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Abstract
How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered
question originated with the idea of ecological niches, and yet bears relevance today for understanding what
determines network structure. Here, we analyse a set of 200 ecological networks, including food webs,
antagonistic and mutualistic networks, and find that the number of dimensions needed to completely
explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality
webs including several species traits, we identify which traits contribute the most to explaining network
structure. We show that accounting for a few traits dramatically improves our understanding of the struc-
ture of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill
gape, are the most successful combinations. These results link ecologically important species attributes to
large-scale community structure.
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INTRODUCTION

Will two individuals of different species interact if given the oppor-
tunity? If the two species have matching traits, then an interaction
is possible, for example, a moth’s proboscis is long enough for a
flower corolla, a predatory fish’s jaw can accommodate its prey or
a bird’s beak can crack the seed. Otherwise, the interaction is
averted – a so called ‘forbidden link’ (Jordano et al. 2003). Evolu-
tion continuously alters species traits to favour or prevent interac-
tions (Thompson 2005). Rewards and deception tend to favour
interactions, while chemical defences and shells tend to prevent
them (Gilman et al. 2012). Clearly, several traits might need to
match for an interaction to occur. Thus, we can imagine species as
embedded in a multi-dimensional space, where each axis represents
a given trait (e.g. size, colour, mobility, phenology) and each species
interacts with all others falling within a certain volume of this
space. This is the familiar idea of multidimensional ecological niche
pioneered by Grinell, Elton and Hutchinson (Chase & Leibold
2003). Consequently, if we were to know all the relevant traits for
a set of species, connecting each species with those embedded in
its corresponding volume would result in an ecological interaction
network. We refer to the minimum number of trait-axes – dimen-
sions – needed to fully reproduce such a network as its ‘dimension-
ality’, D.

Knowing the maximum number of dimensions needed to fully
describe complex ecological networks is important, as current eco-
logical theory implicitly relies on the assumption that few dimen-
sions are needed: species compete for few limiting factors in
models explaining coexistence at a single trophic level (Silvertown
2004); macro-ecological approaches explain several ecological pat-
terns using species’ body mass and metabolic rate (Brown et al.
2004); and phenology drives recent models for the effect of climate
change (Forrest et al. 2010; Diamond et al. 2011). Knowing the
dimensionality of ecological networks would greatly contribute to
our fundamental understanding of what determines species interac-
tions and thereby the structure of ecological networks. Following
this, we may also be able to predict ecological networks based on
knowledge of the number of dimensions and identity of the most
important traits determining structure. Moreover, knowing the
dimensionality of ecological networks is vital for constructing realis-
tic and reliable models of ecological systems.
The search for the dimensionality of ecological networks has ear-

lier taken one of two directions: investigation of the number of
niche-axes (hypothetical traits) needed to explain a particular
network (Cohen 1968; Roberts 1978; Stouffer et al. 2006; Allesina
et al. 2008), and the identification of the species traits that best
explain observed interactions (Stouffer et al. 2011; Zook et al. 2011).
We refer to ‘dimensions’ in the former case and reserve the word
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‘trait’ for the latter. In fact, each idealised dimension could represent
a combination of several empirical traits – for example, taking into
account correlations between traits to create orthogonal dimensions
using principal component analysis or ordination methods.
In graph theory, networks that can be completely described in one

dimension are known as ‘interval’ (Fig. 1a). The first set of published
ecological networks were small food webs that could be suitably
described by one dimension (Cohen 1968) – the species can be
ordered such that each predator consumes a consecutive range of
prey. To date, most models of ecological network structure are based
on a single dimension (Williams & Martinez 2000; Cattin et al. 2004;
Stouffer et al. 2006; Allesina et al. 2008), even though it has long
been proved that most ecological networks are only close to interval
(Cattin et al. 2004; Stouffer et al. 2006; Mouillot et al. 2008). Interest-
ingly, it has been shown that networks constructed from many
dimensions can also appear close to interval (Br€annstr€om et al.
2011). Thus, quasi-intervality does not guarantee that ecological net-
works can be described using few dimensions, and there is as yet no
rigorous estimate of the dimensionality of ecological networks.
Here, we provide, for the first time, an upper bound to the

dimensionality of ecological networks, and identify which traits con-
tribute the most to explaining interactions. To answer these funda-
mental questions we perform two analyses. First, we measure how
many idealised dimensions are needed to completely describe the
structure of a large set of empirical networks. Second, for a subset
of the networks that include traits for all species, we estimate the
fraction of connections explained by each trait or a combination of
traits. We can thereby give a sound answer to the actual number of
dimensions needed to completely describe ecological networks and
quantify the actual importance of specified species traits.

We find that less than 10 dimensions are sufficient to completely
describe ecological networks. Moreover, performing model selection
we show that all networks are best explained by less than five
dimensions. The analysis of traits shows that empirically measurable
characteristics largely account for ecological interactions.

METHODS

Estimating an upper bound of dimensionality

Figure 1a shows a food web in which species i consumes all species
whose body size is larger than bi but smaller than Bi – the diet of
species i is described by a range of body sizes. If this holds for all
species, then the food web is described by a single dimension (body
size). Fig. 1b gives an example for two dimensions: predator i con-
sumes all species with body size within the range ½bi ;Bi " and are
found in the depth range ½di ;Di " in the water column. Species fall-
ing within the body size range, but living at a depth outside the
predator’s range are not consumed. Such a food web requires two
dimensions, and is therefore not interval (Cohen 1968; Stouffer
et al. 2006; Allesina et al. 2008; Williams & Purves 2011). If two
traits are sufficient to completely describe the diet of each predator
(all of the predator’s prey fall within the rectangle, see Fig. 1b) the
network dimensionality is two. If three traits are sufficient, prey are
embedded in a cube, and so forth. Therefore, the total number of
parameters required for the model is three (minimum value, maxi-
mum value and actual trait value) for each species and dimension.
To identify the minimum number of dimensions needed to com-

pletely describe all species interactions in an ecological network, we
need to consider all possible arrangements of the species in several

(a) (c)

(b)

Figure 1. Schematic description of network arrangement in one (a) and two dimensions (b). In (a) the focal species (red) interacts with all species in the body size range

[biBi]. In (b) the focal species interacts with the species in the body size range [biBi] but only if they are also present at depth [diDi]. Arrangement of the species in two

dimensions for an empirical networks: the pollination network of the Galapagos Island (McCullen 1993) (c). The network has D ¼2; only the pollinators (blue) visiting

each flower (green) are contained in each box (two highlighted).
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dimensions. For S species, there are S! possible arrangements in one
dimension, ðS !Þ2 arrangements in two dimensions and ðS !ÞX in X
dimensions. This makes the task of determining the exact dimen-
sion of large networks computationally unfeasible. However, we can
estimate the upper limit of dimensionality using heuristics (e.g. sim-
ulated annealing or genetic algorithms, see Supporting Information).
Suppose that we want to arrange species in two dimensions

(X = 2, Fig. 1b-c). For each predator i, we define the ‘prey box’ as
the smallest possible rectangle among all the arrangements in the
plane such that all prey of i are contained in the box. If for each
predator the corresponding box contains only its prey, the network
can be completely explained by two dimensions. If, on the other
hand, non-prey species are present in one or more of the boxes, we
count them as errors, E2. We define DPred as the minimum number
of dimensions X such that EX ¼ 0 for the complete network. Sim-
ilarly, we define the ‘predator box’ of species i as the smallest rect-
angle containing all the predators of i, and define DPrey as the
minimum number of dimensions in this direction. A ‘predator-box’
or ‘prey-box’ can contain predators/prey that are common for
several species. Fig. 1c shows an example of a plant–pollinator net-
work (Ueckert & Hansen 1971) with DPred ¼ 2. For plant–animal
interaction networks, we consider the ‘Pred’ direction to be that of
the animals choosing plants, and for parasite–host networks that of
parasites choosing hosts.
A third way of arranging species, in addition to the predator box and

prey box arrangements described above, would be for the predator
box to contain only the predators and, at the same time, for the prey
box to contain only the prey of a given species. Such an arrangement
would lead to DPred and Prey. However, necessarily DPred and Prey &
maxðDPred;DPreyÞ. Given that we are interested in the minimum
number of dimensions needed to explain an empirical web, we
consider only the first two cases, and define D ¼ minðDPred;DPreyÞ.
In graph theory, this quantity is called boxicity (Roberts 1969).
We analysed 200 ecological networks, including food webs, mutu-

alistic and antagonistic networks spanning over a wide geographical
range, and estimated D using several global optimisation algorithms
(SI), as no polynomial-time algorithm can estimate boxicity
(Kratochv"ıl 1994). The strategy, similar to that employed in studies
of intervality (Stouffer et al. 2006; Stouffer et al. 2011; Zook et al.
2011), is to use search algorithms that attempt to minimise the
number of erroneously predicted interactions EX for the network
by repeatedly swapping the position of any two species in a given
dimension. Since it is unfeasible to try all possible arrangements,
this process necessarily overestimates EX and therefore the
minimum number of dimensions D.

Model selection

As stated above, D is an overestimate of the true number of dimen-
sions. Actually, a single error (EX ¼ 1) is sufficient to reject
D ¼ X . Because of this sensitivity, it is important to embed some
level of uncertainty in the measure of D. We use a probabilistic model
in which a species included in the X-dimensional prey box of a preda-
tor is consumed with probability pX ; otherwise, it is not consumed.
This probabilistic model, which can be seen as a simple multidimen-
sional niche model (Allesina et al. 2008; Williams & Purves 2011),
allows us to choose the most appropriate number of dimensions for
modelling the network, D' ( D. If L is the number of interactions in
the empirical data and E is the number of erroneous interactions that

our model predicts, we can set the probability to its maximum likeli-
hood estimate p̂X ¼ L=ðL þ EX Þ and use the AIC (Akaike infor-
mation criterion) (Burnham & Anderson 2002) to determine D'. The
probabilistic model is more robust than D to sampling problems in
the data or any inaccuracy due to the optimisation routine: EX must
decrease by a large amount to reduce D' from X + 1 to X.
Given that we are analysing different types of networks, it is also

of interest to investigate whether different network types have
different scaling properties. To this end, we regressed the logarithm
of the number of connections (log (L)) against D, D' and log
(AIC ) (Fig. 2 main text, Fig. S1). For each regression [linear for
log(AIC ), Poisson in the other two cases], we contrasted two mod-
els: one in which all webs were grouped together, the other in
which the networks were divided into three coarse grained groups:
food webs, bipartite mutualistic networks (e.g. plant–pollinator) and
bipartite antagonistic networks (e.g. host–parasite). We then use
model selection (AIC) to investigate whether the network types are
best modeled together or separately.

Predicting structure using traits

The dimensions analysed above can not directly be related to empir-
ical traits, since each dimension could potentially represent a combi-
nation of several traits. Therefore, we additionally analyse how well
empirically measurable and ecologically important traits can predict
the structure of ecological networks. In other words, we want to
predict species interactions based exclusively on species traits. We
focus on traits that can be measured using individual specimens,
and not factors pertaining to the population as a whole (e.g. abun-
dances). Ideally, trait values should be simple to collect for pub-
lished data as well as measurable in the field or laboratory as new
data are collected (for detailed information on the traits used, see
Supporting Information). Ideally, measuring relevant species’ traits
on a few sampled individuals should predict the position of the spe-
cies in an ecological network.
We compiled a database of traits for 18 highly resolved networks

spanning different interaction types and a wide geographic area (see
Supporting Information). All traits are either continuous (e.g. body
size, corolla depth), categorical (e.g. metabolic category, flower col-
our), or spatial and temporal match (presence–absence in a certain
habitat or month) (see SI). Ordinal traits are treated as categorical.
In bipartite mutualistic networks (pollination networks and frugivore
networks), the traits are described either for the plants (resources)
or the animals (consumers), for example, flower colour and probos-
cis length respectively. In bipartite antagonistic networks and food
webs, the same traits are measured for both resources and consum-
ers, for example, body mass and habitat.
For continuous traits, a species i interacts with a species j if the

trait value gj is included in the interval bounded by the minimum
(mi ) and maximum (Mi ) trait value for species i. For categorical vari-
ables, if i interacts with species that belong to one of the categories
{a,b,c}, then i will interact with all species whose category falls in
this set. Finally, for spatial and temporal match traits, suppose that
species i is observed in {Jan, Feb, Mar}: species i will then interact
with all species present in at least one of these months. In bipartite
networks, the nodes are – by definition – partitioned in two groups
and interactions occur exclusively between groups. Therefore, plants
can only interact with animals, even if a trait, such as preferred hab-
itat, is common to both groups.

© 2013 Blackwell Publishing Ltd/CNRS
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For all networks and each combination of traits, we measured the
proportion of correctly predicted connections. For example, sup-
pose we are using three traits to describe a food web: body size,
metabolic category and mobility. In the empirical data, represented
by the adjacency matrix A, all the prey of predator i have size in
the interval [2,4]cm, are invertebrates or ectotherm vertebrates and have
low or medium mobility. We can then build a new network (matrix)
A′ in which i preys upon all the species satisfying all of these three
conditions. Clearly, A′ contains all the connections in A, but poten-
tially contains additional erroneous connections (species that satisfy
the requirements on size, metabolism and mobility, but are not
actually consumed by the predator). If E is the number of errone-
ous connections and L the number of empirically observed connec-
tions, we can estimate the performance of this combination of traits
by computing p = L/(L + E), the proportion of correctly predicted
links, also known as the overlap (Petchey et al. 2008; Allesina 2011).
For each network, we tested all possible combinations of up to
seven traits plus all traits combined.

RESULTS

Dimensionality

In 35 cases, all of which are webs with less than 250 connections,
we found the networks to be exactly interval, and thus D ¼ 1. In
the other 165 networks, two or more dimensions were needed (Fig.
2). The maximum number of dimensions needed to describe all
interactions correctly was always smaller than 10 (Fig. 2). In general,
D scales almost linearly with the logarithm of the number of con-
nections in the web, log(L) (Fig. 2). The largest number of dimen-
sions needed is for the Phrygana pollination network (Petanidou
1991) with D ¼ 9. All but four networks require D ( 6.
As stated above, D is an overestimate of the true number of

dimensions and even a single error (EX ¼ 1) is sufficient to reject
D ¼ X . For example, the Weddell Sea food web (Jacob 2005)
(488 species, 15 880 connections) has D ¼ 8 and E7 ¼ 1

(Table S4 and S5, SI). Thus, adding a single link to the 15 880
already present would reduce D to 7. Using the probabilistic
approach as model selection, we find that all networks are best
modeled using four or fewer dimensions (Fig. 2b).
We additionally tested whether network type influences dimen-

sionality. Although the variation between groups in Fig. 2 might
seem negligible, generalised linear models show that food webs,
bipartite mutualistic and bipartite antagonistic networks yield differ-
ent relations between D and log(L). We find that model selection
(AIC) consistently favours keeping the groups separated, supporting
type-specific scaling (Table S1).

Predicting structure using traits

When analysing how well network structure can be explained by
empirical traits, we find that as few as three empirical traits can
explain about one third of the interactions in the worst case (the
food webs Caribbean reef and Loughhyne, Table 1). A single trait
can predict a relatively large proportion of network structure
(between 11 and 100%, Table 1), and always performs much better
than a random graph (which would yield an expected overlap equal
to the network connectance). Combining several traits necessarily
increases the overlap, often considerably. However, since we
observe diminishing marginal returns as traits are added, the results
for three traits are often close to those obtained when all traits are
considered together (Table 1). The results we show are consistent
with the theoretical bounds proved above, demonstrating that net-
work structure can be revealed using few traits.
The traits with the largest explanatory power tend to be nested:

the best single trait is also present in the best combination of two
traits, which are contained in the best combination of three traits,
and so forth. This holds for all the networks except two (the food
webs St. Marks and Kongsfjorden). The variation in the number of
links that the traits can correctly predict can be ascribed to the the
different types and sizes of networks and also to differences in the
type of traits recorded (Table 1, SI).
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Figure 2. D (the number of dimensions, left) and D' (the number of dimensions chosen as ‘best’ by model selection, right) as a function of the number of links in the

network. Blue triangles represent food webs, black crosses represent bipartite mutualistic networks and red circles represent bipartite antagonistic networks. The minimum

dimension D spans 1–9, with mean 2.665 and variance 2.1. The by model selection chosen as the ‘best’ dimension, D' has a tighter distribution, with mean 1.395 and

variance 0.38.
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DISCUSSION

Our results show that ecological networks are structured by few
dimensions, with model selection suggesting that four or fewer
dimensions can largely account for network structure. This supports
the traditional idea of species interactions being determined by low-
dimensional ‘niche-spaces’.
Models for food web structure have shown that information on a

single species trait, such as body size or trophic level, can describe
the structure of empirical networks fairly accurately (Williams &
Martinez 2000; Stouffer et al. 2006; Petchey et al. 2008; Zook et al.
2011). However, a complete description of the network requires
multiple traits (Cattin et al. 2004; Allesina et al. 2008; Allesina 2011).
Rossberg et al. (2010) showed that the degree of intervality tends to
increase with the number of underlying dimensions. Although sev-
eral studies set a lower bound for the dimensionality of ecological
networks (Cattin et al. 2004; Stouffer et al. 2006), we were here able
to determine an upper bound, and the most likely number of
dimensions needed. Our analysis allows us to give an estimate of
how complex different ecological networks are.
Our results can be compared to the minimum number of dimen-

sions needed to explain the structure of a network in graph theory
– the graph’s boxicity (Roberts 1969). The boxicity of an undirected
graph composed of S nodes is bounded from above by
min S

2 ; ðD þ 2Þ logðSÞ
! "

, where D is the number of connections of
the most connected species (Sunil & Ashik 2009). For example, the
Greek phrygana pollination network (Petanidou 1991) contains 797
species and 2933 interactions, D = 124, and thus the upper bound
for the dimension is D ( minð399; 842Þ ¼ 399. We find 9. For an
undirected random graph with S nodes and probability of connec-
tion C, the boxicity is almost surely SC(1*C ) (Adiga et al. 2008).
Because the boxicity of a directed graph should be lower than that
of its undirected version, this should overestimate the true dimen-
sion D. Take Weddell Sea, where we have 488 species and a con-
nectance C = 0.067. When we make the graph undirected, we
basically double the connectance C ′ = 0.134. Hence, we should
expect D to be less than 57. We find 8. For a balanced undirected
bipartite graph (i.e. where the set of plants of pollinators are of the
same size), with 2S nodes and L links (such that L\ S 2/3) the box-
icity is almost surely approximately L/S (Adiga et al. 2008). In the
Chilean pollination network studied (Arroyo et al. 1982), this would
translate a dimension close to 4. We find that three dimensions are
sufficient.
When analysing empirical traits, we showed that by using three

traits we can predict the position of possible ecological interactions,
and that more than a third of the predicted connections are in fact
realised. This fraction might seem low, but one has to recognise
that using simple information we are ruling out most of the interac-
tions. Take for example, the Weddell Sea food web composed of
488 species. In this network, there could be up to 238 144 connec-
tions. Using three traits, we can focus on 39 700 connections, of
which 15 580 are realised. Thus, with the use of three traits (body
mass of the consumer, body mass of the resource and mobility of
the resource), we ruled out more than 198 000 coefficients as ‘for-
bidden links’.
The proportion of interactions that can be explained using empir-

ical traits varies considerably between networks. This can be
ascribed mainly to two factors. First, networks belong to different
types, describing plant–pollinator, host–parasitoid, plant–herbivoreTa
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and predator–prey interactions. Second, the traits collected vary
between networks both in number and identity (Table S2).
Although one might think that analysing the same traits for all net-
works would be ideal, very few traits are shared by all species, and
those that are might not be informative in all contexts. For exam-
ple, flower colour or corolla size could be important for pollination,
but not for herbivory. In our analysis, we focused on traits that
were collected exactly because they are thought to explain the inter-
actions occurring in the network.
Despite the variation in traits, we find some consistency in the

results for the most important traits. For example, for food webs –
which include a wide variety of organisms – body size is always
among the selected traits. However, for two of the six food webs,
‘simpler’ traits (i.e. categorical traits such as mobility and metabolic
category) actually yield a higher overlap between the predicted and
empirical interactions. Traits related to body size are also selected in
the two parasitoid networks. For one of the pollination networks
(NZ landuse) body width of the pollinator is the single trait giving
the largest overlap, and in the plant–hummingbird networks hum-
mingbird bill length and hummingbird body mass both describe all
the interactions correctly. In the other pollination networks, differ-
ent types of traits play the most important role, with attributes of
the plants being the strongest predictors.
Several studies have shown that species abundance is a good pre-

dictor of aggregate properties of ecological networks (V"azquez et al.
2009; Cagnolo et al. 2011), yet we have not considered abundance
here. The reason is that abundance is not a trait itself, but rather an
emergent population level property determined by individual traits
constraining population size, growth and success. Thus, traits could
influence interactions either directly (e.g. through the trait matching
rules that shape interactions) or indirectly (e.g. through the traits
that determine species abundance).
Models aiming at predicting the structure of ecological networks

usually focus on the consumer’s perspective (Cattin et al. 2004;
Petchey et al. 2008; Jacob et al. 2011): the traits of the consumer
define whether an interaction will be observed. Our results question
this approach in two ways. First, the best combination of two traits
typically involves the matching of consumer and resource traits, for
example, the body mass of consumer combined with the body mass
for the resource (in five food webs), the bill gape of the consumers
combined with the fruit size (in the frugivore network). Second, for
six of the networks the single trait predicting most of the structure
is based on resource characteristics. In addition, in three of the net-
works the best combination of two traits involves only resource
traits, and in none of the networks does the best combination of
both traits pertain to the consumer. This highlights that focusing
exclusively on consumer traits could limit progress in ecological net-
works.
The importance of matching traits is perhaps not surprising, but

nevertheless not self-evident. We can hypothesise that other,
non-matching traits could be important for one of the interactors.
For example, in a pollination network, we would a priori expect that
the corolla depth of the flower and the proboscis length of the pol-
linator need to match for an interaction to be possible. However,
some pollinators bite holes at the base of deep-corolla flowers to
reach the nectaries in spite of their short proboscis (e.g. Inouye
1980). Therefore, the most important trait determining visit may
instead be, for example, flower colour.

In summary, the analysis of the empirical traits reveals that (1)
body size is important, but the proportion of the interactions that
can be explained by this trait increases drastically when used in
combination with additional traits, (2) combining the consumer and
resource perspectives, that is, matching traits, can dramatically
improve the accuracy of the predictions and (3) in different types
of networks different traits are selected, highlighting that different
types of networks require distinct modelling approaches.
Species phylogenies are strongly coupled to species traits and

have been shown to provide important information on the structure
of food webs (Bersier & Kehrli 2008; Rossberg et al. 2010; Ekl€of
et al. 2012). In fact, taxonomic and phylogenetic information can be
seen as a summary of several traits shared by closely related species.
However, whether an interaction between two organisms might
occur or not depends exclusively on phenotypic traits. Thus, even
though phylogeny can be used as a surrogate for species traits, gain-
ing an understanding of which phenotypic traits drive interactions
in ecological networks is important.
We have found that dimensionality scales with network complex-

ity – completely explaining the structure of larger networks requires
more dimensions compared to smaller networks. The main reason
is that larger networks contain a larger variety of species and inter-
actions. For example, the Caribbean hummingbird networks [Puerto
Rico, highland in Table 1, and additional networks in Table S3,
Dalsgaard et al. (2009)] describe pollination between a family of
pollinators and a few plant species, while the Weddell Sea food web
includes hundreds of species, spanning different Kingdoms and
interaction modes (herbivory, carnivory, omnivory, detritivory)
(Jacob 2005). Naturally, large and highly resolved networks, integrat-
ing interactions over larger areas and time spans, will include a more
diverse set of interactions, possibly driven by different traits, leading
to higher dimensionality. However, we found that dimensionality
increases slowly with network complexity. This means that for even
very large systems the number of dimensions will be fairly low.

ACKNOWLEDGEMENTS

We thank P. Staniczenko, M. Smith and S. Tang for comments. We
also thank Dominique Gravel and one anonymous reviewer for
comments and suggestions. AE and JCK supported by NSF EF
# 0827493. AE also by SOEB. SA supported by DEB #1148867.
BD supported by Carlsberg foundation and the Danish Council for
Independent research. AMMG supported by Spanish Ministry of
Education, BVA-2010-0845. PRG supported by FAPESP. MAP
supported by CNPq. JMT supported by a Rutherford Discovery
Fellowship, RSNZ. RCU, NPC, SBL and DPV supported by CON-
ICET (PIP 2781 and 6564), FONCyT (PICT 1471 and 20805) and
BBVA Foundation (BIOCON03-162). JB and AR supported by
Spanish MICNN (CICYT CGL2005-00491) and CONSOLIDER
(csd2008-0040).

AUTHORSHIP

AE and SA: Originated the project, selected authors, wrote the
code, ran the high-performance computations, wrote the manu-
script, wrote the Supplement. JCK: Organised the data, ran the
code, edited the manuscript. Other Authors: contributed original
data, commented on the manuscript, wrote part of the Supplement.

© 2013 Blackwell Publishing Ltd/CNRS

6 Anna Ekl€of et al. Letter



REFERENCES

Adiga, A., Chandran, L.S. & Sivadasan, N. (2008). Lower bounds for boxicity.

arXiv preprint arXiv:0806.3175. Only in the arXiv.

Allesina, S. (2011). Predicting trophic relations in ecological networks: a test of

the allometric diet breadth model. J. Theor. Biol., 279, 161–168.
Allesina, S., Alonso, D. & Pascual, M. (2008). A general model for food web

structure. Science, 320, 658–661.
Arroyo, M.T.K., Primack, R. & Armesto, J. (1982). Community studies in

pollination ecology in the high temperate andes of central chile. i. pollination

mechanisms and altitudinal variation. Am. J. Bot., 69, 82–97.
Bersier, L.F. & Kehrli, P. (2008). The signature of phylogenetic constraints on

food-web structure. Ecol. Compl., 5, 132–139.
Bosch, J., Mart"ın Gonz"alez, A.M., Rodrigo, A. & Navarro, D. (2009). Plant–

pollinator networks: adding the pollinators perspective. Ecol. Lett., 12, 409–
419.

Br€annstr€om, #A., Carlsson, L. & Rossberg, A.G. (2011). Rigorous conditions for

food-web intervality in high-dimensional trophic niche spaces. J. Math. Biol.,

63, 575–592.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004).

Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.
Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A

Practical Information-theoretic Approach. Springer Verlag, New York.

Cagnolo, L., Salvo, A. & Valladares, G. (2011). Network topology: patterns and

mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol.,

80, 342–351.
Cattin, M.F., Bersier, L.F., Banasˇek-Richter, C., Baltensperger, R. & Gabriel, J.P.

(2004). Phylogenetic constraints and adaptation explain food-web structure.

Nature, 427, 835–839.
Chacoff, N.P., V"azquez, D.P., Lom"ascolo, S.B., Stevani, E.L., Dorado, J. &

Padr"on, B. (2012). Evaluating sampling completeness in a desert plant–
pollinator network. J. Anim. Ecol., 81, 190–200.

Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and

Contemporary Approaches. University of Chicago Press, Chicago, IL.

Christian, R.R. & Luczkovich, J.J. (1999). Organizing and understanding a

winter’s seagrass foodweb network through effective trophic levels. Ecol.

Model., 117, 99–124.
Cohen, J.E. (1968). Interval graphs and food webs: a finding and a problem.

RAND Corporation Document 17696-PR, Santa Monica, CA.

Cohen, J.E., Schittler, D.N., Raffaelli, D.G. & Reuman, D.C. (2009). Food webs

are more than the sum of their tritrophic parts. P. Nat. Acad. Sci. U.S.A., 106,

22335–22340.
Dalsgaard, B., Mart"ın Gonz"alez, A.M., Olesen, J.M., Ollerton, J., Timmermann,

A., Andersen, L.H. & Tossas, A.G. (2009). Plant–hummingbird interactions in

the west indies: floral specialisation gradients associated with environment and

hummingbird size. Oecologia, 159, 757–766.
Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011). Species’ traits

predict phenological responses to climate change in butterflies. Ecology, 92,

1005–1012.
Ekl€of, A., Helmus, M.R., Moore, M. & Allesina, S. (2012). Relevance of

evolutionary history for food web structure. P. Roy. Soc. Lond. B: Bio., 279,

1588–1596.
Forrest, J., Miller-Rushing, A.J., Forrest, J. & Miller-Rushing, A.J. (2010). Toward

a synthetic understanding of the role of phenology in ecology and evolution.

Philos. T. Roy. Soc. B, 365, 3101–3112.
Galetti, M. & Pizo, M.A. (1996). Fruit eating by birds in a forest fragment in

southeastern brazil. Ararajuba, 4, 71–79.
Gilman, R.T., Nuismer, S.L. & Jhwueng, D.C. (2012). Coevolution in

multidimensional trait space favours escape from parasites and pathogens.

Nature, 483, 328–330.
Inouye, D.W. (1980). The terminology of floral larceny. Ecology, 61, 1251–1253.
Jacob, U. (2005). Trophic Dynamics of Antarctic Shelf Ecosystems – Food Webs and

Energy Flow Budgets, Thesis. University of Bremen, Germany.

Jacob, U., Thierry, A., Brose, U., Arntz, W.E., Berg, S., Brey, T., Fetzer, I.,

Jonsson, T., Mintenbeck, K., Mollmann, C. et al. (2011). The role of body size

in complex food webs: a cold case. Adv. Ecol. Res, 45, 181–223.

Jordano, P., Bascompte, J. & Olesen, J.M. (2003). Invariant properties in

coevolutionary networks of plant–animal interactions. Ecol. Lett., 6, 69–81.
Kratochv"ıl, J. (1994). A special planar satisfiability problem and a consequence of

its np-completeness. Discrete Appl. Math., 52, 233–252.
McCullen, C.K. (1993). Flower-visiting insects of the galapagos islands. Pan-Pac.

Entomol., 69, 95–106.
Mouillot, D., Krasnov, B.R. & Poulin, R. (2008). High intervality explained by

phylogenetic constraints in host-parasite webs. Ecology, 89, 2043–2051.
Optiz, S. (1996). Trophic Interactions in Caribbean Coral Reefs. Tech. Rep. 43,

ICLARM, Manila.

Petanidou, T. (1991). Pollination Ecology in a Phryganic Ecosystem, Thesis. Aristotelian

University, Greece.

Petchey, O.L., Beckerman, A.P., Riede, J.O. & Warren, P.H. (2008). Size,

foraging, and food web structure. P. Nat. Acad. Sci. U.S.A., 105, 4191–4196.
Riede, J.O., Rall, B.C., Banasek-Richter, C., Navarrete, S.A., Wieters, E.A.,

Emmerson, M.C., Jacob, U. & Brose, U. (2010). Scaling of food-web

properties with diversity and complexity across ecosystems. Adv. Ecol. Res., 42,

139–170.
Roberts, F.S. (1969). On the Boxicity and Cubicity of a Graph. Academic Press, New

York.

Roberts, F. (1978). Food webs, competition graphs, and the boxicity of

ecological phase space. Y. Alavi, D. Lick (Eds.), Theory and Applications of

Graphs, Springer, New York, pp. 477–490.
Rossberg, A.G., Br€annstr€om, #A. & Dieckmann, U. (2010). Food-web structure in

low-and high-dimensional trophic niche spaces. J. Roy. Soc. Int., 7, 1735–1743.
Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol., 19, 605–

611.

Stouffer, D.B., Camacho, J. & Amaral, L.A.N. (2006). A robust measure of food

web intervality. P. Nat. Acad. Sci. U.S.A., 103, 19015–19020.
Stouffer, D.B., Rezende, E.L. & Amaral, L.A.N. (2011). The role of body mass

in diet contiguity and food-web structure. J. Anim. Ecol., 80, 632–639.
Sunil, C.L. & Ashik, M.K. (2009). An upper bound for cubicity in terms of

boxicity. Discrete Math., 309, 2571–2574.
Thompson, J.N. (2005). The Geographic Mosaic of Coevolution. University of Chicago

Press, Chicago, IL.

Tylianakis, J.M., Tscharntke, T. & Lewis, O.T. (2007). Habitat modification alters

the structure of tropical host–parasitoid food webs. Nature, 445, 202–205.
Ueckert, D.N. & Hansen, R.M. (1971). Dietary overlap of grasshoppers on

sandhill rangeland in northeastern colorado. Oecologia, 8, 276–295.
V"azquez, D.P., Bl€uthgen, N., Cagnolo, L. & Chacoff, N.P. (2009). Uniting

pattern and process in plant–animal mutualistic networks: a review. Ann. Bot.

London, 103, 1445–1457.
Williams, R.J. & Martinez, N.D. (2000). Simple rules yield complex food webs.

Nature, 404, 180–183.
Williams, R.J. & Purves, D.W. (2011). The probabilistic niche model reveals

substantial variation in the niche structure of empirical food webs. Ecology, 92,

1849–1857.
Zook, A.E., Ekl€of, A., Jacob, U. & Allesina, S. (2011). Food webs: ordering

species according to body size yields high degree of intervality. J. Theor. Biol.,

271, 106–113.

SUPPORTING INFORMATION

Additional Supporting Information may be downloaded via the online
versionof this article atWileyOnlineLibrary (www.ecologyletters.com).

Editor, Jennifer Dunne
Manuscript received 29 October 2012
First decision made 6 December 2012
Manuscript accepted 4 January 2013

© 2013 Blackwell Publishing Ltd/CNRS

Letter The dimensions of ecological networks 7


