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ABSTRACT

This paper reconsiders the aliasing problem of identifying the parameters of a
continuous time stochastic process from discrete time data. It analyzes the
extent to which restricting attention to processes with rational spectral
density matrices reduces the number of observationally equivalent models. . Tt
focuses on rational specifications of spectral density matrices since rational
parameterizations are commonly employed in the analysis of time series data.
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1. INTRODUCTION

For a variety of continuous time, linear stochastic models,
the aliasing phenemenon prevents unique identification of the
parameters of the continuous time stochastic process from
equispaced discrete-time observations. This problem has been
studied by Christopher Sims [12], P.C.B. Phillips [7,8,91, and
John Geweke [3], among others. The 1literature indicates that
prior restrictions on the continuous time model are needed to
overcome the aliasing identification problem.

The purpose of this paper is to describe the dimensionality
of the class of continuous time models ﬁhat are observationally
equivalent, given that the true continuous time spectral density
matrix is rational. For some subclasses of these models, it has
previously been thought that there is a countably infinite number
of observationally equivalent models (see P.C.B. Phillips [91).
This paper proves that in general there is only a finite numbef of
observationally equivalent models. In certain regions of. the
parameter space, there may even be no identification problem at
all, though in general there is one.

Results such as these are useful because, roughly speaking,
they indicate the size of the job that the additional prior
restrictions, above and beyond the prior specification ~of a
rational spectral density matrix, have to do in order to achieve
identification. Put differently, the specification of a rational
spectral density matrix in itself goes a greater distance toward

resolving the aliasing problem than has heretofore been

recognized.



This paper is a prologue to a paper [5] studying the
identification of continuous time rational expectations models
with rational spectral density matrices from discrete time data.
In that paper, it is shown how the cross-equation restrictions
characteristiec of rational expectations can serve uniquely to
identify the continuous time model. It is natural to inquire how
big a Jjob the cross-equation, rational expectations restrictions
are performing in achieving identification. That query caused the.
present paper. |

Section 2 briefly deécribes the aliasing identification
problem in the case of a general, indeterministic, covariance
Stationary continuous time vector stochastic process. It 1is
remarked that in this general case the class of observationally
equivalent continuous time models is wuncountably infinite.
Section 3 describes the identification problem for the more
restricted case usual in applications, of an assumed rational
spectral density matrix. We briefly indicate a machinery for
proving that the class of observationally equivalent continuous
time models is in general finite. Section 4 then provides a more
complete characterization of the situation in the special case
studied by P.C.B. Phillips [9], in which the true continuous time
model is a first order vector. Markov process. We show that there
generally exists a discrete sampling interval sufficiently fine

that the continuous time model is identified.2



2, THE ALIASING PROBLEM UNDER COVARIANCE STATIONARITY

Consider an n dimensional continuous time stochastic process,
x, that is covariance stationary and 1linearly regular. For
simplicity we assume that the process has full rank and mean zero.
Wold's Decomposition Theorem assures us that such a process has a

moving average representation

(1 x(t) = re(r)w(t-1)dx
o

where w is an n dimensional continuous time white noise process
with intensity matrix I and where ¢ is an (n x n) matrix function
whose elements are sqguare integrable.3 We assume that the process
w is fundamental for x, which means that linear combinations of
current and past w's span the same space as linear combinations of
current and past x's. Under these assumptions, the matrix func-
tion ¢ 1is unique‘up to a post multiplication by an orthogonal
matrix.u

Let C(s) = f:c(t)e'Stdt be the Laplace transform of c¢. We

adopt a convenient notation and write representation (1) as

(2) x(t) = C(D)Iw(t)

where D 1s the time derivative oper‘ator.5

The population
covariogram of x is completely summarized by the matrix function c
or equivalently by its Laplace transfofm C. Alternatively, the
covariogram is characterized by its Fourier transfrom, the

spectral density matrix. The spectral density matrix f is

positive semidefinite at all frequenciés w and is related to C by



(3 f(w) = C(iw)C(=-iw)" —o < g £ .

Here the prime denotes transposition (but not conjugation) . Since

the x process is real, the function f satisfies
(4) flw) = Fl-w) = F(w) ,

where the bar denotes conjugation.

The aliasing phenomenon for models that reside in this class
can be conveniently described by using spectral density matrices.
Let F denote the spectral density matrix for the discrete time
process X obtained by observing x at integer points in time. It

1s known that f and F are linked by the folding formula:

+ o
(5) F(m) = z f(w+21[j).

j:—oo
Since F completely summarizes the population covariance properties
of X, formula (5) implies that the function f cannot be inferred
from the discrete time data. This can be seen by noting that
%
alternative Hermitian, positive semidefinite matrix functions f

can be constructed that satisfy

+

*
F(w) = ¢ ¢ (w+27]3)
(6) J:—m
5 () = T¥(-w)



and hence are observationally equivalent to f. Corresponding to
# *
each function f 1s a matrix of square integrable functions c

#
with Laplace transforms C such that
# # ¥
f (w) = C (iw)C (-iw)",

*
and such that if w is an n dimensional continuous time white
*
noise process with intensity matrix I, then w is fundamental for

x* where
* * *
x (t) = C (D)w (t).

Although the matrix function c* cannot be obtained from ¢ by post
multiplying ¢ by an orthogonal matrix, c* is observationally
equivalent to ¢ with discrete time data. This is the conventional
formulation of the aliasing problem in time series analysis.

The models in (1) are in general infinite parameter models,
with the parameters in ¢ being the objects whose identification is
sought. At this level of generality, the aliasing problem is a
local identification problem in the sense that there are
observationally equivalent parameters c satisfying (5) and (6)
that are arbitrarily close to the true parameter c. Here our

measure of distance is the matrix L2 norm

S traceqle(x)-c () 1le(x)-c ()1 1dx.



This suggests that there is an overwhelming number of c*'s that
are observationally equivalent to c. In fact, this number is
uncountable.b Thus, at the general level of the model (1), the
dimensionality of the class of observationally equivalent models

given equispaced discrete time observations is uncountable.

3. THE ALTASING PROBLEM WITH A RATIONAL SPECTRAL DENSITY MATRIX
In applications it 1is necessary to adopt a finite
parameterization of the matrix function c. A convenient
parameterization is to assume that ¢ has a rational Laplace

transform. In particular, suppose that

' (G +G.5+...+G sq-1)
_ o 1 g-1 . G(s)
(7 c(s) = (s-x15(s-125...(s—xq7 - g(s)

where G, G4,..., G are real (n x n) matrices and Ais Agreess

q-1?

xq are distinct complex numbers with negative real par'ts.7 We

assume that the zeroes of detG(s) have negative real parts and

8

that for each j, A, = i, for some index k. Finally, we assume

J k
that any two aA's with the same real part do not have imaginary
parts that differ by an integer multiple of 2qi. The aA's are
called the poles of the complex matrix function C. A choice of C
that satisfies the above restrictions is known to have an inverse

Laplace transform matrix ¢ whose elements are square integrable

and are concentrated on the nonnegative real numbers.



We proceed to examine the spectral density matrix of a
process with a C that satisfies specification (7). Following an
approach that was used by A. W. Phillips [10], we form a partial

fractions representation of the matrix function h,

q Q. Q.
h(s) = C(s)C(-s)' = z —_
J'=1 s_)\j —S"XJ-

where

G(A.)G(-x.)'

Q= gE Iy
J gj g—j Aj
g_ = lim 5.(—.5__)_..__
J S+1j(s-xj)

. (-5s) 9
g5 = dim, 55 -

J J

Note that if Ak is the complex conjugate of xj, then the elements

of Qk are complex conjugates of the elements of Qj' The spectral

density matrix of x is
f(w) = h(iw) 3

and the autocovariance function, which equals the Fourier

transform of f(,), is



q lj'r

oz Qje for >0
(9) r(q) =< 37

r(-.)" for <0.

The autocovariance function R for the discrete time process X can

be obtained by sampling r at the integers. We write this as

q
z Qj(pj)T nonnegative integer .
J=1

R(-)! negative integer

where

(10) .= e Y,

Suppose that we wish to construct a function r* that is
distinet from r but can be written in the form given in (9) and is
equal to R at integer values of .. Such a funetion r* is a
candidate for a continuous time autocovariance function that is
observationally equivalent to r. To generate such a family of
r*'s we use equation (10) and the fact that e21riT = 1 for any
integer . Since the function R can be inferred from discrete
time data, it is evident that the complex matrices Qj and the
complex numbers 03 are identifiable from discrete time data. From
equation (10) we see that the real parts of the poles A; are Jjust
the real logarithms of :pj}. Hence the real parts of the poles

are identifiable from discrete time data. On the other hand, the

imaginary parts of the poles are not necessarily identifiable. If



at least one of the poles is complex, then we can construct a
* <

countable infinity of real matrix functions r of the form given

in (9) that are equal to R at integer values of .10 Thus,

suppose that the first two A's form a complex conjugate pair. Let
k .

>
it

Now form the functions

Q.e for >0
Pk(r) =
rk("'[)‘ fOI“ T<O°

The matrix functions r, are equal to R at integer values of
t. Therefore we have generated a cquntable sequence of candidates
for autocovariance functions of observationally equivalent models.
However, in order for these functions to be 1legitimate
autocovariance functions of a continuous time process, it 1is
necessary and sufficient that the continuoqs Fourier transforms of
these functions be positive semidefinite at all frequencies. That

is the funections



10

must be positive semidefinite for all values of . While this

condition is met for f it will not in general be satisfied for fk'
In fact it turns out that except in singular cases we can generate

only a finite number of observationally equivalent models in this

fashion. We state this result in the theorem provided below.

Theorem 1: Let Q1 = Q11+Q12i‘where Q11 and Q12 are real
matrices. Suppose that Q1 fails to satisfy one of the following
conditions:

(i) Q.51 is a Hermitian matrix,
(ii) (Q11+Qi1) is positive semidefinite.
Then there is a positive integer k* such that when (ki > k*, fk is

not a spectral density matrix for a continuous time process.

The proofs of all theorems are in the appendix.

The conditions (i) and (ii) of Theorem 1 will be met only for
singular examples of the C(s) is given by (7). Theorem 1
illustrates the difficulty in generating a countable sequence of
observationally equivalent continuous time models wihout violating
the requirement that the implied continuous time spectral density

matrix be positive semidefinite at all frequencies. When C has



1M1

only one complex conjugate pair of poles, this theorem implies
that in general +there will only be a finite number of
observationally equivalent models. On the other hand, the
strategy described above for constructing observationally
equivalent continuous time models does not exhaust all possible
ways of constructing such models when there are more than one

1 Although we conjecture that

complex conjugate pair of poles.
the flavor of our results will remain intact by treating the case
of multiple pairs of compléx conjugate poles, we do not consider
more general theorems for model (7). Iﬁstead we present a

comprehensive analysis of the dimensionality of the special case

of (7) that P.C.B. Phillips has studied. We turn to this analysis

in the following section.

4. FIRST ORDER MARKOV MODELS
In this section we study identification of the parameters of
continuous time first order Markov processes from discrete time
data. We build wupon and modify P.C.B. Phillips's [9]
characterization of the aliasing phenomenon in this class of
models.

Consider an x process that can be represented
(10) Dx(t) = on(t)+e(t)

where ¢ 1s a continuous time vector white noise with intensity
matrix Vo' The square matrix AO is real and has eigenvalues whose

real parts are negative. From (10) we can derive an expression

for a fundamental moving average representation as follows.
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Assume that Vo has full rank and factor it according to VO = UéUo-

Solve (10) for x(t) to obtain

adj[ﬁI-Ao]U

(11) x(t) = 2w(t),

det[DI-A ]

o
where w(t) = U;-1e(t) and adj denotes adjoint. We can rewrite
(11) as
x(t) = C(D)w(t)
where
adjIDI-A_] ,

C(D) = JeEI0I-E_Tl0 -

The white noise vector w(t) has intensity matrix I, the poles of
C(s) are just the eigenvalues of Ao, and the Qj matrices in the
matrix partial functions decomposition of h(s) = C(s)C(-s)!' are
rank one matrices formed from the eigenvectors of Ay While we

could proceed to discuss identification using the machinary of

section 2, it is more convenient to adopt an alternative machinary
appropriate for these‘first order Markov models, one that was used
by Phillips [9].

The discrete time process obtained by sampling x at the

integers has a first order autoregressive representation
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(12) X(t) = Box(t—1)+n(t)
where

Bo = eprO
(13)

alt) = 0;1exp(AOT)e(t-T)dr.'

By the white noise nature of e, it follows that n is a discrete

time vector white noise disturbance when sampled at the integers.

The contemporaneous covariance matrix of n(t) is

1
(14) WO = 0f1eXp(AOT)Voexp(Ao‘t)dT.
As noted by Phillips [9], the covariance properties of x sampled
at the integers are completely characterized by (Bo,wo), Given
the pair (Bo,wo), which is estimable from discrete time data, our

goal is to identify the covariance properties of the continuous

time process, which are completely characterized by (AO,VO). The

version of the aliasing phenomenon considered by Phillips [9] is
simply the fact that given (BO,WO) one cannot in general solve
uniquely for (A ,V ) using equations (13) and (14).'2 We seek to
characterize the dimensionality of the class of (AO,VO) pairs
consistent with a given (Bo,wo) pair.

To begin, we consider equation (13) and ask the question of

whether the matrix equation

(15) expA¥ = B_ = exph,-
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implies that A* = Ao. Without restrictions on the matrix A*, the
answer 1is in general no. If the matrix A  has complex
eigenvalues, then there is a countable infinity of matrices A
that satisfy (15). To see this, assume that the eigenvalues of A,

are distinct and write the spectral decomposition of Ao,

(16) A = TAT™

where A 1is a diagonal matrix of eigenvalues of Ao and T is a

matrix of eigenvectors of Ao. Without loss of generality, we are

free to assume that the first n-2m diagonal elements are real and

that the remainder occur in complex conjugate pairs as A-2m+1?

"t Meme Apeme1Trnemetr st A FApope
eigenvalues of Ao do not differ by integer multiples of 2qi.

We assume that the

Following Phillips [9] and Coddington and Levinson [1], if a

*
matrix A satisfies (15) then

¥
am A" = Ay+27iT|0 O OfT
0 P O
0 0 -P

where P is an (m x m) diagonal matrix of integers. Any choice of

integers for the diagonal elements of P will give rise to a

solution of the matrix equation (15).
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Phillips [9] asserted that the pair (AO,VO) is identifiable
in (BO,WO) if and only if the matrix AO is identifiable in B, -
This assertion would be true if, given a real valued matrix A* of
the form specified in (17), it were possible to find a positive

%
Ssemidefinite matrix V such that

(18) Texp(A )V exp(A* 1) dr = rlexp(A.c)V exp(A’t)d
J‘oexp T exp T)dT = .roexp 0T oe)(p oT T.

Now Phillips's equation 4 shows how to compute a V* satisfying
(18) as a function of A* and W,. However, there is no guarantee
that the resulting V* is positive semidefinite, and so it need not
be a legitimate intensity matrix of a white noise process. This
fact indicates the presence of extra identifying information about
AO in the discrete innovation covariance matrix Wy information
summarized in equation (14).13 It follows that Phillips's
characterization of the identification problem must be modified to
take account of the information about AO that is contained in Wo.
The question of whether V* is positiye semidefinite is equivalent
to the question of whether the implied continuous time spectral
density matrix is positive semidefinite at all frequencies.
Phillips asserted that if A, has complex eigenvalueé, then
without additional restrictions, there is a countable infinity of
pairs {(Ak,Vk)};=1 that are observationally equivalent to (AO,VO)
given discrete time data. Actually, however, the number of pairs
(Ak,vk) that are observationally equivalent to (AO,VO) is, except
for singular cases, at most finite and in some cases is equal to

one even if A, has complex eigenvalues. We proceed to

substantiate this claim by stating four theorems.
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The first theorem specifies circumstances in which there is a
countable infinity of pairs {(Ak’vk)};:1 that are observationally

equivalent to (A, V,) given discrete time data.

' *
Theorem 2: If there exists an A % Ao such that

(1) epr* = B

* *
(ii) f;exp(A )V, exp(A "7)dr = Wos

(o]

-]

then there is an infinite sequence of distinct matrices‘{Ak}k=1

that satisfy (i) and (ii).

Theorem 2 states that if we can find an A* of the form given
in (17) that also satisfies (18) for V* = Vg then there exists a
countable infinity of observationally equivalent pairs {(Ak’
Vk)};=1 where Vv, = V. That is, each of the A  matrices is
associated with the same intensity matrix V,. The key feature is
that the intensity matrix remains unaltered as we entertain
admissible alterations in the continuous time coefficient matrix.

. Theorem 2 delineates one class of circumstances in which
there is a countably infinite number of continuous time models
that are consistent with the discrete time observations. It
happens that the class identified in Theorem 2 contains the only
cases in which an infinite number of continuous time models are

consistent with the discrete time observations. This 1is

established in Theorem 3.
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%
Theorem 3: If there does not exist an A % Ao such that (i)

and (ii) of Theorem 1 are satisfied, then there is only a finite
number of distinect pairs (Ak,Vk) that satisfy

(iv) expA, = B,

{0 1 ! -
(iiv) foexp(Akt)Vkexp(Akr)dt = W,

(iiiv") Vk is positive semidefinite.

The important feature of Theorem 3 is requirement (iii').
Phillips has shown if Ao has complex eigenvalues, then there is a
countable infinity of {(A,,V, )} ., that satisfy (i') and (ii').
Theorem 2 indicates that when Vk is required to be positive
semidefinite, then in many circumstances there is only a finite
number of bairs (A, ,V,) that also satisfy (i') and (ii').

It remains to determine the size of the class of cases for

which there is a countable infinity of observationally equivalent

continuous time models. This question is answered by Theorem 4.

Theorem 4: If R, = T'1VOT°1' does not have any zero

elements, then there is at most a finite number of distinct pairs

(Ak,Vk) that satisfy (i'), (ii'), and (iii') of Theorem 2.

Theorem 4 indicates that the class of cases in which there is

a countable infinity (Ak’vk) that are observationally equivalent
to (AO,VO) is singular. Only when R, has zero elements can this

occur. Furthermore, there are many situations in which R, has

zero elements and there is still only a finite number of

observationally equivalent models.
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We have calculated an example to illustrate the messages of

Theorems 2, 3, and 4. For this example, we chose

~1.0 1.0
A =
° -1.0 -2.0]
~ 2.0 Vool
Vo - 12
L__V12 2-0_ -

We ask, how many observationally equivalent models could be
generated for different values of v12? The eigenvalue matrix for

A .
OlS

\ [4.5+.86603i 0 ']
o 0 ~1.5-.866031i] .

We constructed candidates for observationally equivalent models by

forming

1 "ip 0 1
A = TAOT' +T T
P 0 ~27ip

for 1integer values of p. ‘We then computed the matrix Vp
corresponding to Vp that satisfies equation (18). The eigenvalues
of Vp were then calculated to determine if they were nonnegative,
as is necessarily true wﬁen Vp is positive semidefinite. Table 1

indicates the range of values of the integer p over which the

eigenvalues of Vp remained nonnegative for alternative selections

for Vipe By construction p = 0 is always in that range.
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The case in which V4o = =1 provides an example of Theorem 2.
In this case all choices of integer p gave rise to the same Vp =
Vo, and a countable infinity of observationally equivalent models
emerged. Consistent with Theorem U4, R, was verified to be a
diagonal matrix in this case. The remaining selections of Vio

exemplify Theorems 3 and 4 in that the R0 matrices had all nonzero

elements and there was only a finite number of observationally

equivalent models. As Vio moved further away from -1, the

positive semidefiniteness constraint on Vp vyielded fewer

observationally equivalent models. 1In fact, for Vo greater than

or equal to -.4 and V4o less than or equal to -1.5 we did not

encounter an aliasing problem at all.

Table 1

Range of Observationally Equivalent Models*

Vio Lower value of p Upper value of p
-1.9 to -1.5 0 0
~1.4 -1 0
-1.3 -1 1
-1.2 -2 1
-1.1 -4 3
-1 - + o
-.9 -4 4
-.8 -2 2
-.7 -1 1
-.6 -1 1
-.5 -1 0
-.4 to 1.9 0 0

The table gives the range of values for the integer p within
which Vp remains a positive semidefinite matrix.
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We now investigate the limiting behavior as one samples the
continuous time process more frequently. Let h denote the length
of time between observation and suppose that

X(t) = x(ht)

integer values of t.'% In this circumstance

o
1

exp(hAo)

=
"

h
foexp(Aor)Voexp(Aér)dr.

The question is what happens to the number of observationally

equivalent models as h gets small. Theorem 5 provides an answer

to this question.

Theorem 5: If RO = T'1VOT'1' does not have any zero
#
elements, then there is an h* such that for h < h the model

(AO,VO) is identified from (B_,W,).

The content of Theorem 5 is that except'for singular cases,
it is possible to sample the continuous time process at fine
enough time intervals so that the aliasing problem vanishes. This
result is in sharp contrast to what happens to identification in
cases in which the underlying continuous time process is a priori
restricted only to be covariance stationary. In the latter

circumstance, there is an uncountable infinity of observationally

equivalent models for any choice of h.
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Summarizing our results in this section, we have shown that
even in cases in which Ao has complex eigenvalues, equations (15)
and (18) will in most circumstances have only'a finite number of
solutions and in many cases have only one solution. The upshot of
this situation is that for certain values of the continuous time
parameters (AO,VO), the identification problem can be much less

drastic than was suggested by Phillips's characterization.

5. CONCLUSION

The preceding results provide a notion of the role of the
prior assumption of a rational spectral density matrix, or a
vector first order Markov process, in resolving the aliasing
identification problem. Previously, it was known that in the
general covariance stationary case the dimensionality of the
identification problem was uncountably infinite; and it was
believed that for the rational spectral density case, in
particular, in the first-order Markov case, the dimensionality was
countably infinite. Realizing that in this 1latter case the
dimensionality is finite Dbetter indicates the relative
contributions of the restriction to a rational spectral density
matrix, on the one hand, and any additional prior restrictions
such as exclusion or cross-equation restrictions, on the other
hand, in achieving identification. The role of additional prior
restrictions of various kinds in achieving unique identification

is'described in Phillips [9] and Hansen and Sargent [5].
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APPENDIX

Here we prove the five theorems of Sections 2 and 3.

roof of Theorem 1: Suppose that p is an n dimensional complex

———

vector. If Ty is the autocovariance function for a continuous

time process, then ;'rk“ is the autocovariance function for a
complex valued one dimensional process. In particular, it will be

the case that
Re[ﬁ'rk(r)u] < E'rk(o)u
for any real t where Re(s) is equal to the real part of s. Now

Re[ﬁ'Q1uexp(A1t+2nikT) + E'Q1uexp(i1r-2nikt)]
= exp(a1r)[;'(Q11+Q{1)ucos(a21+2wkr)

+ ﬁ'(Q%2—Q12)uSin(a21+2ﬂkt)]

where Ay = u1+a21 with oy and o real. If “'(Qiz-Q12)u is

different from zero or if ;'(Q11+Qi1)u is negative, then

(A1) Re[ﬁ'Q1uexp(x1T+2nik1) + E'Q1uexp(i1r-2uikt)]

= exp(a1r)¢cos[e+(a2+2wk)T]

where ¢>0 and ee(0,27). In fact, if either condition (i) or (ii)d
of Theorem 1 are not satisfied then there exists a u for which the
corresponding e in (A1) is indeed in the open interval (0,2%). We
shall construct a two-sided sequence {rk};:_w where Ty > 0 such

that for sufficiently large |ki
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(A2) exp(a1r)¢cos[e + (a2 + 21Tk)'|.‘k] > yecos(g) + ¢

for some §>0. Let

For sufficiently large |k,
exp(a1rk)w005[e+(a2+2nk)rk] = explaqrle > exp(aqty)ycos(e).
Furthermore, Tk+0 as |k|l+». Hence, for sufficiently large }k!

exp(a1rk)¢ > Ycos(0)+6

for some positive §. This verifies (A2). However, (A2) implies

that for sufficiently large |ki
Re[ﬁ'rk(rk)p] > E'rk(o)u

contradicting the presumtpion that ry is an autocovariance

function for a continuous time process.

*
Proof of Theorem 2: Since (i) is satisfied for A it follows that

(43) AY = ptr?

where
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* L *
A = Ao+2'n'lp

#
and P is a diagonal integer matrix. At least two of the elements

#
of P are not zero. Also

(Al) epr* = Tepr*T‘1 = TeproT'1-

Following Phillips [17, page 354], from relations (ii) we can

deduce an alternative relationship
: A* A*' A* A*u
(A5) expA V_exp -V, = W, +W .
Substituting (A3) and (A4) into (A5) we have
- - *®_._ —fr_#%
(A6) TeproT 1V0T'eXp(A5)T-VO = Tpr T 1wo+on 1 A T

Premultiplying and postmultiplying both sides of (A46) by T"1 and

T‘1', respectively, we obtain

- #* - %
(AT) eXPAy R exp K -Ry = A S_+S 1

where

=)
]

1y m=1?
TV, T
-1, ==1"
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Using analagous reasoning, it follows that

(A8) eXpA R expA -R = A S +3_ 14,

Equations (A7) and (A8) together imply that

A = x
(AJ+ )sJ . (A -+ )sJ .
where
o
S =
[ j’l] So
D3 o) o o]
dlag (A‘l’ Az,'..,kn) - Ao
. # ® *® #*
diag (A1, 12,...,An) = A .
*
Let jo be an index such that AJ % Aj . By assumption, there
0 o}

*
must be at least one such jo, since Ay + o . Let J(jo) be the set

of indexes of eigenvalues which undergo identical perturbations,

* #
i.e., have the characteristic that A=2S = a. =28 , Or
3773 3o g
. fe) _o * % .
equivalently, R IERY AJ. Let K(Jo) be the set of all
o o
indexes p such that x: = xg where JeJ(J ). We define

2%+27ik if jed (3,)

J
k _ o i1, s . .
(A9) Aj = Aj—2w1k if JeK(JO)
xg otherwise.

where k is an arbitrary integer. Now



26

°+439s° = (xg + Xk)sq

A10 :
(A10) (agrasy 3 2’ %3,

for all j, 4 =1, 2,...., n. This follows from the fact that for

any JeJ(jo) and zeJ(jo), the corresponding element sg’l = 0. Let

= Ta T

p=)
~
'

where

diag(x?, Ag, ceey Ag).

%

Using the definition (A9) and relation (A10), we conclude that (i)

and (ii) are satisfied for {Ak}k=1'

Proof of Theorem 3: Suppose to the contrary that there is an

infinite sequence of distinct pairs {(Ak,Vk)}:_1 that satisfy (i')
*

and (ii'), and that there does not exist an A = Ao satisfying (i)

and (ii) of Theorem 2. We define

1

A, =TT

K AkT'

Since (i') is satisfied, it follows that A, is diagonal and that

where P, is a diagonal integer matrix. From Phillips [17]

equation (4) it follows that for a given choice of A* satisfying

(i') there is one V' that satisfies (ii'). Let
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s k .k k
Ay = d1ag(A1, Aoy soe xn).

Because the elements of the infinite sequence {Ak};=1 are

distinect, there must exist a jo such that {A? };=1 is unbounded.
o)
Let J(jo) be the set of indexes g such that the sequence {“f};=1

is bounded where

«©

Let K(j ) be the set of all indices % such that {el’f}k_1 is bounded

where

Let

o) .. . .
Aj+2w1 if JeJ(JO)
#
Ay = A?—Zni if jeK(j,)
Ag otherwise.
Finally, let
# . # # *
A = diag(ag, A5, ..., AY)
* #
A = TaA T.

We will show that A* satisfies (i) and (ii) of Theorem 2.
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\ *
First, note that A is real. This can be seen by verifying

that if jeJ(j ) then x? is complex and the index & of its complex

conjugate ig = Ai is contained in K(j ). Second, observe that
*
expA’ = By. Third, note that if jeJ(Jj,) then sg,z = 0 for all g

J(jo). This follows by letting

k

- ==ty 1
Ry = [ry 1 =17V, T

and noting that since Vq satisfies (ii')

r'k . = r‘o
JsJd Jsd
k _ .0
Pa,2 = Ty g
(A, ,+A s©
I I M TR Y

for any choice of j, k= 1, 2, ..., n. Since (iii') is satisfied

. k k LK .2
g 1t follows that rj,jr z,z"rj,z'
jeJ(jo) and zéK(jo), then s? g = 0. Fourth, observe that

’

for V 2 0 for all k. Hence if

o *
r: = r.
J,y 2 Js 8

for j, 2 =1, 2, ..., n where ‘

(7))

. S.

N IR Nt St P
o =0

exp(xj+xl)-1
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* *®v
Finally, verify that f;exp(A r)Voexp(A )dt = W,. This follows

from the fact that

#* #

- _ _ =1 -11
R = [rj,zl = R. =T VOT .

o)

Thus we produced an a* $ A, that satisfies (i) and (ii) of Theorenm

2. This contradiction proves Theorem 3.

Proof of Theorem 4: Suppose to the contrary that there exists an

infinite sequence of distinet pairs {(Ak’vk)};-1 that satisfy
(i'), (11') and (iii') of Theorem 3, and that S_ = T~ 'W 171" does

not have any zero elements. As in the proof of Theorem 3, we know

that
k _ 0
T35 7 73,3
k _ .0
"2, % Tasn
-k, o
At .
K ) ( 3t L)Sle
J,e o,,0y_
’ exp(xj+xz) 1
for all j, 2 = 1, 2, ..., n and that rl;’jrl;’z-}rg{,z{‘e > 0 for
all k. There exists an index jo such that {tg };=1 is unbounded
and there exists an index o such that AK = IE . Therefore,

‘]O o]
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2. s?
k Jo Jo”z'o
r. = .
Jor 4o exp(19+x° ) =1
Jo %o

Since {rg . };_1 is unbounded, we have generated a contradiction.
o’*o0 7

Proof of Theorem 5: Define

- h
(A10) o,h exp(Ao ) |
Wy n = Foexp(A t)V exp(Ac) dr
- -1 -1 O’h
o,h =T wo,hT = [sj,zl.

When the observation interval is h, the pair (Bo h'Wo . p) can be
I 3
inferred from discrete time data. Following the logic in the

previous proofs,

40 5h . exp(hxo,j+hxo,£)—1 Lo
Js%y h h> Js2
¢ lo7j+ AO’E)

If there are not any complex conjugate pairs of eigenvalues, then
the conclusion 1is immediate. Suppose there 1is one complex
conjugate pair. Let aq be complex and suppose Ao 1s its complex

conjugate. By assumption r? is not =zero. Hence s? > is not
’

y 2
zero. Let
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k. ,0,k21i
11 = X1+k R
o) ki
12 = Az_k_.h_
== 2ni -1
Ak,h =T AOT + —h—leag {k, -k, 0,...01T

The sequence (A, h};f contains all the solutions to
y - 00

#
Bo,h = exp(A h).
Let
_ =1 -1
where
. sh '
wo’h = Ioexp(Ak’ht)Vk’h exp(Ak,hr)dt.
Now
- kldgi
k,h (hlo,1+h1012+ h ) o,h
(A11) ri’p = - 51,2
exp(hxo,1+hxo,2)-1
- kini
(lo,1+lo,2 n )ro
- 1,2
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However from [A11} it is clear that

k,h
inf |r1:2}

Ke{l1,-1,2,-2,...1}

can be made arbitrarily large by making h go to zero. Thus there
* *
exists an h such that for h < h

o) o) k,h;2
ry,1v2,o-lryipl® <o

for all nonzero integer k. Hence there is no aliasing problem.
In cases in which there are more than one complex conjugate
pair of eigenvalues the above argument can be repreated for each

conjugate pair.
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FOOTNOTES

Thanks are due to Ian Bain and Judy Sargent who calculated
the numerical examples. P.C.B. Phillips and John Taylor
provided some very useful comments on an earlier draft. This
research was supported in part by NSF Grant SES-8007016.

While this paper ends up modifying Phillips's characteriza-
tion of identification, the analysis of section 3 obviously
builds upon the machinary that he developed [9].

For an introduction to continuous time stochastic processes,
see Kwakernaak and Sivan [6]. A vector white noise w with
generalized covariance function Ew(t)w(t-1) = Vs(t-<) is said
to have "intensity matrix" Vy, where &(+) is the Dirac delta
generalized function.

This statement formally is only true once we treat all
elements of the equivalence class of matrix functions c¢ that
are equal almost everywhere as the same matrix function. See
Rozanov [11] for a discussion of fundamental representations.

This notation emerges because the Laplace transform of the
time derivative operator D is the function H(s) = s.

This can be proved directly by noting that for any real w* >
7, it is possible to construct a bandlimited continuous time
process x*, with its spectral density matrix zero for !w! >
m*, but nonzero for |l < w*. This process can be chosen to
be observationally equivalent to x from discrete time data.
Since {m* > @} 1is an wuncountable set, the class of
observationally equivalent x* processes in uncountably
infinite.

A.W. Phillips [10] has studied the following subset of con-

tinuous time processes with rational spectral densities,
those that can be represented as

DPx(t) + a1Dp-1X(t) + .. + apx(t) =

p-1
b1D w(t) + b2
We use the same set of tools as Phillips used to analyze the
discrete time implications of continuous time stochastic
processes. Phillips, however, did not address the aliasing
problem.

PP 2u(t) + ... =+ b w(t) .
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The restrictions on the real parts of a,, Aoy, «e., Ay are
sufficient to guarantee that the inverse Lgplace transfo%m of
C is concentrated on the nonnegative real numbers. The
restrictions on the zeroes of the detG(s) are sufficient to
guarantee that the associated one-sided moving average
representation is fundamental.

For the class of processes considered by A.W. Phillips [10],
the matrices Q. have rank one. For the class of processes
considered heré, these matrices are permitted to have ranks
that exceed one.

This discussion uses the fact that the complex logarithm has
multiple branches. 1In particular, if s is a complex variable
then log(s) = logisi+arg(s)+2sik for some integer k. The
integer k indexes the multiple branches of the logarithmic
funection.

When there is more than one pair of complex conjugate poles,
the possibility is raised of generating a countable sequence
of observationally equivalent continuous time models by
adding different integer multiples of 24i to several of the
complex conjugate pairs simultaneously. In the following
section, this possibility is studied in detail for a special

case of model (7).

A question related to this one occurs in determining whether
the parameters of a continuous time Markov process can be
inferred from Markov chain probabilities. This question has
been treated, for example, by Singer and Spilerman [13].
They also consider the circumstances under which a Markov
chain transition matrix can be embedded in a continuous time
Markov process. There 1is an analogous question in our
setting that asks: for which values (B.,W.) does there exist
a pair (A,,V.) that satisfies (13) and 01432

P.C.B. Phillips has correctly pointed out to us that if V_ is
assumed to be singular, then when W is positive defiflite
there is extra identifying information about A_ contained

in W,. (Phillips [7] has characterized cases in which W_ is
nonsgngular even though V. is singular.) The argument wRich

follows in the text extends Phillips's point by establishing

that even if V_ is permitted to be nonsingular, wo in general
contains ident?fying information about AO.

This discussion follows Phillips [9] and allows the interval
of time between observations, h, to be different from unity.

Phillips suggested to us that we investigate the
identification problem as h goes to zero.
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