}=x_{n}+y_{n}+\delta \cos 2 \pi y_{n} & \bmod 1 \\
y_{n+1}=x_{n}+2 y_{n} & \bmod 1 \tag{!}
\end{array}
$$

For small values of δ, Sinai [5] has shown that the attractor of this map is the entire square, and is thus of dumension 2. Therefore almost every initial condition generates a trajectory that eventually comes arbitrarily close to every point on thir

Figure 1
Surcessiop itrertes of the initial point $x_{0}=0.6, y_{0}=0.6$ using Fiq. (1) will: $\delta=0.1$. yn, non

 denslty of these points is deseribed by the natural measure of this athroctor. (for exilli
 the points of a typieal traje. tory, and thus can be said to have a mataral mosure of aprox irimalely 0.27.)
 teger part are disenrded. no thut t'ir muph in deflued ont the umt nquare.
square. However, consider the typical trajectory shown in Fig. 1. Certain regions are visited far more often than others. The natural measure of a given region is proportional to the frequency with which it is visited (see Sac. 2.2.2), in this case the natura measure is highly concentrated ir diagonal bands whose density of points is much greater than the average. ${ }^{3}$. Furthermore, as shown in Fig. 2, if a microscope is used to magrify a small piece of the attractor, the same sort of structure is still seen.

For this map we do not know if the value of δ chosen to construct Fig 1 is small enough to insure that the dimension of the attractor is two. For practical purposes, though, this may be irrelevant. Even if a trajectory eventually comes arbitrarily close to any given point, the amount of time required for this to happen may be enormous. In order to assign a relevant dimension that will characterize the trajectories on the attractor, the natural measure must be taken into account. For this example the dimension that characterizes properties of the natural measure is between one and two.

These considerations are not as esoteric as they might seem. We are ullimately not as interested in whether the dimension of a given attractor is 3.1 or 3.2 as we are in whether it is on the order of three or on the order of thirty. As wo shall see, a proper understanding of probabilistic notions of dimension leads to an

Figure: 2
A blow-up of the strip marked in: Fig. 1. Fixpanding it horizontally, What appors to be a sit:gle bund in Fig. 1 is now seen to be a collection of bards.

[^1]efficient method of :omputing the dimension of chaotic attractors, that provides the best known method of answering such questions.

The main points u_{1} this paper can be summarized as follows:
i. Although there are a variety of different definitions of dimension, the relevant definitions are of two types, those which only depend on metric properties, and those which depend on metric and probabilistic propertics (i.c., they involve the naiural measure of the attractor).
2. Current evidence supports the conclusion that all of the metric dimensions typically take on the samc value, and all of the probabilistic dimensions also typically take on the same value.
3. Current evidence supports a conject.ured reiationship whereby the dimension of the nutural measure can be found from a knowledge of the stability properLies of an orbii on the attractor (i.e., knowledge of the Lyapunov numbers).
4. For typical chaotic attractors we conjecture that the distribution of frequencies with which an orbit visits different regions of the altractor is, in a certain sense, log-normal (Sec. V).
Points 1-3 are summarized in Table: 1. The first two entries in the table are metric dimensions, while the next five are probabilistic dimensions. Under the hypolhesis that all the metric dimensions yield the same value (Point 2), we call this value the fractal dimension and denote il d_{F}. Similarly. If all the probabilistic dimensions yield the same value, we call this value the dimemmon of the natural mearure, and denote it $\boldsymbol{d}_{\boldsymbol{\mu}}$. Although in special cases $\boldsymbol{d}_{\boldsymbol{F}}$ equals $\boldsymbol{d}_{\boldsymbol{\mu}}$, typically $\boldsymbol{d}_{\boldsymbol{F}}>\boldsymbol{d}_{\boldsymbol{\mu}}$. Finally, the last entry in Table 1, the lyapunov dimension, is by deflition the predicted value of d_{μ} oblained from the Lyapunov numbers (cf. Point 3). The Lyapunov dimension is in a different category than the other dimensions listed, since it is defined in terms of dynamical properties of an attractor, rather than

Name of Dimension	Symbol	Gencric Name	Symbol
capacity Hausdorl dimension	$\begin{aligned} & d_{c} \\ & d_{H} \end{aligned}$	fructal dimension	d_{F}
Information dimension v-capacily \boldsymbol{v}-Hausdorf ditnension politwise dimension fiausdorf dimension of the core	$\begin{aligned} & d_{J} \\ & d_{c}(v) \\ & d_{H}(v) \\ & d_{p}\left(d_{n}\right) \\ & d_{H}(c, o r a) \end{aligned}$	dimension of the natural measure	${ }^{1} /{ }_{\mu}$
lyapunav dimension	d_{1}		

Table 1.
Current rvidemere indicates that tymeally the live d!mmesions in the first bux lake on the Eame value, a alled the fractal dimersion, while the five dumersions th the secodid box lake at: niother typleally analler valme, called the dimension of the menare
metric and natural measure properties.

1.3. Outline

This paper is organized as follows: In Sec. Il we give several definitions of dimension. Sec. III reviews conjectures relating Lyapunov numbers to dimension. These conjectures are particularly imporiant because the Lyapunov numbers provide the only known efficient method to compule dimension. ln sections $\Gamma \mathrm{V}$, V, VI. and VII. we compute all the dimensions discussed iere for an explicitly soluable example, the generalized Baker's transformation. in addition, based on this example, in Sec. V we propose a new conjecture concerning the frequency with which different values of the probability occur. Section VIl gives a discussion of the "core" of attractors, and Sec. VII gives another example supporting the connection between Lyapunov numbers and dimension (an attractor which is Lopologically a torus but is nowhere differentiable). Section IX reviews relevant results from numerical computations of the dimension of chaotic attractors. Concluding remarks are given in Sec. X.

In general terms, this paper has two functions. One is to present a review of the current status of research on the dimension of chaotic attractors. The other purpose is to present new results (Secs. /V-VI).

II. Definitions of Dimension

In this section we deflre and discuss six different concepts of dimension. The first two of these, the capacity and the Hausdorff dimension, require only a metrie (i.e., a concept of distance) for their definition, and consequently we refer to theria as "metric dimensions". The other dimerisions we will discuss in this section are the information dimension, the v-capacity, the v-Hausdorf dimension, and the pointwise dimension. These dimensions require both a metric and a probabilily measure for their definition, and hence we will refer to thom as "probabilictio: dimensions".

In this paper we compute the values of these dimensions for an example that we believe is general enough to be "typical" of chaotic attractors, at least regardIng the question of dimension. We find that the metric dimensions take on a comimon value. Whenever this is the case, we will refer to this common value d_{F} as the fractal dimension ${ }^{4}$. For our example we also find that the probabilistic dimensions: lake on a common value d_{μ}, which we will refer to as the dimenvion of the nafurat measure. As we summarine in Conjecture 1, we feel that this aqualit; is a general property, true for typical cases.

Conjecture 1. For a lypical chaolic altractor the capacity and Hausdorf dimensions have a common value d_{F}, and the information dimension, ϑ capacily, v-Hausdorff dimension, and pointwise dimensions have a common value d_{μ} i.e.

$$
d_{C}=d_{l /}=d_{p}
$$

and

$$
d_{J}=d_{C}(v)=d_{H}(v)=d_{f}, d_{\mu}
$$

[^2]Note: For the case of diffeomorphisms in two dimensions. L.S. Young has rigorously proven that information dimension. pointwise dimension, and the Hausdorf dimension of the core (see Sec. VII) all take on the same value [11].

In addition to the dinensions defined in this section, we will also discuss thren others ${ }^{5}$: the Lyapunov dimension, the capacity of the core, and the Hausdorf dimension of the core. Lyapurov dimension is discussed in Sec. III, and the lat Ler two dimensions are discussed 'n Sec. VIT. For our example the Lyapuno dimension and Hausdorff dimension of the core are equal to d_{μ}, while the capacity of the core is equal to d_{F}.

2.1. Metric Dimensions

We begin by discussing two concepts of dimension which apply to sets in epaces on which a concept of distance, i.e., a metric is defined. In parlicular wie begin by discussing the capacity and the Hausdorf dimension.

2.1.1. Capacily

The capacity of a set was originally defined by Kolmogorov[13]. It is given by

$$
\begin{equation*}
d_{c}=\lim _{c \rightarrow 0} \frac{\log N(\varepsilon)}{\log \left(\frac{1}{c}\right)} \tag{2}
\end{equation*}
$$

Where, if the set in question is a bounded subset of a p-dimensional Fuclidean space R^{p}, then $N(\varepsilon)$ is the minimum number of p-dimensional cubes of side ε needed to cover the set. For a point, a line, and an area, $N(\varepsilon)=\{N(\varepsilon) \sim \varepsilon$, and $N(\varepsilon) \sim \varepsilon^{-2}$, and Eq. (2) yields $d_{c}=0$, 1, and 2, as expected. However, for more general sets (dubbed fractals by Mandelbrol), d_{c} can be noninteger. For examplu, consider the Cantor set obtained by the limiting process of deleting middle thirds, as. Wustrated in Fig. 3. If we choose $\varepsilon=(1 / 3)^{m}$, then $N=2^{m}$, and Eiq (2) yiclds

$$
d_{c}=\frac{\log 2}{\log 3}=0.630 \ldots
$$

If one is content to know where the set lies to within an aceuracy ε, then to specify the location of the set, we need only specify the position of the $N(x)$ cubes covering the set. Equation (2) implies that for small $c, \log N(x) \approx d \in \log \left(\frac{!}{e}\right)$. Hence, the dimension tells us how much information is necessary to specify lhr location of the set to within a giv.. accuracy. If the sel has a vory fine sculad structure (typical of chaotic attractors), then it may be advaistancous io introduc: some coarse-graining into the description of the sel. In this case, ε may be thought of as specifying the degree of coarse-graining.

2.1.2. Hausdorf Dimension

The capacity may be viewed as a simplified version of the llausdorf dimension, originally introduced by Hausdorl in 1919[14]. (We have reversed hislomeal order and defined eapacity before Hausdorf dimension because the definition of llausdorff dimension is more involved.) We believe that for attractors these two dimencions are generally equal. While it is possible to construct sinuple examples of sots

[^3]

Figure 3
The first few steps in the construction of the classic exarnple of a Cartor sel.

Where the Hausdorff dimension and the capacity are unequal ${ }^{7}$, these do not seem to apply to attractors. (Although they may apply to the core of attractors. See Sce. VII.)

To define the Hau - Jorff dimension of a set lying in a p dimensional luchdean space, consider a covering of it with p-dimensional cubes of variable edge length $r_{\text {, }}$ Define the quantity $L_{d}(\varepsilon)$ by

$$
L_{d}(\varepsilon)=i \pi f \sum_{i} \varepsilon_{i}^{d}
$$

where the infimum (i.c. minimum) extends over all possible coverings subject to the constraint that $\varepsilon_{b} \leq \varepsilon$. Now let

$$
L_{d}=\lim _{c \rightarrow 0} L_{d}(\varepsilon)
$$

Hausdorff showed that there exists a critical value of d above which $l_{d}=0$ ind below which $L_{d}=\infty$. This critical value, $d=d_{H}$, is the llausdorff amension. (I'recisely al $d=d_{H}, l_{d}$ may be either $0, \infty$, or a posilive finule number.) This coneepl of dimension will be used in Sees. IV, V, and VIl. It is casy to see that $d_{c}=d_{H}{ }^{\text {F }}$.

[^4]
2.2. Probabilistic Dimensions

2.2.1. The Natural Measure on an Altraclor

Note that, in compuling d_{C} from Eq. (2), all cubes used in covering the attractor are equally important even though the Irequencies with which an orbil on the attractor visits these cubes may be very different. In order to take the frequency with which each cube is visited into account, we need to consider not only the attractor itself, but the relative frequency with which a typical n-bil visits different regions of the attractor as well. We can say that some regions of the attractor are more probable than others, or allernatively we may speak of a measurc on the attractor ${ }^{\text {® }}$. We jefine the natural measure of an $e^{!}$tractor as follows: For each cubo C and initial condition x in the basin of attraction. deine $\mu(x, C)$ as the fraction of time that the trajectory originating froin x spends in C. ${ }^{10}$ If almost every such x gives the same value of $\mu(x, C)$, we denole this valuc $\mu(C)$ and call μ the natural mearure of the attractor $1 \overline{5}]$. The natural measure gives the relative probability of different regions of the attrastor as obtained from time averages, and thereforr is the "natural" measure to consider. We will assume throughout that any atlractor we consider has a natural measure, at least whenever C is one of the cubes we are using to cover the altraclor.

The four definitions discussed in the remainder of this section are defined for altractors with a metric and a natural measure defined on them.

2.2.2. Information Dimension

The information dimension, d_{I}, is a gencralization of the capacily thut takes Inte account the relative probability of the cubes used to cover the sel. This dimension was originally introduced by Balatoni and Renyi [:6].

The information dimension is given by

$$
\begin{equation*}
d_{I}=\lim _{\varepsilon \rightarrow 0} \frac{I(\varepsilon)}{\log \left(\frac{1}{c}\right)} \tag{3}
\end{equation*}
$$

where

$$
\boldsymbol{I}(\varepsilon)=\sum_{i=1}^{N(\varepsilon)} P_{i} \log \frac{1}{P_{i}}
$$

and P_{i} is the probability contained within the $i^{\text {th }}$ cube. I, etling the $i^{\text {th }}$ cube of sith ε be $C_{i}, P_{i}=\mu\left(C_{i}\right)$. Note that if all cubes have equal probubility then $f(\varepsilon)=\log N(\varepsilon)$, and hence $d_{C}=d_{I}$. llowever, for unequal probabilille: $f(\varepsilon)<\log N(\varepsilon)$. Thus, in general, $d_{c}>d_{I}$.

In information theory the quantity $\mathrm{I}(\varepsilon)$ defined in liq (3) has a specific nicianIng [17]. Namely, it is the amounl of information riccessary to specify the stath of the system to within an accuracy e, or equivalently, it is the information obtainer In making a measurement thal is uncertain by an amount ε. Since for smiall r. $I(\varepsilon) \approx d_{l} \log \frac{1}{\varepsilon}$, we may view d_{l} as telling how fast the information necessisy to specify a poinl on the allractor increases as ε decreases. (For a more extensivo discussion of the physical meaning of the information dimension, sec Rofs $\mathbf{7}$ und

[^5]
8.)

223. D-Capacity

Another definition of dimension which we shall be interested in is what we will call the v-capacity, $d_{c}(v)$. Essentially, this quantity is the capacity of that part of the attractor of highest probability,

$$
\begin{equation*}
\mathbb{d}_{C}(v)=\lim _{\varepsilon \rightarrow 0} \frac{\log N(\varepsilon ; \mho)}{\log \frac{1}{\varepsilon}} \tag{A}
\end{equation*}
$$

where $N(\varepsilon ; v)$ is the minimum number or cubes of side ε needed to cover at least a fraction v of the natural measure of the attractor. In other words, the cubes must be chosen so that thelr combined natural measure is at lcasl. v. Thus $d_{c}(1)=d_{c}$. For the examples we study here, we find that for any value of $\vartheta<1$, the ϑ-capacity Is independent of v, but that $d_{c}(v)$ for $v<1$ may differ froin its valuc at $v=1$. In particular $d_{c}(v)=d_{\mu}$ for $v<1$ and $d_{c}(\vartheta)=d_{c}$ for $v=1$. v-capacity was originally defined by Frederickison et al. [7]. Similar quantities have also been defined b:Ledrappier [18」, and Mandelbrot [19].

R.2.4. UHausdorI Dimension

In analogy with the relationship between capacity (a melric dimension) and U-capacity (a probability dimension), we introduce here a probability dimension based on the Hausdorff dimension. Ye call this new dimension the \mathfrak{v}^{0}-llausdorf dimension and denote it $d_{M}(\vartheta)$. To define the \imath^{0}-Hausforf dimension, modify the deffition of Hausdorf dimension as follows: Define $l_{d}(c, v)$ by

$$
L_{d}(\varepsilon, v)=i n \int \sum_{l}^{1} \varepsilon_{i}^{d}
$$

Where now the inflmum extends over all possible $\varepsilon_{i}<\varepsilon$ whirh cover a fritetion is oi the cotal probability of the set. We define $d_{d l}(v)$ as that value of d bitinw whith $l_{d}(v)=\infty$ and above which $L_{d}(v)=0$, where $l_{d}(v)=\lim _{\varepsilon \rightarrow 0} L_{d}(t, v)$. This ronecpl of dimension will be used in Sec. V].

E.2.5. Pointwise Dimension

Roughly speaking, the pointwise dimension t_{p} is the expenent with which the: total probability contrined in a ball decreases as the radius of thr ball decrrisers To make thes notion more prectse, lot μ denole the naturial pic:ability moiasura on the attractor, and let $B_{e}(z)$ denole a ball of radius ε centered about a point x on the attractor. Roughly speaking, $\mu\left(B_{c}(x)\right) \sim \varepsilon \varepsilon^{4}$. More precisely, Youmpilii| defines this dimension as

$$
\begin{equation*}
\alpha_{p}(x)=\lim _{c \rightarrow 0} \frac{\log \mu\left(B_{r}(x)\right)}{\log \varepsilon} \tag{1}
\end{equation*}
$$

If $d_{p}(x)$ Is independent of x for almost all x with respeot lo the monsure $\mu_{1}{ }^{11}$ we cail $d_{p}(x)=d_{p}$ tho poinluise dimension. Similar dennitions of ditilensioti hiavir also been glven by Takens [20] and Janssen and I'jon [21].

4.3. Using a Grid of Cubes to Compule Dimension

Some of the deffitions we have used, such as the daphaty, mbw amy lorialion or orlentation of the cubes used to eover the altractor. In a mumermal

[^6]experiment, however, it is much more convenient to select the cubes used to cover the atlractor out of a fixed grid, as shown in Fig. 4. For thes. dimensions (d_{c}, d_{l}, and $d_{c}(\vartheta)$) it can be shown that selecting from a fixed grid of cubes gives the same value of the dimension as an optimal collection of cubes. For example, for the case of an attractor in a two dimensional space, using a fixed geid to compute $\mathrm{N}(\varepsilon)$ in liq . (2) results in an increase of at most a factor of lour in $N(\varepsilon)$, which has no cffect on the value of the dimension. Note that this is not true for the llausdorff dimension, which requires a more generai cover.

In principle, the definitions of dimension given in this section and the use of a fixed grid provide specific prescriptions for obtaining capacity, information dimension, and v-capacity. To find approximate values for these dimensions, one can generale an orbit on the altractor using a computer, and then divide the space containing the orbit into cubes of side ε in order to estimate the numbers $N(f)$, $\mathrm{I}(\varepsilon)$. or $\mathrm{N}(\varepsilon ; \vartheta)$. By examining how $\mathrm{N}(\varepsilon), \mathrm{I}(\varepsilon)$, and $\mathrm{N}(\varepsilon ; \vartheta)$ vary as ε is decreased the value of these dimensions can be estimated.

As discussed in Sec. IX, however, in practice the agenda described ubove for computing dimension may be difficult, costly, or ampossible. Thus it is of intereret Lo consider other means of obtaining the dimension of chaotic attractors. The nowit section deals with this question. In particular, we diseuss a conjecture that the dimension of chaolic allractors ean be decermined directly from the dynamies in termis of lyapunov numbers

Figure 4

III. Lyapunov Numbers and Lyapunov Dimension

The Lyapunov numbers quantify the average stablity propertics of an orbit on an attractor. For a fixed poini attractor of a mapping, the lyapunov numbers art: simply the absolute values of the eigenvalues of the Jacobian matrix evaluated al the fixed point. The lyapunov numbers generalize this notion for more complicated attractors. As we shall see, for a typical attractor thore is a conncelion between avarage stability properties and dimension. The possiblity of such a connection was first poinled out by Kaplan and Yor!se [22] and later by Mori [23].

3.1. Definition of Lyapunov Numbers

For expository purposes. for most of thls paper we shall consider pdimensional maps,

$$
\varepsilon_{n+1}=F\left(x_{n}\right) .
$$

where x is a p-dimensional vector. We emphasi\%e, however, that similar considerations to those below apply to flows (o.g., systems of difierential equations), inchuding inflnite dimensional systems such as parlial differontial equalions. To define the lyapunov numbers, let $J J_{A}=\left[J\left(x_{n}\right) J\left(x_{n} \cdot 1\right) \ldots J\left(x_{1}\right)\right]$ where $J(x)$ is the Jaroliath matrix of the map, $J(x)=\frac{\theta F}{\partial x}$ and let $j_{1}(n)>j_{2}(n) \geqslant \cdots>j_{p}(n)$ be the miagntudes of the elgenvalues of J_{n}. The lyapunev numbers are

$$
\begin{equation*}
\lambda_{1}=\lim _{n \rightarrow \infty}\left[j_{1}(n)\right]^{\frac{1}{n}}, \quad i=1,2, \ldots p \tag{0}
\end{equation*}
$$

where the positive real $\boldsymbol{n}^{\text {ih }}$ root is Laken. The liyapunov numbers pencrially depernil on the cholce of the unitial condition z_{1}. The lyapunov numbers were orizinally defned by Oseledee [24]. We have the convention

$$
\lambda_{1}>\lambda_{2}>\ldots>\lambda_{p}
$$

For a two dimensional miap, for example, λ_{1} and λ_{i} are the aroriupe prinempal

Figures
 proximalely into an ellipene with majar mad miner radii $\left(\lambda_{1}\right)^{n} \delta$ atal (λ_{i}) $\delta_{\text {, where }} \lambda_{1}$ mad λ_{i} are Che lynumav numbers.
attractor on the average nearby points initially diverge at an exponential rate, and hence at least one of the Lyapunov numbers is greater than one. This makes quantitative the nolion of "sensitive dependence on initial conditions". We will tiske $\lambda_{1}>1$ as our deflnition of chaos. (Nole that many authors reler to lyafun.ov exponents rather than Lyapunov numbers. The lyapunov exponents are simply the logarithms of the lyapunov numbers.)

In this paper wo assumo that almost evary initial condition in the basin of any attractor that we consider has the seme lyapunov numbers. Thus, the spectrum or lyapunov numbers may be considered to be a property of an a!triactor. 'This assumplion is supported by numerical experiments [26]. Fixeeplional Lrijectorices, such as unstable fixed points on the attractor, typically do not sample the whole attractor and thus typically have Lyapunov numbers that are different from those of the attractor. Those points in the basin uf attraction that have differcint lyapunov numbers or for which lyapunov numbers do nol exist are here assumed Lo be of measure zero. (In other words, they may be covered hy a collection of cubes of varying size having arbitrarily small total volume).

3.2. Defnition of lyapunov Dimension

The following discussing contains a heuristie argument that motivales a coltneelion between Lyapunov numbers and dimension. Consider a two dimensionil map. Suppose we wish to cornpule the capacity of a chactic attractor, for wheh $\lambda_{1}>1>\lambda_{2}$. Cover the altractor with $N(\varepsilon)$ squares of side ε. Now, ilerule the map 川 times. F'or q fixod and ε small enough. the acalon of the mappink is roughly limear over the square, and eiach square will be stietehed into a long thin pillillelogratil from the defnition of the lyapunov numbers. the average linpith of these piaiallelograns is $\left(\lambda_{1}\right)^{q} \varepsilon_{1}$ and the averige width is $\left(\lambda_{2}\right)^{q} \varepsilon$. Now, suppose we had used at
 takes about ($\frac{\lambda_{1}}{\lambda_{2}}$) smaller squares. 7hus, if it is suzpasied that all sifuaress on the altractor behave in this lypical way, then one is lead to the restinner

$$
\begin{equation*}
N\left(\lambda g_{1}\right)=\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{q} N^{\prime}(1) \tag{i}
\end{equation*}
$$

 I.q. (7). 'lhis gives

Collording terms, laking logarithms, and solvinf for de gives

$$
d_{C}:=1+\frac{\log }{\log } \frac{\lambda_{1}}{\frac{1}{\lambda_{2}}}
$$

 Linn ls invalid, so we will eall ll the lympunme dimbensinn d_{1}.

$$
\begin{equation*}
\alpha_{L}=1+\frac{\log \lambda_{1}}{\log \frac{1}{\lambda_{L}}} \tag{11}
\end{equation*}
$$

 Ref. [r])

Figure 6
A achematic Illustration of the heuristia argument for the lyapuriov dirnesision. Tha imugr of cacl: small square in (a) is approximately a paralleloyram which las bere stratelad larirontally by a factor of λf and contracted vertically by a factor λ g. 'Iher majes in (b) thas require. a ambler cover of syuares as shown in (c).

$$
\begin{equation*}
d_{1}=k+\frac{\log \left(\lambda_{1} \lambda_{2} \ldots \lambda_{t}\right)}{\log \frac{1}{\lambda_{t+1}}} \tag{9}
\end{equation*}
$$

 $\lambda_{1} \lambda_{2} \ldots \lambda_{p}>1$, denne $d_{1}=p$. We sha .1 refer lo d_{2} as the lyapn nun dimumsium. Ihtis quantity was originally defined by Kaplan and Yoike [22], who arlifithally gavi If as a lower bound on the fractal dimension.

F'rom the above argument one might be templed in gusse that $d_{c}=d_{l}$, Ilir Lyapunov numbers are avaragi quanlities, however, and to compuite an avirrifir, cach cubo must be woighted aceording to its probablity. 'Ihor enpially does not dislinguish between probable and Improbible eubes. T'o understind hew some e:ubre: might have vaslly differont probabilities than ethers, conslde ^an alypral square of a two dimensional map. If the area of the innapes of this squitere dereresses half as
 tho irnupe of a typical square, and the number of squares needed to enver il will be \mathcal{Z}^{*} times greater than the typleai value. In fact, as will bo covident from eonsidera Clons of explett examples (cf. See. V). It is commonly the ense that the vast minorIty of cubes needed to cover the altractor are alypical, and do net represent the proporlles of tine averapes. By this we menn thil all the ntypleal eubes tiken Cognther contain an extremely small fraelion of the Intial pribbilhility on the all rate. Lor yot account for almost all of $N(x)$. Jurthermore, this lemideney inerrioves: ans, denerenses. The behavior of the atypieal cubes under Iter.ation is in promeral not deserlbed by the lyapuriov mumbers. If is clear, then, that in order for thes reil
 should be in terms of the dimension of the nalural mensure ialler than the
capaclty. Assuming the equality of probabilistic dimensions (Conjecture 1), we are led to the following conjecture:

Conjecture 2: For a typical ${ }^{12}$ altractor $d_{\mu}=d_{L}$.
In the following six scelions we present evidence supporting this conjecture. Also, L.S. Young has proved some rigorous results along these lines, which are reviewred In the next subscction.

In the speciai casi that merery initial condition on the attractor generales the same Lyapunov numbers, wo will say that the attractor has nbsolule lyapunov numbers. In this case It is not necessary to distinguish probathe from improbable. cubes, and the above conjecture can be made in terms of the fractal dimension rather than the dimension of the raturial measure. We call this Conjecture 3.

Compecture 3: If $\lambda_{1}, \lambda_{z_{1}} \ldots \lambda_{p}$ generaled from cvery (not just almost every) Initial enndition take on the same value, and if $\lambda_{1}>1$, then for it typical ite

$$
\text { allractor of this lype } d_{F}=d_{L}=d_{\mu}
$$

The requirement of Conjecture 3 that every initial condition on the attractor generale tho same l.yapunov numbers is very restrictive and unly holds for spectal cases. For example, it holds if the Jucobian malrix of the mip is independent of x In more general cases, the requiroment of Conjecture 3 would be expected lo fall because of the existence of unstable fxed and periodic points on the altratere For cxample, if x_{1} is chosen to be procisely on an unstithle fixer pomt, lle. lyapunov numbers gencraled will simply be the emenvalues of $J\left(x_{1}\right)$ These will typically be different from those penerited by a chantic orhit on thr illtritele tixamples for which Conjecture 3 is valid will be spectal casiss of the morce fermert example presented in the following section. In addition, an exinmple for wheli Cont Jecture 3 can be proven to hold is glven in See Vill.

3.3. Review of lifgorous Resulls Concerning lynpunov Dimension

In addition to the analytic and numerical evidence we will five for eonjecolura: 1-3 in the remiainder of this paper, there are severial rigornus result: sipporthe:
 has proven an inequality that is somewhat similar to Conjecelure iz In phorlicular.
 vgoes lo une, ic.

$$
d_{\text {lad }}=\lim _{d, 1} d_{r}(v)
$$

For c^{6} diffeomorphisme ${ }^{13}$ he has shown that

[^7]$d_{L} \geq d_{\text {led }}$
The prool is a rigorous version of the heuristic argument that we have given (Fig. B). Also, Douady and Oesterle [26] have proven that an upper bound for the fractal dimension can be obtained yielding an expression like liq. (8), where the numbers they use are basically upper bounds for the lyapunov numbers.
L.S. Young [11] has proven several results that strongly support conjectures: and 2. Particularly relevanl are the following two theorems ${ }^{14}$.

1. If α_{0} exists then

$$
\begin{equation*}
d_{p}=d_{l}=d_{H}(\text { core })=d_{l e d} . \tag{10}
\end{equation*}
$$

2. For two dimenrional C^{2} diffeornorphisms with $\lambda_{1}>1>\lambda_{2}$, λ_{p} exists. and

$$
\begin{equation*}
d_{p}=\frac{h_{\mu}}{\log \lambda_{1}}\left(1+\frac{\log \lambda_{1}}{\log \frac{1}{\lambda_{2}}}\right) \tag{1:}
\end{equation*}
$$

(See Sec. VIl for a definition of d_{H} (core).) h_{μ} denoles the Kolmngnorov entropy ${ }^{13}$ of the attractor taken with respect to the measure $\mu_{\text {, and }} \lambda_{1}$ and λ_{p} are the 1, yipunes numbers with respect to μ. (More precisely. almost cvery initial condition x wilh respect to μ give λ_{1} and λ_{i} as the lyapunov numbers.)

For Axaom-A altractors Howen and Kuelle [1b] heve shown that there is a natural measure such that such h_{μ} with respect to this measure is the sum of throne. for attractors with only one lyapunov number greater than ont:, this miphly.. that $h_{\mu}=\log \lambda_{1}$. Thus, for Axiom-A attractors of two dimensional maps, lig: ($9:$) yield $d_{\mu}=d_{L}$. Therefore Young has shown that Conjerture 2 holds for thas conic. (ii has been conjectured that the relationslap between h_{μ} and the posithwe λ_{1} huluts fur non Axiom-A attractors that have a nitural measure) 'This ressult for the ciser if Axiom-A attractors of two dimensionial maps has alsn bere ohtained indeprommlly by Pelikan [30].

IV. Gencralized Baker's 'I'ransformation: Scaling,

4.1. Definition of Genoralized Ithker's Transformation

In this sectinn we define the example which we will study in detall in thas int.l
 be typleal of low dimenstonal chatic attractors (at least vomerminf: ils dimen slonal propertles), it is also simple eneugh that all of the dimentione disemsiod in this paper can be analytueally calculated to. Thus, for this example, we shinll be abhe to verify Conjectures $1-3$ in a case where pencrially \boldsymbol{t}_{r} of d_{μ}, A: we :hill show in Sree V, another nice property of tha: map is that it allow: us to merestizate wert ill properties of the natural probabily distribution in intiall.

[^8]

Figure: ?

The may to be ronsidered is
$x_{n+1}= \begin{cases}\lambda_{n} x_{n} & \text { if } y_{n}<a_{1} \\ y_{1}+\lambda_{1} x_{n} & \text { if } y_{n}>a\end{cases}$
$V_{n+1}= \begin{cases}\frac{1}{a} y_{n}, & \text { if } y_{n}<a_{1} \\ \frac{1}{1-a}\left(y_{n} \cdots \alpha\right) & \text { if } y_{n}>\alpha .\end{cases}$

9.2. Lyupunov Numbers of (iencralized liaker's T'rinnsommation

Figure ${ }^{8}$
After nfplying the grneralized baker's trarsformalion to the unit wepure twice, only tha thaded repions rennin.

$$
\mathbf{J}=\left[\begin{array}{cc}
L_{2}(y) & 0 \\
0 & L_{1}(y)
\end{array}\right]
$$

where

$$
\operatorname{l}_{\cdot 2}(y)= \begin{cases}\lambda_{a} & \text { if } y<a \\ \lambda_{b} & \text { if } y>\alpha\end{cases}
$$

and

$$
f_{1}(y)= \begin{cases}\frac{1}{a} & \text { if } y<\pi \\ \frac{1}{i-a} & \text { if } y>a\end{cases}
$$

Thus applying lit. (0) we have

$$
\lambda_{1}=\lim _{n}\left[\left.l_{1}\left(y_{n}\right) l_{1}\left(y_{1}\right)\right|^{J . .}\right.
$$

or

$$
\log \lambda_{1}=\lim _{n \rightarrow 1}\left|\frac{n_{n}}{n}-\log , \frac{1}{a}+\frac{n_{n}}{n} \log \frac{1}{\beta}\right|
$$

similarly $\lim _{n \rightarrow \infty} \frac{n_{a}}{n}=\beta$. Thus

$$
\begin{equation*}
\log {X_{1}}=a \log \frac{1}{\alpha}+\beta \log \frac{1}{\beta}- \tag{13}
\end{equation*}
$$

Similarly, we oblain for $\boldsymbol{\lambda}_{\mathbf{2}}$

$$
\begin{equation*}
\log \lambda_{2}=\alpha \log \lambda_{a}+\beta \log \lambda_{i} . \tag{14}
\end{equation*}
$$

To siniplify notation in this and subsequent expressioris, let

$$
\begin{equation*}
H(a)-a \log \frac{1}{\alpha}+(1--a) \log \frac{1}{1-a} \tag{1:}
\end{equation*}
$$

$H(a)$ is called the binary entropy function and is the aminunt of information contained in a coin-toss where heads has a probability a.

The lyapunov dimension of the attractor ci the generalzed baker's trinsformation (Eq. (12)) is

$$
d_{L}=1+\frac{H(a)}{\alpha \log \frac{1}{\lambda_{B}}+\beta \log } \frac{1}{\frac{1}{\lambda_{B}}}
$$

In the following sections we compute the values of the dimensions defined in thes paper, and show that all the probability dimensions take on the value given tio tq. (16).

For all but special values of λ_{a}, λ_{b}, and α. there exist unstable periodue orbints 'whose lyafunov numbers are different from those given in Fiqs (:3) and (: : $)^{\prime \prime}$ Thus, in grneral we expect that Conjecture 2 rather thin Conjocture 3 apphes aril $d_{\mu}+d_{\mu}$.

4.3. Capacity of Gencralized Baker's Transformation

To caiculate d_{c} we Arst newe that the altrator is a product of a Cimber sind along x and the interval $[0,1]$ along y. Thus the capireity, or any of the other dimensions, are in the form $d_{z} \cdot 1+d_{r}$, where d_{i} is the difiemision of the attructor in the x direction We will generally use a biar over a dimension to refer to the dimension along the x direction.

We now obtain it by making use of the sermeng property of the pemernard baker's transformation, diseussed al the end of (ifer 4.1. We write vir) is

$$
N(c)=N_{a}^{\prime}(p)+N_{b}(p) .
$$

where $N_{a}(f)$ is the number of x intervals of lencilh randed in eover that part of
 for the x interval $\left[\not, Y_{b}+\lambda_{b} \mid\right.$. from the sealing property, $N_{a}(1)=N_{1}-1$, and simi larly $N_{b}(c)=N\left(\frac{r}{\lambda_{b}}\right)$. Thus

$$
N(\varepsilon)=N\left(\frac{\varepsilon}{\lambda_{a}}\right)+N\left(\frac{\varepsilon_{A}}{\lambda_{b}}-\right)
$$

[^9] gives
$$
k\left(\frac{1}{c}\right)^{a^{2} c}=k\left(\frac{\lambda_{a}}{c}\right)^{\pi_{c}}+k\left(\frac{\lambda_{b}}{c}\right)^{a_{c}}
$$
implying that
\[

$$
\begin{equation*}
1=\lambda_{b}^{d_{c}}+\lambda_{b}^{\bar{d}_{c}}, \tag{18}
\end{equation*}
$$

\]

which is a transcendental equation for \bar{d}_{c}. As expected, Eqns. (16) and (18) show that, in general, $1+d_{C}=d_{C} \neq d_{l}$. llowever, for the special choice $\lambda_{a}=\lambda_{b}, \alpha=H_{1}$. corresponding to Eif. (12) with $\lambda_{1}=2$, the two agrec. Note that for this case the Jacoblan matrix is constant, the Lyapunov numbers arc therefore absolute, and Conjecture 3 applies

In obtaining $\mathrm{I} \quad$ n order tokecp the argument simple, we have made the etrong assumptirthe limit given in 1
. ic) कu $k \varepsilon^{-0} c$ for small ε, which implies the existence of 1 .inition of capacity, Eq. (2). We can. howrever, show thit the limit given in Eq. (k) exists and de must satisly Fq. (18) i- a rigorous manner, as Icllows:

Define $F_{C}(x)$ by

$$
N(\varepsilon)=F_{c}(c) \varepsilon^{-\tau}
$$

where \bar{d} is deflned by $1=\lambda_{a}^{\bar{d}}+\lambda_{d}^{\bar{d}}$. Substituting this into Eq. (17) theri yields:

$$
\begin{equation*}
A_{c}(t)=\bar{a} A_{c}^{\prime}\left(\frac{F}{\lambda_{a}}\right)+\bar{\beta} L_{c}\left(\frac{\varepsilon}{\lambda_{b}}\right) \tag{;9}
\end{equation*}
$$

where $\bar{\alpha}=\lambda_{\bar{d}}^{\bar{d}}$ and $\bar{\beta}=\lambda_{b}^{\bar{d}}$. and are independent of ε. Nolice that by definition $\dot{\alpha}+\dot{\beta}=1$, so the above expr sslon says that $E_{C}^{\prime}(\varepsilon)$ is a n'cighted average of ats values at $\frac{\varepsilon}{\lambda_{a}}$ and $\frac{\varepsilon}{\lambda_{b}}$. Chor $e r_{1}$ and ε_{2} so that $\varepsilon_{1}>\varepsilon_{2}>0$. Since $N(\varepsilon)$ and hence $F_{c}(c)$ are finite and positive for any finite e, there exist finite non-aero numbers $H_{1}>H_{2}=0$ such that $B_{2}<F_{c}\left(r_{1}\right)<H_{1}$ for $\varepsilon_{1}>\varepsilon>\varepsilon_{2}$. Wie can assume thial ε_{1} and F_{2} are chosen so that $\frac{\varepsilon_{1}}{\varepsilon_{2}}$ is large. Since $\alpha+\bar{\beta}=1$, fiq. (19) implies that
 ment increases the domain of validity of the bound to $f_{1}>E>\lambda_{b}^{R} \varepsilon_{2}$, and so on Hence $F_{C}(\varepsilon)$ is bounded uniformly from above and below for arbitrarily small , Thus the limil of bec : 2) exists and $d_{C}=d$. (In fact il can be shown that liq. (:0) implics that $\lim _{c \rightarrow 0} k_{c}(r)$ is a constant if $\frac{\log }{\log } \frac{\lambda_{a}}{\lambda_{b}}$ is an irrational nuniber.) Note that in Fiq. (18), since both terms on the right hand side are monotonicilly dererasing, f_{f} : oblalned from solving this equalion is unique.

4.4. Compulation of Ilausdorit Dimension

The llausdorf dimension d_{μ} can be calcorated by an argument that is very similar to the onc used above in computing the capacity. larl $d_{d}=d_{\|}-1$, Lhe Hansdarf dimansion along x. Applyini Lhe scaling property of the map in the quantity $t_{d}(x)$ (denned in Sec. 2), we obtann

$$
l_{d}(k)=\left(\lambda_{d}\right)^{d} l_{d}\left(\frac{E}{\lambda_{a}}\right)+\left(\lambda_{b}\right)^{d} l_{d}\left(\frac{E}{\lambda_{b}}\right) .
$$

 $\boldsymbol{d}>\mathrm{d}_{c}$, respectively. Ilemese, as predicted in See:. II, Lhe Imasdarf dimension
and capacity are equal, $d_{H}=d_{C}$.

4.5. Calculation of Information Dimension

The information dimension d_{J} can also be calculated by a scaling argument similar to that used above in computing the capacity. Onee again, let $d_{J}=1+त_{I}$ and express the summation for $\mathrm{I}(\varepsilon)$ in Eq. (4) as the sum of contributions from the two strips in Fig. 7(d),

$$
\begin{equation*}
I(\varepsilon)=I_{a}(\varepsilon)+I_{b}(\varepsilon) \tag{20}
\end{equation*}
$$

The total probability contained in strip $\left[0, \lambda_{a}\right]$ is a_{1} and that in strip $\left[\%, \lambda_{b}+y\right]$ is β. Assuming that it takes $N(\varepsilon)$ strips of width ε to cover the whole altractor, then from the scaling property of Eq. (12), covering the strip [$0, \lambda_{a}$] al resulution $\varepsilon \lambda_{a}$ also requires $\mathbf{N}(\varepsilon)$ strips. Thus

$$
\begin{aligned}
I_{a}\left(\varepsilon \lambda_{a}\right) & =\sum_{i=1}^{N(f)} a P_{i} \log \frac{1}{\alpha P_{i}} \\
& =\alpha\left[\log \frac{1}{a}-+I(\varepsilon)\right]
\end{aligned}
$$

Hence, replacing $\varepsilon \lambda_{a}$ by ε in the above,

$$
\begin{aligned}
& I_{a}(\varepsilon)=\alpha \log \frac{1}{\alpha}+\alpha I\left(\frac{E}{\lambda_{a}}\right) \\
& I_{b}(c)=\beta \log \frac{1}{\beta}+\beta I\left(\frac{E}{\lambda_{b}}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
I(\varepsilon)=\alpha I\left(\frac{\varepsilon}{\lambda_{\varepsilon}}\right)+\beta I\left(\frac{\varepsilon}{\lambda_{b}}\right)+H(a) . \tag{2i}
\end{equation*}
$$

where $l l(\alpha)$ is given by Fq. (15). Notivaled by Fq. (3), ir we assumis that $I(\varepsilon)=\bar{d}_{l} \log \frac{1}{\varepsilon}$ for smiall ε, and substitute for $I(\varepsilon), I\left(\frac{\varepsilon}{\lambda_{a}}\right)$, and $I\left(\frac{F}{\lambda_{b}}\right)$ in the abover equalion we oblain

$$
\dot{d}_{I}=-\frac{f i(a)}{a \log \frac{1}{\lambda_{a}}+\beta \log \frac{1}{\lambda_{b}}}
$$

Which is in turn equal to $\bar{\alpha}_{l}$. The assumption that $I(\varepsilon)=\bar{\alpha}_{l}$ lof, $\frac{1}{\varepsilon}$ can be nitede rigorous in the limit as ε-mon using an argument that is completely anialogous to that used in deriving the cispacily in the last part of See. 4.3.

We should mention that Nexander and Yorke [iD] have compuled the lyapunov and information dimersions of the generalized baker's transformaion for the special case $\alpha=y_{2}, \lambda=\lambda_{a}=\lambda_{b}$, where $\lambda>y_{2}$. In this cise $d_{l}=2$. For uncountably many values of λ they find that also $d_{j}=2$, although there are certann special values of λ for which $d_{j}<2$.

In order to calculate the olher probability dimensions listed in 'rable !, more' Information concerning the probability distribution is required. This is dealt with In Sec. V, and we therefore defer calculation of of the remamine dimensions to the soctions following Sec. V.

V. Distribution of Probability

In this section we derive the form of the probability distribution $\left\{P_{i}(\varepsilon)\right\}$ associated with the natural measure μ of the generalized baker's transformation. Here P_{2} denotes the probability of the $t^{\text {th }}$ cube C_{i} of edge ε, i.e., $P_{i}=\mu\left(C_{i}\right)$. The collection of numbers $\left\{P_{i}(\varepsilon)\right\}$ may be also be thought of as the result of coarse graining the natural measure. This probability distribution is interesting bolh for its own sake, and because it is needed to compule some of the dimensions that we are interested in. In what follows we restrict ourselves to the case in which $\lambda_{2}=\lambda_{b} \equiv \lambda_{2}$, which keeps the width of all the strips the same. Thus a parlicularly convenient partition for computing $\left\{P_{i}\right\}$ is the sel of 2^{n} nonempty strips oblained by iterating the unit squai'e n times.

Starting with a unfform probability distribution, on one application of the map two strips are produced, one with total probability a and the olher with total probability β. (See Fig. $7(\mathrm{~d})$.) If the map is applied again (Fig. B), there results uno strip of probability α^{2}, one of probability β^{2}, and two of probability a β. In gencral. after n applications of the map, there result 2^{n} strips of width $\left(\lambda_{2}\right)^{n}$ and probabilities $\alpha^{m} \beta^{(n-m)}, \boldsymbol{m}=0,1,2, \ldots n$. The number of strips with probability $\alpha^{m} \beta^{(n-m)}$ is

$$
\begin{equation*}
Z(n, m)=\frac{n!}{(n-m)!m!} \tag{22}
\end{equation*}
$$

i.e., the bir.omial coefficient. Since we take $\alpha<\not / 2<\beta$, lower m corresponds 10 more probable strips, i.e strips of greater natural measure. The tolal probability contained in these $Z(n, m)$ strips is

$$
\begin{equation*}
W(n, m)=a^{m} \beta^{(n-m)} Z(n, m) \tag{2,3}
\end{equation*}
$$

Note the similarity to a sequence of coin tosses; Lising a coin with probability a of heads and β of tails, for a sequence of n flins the total number of sequences with ni occurences of heads is given by Eq. (22), and the likelihood of all such scquences is given by Eq. (2').

For large $n(\operatorname{sma} l \boldsymbol{\varepsilon})$ it is convenient to have smooth estimates for $\%(n, m)$ and $W(n, m)$. Using Sterlinf - approximation, i.c.,

$$
\log n!=(n+y / 2) \log (n+1)-(n+1)+\log (2 \pi)^{n}+O\left(n^{1}\right)
$$

we oblain from Eq. (22)

$$
\log Z \approx\left(n+y_{2}\right) \log (m+1)-\log (2 \pi)^{4}+1
$$

Expanding this expression in a Taylor series about its maximum valur, $m=\frac{n}{2}$, yields

$$
\begin{equation*}
\mathscr{Z}(n, m) \approx \frac{e^{n}}{\sqrt{2 \pi}} \sqrt{\frac{4}{n}} e^{-\pi n \frac{4}{n}\left(m-\frac{n}{2} e^{2}\right]} \tag{2:}
\end{equation*}
$$

Similarly, Irom Eq. (23), $W(n, m)$ is

$$
\begin{equation*}
W(n, m) \& \frac{1}{\sqrt{\Sigma \pi n a \beta}} e^{-\frac{(m \cdot n a)^{2}}{2 n a \beta}} \tag{2:}
\end{equation*}
$$

Note that, since these expressions were oblained by Taylor series יxpansion, Fiq (21) is only valid for $\left|\frac{m}{n}-y\right| \ll 1$, and liq. (2b) is only valid for $\left|\frac{m}{n}-n\right| \ll$: However, since the width of these Gamssians is $0\left(\frac{1}{n^{n}}\right.$). Fiq. (24) is valld for most of the strips, and Eq. (25) Is valid for inost of the probiuility.

Fig. 9 shows a schematic plol of 7 , and W. It is clear Irom this Kl_{g} ure thet, ror large n. almost all of the probability is contained in a very small friction of thetotal number of strips. Furthermore, this situation is accentuated as ε gets smaller (n gets larger). since the width of the Gaussians given in Fqs. (2fi) and (26) decreases according to $\pi^{1 / 2}$. In the limit as $\varepsilon \rightarrow 0$ these Gaussians approach deltia functions, and they do not overlap. We feel that the above propertics are typical features of chaotic attractors.

6.1. Log-Normal Distribution of Probabilitics

It is instructive to rewrite Eq. (25) in another form. lol $p=a^{m} \beta^{(n n)}$ denote the probability of a strip. and reexpress Eq. (25) in terms of $u=\log \frac{1}{p}$ rather thian m. In is proportional to u, and $W(n, m)$ becomes

$$
\begin{equation*}
F(u)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(u-z_{0}\right)^{2}}{2 \sigma^{2}}} . \tag{26}
\end{equation*}
$$

where

$$
\sigma^{\sigma}=\frac{\left[a \beta \log \frac{\beta}{a} \log \frac{1}{\varepsilon}-\right]}{\log \frac{1}{\lambda_{2}}}
$$

and

Higure?
 Che number of cubes with probubility $p=a^{m i} \beta^{(n)} m$, and $w(r, m)$ is the sim of ther urobit
 are bulh approximately Gaussian distributions in $\frac{m}{n}$-whase width is proportional to r. In: ti:e limit as $n \cdot \infty, W$ and Z become delta functions, and no lorger overlap.

$$
\begin{equation*}
u_{p}=d_{L} \log \frac{1}{\varepsilon} \tag{27}
\end{equation*}
$$

with d_{L} given by Eq. (16). Eq. (26) is only valid if

$$
\begin{equation*}
\frac{\left(u-u_{0}\right)^{2}}{\sigma^{2}} \ll \log \frac{1}{\varepsilon} \tag{2b}
\end{equation*}
$$

corresponding to $\left|\frac{m}{n}-\alpha\right| \ll 1$. $F(u) d u$ is the total probability contained in strips whose values of $u=\log \frac{1}{p}$ fall between u and $u+d u$. Thus we sec that the logirithm of p tas a Gaussian distribution, or in other words, p has a log-normal distribution, We believe that this is typically true of chaotic attractors. In particular, we: offer the following conjecture ${ }^{\text {ie }}$.

Conjecture 4: Let A be a chaotic attractor of a p dimensional invertible dynamical system, and assume that this attractor has a natural measure fi. Cover A with a fixed grid of p dimensional cubes of side length. Assign each nonemply cubce G_{i} probability $P_{i}=\mu\left(C_{i}\right)$ and $\operatorname{lot} U_{i}=\log \frac{1}{1 /}$. Lot u_{0} be the me , oi the numbers U_{i}, and let σ^{2} be tho variance. for typical shaotic altrantors, in the limit as $\varepsilon-0$ values of U_{i} sufficiently close to the mean (in the sense of Fq. (2B)) approach a Gaussian distrilittion. In other words. the corresponding values of Γ_{i} approach is lo,' normal distribulion.

Note that l_{i} is the information obtained in a measurement that finds the $\mathrm{D}_{\boldsymbol{\prime}}$ bul Inside of the $i^{\text {th }}$ cube [1, 6, 9]. Thus, Conjereture 4 states that for chantic allractol:: the information is approximately normally distributed for small e.

The function 7 (n, m) given in liq (21), can also be reexprossed in lerms of p rather than m. When thiris done. with similiar restrictions to those of liq (2G). Wir result is also a Caussian in terms of $u=\log \frac{1}{p}$ When recast in the more ferment
 between u and $u+d u$ are given by a Gaussian distribulion. (Similar restrmelions: to those given in Conjecture 4 apply.)

V. Compulation of I'robubilistic Dimernsions

In this section wr verify Conjectures 1 and 2 for the gencralized baker's transformation by expiocilly computing all of the probablity dinentsions deflned in Enc. Il. In order to simplify the computiations, for all but thr \mathfrak{v} llatladorf dimioll
 dimension we treat the most feneral ease in which $\lambda_{b} \not \lambda_{b}$, out arr only able to obtaln an upper bound for the dimension.

6.1. Alternate Derivation of Inforitalion Dimiention

Now that we know the probibility distribution for the promeralized bakrer:s iransformation for $\lambda_{a}=\lambda_{b} \quad \lambda_{2}$, we can obtain !he informalion dimension direrdy

[^10]$I(\varepsilon)=\int u F(u) d u=u_{0}$.
Since from Eq. (27) $u_{0}=d_{L} \log \frac{1}{\varepsilon^{2}}$ Eq. (4) yiclds $d_{l}=d_{l}$ (previously shown in Bec. IV for the more general case $\lambda_{a} \neq \lambda_{b}$). Thus the mean value or the log nomital distribution is simply the information containec in the probability distribult'm, ind Its sealing rate is $I(c) \approx d_{\mu} \log \frac{1}{\varepsilon}$ dimension of the natural measure.

6.2. Determination of t-capacily

Here we calculate $d_{c}(v)$ for $\lambda_{a}=\lambda_{j}=\lambda_{2}$. Wo choose ε equall to the width of a strip, $\varepsilon=\lambda_{z}^{n}$, As usual, for convenience we compute the ϑ-capacity or the all ravior projected onto the xaxis, i.e. $\dot{d}_{c}(v)=d_{c}(v)-1$. The v-capicity $d_{c}(v)$ is de fincol m ferms of the minimum number of intervals $\mathrm{N}(\varepsilon ; \vartheta)$ of width ε that have total nit ural measure al least ϑ.

$$
N(\varepsilon ; v)=\sum_{m=0}^{m p} r(n, m) .
$$

where m_{0} is the largest integer such that

$$
\begin{equation*}
\sum_{m=0}^{m} \sum_{n}^{1} w^{\prime}(n, m)<v_{1} \tag{35i}
\end{equation*}
$$

$$
v \approx \frac{1}{\sqrt{2 \pi a \beta n}} \int_{=1}^{m_{0}} a^{-\frac{(n, n \omega)^{R}}{2 n a p}} d t i
$$

Thus for nxed vir whtian

$$
\begin{equation*}
\frac{m_{v}}{n} \approx a \cdot u r f\left(: \quad(v) \sqrt{\frac{\alpha}{n}} .\right. \tag{ה}
\end{equation*}
$$

 Thus we use ligns (2i) mid (2: (2) to approximate: $2(1, m)$ ins

$$
\sum_{m=0}^{m}\left({ }_{a}^{\beta}\right)^{m} s^{\prime}\left(N_{n}^{N}\right)^{m_{1}}\left(A^{\beta} a\right) .
$$

we nind that

Figure 10
 values of minear $\boldsymbol{m}_{\boldsymbol{w}} \mathbf{v}$.
apruement with Cinjucture 3 .

6.3. Computation of $\boldsymbol{2}$-Ilaundort Dimension

In this section we obtiar int upper bound on the \boldsymbol{v}-flansedort dinionson of the genornllard laker's (ransformation with $\lambda_{a}+\lambda_{b}$ (kecall lhat for mur work in thor
 dimension hy using a specifle enverimp along x to compute the sum

$$
u_{u}^{0}(0, v)=\sum_{i}^{1} d_{1}^{d}
$$

 thus we cat only sigy that we have ohtathed an tuper limit

$$
\| l_{d}(n, m):\left(\lambda_{b}{ }^{n} \quad " \lambda_{a} n^{\prime \prime}\right)^{\prime \prime} \%(n, m)
$$

wir have that

$$
\begin{equation*}
u_{d}^{d}(c, v)=\sum_{d} c_{i}^{d}=\sum_{m} l_{d}(n, m) \tag{33}
\end{equation*}
$$

We still have yet to specify which m values are to be ineluded in the sum. To do Lhis, we expand $L_{d}(n, m)$ about ils maximum valuc (as donc for $\%$ ind W in Sece. V). and obtain

$$
\begin{equation*}
\left.U_{d}(n, m) \sim \frac{\left[\lambda_{a}^{d}+\lambda_{b}^{d}\right]^{n}}{\sqrt{2 \pi n} \frac{\lambda_{d}^{d} \lambda_{b}^{d}}{\left(\lambda_{e}^{d}+\lambda_{b}^{d)}\left(\lambda_{b}^{d}+\lambda_{b}^{d}\right)\right.}} \operatorname{exp-1/2} \frac{\left[\frac{m}{n}-\frac{\lambda_{d}^{d}}{\lambda_{0}^{d}+\lambda_{b}^{d}}\right]^{d}}{\frac{\lambda_{0}^{d} \lambda_{b}^{d}}{n\left(\lambda_{a}^{d}+\lambda_{b}^{d}\right)\left(\lambda_{d}^{d}+\lambda_{b}^{d}\right)}}\right) \tag{1}
\end{equation*}
$$

 Note that for the general case we are considericg now with $\lambda_{a}+\lambda_{b}$, W (1, , : 1) ublained it: Eq. (2b) continues to be the correct expression for the distribution of probabilities in: cart: strip. Depending on the values of $a_{1} d_{1} \lambda_{a}$, ard λ_{b}, W may peak at a value ef minal is

 case:3
Case 1: $a<\frac{\lambda_{!}^{!}}{\left(\lambda^{\left.\frac{1}{!}+\lambda\right)^{\prime}}\right.}$
Cave 2: $a>\frac{\lambda_{b}^{d}}{\left(\lambda_{a}^{a}+\lambda^{j}\right)}$ and
Cave 3: $a=\frac{\lambda_{!}}{\left(\lambda_{!}^{d}+\lambda^{(!)}\right)}$.

 Le comiphile the oflacsdurf datersion: for cose 1.

$$
\begin{equation*}
I_{d}=\sum_{m i n}^{m i t} 1!_{d}(11.112) \tag{i,i}
\end{equation*}
$$

 (urina

$$
L_{d}^{0}(r, v) \cdots n n^{K}\left(\begin{array}{c}
\lambda_{j}^{d}
\end{array} m^{m_{0}} n^{n}\left(\begin{array}{c}
\lambda_{d}^{j}
\end{array}\right)^{m_{d}} .\right.
$$

or

$$
\log \left[l_{d}^{*}(\varepsilon, v)\right] \propto-n\left[d-\left(\bar{d}_{L}\right)\right] \log \left(\frac{1}{\lambda_{2}}\right) .
$$

for $\varepsilon \rightarrow 0$ (i.e., $n \rightarrow \infty$) we oblain $l_{d}(v)=0$ for $d>\bar{d}_{L}$ and $l_{d}(\mathcal{i})=\infty$ for $d<\bar{d}_{L}$. Tl:Ls remembering that $d_{H}(v)=\bar{d}_{H}(v)+1$.

$$
\begin{equation*}
d_{H}(v) \leq d_{L} . \tag{36}
\end{equation*}
$$

As already mentioned, we expect that the above inequality is really an equality. This expectLation is reinforced by the fact that when $v=1$ we recover the exuct expression for the Hausdorft simension computed in Eq. (18). To see that this is truc, replace m., in Fid (3i)) by n. From the form of U_{d}, this sum is simply the binomial expaision of $\left(\lambda_{d}^{d}+\lambda_{b}^{d}\right)^{n}$. As $n \rightarrow \infty$, this quantity is 0 or ∞ for $d>\bar{d}_{H}$ or $d<\bar{d}_{H}$, where \bar{d}_{H} satisfies $\lambda_{a}^{d /}+\lambda_{b}^{d_{H}}=1$, whicil: ts the same as Eq. (18). That is, for the specific choice of ε_{i} that we have used, we obtuir. the: correct value of d_{H}. Since the same choice of the ε_{i} was used in obtaining $d_{H}(v)$, it secons plausible that the equality might apply in E.q. (36).

B.4. Computation of the Pointwise Dimension

We now consider the pointwise dimension for the generalized baker's transformation with $\lambda_{a}=\lambda_{b}<Y_{1}$ and we show that d_{p} exists and is equal to d_{j}.

As previously noted In Sec. IV, application of the map n times to the umt square produces 2^{n} strips of widths $\left(\lambda_{a}\right)^{n}$. (Recall that we arc assuming $\lambda_{a}=\lambda_{b}$.) h order to compute the pointwise dimension, we choose a point x at rialdom wilh respect to the natural measure μ, compul. The nalural measure contained in an, ball centered abnut x, i.e. $\left(\mu\left(H_{t}(x)\right)\right.$, and conipule the ratio of $\mu\left(\mu_{t}(x)\right)$ lo $\operatorname{lof}_{f} \frac{1}{e}-111$ the limit as ε goes to zero. The simplest case for this computation occours when $\lambda_{0}<\frac{1}{4}$ so that the gaps between strips are bigater than the strips thrmsilvas, as pictured in F'le. 11 (a). Choosing a point x at random with respeet to the natural measure μ, let s_{n} denote the $\pi^{\text {th }}$ order strip of width $\left(\lambda_{a}\right)^{n}$ that the point x lies in lething $\varepsilon=\left(\lambda_{a}\right)^{n}$, the nutural measure contained in a ball of radius s aromme $\times(10$, the x interval $\left.\left[x-\left(\lambda_{0}\right)^{n}, x+\left(\lambda_{a}\right)^{n}\right]\right)$ will be equal to the ratural measure of 1 he
 ure contatned In a piven strip is $a^{m} \beta^{(n) m)}$, where $7:-m>0$, where m deperid:: $1 \boldsymbol{n}$ the particular strip that x happens lolie in (Soesice V.) Ihows, we have

$$
\begin{equation*}
\lim _{n, 0} \frac{\mu\left(\mu_{r}(x)\right)}{\log \varepsilon}=\lim _{n \rightarrow \infty} \frac{\log \mu\left(S_{n}\right)}{n} \frac{\log \lambda_{a}}{\operatorname{lom}} \frac{m \log n+\ln -m) \log \beta}{n \ln n \lambda_{a}} \tag{3i}
\end{equation*}
$$

In the dimit as ngrows large, as shown in Sede V (sur fik 9), the lotal probabilit:
 ahout $\frac{m}{n}=\alpha$. Ihus. In Lhי" limit as n om it beonmes overwhelmmply liknly lhal
 ('thes is just a statement of the law of larpe mambers) futhons thes mito lid (iti) pilves

$$
\lim _{n \rightarrow 0} \frac{\mu\left(\mu_{a}(x)\right)}{\log a}=\frac{n \log \operatorname{con}+\beta \log \rho}{\log \lambda_{a}}=\frac{\mu(x)}{\log \frac{1}{\lambda_{a}}} d d
$$

(Sura lity: (1:9) and (16))

Figure 11

VII. 'I'he: Core of Allime:tors

P'igure 12

 (11:d $\lambda_{a}=\lambda_{b}-y_{y}$

this case Intervalsi).

 allrirlor.

$$
\mathbb{I}_{\mu 1} \cdot \begin{aligned}
& 11(n) \\
& l(n)
\end{aligned}
$$

Figeleston in 19:9 [33]. Also. the Hausdorf dimension of a very similiar examule (involving lernary rather than binary expansions; was proven by besicovileh in J 831 [34].

Thus, for this example we see that the Hausdorf dimension of the core is equal to the dimension 0 : the natural measure, and the capacity of the core is equal to the fractal dimension of the altractor. F'or the case of diffeomorphisns of the plane, the former result has been proven by foung [11]. We suspeet that this is a property of typical altractors.

VIII. An Altractor Lhal is a Nowhere Differentiable Torus

This section contains a review of the work of Kaplan, Mallet-paret, and Yorkr [3 3 $]$ on the dimension of a chatio altractor in a selting that is quite different from that of the gencralied baker's transformation. The attractor deseribed below hat: the same lopological form as a torus, and yot is nowhere differentiable, thus pro viding an interesting exarmple of the nonamalytie forms that can be producesl b: chaolic dynumies.

Consider the following, man:

$$
\begin{align*}
& x_{n+1}=2 x_{n}+y_{n} \\
& y_{n 11}=x_{n}+y_{n} \quad \text { mod } 1 \tag{39}\\
& \varepsilon_{n+1}=\lambda x_{n}+p\left(x_{n}, y_{n}\right)
\end{align*} \quad \text { mod } 1
$$

 and y wilh perond 1 and is at loast five lames daferembable from anmpla,

 is relevat, and we expere that the frastal dmention and the damension of the finlural meneturn :homid be equal
 Alat:on or "cal" "map: isel.

$$
\binom{x_{n}, n}{y_{n}, 1} \cdots A\binom{x_{n}}{v / n} \quad \text { mond? }
$$

whon.

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

$$
E_{n} \sum_{k^{2}=1}^{n} \lambda^{k}{ }^{1} \mu\left(r_{n} k \cdot y / n k\right)
$$

$$
\text { e }(x, y) \cdot \sum_{k=1}^{\infty} \lambda^{k} 1 p\left(\lambda k\left(\begin{array}{l}
(x)
\end{array}\right)\right.
$$

$g(x, y)$ has some vary interesting properlles. For $\lambda<\frac{1}{R^{\prime}}$ where $R=\frac{3+\sqrt{6}}{2}$ $\varepsilon(x, y)$ is amooth and has dimension 2. If $\lambda>\frac{1}{R}$ however, for most choices of p_{1} $\varepsilon(x, y)$ is nowhere differentiable. A typical cross section of $z(x, y)$ is shown in Fig. 13. To understand intuitively how the nondifferentiability of $\%(x, y)$ comes about, notice that $z(x, y)$ is the sum of an inflnite number of periodic functions whose arguments are the successivo iterates of the cat map. Unless λ is small enough to diminish the effect of highor order iterates, the value of the sum can swing wildly as x or y change.

The lyapunov numbers of the map given in Fiq. (39) are $\lambda_{1}=R, \lambda_{2}=\lambda_{1}$ and $\lambda_{3}=\frac{1}{R^{\prime}}$ whore $R=\frac{3+\sqrt{5}}{2}$, as given abovo. Kaplan, Nallel-riarel, and Yorke [3i)] have shown that there are two possibilities for the dimension of $z(x, y)$

Either

(i) $\mathrm{z}(\mathrm{x} . \mathrm{y})$ is nowhere differentiable and

$$
d_{C}=d_{l}
$$

or
(ii) $x(x, y)$ is differentiable and $d_{c}=2$.

For given p. the nownere difterentiable case oceurs for neilly every ehoice of λ Thus we see that Conjecture 3 is satisfled for tu example.

Figure 1:1
 $d_{c}=2 \%$

IX. Numerical Computalions

In this section we discuss some asperis of the numerical computation of dimension. First we will discuss the basic ideas behind numorical computations of dimension, secondly we will discuss some of the problems encountared in such computations, and finally we will review some previous numerical work.

The methods to compute dimension vary considerably depending on the dimension that one wishes to compute. Thus far, we are aware of numerieal compulations only of capacily [37-41], lyapuriev dimension [37-10], and Hiusdorft dimension [42]. Or these, only the studies Involving the capacity and the lejupunov dimension werc applied to attractors of dynnisucal symems. In cach case, the computations follow from the deflnitions. As we shall sec. the eapacity is (in principle) RLraigheforward to compulo, hut is in practice unfeasible to compute for all but very low dimensional allractors. The l.japunov dimension. in eontrast. is much more feasible to compute. We will begin the discussion witn a deseription of the compulation of lyapunov dimension, and then go on to discuss the compulation of capaclty.

Q.1. Numorical CompuLation of Iyapunov LLi, nensaon

The lyapunov dimension is deflned in terms of the lyapunov numbers. (Bire
 tho lyapunov numbers. Numerical mothods ler doing this have been discussed by Bennetin el al. [13], Shimadi and Nagashinia [4A], and in imfmite dimensions hy farmer [03]. With appropriale numerical carlion. the largest k lsapunor numbers can be computed by following the evolution rik nearby trijectories simultameomily and measuring their rate of separation. There ure varinus numberical problems: with this mothod, however, and a better mothed is in follow only one trijectory. but also follow k trajectories of the essociated equat uns for the cvolution of vectiors in the tangent space. l'hese methods have been succestfully used in a virioty of numerleal studies.

For low dimensional cases, such as two dmensional maps or sestemes of throw autonomous ordinary diferentlal equations, witi a modern computer and planily of computer time, numerieal compulition of the dimensiens we diseuss here direvily fromitheir defnitions is feisibic, as desoussed in the next subsertion firen msurin low dimenslonal cases, however, the computation of Iyaplinov dimensi. n is by far less costly in terms of computer time and riemory than the renmpitiation of ollorim dimensions. For higher diniensional all ractors it appears thal onily ile levipumes dimension is compulationally feasible. 'the key reason thot the l.japmenv dimenson is Pasible to compute numerically even for attrastors of rather high dimen
 dimension of the altractor times the dimension of the space il hesi in, filher thin expronentially as il dees for a computialon of the fractial dimensions, me of the olfher dimensions discussed in this puper. 'Ihee menory needed to comphere thr
 Integrate tho equalloris under aludy, multiplied by $j+1$. (Nemory requirements ario usuafly a problemi only in computations involving piatial diffrentinl erpuitions) The enmpuler time neveded is the tme ne:ded to compule a time armape lo lhe desired uceuracy (which depends, among other things, on the irrepularity of the natural measure of the attract or), inulliphied by $\mathrm{j}+1$. Fortinnilely it is only neeres sary to cempute the largese lyapenow nombere.., and the number of these merded depends on the dimetsion of the altrachar rather than the damension of the phater epmen. (Sice liq (0).) 'this linear depandeneer on the dimernston of the all ractor ha:: allowed eompulation of the lyapmov dimernion for altractors of dimention ats largen antenty |313]

We should mention one disadvantage concerning Lyapunov dimension. Biamely, It is not presently known how the hyapunov dimension can be determined direclly from a physical experiment. The dificulty comes about because, in some sense, in order to determine lyapunov numbers it is necessary to be able to follow adjacent trajectories. To determine all the necessary Lyapunov numbers, it is necessary to follow some trajectories (at least one) which are nol on the attractor. Thus it is not possible to compute the Lyapunov dimension by slmply observing behavior on the attractor; one must perturb the system from the attractor, and do so in a very well deflned way. This poses a very severe problem in the computation of dimension from experimental data, one that is not present in the computation of other dimensions.

9.2. Computation of Fractal Dimension

In principle, it is quite straighlforward to use the definition of capacily, Eq. (2), to compule the fractal dimension. The region ol phase space surrounding the atlractor is divided up into a grid of cubes of size ε, the equations are lteralud, and the number of cubes $\mathrm{N}(\varepsilon)$ that contain part of the attractor are counted. ε is decreased and the proness is repeated. If $\log N(\varepsilon)$ is plotled against $\log \varepsilon$, in the limit as egoes to zero the slope is the fractal dimension.

The difficulty with this method is that one must use values of ε small enough to insure that the asymptolic scaling has been reached. (Sec l'rochling ol al. \mid : 0 | and Greensidr: et al [39]) The total number of cubes containing part of the altruc:tor scales roughly as

$$
\begin{equation*}
N(c) \sim\left(\frac{1}{c}\right)^{d} c \tag{0}
\end{equation*}
$$

Thus, the number of cubes inereases emponentinlly with the fractill dimension of the nltrictor. lo get a feel for the seriousness of this problem, plus in some typical numbers If $\mathrm{f}=01$ and $\mathbb{a}_{c}=3$, then $N \approx 10^{0}$, exceceding the corn memory of all but the biggest. current computers. Thus, computations of fractal dimension ara currenlly nol feasible for attractors of dimension significanlly greialer lhatil thren.

In addition. there is another potential problem invulved in romputing capa. cily, In counling cubes, how can one the sure that all the nonermpty rubes havi been counled? I'his probiem is compounded by the highly nonumform distimbilinn of probability on an attructor. In particular, if our hypolhesis that the probabilits is distributed log-normally is coriect, in order in count the hifhly improhibil. cubes present in the wings of the distribution requires that a large number of points on the attractor rinust be generated. Furthermore, this mumber mereinses rapidly as e decreases.

The conclusion is that a great deal of care must be taken In the vomputialien of fractial dimension, and in particular, a sufficiently large number of ponts on the aldractor mast be generiated to insure that low probability eubes are nal left out in the determination of $N(r)$.

Although there are as yel no extensive results on dirert computations of the dimension of the nitural measure, it mily be casier In rilmbly rompule than llic frictial dimension.

The reason for this is that viry improbable eabes are irrelowimf for a rompulalion of the dimension of the maturial mediare. Numerisal experments on thes lope are currently in progress.

9.3. Summary of Past Numerical Experiments

In this section we summarize previous numerical experiments on dimension computation. The two studies most relevant to the tupic under discussion are those of Russel et al. [37] and Farmer [38]. Both of thesc were made in an allempt to test the Kaplan-Yorke conjecture [7,22]. (See Section III.) In both of these studies, the capacity of chaotic attractors was computed directly from the definition The Lyapunov dimension was also computed, and compared to the capacily.

In the study of Russel et al., five examples were examined. In cach ease, the compuled capacity agreed with the compuled lyapunov dimension to within experImental accuracy; in several of these cases, this agreement was within three signiflcant tgures. These computations were done on the Cray!, a state of the art mainframe compuler; at the smallest value of $\varepsilon=\mathbb{2}^{-14}$, more than 10^{5} cubes werc count.ed.

The numerical experiments of Farmer were done using high dimensional approximations to an infinite dimensional dynamical system. Beciause the equations under study were more time consuming to integrate, and because the enpit city computations were done on a minicomputer, it was only possible to acheve about two significant figures of accuracy. The computed capicity und lyapunor dimension agreed to this accuracy at the two parameter values tested.

In 1980, Morı [23] conjectured an allernate formula relating the fructal dimension to the spectrum of l.yapunov numbers. For attractors in a low dimensional phase space, such as those studied by Russel et al. [37]. Nori's formula and the Kaplan-Yorke formula (Fiq. (9)) predict the same value. for higher dimenaionil phase spaces, however, the two formulas no lonyer agree. Parmer's results support the Kaplan-Yorke formula, and conclusively show that the: N'ori formula is Incorreel for higher dimensions.

One puzeling aspect of both of these numerical experiments is the strikinit agrecment between the computed value of capacity and the lyapunov dimension The Kaplan-Yorke conjecture equates the lyapunov dimension to the dimension of the natural measure, and therefore only gives a lower bound on the friactial diniension. Why', then, was such good agreement obtained between thr compuled capa. cily and the eomputed lyapunov dimension? We do not yel understand the answer to this question, though further numerical experiments may resolve the queston,

X. Conclusions

We have given several different deflntions of dimension. These rivide into $/ \mathrm{wi}$ types, those that require a probab:ity measure for their defintion, and those thill do nol. (kefer buck to 'luble 1.) For an example that we believe is typicial ef chaolic altractors, l.e., '.he generali\%ed baker's transformation, our compuliation. of dimension show that all of the probabilistic defnitions take on me value, which we call the dimension of the natural measure, while the defimtions thit do not require a probibility measure take on another value, which we call the fractil dimenston of the altriactor. We believe that this is true for typleal allinelors.

If the probability distribution en the attractor is "enarse tirained" by envernity the attractor with cubes, for the penerialized baker's transformation we find that the probiability contianed in these cubes is distribuled nearly log-nommally when the eubes are sufticiently small. In other words, the total prohability eomimned in enabes whose naturial meatsure is between $u=\log p_{1}$ and $u+d a$ has a destrobulton that is nearly Gaussian, and as the size of the cubes is decreased, il beromes nore nearly Gnussian. Furthermore, the number of cubes in a given inlerval of a alsa has a Gansslan dislribution, but with a different mesan and varianee. (Site fig. 0) As ε decreases, both of these distributions become niarrown in a relialive sense, in
that the ratio of their variance to their mean decreases. In the limit as ε goes to zero, both distributions approach delta functions: since their means are different, In this limit the two distributions typisally do not overlap. Thus, almost all of the natural measure is contained in almost none of the cubes, and the natural measure is concentrated on a core set. The capacity of the core is the fractal dimension of the atlrastor, while the Hausdorff dimension of the core is the dimension of the natural measure. Once again, although we have demonstrated the results menlioned In this paragraph only for the generalized baker's transformation, we feel that they are true for typical chaotic attractors.

Most of the dimensions that w' have defined are difficult to compule numerically. The lyapunov dimension, however, is much easier to compute numerically than any of the other dimensions. We compute the Lyapunov dimension for the generalized baker's transformation, and show that it is equal to the dimension of the natural measure obtained from any of the other probabilistic dimensions that we have investigated. This supports the conjecture of Kaplan and Yorke.

References

1. R. Shaw, 'Strange Attructors, Chaotic Behavior, and Informi.ion Flow', \% Naturlorsch. 36a (198:) 80.
2. E. Ott, "Strange Atlractors and Chaotic Notions of Dynamical Syslems", liev. Mod. Phys. 53(198i) 655.
3. R. Helleman, "Self-Generated Chaotic Behavior in Nonlinear Nechanics", F'undamental Problems in Stat. Mech. 5, Ed. F.G.D. Cohen, (North Holland. Imsterdam and New York, 1980) 165-233.
4. J.A. and E.D. Yorke, "Chaotic Behavior and F'luid Dy:iamics", Iydradymamis: frastabilities and the Tramation to Tiurbulence, 11.L. Swinney and J.I' Gollub Eds., Topics in Applied Physics 45, Springer-Verlag (191:) 77-96.
5. Ja. Sinai, "Gibbs Measure in Ergodic T² nory", Rus.. Mat'.. Survey: f (! 972) 2?64.
6. B. Mandelbrot, Fractals: Form, Chance, and Dimemsion (F'recman, Sin Frimcisco, 1977).
7. P. Frederickson, J. Kaplan. F. Yorke, and J. Yorke, "The lyapunov Dimension of Strange Attraclors', Lo appear in J. Difi liqns.
B. J.D. Farmer, "Dimension, Fractal Measures, and Chantic Dynamies", 10 appear In Evolution of Ordered and Chaotic I'a:terns in Systerms Treate:t by the
 19H2).
日. J.D. F'armer, "Information Dimension and the Probubilistie strueture af Chios'", In appeur Z. Nalurforsch. September, :9月3.
8. J. Alexander and J. Yorke, "The Fal Baker's Transformation", l' of M'arylund preprint (19132).
9. l.S. Young, 'Diniension, linlrupy, and laiapunov lixponcials', lo apperar in Ergodic Theory and lynanical Systems
10. W. Hurwicz and II. Wallman, Dinension Then.y. (Brancet on l'me lress, lmane ton, 1948).
11. A.N. Kolmogorov, "A New Invariant for Transitme Dy namical sy: (ems", Dol: Akad. Nauk SSSil 119 (195H) 136:-804.

1b. R. Bowen and D. Ruelle, "Ihe birgodie Therory of Axiont-A lilows', Inv Nalh is! (1976) 181-202
12. J. Halatoni and A. Renyı, Publ. Nath. hast of the liungierian Arat of Sila (1958) 9 (Ilungarian). Pinglish (ranslation, Soleched Paprers of a Konyl, Vo! :
 Nathemallea (llunigary) $10(19,9) 103$.
 (10.11) 379-423, G23-666.
 l,aboraloire Associe au CNRS IA. 22A preprint.
 r'raneisco, to appear in 19 (33.)
 13 (iolngnios Itravidiuro de Afathomaticu.
13. T. Janssen and J. Tjon. "Eifurcations of Lattice Structure", U. of Utrecht preprint.
14. J. Kaplan and J. Yorke, Functional Differential Equations and the Approximalion of Fixed Poinfs, Proceedings, Bonn, July 1978, Lecture Notes in Math. 730, H.O. Peitgen and H.O. Walther, Eds., (Springer, Berlin, New York), p. n.28.
15. H. Mori, "Prog. Theor. Phys. 63 (1980) 3.
16. V.I. Oseledec, "A Multiplicative Ergodic Theorem. Lyapunov Characteristic Numbers !or Dynamical Systems", Trans. Moscuw Math. Soc. 19 (1960) 197.
17. C. Grebegi, E. Ott, and J. Yorke, "Chaotic Attractors in Crisis", in this volume.
18. A. Douady and J. Desterle, "Dimension de Hausdorff des Altracteurs, Comptes Rendus des Seances de L'academic des Sciences, 24 (1980) 1135-38.
R7. A.N. Kolmogorov, Dolk. Akad. Nauk SSSR 124 (1959) 754. English summary in MR 21, 2035.
R8. Ya. G. Sinai, Dolk. Akad. Nauk SSSR 124 (1959) 76B. Finglish summary in MR 21 , 2036.

R9. J. Crutchfield and N. Packard, "Symbolic Dynamics of One Dimensional Maps: Enlropies, Finite Precision, and Noise", Int'". J. Theo. Phys. 21 (1982) \& 33.
30. S. Pelikan, private communication.
31. P. Billingsley, Ergodic Theory and Information, (John Wiley and Sons, Nuw York, 1985).
32. I.J. Good, "Tho Fractional Dimensional Theory of ContInued Frantions", I'roes. Camb. Phill. Soc. 37 (1041) :99-228.
33. H.G. Eggleston, "The Fractional Dimension of a Sel Defined by Decimal I'ropertles", Quart. J, Nath. Oxford Ser. 20 (1949) 31-36.
34. A. Besleoviteh, "On the Sum of Digits of Real Numbers Represented in the Dyadic System", Nath. Annalen. 110 (1934) 321.
35. J.L. Kaplan, J. Nallet-Paret, and J.A. Yorke, "The lyapunov Dimension of a Nowhere Differentiable Altracting Torus", U. of Narylind Preprint (:002) .
86. V.I. Arnold and Avez, Frgodic: Theory in Classicral Mesehnnirs (New York, 19011).
37. D. Russel. J, Hansen. and E . OLt, "Dimensionality and l.yapunov Numbers of Strange Attractors", Phys. Rev. Lett. 45 (1980) 1176.
30. J.D. Farmer, "Chantic Ateractors of an Innnite Dimensional Dynamicial Sy:it cm", Physica 4D 3 (1962) 366-393.
39 H. Grecaside, A. Wolf, J. Swifl, and I'. Pignataro, "The Imipracticality of a live Counting Algorithm for Calculating the Dimensinnality of Strunge Altroctors". Phys. Ruv. Rapid Communications, ? (1902).
40. H. Prochling, J. Cratehneld, J.D. F'armer, N. Packard, and R. Shaw, "On Dhelermining the Dimension of Chautic l'lows", Physira 31) (1981) COt,
41 R. Kaute. private com unication.
42. A.J. Chorin. "The Fivolution of a 'turbulent Vortex", Comm. R'ath Phes Bis (1902) b17-535.
43. G. Hennetin, I. Galgani, and J. Strulcyn, Phys Rev. A 14 (19\%(i) embil, also sore (i

44. I Shimada and I'. Nagnshima, J'rug. 'thesor. I'hys. 61 (1979) 223.

[^0]:
 bengue mensure mero).

[^1]: tiny squares whose total aren in less than c, and such hint almost every trajectory ajornds 1 - t u! the
 Sec. VII.)

[^2]: a synonyan for !lmusdorf hmension. We should also mention that in sonic of oar prewous pary an thes aubject [7-10], we usid the term "fractal dimenam" as a synoiyni for capacity, rat her thail our curreat usaye an described in the text.

[^3]:

 Esets can be constructed for which the limit of Eq. (2) does not exist. Wie woudd then suy that tile capacity is not defined.

[^4]: yields $d_{C}=y_{k}$

 TTo show that $d_{C} \geq d_{H}$, conside a covering consistine of fubes of equal side $\varepsilon_{i}=\varepsilon$. Then due to the infmum in the dencition of $L_{d}(\varepsilon)$, we sec that $I_{d}(\varepsilon) \div \sum_{d}^{d}=N(\varepsilon) \varepsilon^{d}$ satisfics $L_{d}(\varepsilon)>l_{d}(F)$.

[^5]: Thus inking the limit $E \rightarrow 0$ and making use of Fiq. (2) we sec luat $d_{H} \geqslant d_{\varepsilon}$.
 thein, the natural measure.
 Lime $\boldsymbol{\tau}$.

[^6]: this iy n net of μ minanure zero.

[^7]:

 allencting.
 Alerimi:unll everywhere.

[^8]:

 nirnm:Ire).

[^9]:

[^10]:

