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THE DIMENSIONS OF IRREDUCIBLE TENSOR 
REPRESENTATIONS OF THE ORTHOGONAL AND 

SYMPLECTIC GROUPS 

R. C. KING 

1. Introduction. It is well known [13] that the irreducible tensor repre
sentations (IRs) of the unitary, orthogonal, and symplectic groups in an 
^-dimensional space may be specified by means of Young tableaux associated 
with partitions (a)s = (o-i, o-2, . . . , <rp) with cri + G<I + . . . + ap — s. For
mulae for the dimensions of the corresponding representations have been 
established [1; 8; 9; 13] in terms of the row lengths of these tableaux. It has 
been shown [12] for the unitary group, U(w), that the formula may be written 
as a quotient whose numerator is a polynomial in n containing 5 factors, and 
whose denominator is a number independent of n, which likewise may be 
expressed as a product of 5 factors. This formula is valid for all n. 

In contrast to this, the existing formulae [1; 13] for the dimensions of IRs 
of the orthogonal group 0(n) and the symplectic group Sp(n) are not valid 
for all n in the sense that they apply only to standard IRs of these groups 
and not to non-standard IRs, which are related to standard IRs through 
modification rules [9; 10]. Moreover, for the orthogonal group 0(n) the 
formulae appropriate to the cases n even and n odd are distinct. Our aim in 
this paper is to present derivations of expressions for the dimensions of the 
IRs of 0(n) and Sp(n) specified by (a)s which are in the form of a quotient 
whose numerator is a polynomial in n containing s factors and whose denom
inator is the same as that appropriate to the IR of U (n) specified by (a)s. In 
addition, these expressions are valid for all n, including those cases for which 
the IRs are non-standard. For O(^), the unique expression is valid for both n 
even and n odd. 

Applications can be easily made to the calculation of the dimensions of 
IRs of 0(n) and Sp(^) appropriate to the atomic and nuclear LS and jj 
coupling schemes. 

2. Partitions and Young tableaux. The irreducible tensor representa
tions of \J(n)y 0(n), and Sp(n) may be specified by the symbols {a} s, [a]si 

and (<T)S, respectively, associated with the partition of s into p parts, denoted 
by (°0s = Ĝ i» °"2, . . . , o-p) with o-i + o-2 + . . . + <Tp = ^ and 

0*1 è cr2 ^ . . . ^ (Tp > 0. 
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Such a partition is represented diagram ma tically by means of a regular Young 
tableau (or diagram) consisting of p rows of boxes (or nodes). The ith. row 
of the tableau contains a{ boxes and each row begins from the same vertical 
line. The tableau also defines a partition of s into q parts, denoted by 
(<r')8 = (oY, oY, . . . , <Tq

f) with <ri + cr2' + . . . + <rq
f = 5 and 

<ri' ^ er2' ^ . . . ^ er/ > 0, 

where o-/ is the number of boxes in the jth column of the Young tableau 
defined by the partition (a)s. The partition (a')s is said to be conjugate to 
the partition (a)si so that the conjugacy operation simply involves inter
changing the rows and columns of the appropriate Young tableau. 

I t is to be noted that o-/ = p and <n = g, and that in Frobenius notation 
[8; 12], the partition (<r)s takes the form 

, v ( o - i - l 0-2-2 . . . o> - r \ 
\<T\ — 1 o - 2 — 2 . . . <jr — r/ 

where r is the length of the principal diagonal of the Young tableau. Clearly 
with this notation, the conjugacy operation yields 

/ w / ,N (*i ~ 1 0-2' - 2 . . . 0-/ - A 
w i — 1 o"2 — 2 . . . <jr — r / 

It is convenient to extend the definition of the partition to that of a 
generalized partition (<r)s = (<n, <72, . . . , o>) with 0-1 + cr2 + . . . + <rP = s 
but with the restriction <TI ^ o-2 ^ . - . ^ o> > 0 completely removed, so that 
any partition number at may be positive, zero or negative. Such a generalized 
partition may still be represented diagrammatically by means of a Young 
tableau consisting of p rows. Each row begins from the same vertical line and 
the ith row consists of at boxes extending to the right of this line if at > 0, 
of no boxes if <Ti = 0, and of |o-*| boxes extending to the left of this line if 
Gi < 0. This generalization is such that differences between partitions may 
always be defined. Thus if (r)t = (n, r2, . . .) and (a)s = (au <j2, • . .)» t n ^ n 

(r — (T)t-S = (ri — o"!, T2 — o"2, . . .), where any or all of these partitions may 
be unconventional in that their parts may be negative and unordered. How
ever, except where otherwise stated, it is to be assumed that all partitions are 
conventional with ordered positive parts. 

3. Conjugacy relationships. The dimensions of the IR of \]{n) specified 
by {0} s is given by 

(3.1) Dn{<j\s = Nn{a}s/H(°)s 

[12, p. 60] with 

(3.2) Nn{a}s= ft (n-i+j) 
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and 

(3.3) H(a)s = n (1 - i ~ J + *t + * / ) . 

where the products are taken over all values of (i,j) corresponding to a box 
in the ith row and jth column of the tableau defined by (a)s. 

In (3.2), replacing j by (<rt — j + 1) yields 

(3.4) Nn{a}s=fl ft ( * - * - j + l + *«), 

whereas replacing i by (o-/ — $ + 1) yields 

(3.5) Nn{a}s = ft f l (* + * + J - 1 - * / ) • 

Comparison of (3.4) and (3.5) then indicates that 

Nn{a\s= ( - l ) W _ > ' h . 

In addition, it is clear from (3.3) that 

H(a)s = H(af)s, 

so that 

(3.6) Dn{a} s = (-l)sD_n{a'}s. 

The reduction of the outer product of two IRs of U(n) jn to a sum of IRs 
of U (n) is determined by the formula 

X 

together with the well-established procedure [8, p. 94] for determining the 
multiplicities mffTt\. The conjugacy relationship is such that 

(3.7) mar%\ = m,>T't\' 

[8, p. 110]. 
The IR {a}s of U(n) decomposes into IRs of 0(n) in accordance^with the 

formula 

(3.8) {<r}s = £ d „ [ r ] , = D mSTAr], 
T ÔT 

[8, p. 240], where (ô)d is a partition into even parts only, so that 

(Ô), = (2<Zlf 2d2j . . .)• 

The inverse of the formula (3.8) is the identity 

(3.9) W.= Z c„{r}f= Z (-Dc /W..{r} l f 
T JT 
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where (y)c is a partition, which in Frobenius notation takes the form 

In the same way the IR {o}s of \J(n) decomposes into IRs of Sp(n) in 
accordance with the formula 

(3.10) {a}s = X baT(r)t = X "W<r>< 
r 0 T 

[8, p. 295], where (ft)b is a partition in which each distinct part is repeated an 
even number of times, so that 

The inverse of (3.10) is the identity 

(3.11) <*>,= Z affT{r}t= X (-l)fl/2f»ar.a{r}i, 
r ax 

where (a)a is a partition which in Frobenius notation takes the form 

Wfl " Vax + 1 a2 + 1 . . ./ ' 

The existence of the relations (3.9) and (3.11) indicates that the dimensions 
of the IRs of 0(n) and Sp(w) specified by [or], and (a)si and denoted by 
Dn[<r]s and Dn(a)s, respectively, may be expressed, by the use of (3.1), as 
polynomials in n of degree 5. Moreover, it must be stressed that since (3.1), 
(3.9), and (3.11) are valid for all n, the corresponding polynomials Dn[a]s 

and Dn(a)s are unique. That is to say these polynomials give the dimensions 
of the IRs of the orthogonal and the symplectic groups specified by the 
partition (a)s for all possible values of n. In particular, the polynomial Dn[a]s 

is applicable for both even and odd values of n. 
It is well known that the complete set of standard IRs of 0(2fe), 0(2k + 1), 

and Sp(2&) may be specified by partitions consisting of not more than k parts. 
However, if n < 2p, where the partition (<r)s consists of p parts, then the 
reductions (3.8) and (3.10) give rise to non-standard IRs. There exist well-
established modification rules [9, p. 282; 10] which relate each non-standard IR 
to an equivalent standard IR. However, since the non-standard IRs of 0(n) 
and Sp(«) may be defined by (3.9) and (3.11), it follows that the polynomials 
Dn[<i\s and Dn{o)s give the dimensions of the IRs of 0(n) and Sp(^) specified 
by the partition (a)s even if these IRs are non-standard. 

In § 4 the unique polynomial formulae for Dn[a]s and Dn(a)s are derived. 
Necessarily there is a conjugacy relationship between these formulae which 
arises from the fact that the identity (3.7) implies that 

(3.12) daT = ba>T' a n d car = <v T / . 
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It then follows from (3.9) that 

T r' 

where use has been made of both (3.12) and (3.6). However, t = s + c, 
and c is even, so that 

DM,= ( - ! ) S Ç a^D^W},. 
From (3.11), 

£>_„(o- ' ) s = X ) aa'r'D-nlr'},, 
T' 

so that finally 

(3.13) Dn[a]s= (-iyD-n(a')s. 

This important conjugacy relationship is exploited in § 4 in devising procedures 
for determining Dn[<r]s and Dn(o)s. 

4. Dimensions of IRs of 0(n) and Sp(w). Although (3.9) and (3.11) 
indicate that Dn[a]s and Dn{a)s may be expressed as polynomials in n of 
degree s, they do not provide, in general, an easy method of calculating these 
polynomials. In fact, the only formulae available for these quantities are 
expressed as quotients whose numerators and denominators are both poly
nomials in n. Moreover, for 0(n), distinct formulae need to be used according 
as n is even or odd. Thus for 0(n) [1, p. 250], if n = 2k, then 

(4.1) Dn[a]s = Du[a]s 

= FT (°i — aJ ~ * + i ) TT (q-j + <Tj + n — i — j) 
iû\<m (—i+j) i^T<W (n - i - j) 

and if n = 2k + 1, then 

(4.2) Dn[a]s = D 2 H i W s 

= TT (o~z — <TJ — i + j) y] (°* + <Tj + n — i — j) 

Similarly for Sp(n) [13, p. 218], with n = 2fe, 

(4.3) Dn(a)s = D2k(a)s 

= TT (°i ~~ ai — i +J) TT (<Tj + <TJ+ n + 2 - i - j) 

IJL<3^JC ( - i + j ) î^jJj^k (n + 2 —i—j) 

In these expressions the notation of § 2 has been extended slightly in such 
a way that 

(4.4) (r, > 0 if i ^ £, 
(Tt = 0 if i > £, 

with p ^ k. 
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Multiplying (4.1) by the factor 

n 
2(k - i)(<rt + k - i)(<Ti+n - i - k - 1)! 

•_i (n-2i)(ai+k-i)l 

which is just unity by virtue of the fact that in (4.1), n = 2k, and then 
rearranging terms yields 

(4.5) Dn[a], = Nn[a]s/H[a]s, 

where 

(4.6) * „ w . - n [(n+X-m~1)lU (»+'«+^-»-i ) ] 
Jc 

n 
and 

(4.7) H[*] k 

11 (at - <Tj - i + j) 

Making use of the condition (4.4), then leads to the results 

• i ) ] 
and 

(4.9) #[« n 
(«r, + / > - « ) ! 

n (̂  <̂  - i + J) 

In this form it is easy to see that 

(4.10) H[a]s H(*)„ 

so that the denominator of (4.5) is just the conventional [12, p. 44] hook length 
factor associated with the partition of s into p parts denoted by (a)s. 

Moreover, in the expression (4.8), if p < i + au then the factor (n — 2i)\ 
will cancel with the same factor which is contained in (n + at — i — p — 1)!. 
In this case, for a particular value of i the contribution to Nn[a]s is a poly
nomial in n of degree (p — i + 1) + (i + &i — p — 1) = vu where of course 
<Tt is the length of the ith row of the corresponding tableau. If on the other 
hand p è i + <*u then, for a particular value of i, the contribution to Nn[a]s is 
a polynomial of degree at multiplied by (p — i — <jt + 1) factors of the form 

(n — 2i - I + ai+9i+i)/(n — 2i 

Therefore in general 

V r i+<ri—1 

(4.11) iVB[<r]s = I l I I (n + vt + at-

I). 

-i-j) 

x-fffc. 
Z=0 

2i - Z + o-i+*i+l) 
(n - 2i - I) 
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Replacing j by i + j — 1 in this expression then yields in (4.5), using (4.10) 
and (3.3), the final result 

(4.i2) DM. = n (n 'n'+STt^r'jr 1) 

TT (n — 2i — / + 1 + cri 
(i,l) (n - 2i - I + 1) 

where the first product is taken over all values of (i, j) corresponding to a 
box in the ith row and j th column of the tableau defined by (a)si and the 
second product is taken over all values of (i, I) with / ^ 1 corresponding to 
a box in the ith row and the Ith column of the tableau defined by the generalized 
partition (r — <r)t-s with (r)t = (p, p — 1, p — 2, . . . , 2, 1). Thus formula 
(4.12) defines the following procedure, (A), for calculating Dn[<r]s. 

(A) (i) The numbers n — 1, n — 3, n — 5, . . . , n — 2p + 1 are placed in 
the end boxes of the 1st, 2nd, 3rd, . . . , pth rows of the tableau defined by (a)s. 
An array of 5 numbers is then constructed by inserting in the remaining boxes 
of the tableau, numbers which increase by 1 in passing from one box to its 
left-hand neighbour. 

(A) (ii) The series of numbers in any row of this array is then extended 
outside the tableau defined by (a)s to the limit of the triangular tableau 
defined by (r)t with n = p, if, that is, the corresponding row length defined 
by (r)t is greater than that defined by (a)s. 

(A) (iii) The row lengths <ru a2, • • . , o> are then added to all of the numbers 
of this extended array which lie on lines of unit slope passing through the first 
box of the 1st, 2nd, . . . , £th rows, respectively, of the tableau defined by (a)s. 

(A) (iv) Each number of the resulting array corresponding to a box of the 
tableau defined by (<T)S is divided by the associated hook length, whilst each 
number of the array outside the tableau defined by (a)s is divided by the 
number occupying the same position in the array at the end of stage (A) (ii), 
prior to the addition of the row lengths. 

Dn[a]s is then the product of the numbers of the array obtained after 
stage (iv) of procedure (A). 

For example, if (a)s = (4, 3, 1), then p = 3 and (r)t = (3, 2, 1) so that 
(r — a)t-s = (—I» —1> 0)- In this case, 

(4.13) A*[4, 3, 1] = 
(n + 2 + 4) {n + 1 + 3) (n + 0 + 1) (n - 1) 

6 4 3 1 

(» - 1 + 3) (» - 2 + 1) (» - 3) 
4 ' 2 ' 1 

(n - 5 + 1) 
1 
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so that 

(4.14) A , [4 ,3 , l ] 

= {n + 6)(re + 4)(» + 2)(re + l)(n - lY(n - 3)(» - 4)/576. 

In this particular example it was not necessary to carry out stage (ii) of 
the procedure (A). On the other hand, if (a)„ = (3, 22, 1), then p = 4 and 
( T ) , = (4, 3, 2, 1) so that (T - a)t-, = (1, 1, 0, 0). In this case, 

(4.15) P,[3, 22, 1] = 
(n + 1 + 3) (» + 0 + 2) (w - 1 + 2) (w - 2 + 1) 

6 4 1 in • - 2 ) 

0 - 2 + 2) (n - 3 + 2) 0 - 4 + 1) 
4 * 2 0 - 4) 

0 - 4 + 2) 0 - 5 + 1 ) 
3 ' 1 

0 - 7 + 1) 
1 

so that 

(4.16) A*[3,22,1] = 0 + 4 ) 0 + 2 ) 0 + 1 ) 0 ) 0 - 1 ) 2 0 ~ 3 ) 0 ~ 6 ) / 5 7 6 . 

In this example it is to be noted that the factors in the denominator depen
dent upon n cancel to yield a factored polynomial of degree 8 for Dn[3, 22, 1]. 
I t is not at all obvious from the formula (4.12) that the factors in the denom
inator dependent upon n will always cancel with identical factors in the 
numerator to leave a factored polynomial in n of degree 5. This is the case 
however and may be proved by distorting the unextended tableau defined 
by (<T)S in such a way that each row ends in the same vertical line. With this 
distortion, cancellations take place between numbers joined by lines of unit 
slope. 

The derivation of the expression (4.12) for Dn[a]s from (4.1) depended upon 
the conditions n = 2k and k ^ p. However, since the expression (4.12) is a 
polynomial in n of degree 5, it must be valid for all n as explained in § 3. 
In fact, it is not difficult to derive (4.12) from the formula (4.2) which is 
appropriate to IRs of 0 0 ) with n = 2k + 1. This confirms that (4.12) is 
valid for both even and odd n. It is to be stressed, moreover, that (4.12) is 
valid for all values of n including those for which n < 2p. Thus (4.12) provides 
an excellent means of checking the validity of modification rules appropriate 
to IRs of 0 0 ) [9, p. 282; 10]. 

In exactly the same way, it is straightforward for the IRs of SpO) to 
derive from (4.3) the formula 

(4.17) Dn(a)s = Nn(a)s/H(a)s, 
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where 

(4.18) Nn(<r)3 

fr \{n + gt-i-p+l)\ * . 1 

" S L <»-2*+l)! Jl1(« + '« + ' i - * - J + 2)J 
and 

(4.19) H(a), = H(a)s. 

Hence it may be shown that 

(4.20) Dn(a)s 

= FT ^ + ^ + °~<+J — 2i - J + 2) T-J (w - 2z - / + 2 + o-j+vi+i) 
ta (1 + cri + e r / - i - j ) (1,1) (n - 2i - / + 2) 

where the first product is taken over all values of (i, j) corresponding to a 
box in the ith row and jth column of the tableau defined by (a)s, and the 
second product is taken over all values of (i, I) with / ^ 1 corresponding to 
a box in the ith row and Zth column of the tableau defined by the generalized 
part i t ion (p — cr)r-s with (p)r = (p — 1, p — 2, p — 3, . . . , 2, 1) . Th i s 
formula (4.20) is analogous to (4.12), and defines the following procedure (B) 
for calculating Dn(a)s. 

(B) (i) This is the same as (A) (i) with the numbers un — 1, n — 3,n — 5 , . . . , 
n — 2p + 1" replaced by the numbers un, n — 2, n — 4, . . . , n — 2p + 2 . " 

(B) (ii) This is the same as (A) (ii) with " (r) t with n = p" replaced by 
"(p) r with pi = p - 1", and with " ( r ) t " replaced by " (p) r " . 

(B) (iii) This is the same as (A) (iii) with the row lengths 'Vi, o-2, . . . , av" 
replaced by 'V2, <r3, . . . , (rp

M and with pth replaced by u(p — l ) s t ' \ 
(B) (iv) This is the same as (A) (iv) with "(A) (ii)" replaced by "(B) (ii)". 
Dn{o)s is then the product of the numbers of the array obtained after 

stage (iv) of this procedure (B). 
Using the same examples as before if (a)s = (4, 3, 1), then p = 3 and 

(p)r = (2, 1) so that (p - <r)r_s = ( - 2 , —2, - 1 ) . In this case, 

(4.21) fl,<4,3,l)= (» + 3 + 3 ) , (n + 2 + 1 ) . i g ^ . g 

(ra + 0 + 1) (« - 1) (w - 2) 
4 ' 2 ' 1 

( » - 4 ) 
1 ' 

so that 

(4.22) A,<4, 3, ! > = ( » + 6) (n + 3) (» + l)2(w) (» - 1) (» - 2) (« - 4)/576. 
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Similarly, if 0 ) s = (3, 22, 1), then p = 4 and (p), = (3, 2, 1) so that 
( p - <7)r_s = (0,0, - 1 , - l ) . T h e n 

(4.23) P „ ( 3 , 2 M ) = (w + 2 + 2 ) - ( w + 1 + 2 ) ( w + 0 + 1 ) 

6 4 

(n - 1 + 2) (w 
4 

- 2 + 1) 
2 

(n - 3 + 1) (n • - 4 ) 

( * - 6 ) 
1 ' 

so that 

(4.24) D A 2 M ) 
= 0 + 4 ) 0 + 3)(w + 1 ) 2 0 - 1 ) 0 - 2 ) 0 - 4 ) 0 - 6)/576. 

In these particular examples, stage (ii) of procedure (B) is not necessary 
and there is no question of the denominator depending upon n. However, for 
other examples, factors in the denominator depending upon n do occur and, 
as for O 0 ) , these factors always cancel with identical factors in the numerator. 
Thus the expression (4.20) for Dn(o)s is a polynomial in n of degree s which is 
valid for all values of n including those for which n < 2p. Thus (4.20) provides 
an excellent means of checking the validity of modification rules appropriate 
to IRsof SpO) [10]. 

The identity (3.13), besides illustrating the conjugacy relationship between 
IRs of 0 0 ) and SpO) , also provides new procedures, (C) and (D), for 
evaluating Dn[a]s and Dn(a)s when used in conjugation with (4.12) and (4.20). 
These procedures correspond to the formulae 

(4.25) Dn[a]s 

and 

— <Ti+j 

(1 + -
- c,' + 
?i + Oj -

* + 2j-
- i-j) 

•Jl 
(3,D 

n + 2j + 1-2-
(n + 2j + /" - 2 ) 

•±A 

(4.26) Dn{c)s 

= n ( ? t z 
(i,3) (1 + *, 

- *;+ -
: + ff/ — 

i + 2j-
i -J) 

1) -2J + 1-1-
(n + 2j + l-- 1 ) 

t i ) 

in an obvious extension of the notation of (4.12) and (4.20). The formula 
(4.25) defines the following procedure, (C), for calculating Dn[<r]s. 

(C) (i) The numbers n, n + 2, n + 4, . . . , n + 2q — 2 are placed in the end 
boxes of the 1st, 2nd, 3rd, . . . , qth columns of the tableau defined by (a)s. An 
array of 5 numbers is then constructed by inserting in the remaining boxes of the 
tableau, numbers which decrease by 1 in passing from one box to the one 
immediately above. 
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(C) (ii) This is the same as (A) (ii) with "row" replaced by "column", with 
" ( T ) , with n = p" replaced by "(A)* with Xi = q — 1", with "row" again 
replaced by "column", and with "(T)" replaced by "(A)/ ' . 

(C) (iii.) The column lengths oY, oY, . . . , <r/ are then subtracted from all 
of the numbers of this array which lie on lines of unit slope passing through 
the first box of the 1st, 2nd, . . . , (q — l )s t columns, respectively, of the 
tableau defined by (<i)s. 

(C) (iv) This is the same as (A) (iv) with " (A) (ii)" replaced by " (C) (ii)" 
and with "addition of the row lengths" replaced by "subtraction of the 
column lengths". 

Dn[cr]s is then the product of the numbers of the array obtained after stage 
(iv) of this procedure (C). 

For example, as before, if (a)s = (4, 3, 1), then q = 4 and (A)j = (3, 2, 1) 
so that (A — <T)I-S = (—1, —1) 0). In this case, 

(4.27) P.[4f 3,1] = Z>„[3, 22, 1]' = ^n ~ g " 2)- . ^n + \ ~ 2> . <!L±1=11 

(» + 6) (n - 1 - 2) (n + 2 - 1) (n + 4) (n + 0 - 1) 
1 4 ' 2 1 1 

in agreement with (4.14). Similarly, if (a)s = (3, 22, 1), then q = 3 and 
(X), = (2, 1), so that (A - * ) ,_ , = ( - 1 , - 1 , - 2 , - 1 ) . Then 

(4.28) P j 3 , 2 2 , l ] ^ ^ 4 , 3 , i r = > - 6
3 - 3 ^ ( " +

4 ° - 1 ^ ( ^ 

(n - 2 - 1) (n + 1) {n - 1) (» + 2) (n) 
4 2 ' 3 ' 1 " 1 J 

in agreement with (4.16). In this particular case it is clear that the array (4.28) 
is simpler than (4.15) in that it involves no factors outside the tableau defined 
by (<r)f. 

Similarly, the formula (4.26) defines the following procedure, (D), for 
calculating Dn(a)s. 

(D) (i) This is the same as (C) (i) with the numbers "n, n + 2, n + 4 , . . . , 
n + 2q — 2", replaced by the numbers "n + 1, n + 3, n + 5 , . . . , n + 2q — 1". 

(D) (ii) This is the same as (C) (ii) with "(A)? with Ai = q — 1" replaced 
by u(/x)m with /xi = q", and with " (A) / ' replaced by "(/x)m". 

(D) (iii) This is the same as (C) (iii) with the column lengths "oY, oV, . . . , a{ 

replaced by "oY, <r2', . . . , o\/" and with " (g - l )s t" replaced by "#th". 
(D) (iv) This is the same as (C) (iv) with (C) (ii) replaced by (D) (ii). 
Dn(o)s is then the product of the numbers of the array obtained after 

stage (iv) of this procedure (D). 
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For example, if (<r)s = (4, 3, 1), then q = 4 and (jLt)m = (4, 3, 2, 1) so that 
(ju - cr)w_s = (0, 0, 1, 1). Then 

(4.29) ^ ( 4 , 3 , 1 ) ^ ( 3 , 2 ^ / ^ 

(w + 7 - 1) (n + 0-2) (n + 3 - 2) Q + 5 - 1) (n + 1 - 2) 
1 ' 4 ' 2 " 1 " 1 

(n + 4 - 1) (w + 2 - 1) 
(» + 4) ' (n + 2) " ' 

in agreement, after cancellations, with (4.22). Similarly, if (a)s = (3, 22, 1), 
then g = 3 and (fx)m = (3, 2, 1) so that (/x - o-)m^ = (0, 0, - 1 , - 1 ) . Then 

(4.30) g , < 8 > 2 M ) = Z>.<4,3,1>' = < ! L ^ ^ . < ! L ± ^ A " + Z ~ *) 

(w - 1 - 3) (w + 2 - 1) (n + 0 - 1) (n + 3) (n + 1) 
4 ' 2 " 3 1 ' 1 

in agreement with (4.24). 
Comparison of (4.14) and (4.24) indicates that 

Z>„[4, 3, 1] = #-„<3, 2\ 1), 

and comparison of (4.16) and (4.22) indicates that 

Dn[3f 22, 1] = £_„(4, 3, 1), 

in agreement with (3.13) since in these cases s = 8 and (4, 3, 1)' = (3, 22, 1). 
In addition to this connection between conjugate IRs of 0(n) and Sp(w), 

it follows from (4.8) and (4.18) that if n is even, then 

(4.31) DM, = A.-.<*>. I I -\n-\i)~ • 

Similarly, it can be shown from (4.25) and (4.26) that 

(4.32) DM. = * - . < * > . n {n + 2t-2~-lr)• 

The identities (4.31) and (4.32) then provide a very elegant way of verifying 
that since 

(4.33) Dn[a]s = Dn{p, <72', . . . , <r/]' = Dn[n - p, <n'f . . . , <r/]'f 

[13, p. 156], then 

(4.34) Dn(a)s = Dn(p, er2', . . . , cr/>' = - £„<* - £ + 2, <r2', . . . , */>' 

for the tableau having p rows defined by (cr)s. These equalities, of course, 
correspond to modification rules appropriate to 0(n) and Sp(w). 
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Following the work of Racah [11], the IRs of 0(n) and Sp(n) have come 
to play an important role in atomic and nuclear spectroscopy. Calculations 
of the dimensions of these IRs have been carried out using formulae involving 
row lengths [2-7; 14]. However, it is more convenient to make use of formulae 
involving column lengths. Such formulae can be obtained either from (4.8) 
and (4.18) by the use of (3.13) or from (4.25) and (4.26). 
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