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Abstract. The alternating direction method of multipliers (ADMM) is now widely used in many

fields, and its convergence was proved when two blocks of variables are alternatively updated. It is

strongly desirable and practically valuable to extend the ADMM directly to the case of a multi-block

convex minimization problem where its objective function is the sum of more than two separable

convex functions. However, the convergence of this extension has been missing for a long time —

neither an affirmative convergence proof nor an example showing its non-convergence is known in

the literature. In this paper we give a negative answer to this long-standing open question: The

direct extension of ADMM is not necessarily convergent. We present a sufficient condition to ensure

the convergence of the direct extension of ADMM, and give an example to show its divergence.

Keywords. Alternating direction method of multipliers, Convergence analysis, Convex program-

ming, Splitting methods

1 Introduction

We consider the convex minimization model with linear constraints and an objective function which

is the sum of three functions without coupled variables:

min θ1(x1) + θ2(x2) + θ3(x3)

s.t. A1x1 +A2x2 +A3x3 = b,

x1 ∈ X1, x2 ∈ X2, x3 ∈ X3,

(1.1)

where Ai ∈ <p×ni (i = 1, 2, 3), b ∈ <p, Xi ⊂ <ni (i = 1, 2, 3) are closed convex sets; and θi : <ni → <
(i = 1, 2, 3) are closed convex but not necessarily smooth functions. The solution set of (1.1) is

assumed to be nonempty. The abstract model (1.1) captures many applications in diversifying areas

— e.g. see the image alignment problem in [22], the robust principal component analysis model

with noisy and incomplete data in [25], the latent variable Gaussian graphical model selection in

[5, 21] and the quadratic discriminant analysis model in [20]. Our discussion is inspired by the
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scenario where each function θi may have some specific properties and it deserves to explore them

in algorithmic design. This is often encountered in some sparse and low-rank optimization models,

such as the just-mentioned applications of (1.1). We thus do not consider the generic treatment that

the sum of three functions is regarded as one general function and possible advantageous properties

of each individual θi are ignored or not fully used.

The alternating direction method of multipliers (ADMM) was originally proposed in [12] (see

also [4, 9]), and it is now a benchmark for the following convex minimization model analogous to

(1.1) but with only two blocks of functions and variables:

min θ1(x1) + θ2(x2)

s.t. A1x1 +A2x2 = b,

x1 ∈ X1, x2 ∈ X2 .

(1.2)

Let

LA(x1, x2, λ) = θ1(x1) + θ2(x2)− λT
(
A1x1 +A2x2 − b

)
+
β

2

∥∥A1x1 +A2x2 − b
∥∥2 (1.3)

be the augmented Lagrangian function of (1.2) with the Lagrange multiplier λ ∈ <p and β > 0 be a

penalty parameter. Then, the iterative scheme of ADMM for (1.2) is

(ADMM)


xk+1
1 = Argmin{LA(x1, x

k
2, λ

k) |x1 ∈ X1}, (1.4a)

xk+1
2 = Argmin{LA(xk+1

1 , x2, λ
k) |x2 ∈ X2}, (1.4b)

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 − b). (1.4c)

The iterative scheme of ADMM embeds a Gaussian-Seidel decomposition into each iteration of the

augmented Lagrangian method (ALM) in [18, 23]; thus the functions θ1 and θ2 are treated individ-

ually and so easier subproblems could be generated. This feature is very advantageous for a broad

spectrum of application such as partial differential equations, mechanics, image processing, statistical

learning, computer vision, and so on. In fact, the ADMM has recently witnessed a “renaissance” in

many application domains after a long period without too much attention. We refer to [3, 6, 11] for

some review papers on the ADMM.

With the same philosophy as the ADMM to take advantage of each θi’s properties individually,

it is natural to extend the original ADMM (1.4) for (1.2) directly to (1.1) and obtain the scheme

(Extended ADMM)



xk+1
1 = Argmin{LA(x1, x

k
2, x

k
3, λ

k) |x1 ∈ X1}, (1.5a)

xk+1
2 = Argmin{LA(xk+1

1 , x2, x
k
3, λ

k) |x2 ∈ X2}, (1.5b)

xk+1
3 = Argmin{LA(xk+1

1 , xk+1
2 , x3, λ

k) |x3 ∈ X3}, (1.5c)

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b), (1.5d)

where

LA(x1, x2, x3, λ) =

3∑
i=1

θi(xi)− λT
(
A1x1 +A2x2 +A3x3 − b

)
+
β

2

∥∥A1x1 +A2x2 +A3x3 − b
∥∥2 (1.6)

is the augmented Lagrangian function of (1.1). This direct extension of ADMM is strongly desired

and practically used by many users, see e.g. [22, 25]. The convergence of (1.5), however, has been

ambiguous for a long time — there is neither an affirmative convergence proof nor an example showing

its divergence in the literature. This convergence ambiguity has inspired an active research topic
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of developing such algorithms that are somehow slightly twisted versions of (1.5) but with provable

convergence and competitive numerical efficiency and iteration simplicity, see e.g. [15, 16, 19]. Since

the direct extension of ADMM (1.5) does work well for some applications (e.g. [22, 25]), users have

the inclination to imagine that this scheme seems convergent even though they are perplexed by the

rigorous proof. In the literature, there was even very little hint for the difficulty in the convergence

proof for (1.5), see [6] for an insightful explanation.

The main result of this paper is to answer this long-standing open question negatively: The direct

extension of ADMM (1.5) is not necessarily convergent. We organize the rest of this paper as follows.

In Section 2, we present a sufficient condition to ensure the convergence of (1.5). Then, based on the

analysis in Section 2, we construct an example to demonstrate the divergence of the direct extension

of ADMM (1.5) in Section 3. Some extensions of the paper’s main result are discussed in Section 4.

Finally, some concluding remarks are given in Section 5.

2 A Sufficient Condition Ensuring the Convergence of (1.5)

We first study a condition that can ensure the convergence for the direct extension of ADMM (1.5).

Our methodology of constructing a counter example to show the divergence of (1.5) is also clear via

this study.

Our claim is that the convergence of (1.5) is guaranteed when any two coefficient matrices in

(1.1) are orthogonal. We thus will discuss the cases: AT1A2 = 0, AT2A3 = 0 and AT1A3 = 0. This

new condition does not impose any strong convexity on the objective function in (1.1), and it simply

requires to check the orthogonality of the coefficient matrices. So, it is more checkable than some

conditions in the literature such as those in [14, 19] (to be delineated in Section 4).

2.1 Case 1: AT
1A2 = 0 or AT

2A3 = 0

We remark that if two coefficient matrices of (1.1) in consecutive order are orthogonal, i.e., AT1A2 = 0

or AT2A3 = 0, then the direct extension of ADMM (1.5) reduces to a special case of the original

ADMM (1.4). Thus the convergence of (1.5) under this condition is implied by well known results

in ADMM literature.
To see this, let us first assume AT1A2 = 0. According to the first-order optimality conditions of

the minimization problems in (1.5), we have xk+1
i ∈ Xi (i = 1, 2, 3) and

θ1(x1)− θ1(xk+1
1 ) + (x1 − xk+1

1 )T {−AT
1 [λk − β(A1x

k+1
1 +A2x

k
2 +A3x

k
3 − b)]} ≥ 0, ∀x1 ∈ X1, (2.1a)

θ2(x2)− θ2(xk+1
2 ) + (x2 − xk+1

2 )T {−AT
2 [λk − β(A1x

k+1
1 +A2x

k+1
2 +A3x

k
3 − b)]} ≥ 0, ∀x2 ∈ X2, (2.1b)

θ3(z)− θ3(xk+1
3 ) + (x3 − xk+1

3 )T {−AT
3 [λk − β(A1x

k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b)]} ≥ 0, ∀x3 ∈ X3. (2.1c)

Then, because of AT1A2 = 0, it follows from (2.1) that
θ1(x1)− θ1(xk+1

1 ) + (x1 − xk+1
1 )T {−AT

1 [λk − β(A1x
k+1
1 +A3x

k
3 − b)]} ≥ 0, ∀x1 ∈ X1, (2.2a)

θ2(x2)− θ2(xk+1
2 ) + (x2 − xk+1

2 )T {−AT
2 [λk − β(A2x

k+1
2 +A3x

k
3 − b)]} ≥ 0, ∀x2 ∈ X2, (2.2b)

θ3(x3)− θ3(xk+1
3 ) + (x3 − xk+1

3 )T {−AT
3 [λk − β(A1x

k+1
1 +A2x

k+1 +A3x
k
2 − b)]} ≥ 0, ∀x3 ∈ X3, (2.2c)
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which is also the first-order optimality condition of the scheme
(xk+1

1 , xk+1
2 ) = Argmin

{
θ1(x1) + θ2(x2)− (λk)T (A1x1 +A2x2)

+β
2 ‖A1x1 +A2x2 +A3x

k
3 − b‖2

∣∣∣∣ x1 ∈ X1,

x2 ∈ X2

}
, (2.3a)

xk+1
3 = Argmin{θ3(x3)− (λk)TA3x3 + β

2 ‖A1x
k+1
1 +A2x

k+1
2 +A3x3 − b‖2|x3 ∈ X3, }, (2.3b)

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b). (2.3c)

Clearly, (2.3) is a specific application of the original ADMM (1.4) to (1.1) by regarding (x1, x2) as

one variable, [A1, A2] as one matrix and θ1(x1) + θ2(x2) as one function. Note that both xk1 and xk2
are not required to generate the (k + 1)-th iteration under the orthogonality condition AT1A2 = 0 in

(2.3). Existing convergence results for the original ADMM such as those in [8, 17] thus hold for the

special case of (1.5) with the orthogonality condition AT1A2 = 0.

Similar discussion can be carried out under the orthogonality condition AT2A3 = 0.

2.2 Case 2: AT
1A3 = 0

In the last subsection, we have discussed the cases where two consecutive coefficient matrices are

orthogonal. Now, we pay attention to the case where AT1A3 = 0 and show that it can also ensure

the convergence of (1.5).

To prepare for the proof, we need to make something clear. First, note that the update order

of (1.5) at each iteration is x1 → x2 → x3 → λ and then it repeats cyclically. Equivalently, we can

update the variables via the order x2 → x3 → λ→ x1 and thus have the following iterative form:

xk+1
2 = Argmin{LA(xk1, x2, x

k
3, λ

k) |x2 ∈ X2}, (2.4a)

xk+1
3 = Argmin{LA(xk1, x

k+1
2 , x3, λ

k) |x3 ∈ X3}, (2.4b)

λk+1 = λk − β(A1x
k
1 +A2x

k+1
2 +A3x

k+1
3 − b), (2.4c)

xk+1
1 = Argmin{LA(x1, x

k+1
2 , xk+1

3 , λk+1) |x1 ∈ X1}. (2.4d)

According to (2.4), there is a update for the variable λ between the updates for x3 and x1. Thus, the

case AT1A3 = 0 requires discussion different from that in the last subsection. Moreover, when xk1 is

taken as xk+1
1 and xk+1

1 as xk+2
1 , the scheme (2.4) reduces exactly to the direct extension of ADMM

(1.5). Therefore, the convergence analysis for the scheme (1.5) is equivalent to that for (2.4). For

notational simplicity, we will focus on the representation of (2.4) within this subsection.

Second, it worths to mention that the variable x2 is not involved in the iteration of (2.4), meaning

the scheme (2.4) generating a new iterate only based on (xk1, x
k
3, λ

k). We thus follow the terminology

in [3] to call x2 an intermediate variable; and correspondingly call (x1, x3, λ) essential variables

because they are really necessary to execute the iteration of (2.4). Accordingly, we use the notations

wk = (xk1, x
k
2, x

k
3, λ

k), uk = wk \λk = (xk1, x
k
2, x

k
3), vk = wk \xk2 = (xk1, x

k
3, λ

k), v = w\x2 = (x1, x3, λ),

V = X1 ×X3 ×<p and

V∗ := {v∗ = (x∗1, x
∗
3, λ
∗) |w∗ = (x∗1, x

∗
2, x
∗
3, λ
∗) ∈ Ω∗}.

Third, it is useful to characterize the model (1.1) by a variational inequality. More specifically,

finding a saddle point of the Lagrange function of (1.1) is equivalent to solving the variational

inequality problem: Finding w∗ ∈ Ω such that

VI(Ω, F, θ) : θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.5a)
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where

u =

 x1
x2
x3

 , w =


x1
x2
x3
λ

 , θ(u) = θ1(x1) + θ2(x2) + θ3(x3), (2.5b)

and

F (w) =


−AT1 λ
−AT2 λ
−AT3 λ

A1x1 +A2x2 +A3x3 − b

 . (2.5c)

Obviously, the mapping F (·) defined in (2.5c) is monotone because it is affine with a skew-symmetric

matrix.
Last, let us take a deeper look at the output of (2.4) and investigate some of its properties. In

fact, deriving the first-order optimality condition of the minimization problems in (2.4) and rewriting
(2.4c) appropriately, we obtain

θ2(x2)− θ2(xk+1
2 ) + (x2 − xk+1

2 )T {−AT
2 [λk − β(A1x

k
1 +A2x

k+1
2 +A3x

k
3 − b)]} ≥ 0, ∀x2 ∈ X2, (2.6a)

θ3(x3)− θ3(xk+1
3 ) + (x3 − xk+1

3 )T {−AT
3 [λk − β(A1x

k
1 +A2x

k+1
2 +A3x

k+1
3 − b)]} ≥ 0, ∀x3 ∈ X3, (2.6b)

(A1x
k
1 +A2x

k+1
2 +A3x

k+1
3 − b) +

1

β
(λk+1 − λk) = 0, (2.6c)

θ1(x1)− θ1(xk1) + (x1 − xk+1
1 )T {−AT

1 [λk+1 − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b)]} ≥ 0, ∀x1 ∈ X1. (2.6d)

Then, substituting (2.6c) into (2.6a), (2.6b) and (2.6d); and using AT1A3 = 0, we get

θ2(x2)− θ2(xk+1
2 ) + (x2 − xk+1

2 )T {−AT
2 λ

k+1 + βAT
2 A3(xk3 − xk+1

3 )} ≥ 0, ∀x2 ∈ X2, (2.7a)

θ3(x3)− θ3(xk+1
3 ) + (x3 − xk+1

3 )T {−AT
3 λ

k+1} ≥ 0, ∀x3 ∈ X3, (2.7b)

(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b) +A1(xk1 − xk+1

1 )− 1

β
(λk − λk+1) = 0, (2.7c)

θ1(x1)− θ1(xk+1
1 ) + (x1 − xk+1

1 )T {−AT
1 λ

k+1 − βAT
1 A1(xk1 − xk+1

1 ) +AT
1 (λk − λk+1)} ≥ 0, ∀x1 ∈ X1. (2.7d)

With the definitions of θ, F , Ω, uk and vk, we can rewrite (2.7) as a compact form. We summarize

it in the next lemma and omit its proof as it is just a compact reformulation of (2.7).

Lemma 2.1. Let wk+1 = (xk+1
1 , xk+1

2 , xk+1
3 , λk+1) be generated by (2.4) from given vk = (xk1, x

k
3, λ

k).

Then we have

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)T {F (wk+1) +Q(vk − vk+1)} ≥ 0, ∀w ∈ Ω, (2.8)

where

Q =


−βAT1A1 0 AT1

0 βAT2A3 0

0 0 0

A1 0 − 1
β I

 . (2.9)

Note that the assertion (2.8) is useful for quantifying the accuracy of wk+1 to a solution point of

VI(Ω, F, θ), because of the variational inequality reformulation (2.5) of (1.1).

Now, we are ready to prove the convergence for the direct extension of ADMM under the condition

AT1A3 = 0. We first refine the assertion (2.8) under this additional condition.
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Lemma 2.2. Let wk+1 = (xk1, x
k+1
2 , xk+1

3 , λk+1) be generated by (2.4) from given vk = (xk1, x
k
3, λ

k).

If AT1A3 = 0, then we have

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)T {F (wk+1) + βPA3(x
k
3 − xk+1

3 )}
≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω, (2.10)

where

P =


AT1

AT2

AT3

0

 , v =

 x1

x3

λ

 and H =


βAT1A1 0 −AT1

0 βAT3A3 0

−A1 0 1
β I

 . (2.11)

Proof. Since AT1A3 = 0, the following is an identity:
x1 − xk+1

1

x2 − xk+1
2

x3 − xk+1
3

λ− λk+1


T


βAT1A1 βAT1A3 −AT1
0 0 0

0 βAT3A3 0

−A1 0 1
β I


 xk1 − x

k+1
1

xk3 − x
k+1
3

λk − λk+1



=

 x1 − xk+1
1

x3 − xk+1
3

λ− λk+1


T


βAT1A1 0 −AT1
0 βAT3A3 0

−A1 0 1
β I


 xk1 − x

k+1
1

xk3 − x
k+1
3

λk − λk+1

 .

Adding the above identity to the both sides of (2.8) and using the notations of v and H, we obtain

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)T {F (wk+1) +Q0(v
k − vk+1)}

≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω, (2.12)

where (see Q in (2.9))

Q0 = Q+


βAT1A1 βAT1A3 −AT1

0 0 0

0 βAT3A3 0

−A1 0 1
β I

 =


0 βAT1A3 0

0 βAT2A3 0

0 βAT3A3 0

0 0 0

 .

By using the structures of the matrices Q0 and P (see (2.11)), and the vector v, we have

(w − wk+1)TQ0(v
k − vk+1) = (w − wk+1)TβPA3(x

k
3 − xk+1

3 ).

The assertion (2.10) is proved. 2

Let us define two auxiliary sequences which will only serve for simplifying our notation in con-

vergence analysis:

w̃k =


x̃k1
x̃k2
x̃k3
λ̃k

 =


xk+1
1

xk+1
2

xk+1
3

λk+1 − βA3(x
k
3 − x

k+1
3 )

 and ũk =

 x̃k1
x̃k2
x̃k3

 , (2.13)

where {xk+1
1 , xk+1

2 , xk+1
3 , λk+1} is generated by (2.4).

In the next lemma, we establish an important inequality based on the assertion in Lemma 2.2,

which will play a vital role in convergence analysis.
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Lemma 2.3. Let wk+1 = (xk+1
1 , xk+1

2 , xk+1
3 , λk+1) be generated by (2.4) from given vk = (xk1, x

k
3, λ

k).

If AT1A3 = 0, we have w̃k ∈ Ω and

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ 1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2
‖vk − vk+1‖2H , ∀w ∈ Ω,(2.14)

where w̃k and ũk are defined in (2.13).

Proof. According to the definition of w̃k and F (w) (see (2.13) and (2.5c), respectively), (2.10) can

be rewritten as

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − wk+1)TF (w̃k) ≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω. (2.15)

Note that wk+1 − w̃k = β


0

0

0

A3(x
k
3 − x

k+1
3 )

, we further obtain that w̃k ∈ Ω, and

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

= θ(u)− θ(ũk) + (w − wk+1)TF (w̃k) + (wk+1 − w̃k)TF (w̃k)

≥ (v − vk+1)TH(vk − vk+1)

+
(
A3(x

k
3 − xk+1

3 )
)T (

β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b)

)
, ∀w ∈ Ω. (2.16)

Setting x3 = xk3 in (2.7b), we obtain

θ3(x
k
3)− θ3(xk+1

3 ) + (xk3 − xk+1
3 )T {−AT3 λk+1} ≥ 0. (2.17)

Note that (2.7b) is also true for the (k − 1)th iteration. Thus, it holds that

θ3(x3)− θ3(xk3) + (x3 − xk3)T {−AT3 λk} ≥ 0.

Setting x3 = xk+1
3 in the last inequality, we obtain

θ3(x
k+1
3 )− θ3(xk3) + (xk+1

3 − xk3)T {−AT3 λk} ≥ 0, (2.18)

which together with (2.17) yields that

(λk − λk+1)TA3(x
k
3 − xk+1

3 ) ≥ 0, ∀k ≥ 0. (2.19)

By using the fact λk − λk+1 = β(A1x
k
1 + A2x

k+1
2 + A3x

k+1
3 − b) (see (2.6c)) and the assumption

AT1A3 = 0, we get immediately that

β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b)TA3(x

k
3 − xk+1

3 ) ≥ 0, (2.20)

and hence

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω. (2.21)

By substituting the identity

(v − vk+1)TH(vk − vk+1) =
1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2
‖vk − vk+1‖2H

into the right-hand side of (2.21), we obtain (2.14). 2

Now, we are able to establish the contraction property with respect to the solution set of

VI(Ω, F, θ) for the sequence {vk} generated by (2.4), from which the convergence of (2.4) can be

easily established.
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Theorem 2.4. Assume AT1A3 = 0 for the model (1.1). Let {xk1, xk2, xk3, λk} be the sequence generated

by the direct extension of ADMM (2.4). Then, we have:

(i) The sequence {vk := (xk1, x
k
3, λ

k)} is contractive with respective to the solution of VI(Ω, F, θ),

i.e.,

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H . (2.22)

(ii) If the matrices [A1, A2] and A3 are assumed to be full column rank, then the sequence {wk}
converges to a KKT point of the model (1.1).

Proof. (i) The first assertion is straightforward based on (2.14). Setting w = w∗ in (2.14), we get

1

2

(
‖vk − v∗‖2H − ‖vk+1 − v∗‖2H

)
− 1

2
‖vk − vk+1‖2H ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k).

From the monotonicity of F and (2.5), it follows that

θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k) ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w∗) ≥ 0,

and thus (2.22) is proved. Clearly, (2.22) indicates that the sequence {vk} is contractive with respect

to the solution set of VI(Ω, F, θ), see e.g. [2].

(ii) To prove (ii), by the inequality (2.22) and (see the definitions of v and H in (2.11))

‖vk − vk+1‖2H = β‖A1(x
k
1 − xk+1

1 )− 1

β
(λk − λk+1)‖2 + β‖A3(x

k
3 − xk+1

3 )‖2,

it follows that the sequences {A1x
k
1 − 1

βλ
k} and {A3x

k
3} are both bounded. Since A3 has full column

rank, we deduce that {xk3} is bounded. Note that

A1x
k
1 +A2x

k
2 = A1x

k
1 −

1

β
λk − (A1x

k−1
1 − 1

β
λk−1)−A3x

k
3 + b. (2.23)

Hence, {A1x
k
1 + A2x

k
2} is bounded. Together with the assumption that [A1, A2] has full column

rank, we conclude that the sequences {xk1}, {xk2} and {λk} are all bounded. Therefore, there exists

a subsequence {xnk+1
1 , xnk+1

2 , xnk+1
3 , λnk+1} that converges to a limit point, say (x∞1 , x

∞
2 , x

∞
3 , λ

∞).

Moreover, from (2.22), we see immediately that

∞∑
k=1

‖vk − vk+1‖2H < +∞, (2.24)

which shows

lim
k→∞

H(vk − vk+1) = 0, (2.25)

and thus

lim
k→∞

Q(vk − vk+1) = 0. (2.26)

Then, by taking the limits on the both sides of (2.8), using (2.26), one can immediately write

w∞ ∈ Ω, θ(u)− θ(u∞) + (w − w∞)TF (w∞) ≥ 0, ∀w ∈ Ω, (2.27)

which means w∞ = (x∞1 , x
∞
2 , x

∞
3 , λ

∞) is a KKT point of (1.1). Hence, the inequality (2.22) is also

valid if (x∗1, x
∗
2, x
∗
3, λ
∗) is replaced by (x∞1 , x

∞
2 , x

∞
3 , λ

∞). Then it holds that

‖vk+1 − v∞‖2H ≤ ‖vk − v∞‖2H , (2.28)
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which implies that

lim
k→∞

A1(x
k
1 − x∞1 )− 1

β
(λk − λ∞) = 0, lim

k→∞
A3(x

k
3 − x∞3 ) = 0. (2.29)

By taking limits to (2.23), using (2.29) and the assumptions, we know

lim
k→∞

xk1 = x∞1 , lim
k→∞

xk2 = x∞2 , lim
k→∞

xk3 = x∞3 , lim
k→∞

λk = λ∞. (2.30)

which completes the proof of this theorem. 2

Inspired by [17], we can also establish a worst-case convergence rate measured by the iteration

complexity in the ergodic sense for the direct extension of ADMM (2.4). This is summarized in the

following theorem.

Theorem 2.5. Assume AT1A3 = 0 for the model (1.1). Let {(xk1, xk2, xk3, λk)} be the sequence gener-

ated by the direct extension of ADMM (2.4) and w̃k be defined in (2.13). After t iterations of (2.4),

we take

w̃t =
1

t+ 1

t∑
k=0

w̃k. (2.31)

Then, w̃ ∈ W and it satisfies

θ(ũt)− θ(u) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
‖v − v0‖2H , ∀w ∈ Ω. (2.32)

Proof. By the monotonicity of F and (2.14), it follows that

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w) +
1

2
‖v − vk‖2H ≥

1

2
‖v − vk+1‖2H , ∀w ∈ Ω. (2.33)

Together with the convexity of X1, X2 and X3, (2.31) implies that w̃t ∈ Ω. Summing the inequality

(2.33) over k = 0, 1, . . . , t, we obtain

(t+ 1)θ(u)−
t∑

k=0

θ(ũk) +
(

(t+ 1)w −
t∑

k=0

w̃k
)T
F (w) +

1

2
‖v − v0‖2H ≥ 0, ∀w ∈ Ω.

Use the notation of w̃t, it can be written as

1

t+ 1

t∑
k=0

θ(ũk)− θ(u) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
‖v − v0‖2H , ∀w ∈ Ω. (2.34)

Since θ(u) is convex and

ũt =
1

t+ 1

t∑
k=0

ũk,

we have that

θ(ũt) ≤
1

t+ 1

t∑
k=0

θ(ũk).

Substituting it into (2.34), the assertion of this theorem follows directly. 2
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Remark 2.6. For an arbitrarily given compact set D ⊂ Ω, let d = sup{‖v−v0‖2H} | v = w\x2, w ∈ D},
where v0 = (x01, x

0
3, λ

0). Then, after t iterations of the extended ADMM (2.4) , the point w̃t defined

in (2.31) satisfies

sup{θ(ũt)− θ(u) + (w̃t − w)TF (w)} ≤ d

2(t+ 1)
, (2.35)

which, according to the definition (2.5), means w̃t is an approximate solution of VI(Ω, F, θ) with an

accuracy of O(1/t). Thus a worst-case O(1/t) convergence rate in the ergodic sense is established

for the direct extension of ADMM (2.4).

3 An Example Showing the Divergence of (1.5)

In the last section, we have shown that if it is additionally assumed that any two coefficient matrices

in (1.1) be orthogonal, then the direct extension of ADMM (1.5) is convergent. In this section, we

give an example to show the divergence of (1.5) when such an orthogonality condition is missing.

The analyses below also present a strategy for constructing more such non-convergent examples.

More specifically, we consider the following linear homogeneous equation with three variables:

A1x1 +A2x2 +A3x3 = 0, (3.1)

where Ai ∈ <3 (i = 1, 2, 3) are all column vectors and the matrix [A1, A2, A3] is assumed to be

nonsingular; and xi ∈ < (i = 1, 2, 3). The unique solution of (3.1) is thus x1 = x2 = x3 = 0. Clearly,

(3.1) is a special case of (1.1) where the objective function is null, b is the all-zero vector in <3,

and Xi = < for i = 1, 2, 3. The direct extension of ADMM (1.5) is thus applicable to (3.1), and the

corresponding optimal Lagrange multipliers are all 0.

One will see next that the convergence of the direct extension of ADMM (1.5) applied to solving

the linear equations with a null objective is independent of the selection of the penalty parameter

β. That is, if the direct extension of ADMM (1.5) is convergent for one selected β > 0, then the it

is convergent for every β > 0. On the other hand, if (1.5) is not convergent for one selected β > 0,

then it is not convergent for all β > 0. Hence, in our specific example developed below, one can

think β = 1 without loss of generality.

3.1 The Iterative Scheme of (1.5) for (3.1)

Now, we elucidate the iterative scheme when the direct extension of ADMM (1.5) is applied to solve

the linear equation (3.1). In fact, as we will show, it can be represented as a matrix recursion.

Specifying the scheme (1.5) with any given β > 0 by the particular setting in (3.1), we obtain

−AT1 λk + βAT1 (A1x
k+1
1 +A2x

k
2 +A3x

k
3 ) = 0, (3.2a)

−AT2 λk + βAT2 (A1x
k+1
1 +A2x

k+1
2 +A3x

k
3 ) = 0, (3.2b)

−AT3 λk + βAT3 (A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) = 0, (3.2c)

β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) + λk+1 − λk = 0. (3.2d)
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By introducing a new variable µk := λk/β, we can recast the scheme(3.2) as

−AT1 µk +AT1 (A1x
k+1
1 +A2x

k
2 +A3x

k
3 ) = 0, (3.3a)

−AT2 µk +AT2 (A1x
k+1
1 +A2x

k+1
2 +A3x

k
3 ) = 0, (3.3b)

−AT3 µk +AT3 (A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) = 0, (3.3c)

(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) + µk+1 − µk = 0. (3.3d)

It follows from the first equation in (3.3) that

xk+1
1 =

1

AT1A1

(
−AT1A2x

k
2 −AT1A3x

k
3 +AT1 µ

k
)
. (3.4)

Substituting (3.4) into (3.3b), (3.3c) and (3.3d), we obtain a reformulation of (3.3) AT2A2 0 01×3

AT3A2 AT3A3 01×3

A2 A3 I3×3


 xk+1

2

xk+1
3

µk+1



=


 0 −AT2A3 AT2

0 0 AT3

03×1 03×1 I3×3

− 1

AT1A1

 AT2A1

AT3A1

A1

(−AT1A2,−AT1A3, A
T
1

)
 xk2

xk3

µk

 . (3.5)

Let

L =

 AT2A2 0 01×3

AT3A2 AT3A3 01×3

A2 A3 I3×3

 (3.6)

and

R =

 0 −AT2A3 AT2

0 0 AT3

03×1 03×1 I3×3

− 1

AT1A1

 AT2A1

AT3A1

A1

(−AT1A2,−AT1A3, A
T
1

)
. (3.7)

Then the iterative formula (3.5) can be rewritten in the following fixed matrix mappings: xk+1
2

xk+1
3

µk+1

 = M

 xk2

xk3

µk

 = · · · = Mk+1

 x02

x03

µ0

 (3.8)

with

M = L−1R. (3.9)

Therefore, the direct extension of ADMM (1.5) is convergent if the matrix mapping is a contraction,

or equivalently, the spectral radius of M , denote by ρ(M), is strictly less than 1. Thus, to construct

a divergent example, we would look for a A such that ρ(M) > 1.

3.2 A Concrete Example Showing the Divergence of (1.5)

Now we are ready to construct a concrete example to show the divergence of the direct extension of

ADMM (1.5) for all β > 0 when it is applied to solve the model (3.1).
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Our previous analysis in Section 2 has shown that the scheme (1.5) is convergent whenever any

two coefficient matrices are orthogonal. Thus, to show the divergence of (1.5) for (3.1), the columns

A1, A2 and A3 in (3.1) should be chosen such that any two of them are non-orthogonal. Specifically,

we thus construct the matrix A as follows:

A = (A1, A2, A3) =

 1 1 1

1 1 2

1 2 2

 . (3.10)

Given this matrix A, the system of linear equations (3.5) can be specified as

6 0 0 0 0

7 9 0 0 0

1 1 1 0 0

1 2 0 1 0

2 2 0 0 1





xk+1
2

xk+1
3

µk+1
1

µk+1
2

µk+1
3



=





0 −7 1 1 2

0 0 1 2 2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


− 1

3



4

5

1

1

1


(
−4,−5, 1, 1, 1

)




xk2

xk3

µk1

µk2

µk3


.

Note with the specification in (3.10), the matrices L in (3.6) and R in (3.7) reduce to

L =



6 0 0 0 0

7 9 0 0 0

1 1 1 0 0

1 2 0 1 0

2 2 0 0 1


and R =

1

3



16 −1 −1 −1 2

20 25 −2 1 1

4 5 2 −1 −1

4 5 −1 2 −1

4 5 −1 −1 2


.

Thus we have

M = L−1R =
1

162



144 −9 −9 −9 18

8 157 −5 13 −8

64 122 122 −58 −64

56 −35 −35 91 −56

−88 −26 −26 −62 88


.

From direct computation, M admits the following eigenvalue decomposition

M = VDiag(d)V −1, (3.11)

where

d =


0.9836 + 0.2984i

0.9836− 0.2984i

0.8744 + 0.2310i

0.8744− 0.2310i

0


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and

V =


0.1314 + 0.2661i 0.1314− 0.2661i 0.1314− 0.2661i 0.1314 + 0.2661i 0

0.0664− 0.2718i 0.0664 + 0.2718i 0.0664 + 0.2718i 0.0664− 0.2718i 0

−0.2847− 0.4437i −0.2847 + 0.4437i 0.2847− 0.4437i 0.2847 + 0.4437i 0.5774

0.5694 0.5694 −0.5694 −0.5694 0.5774

−0.4270 + 0.2218i −0.4270− 0.2218i 0.4270 + 0.2218i 0.4270− 0.2218i 0.5774

 .

An important fact regarding d defined above is that

ρ(M) = |d1| = |d2| > 1,

from which we can construct a divergent sequence {xk2, xk3, λk1, λk2, λk3} starting from certain initial

points. The questions are: Can we find real-valued non-convergent starting points? Does the set of

non-convergent starting points form a continuously dense set, that is, are they not isolated? We give

affirmative answers below.

Indeed, for any initial (x02, x
0
3, µ

0
1, µ

0
2, µ

0
3), let
l1
l2
l3
l4
l5

 = V −1


x02
x03
µ01
µ02
µ03

 . (3.12)

From (3.8) and (3.11), we know that
xk2
xk3
µk1
µk2
µk3

 = VDiag(d k)V −1


x02
x03
µ01
µ02
µ03



= VDiag(d k)


l1
l2
l3
l4
l5



= V


l1( 0.9836 + 0.2984i )k

l2( 0.9836− 0.2984i )k

l3( 0.8744 + 0.2310i )k

l4( 0.8744− 0.2310i )k

0

 ,

Thus, as long as l1l2 6= 0, the sequence would be divergent and there is no way for it to converge to

a solution point of (3.1).

There are many choices of the starting point (x02, x
0
3, µ

0
1, µ

0
2, µ

0
3) such that l1l2 6= 0. For example,

x02
x03
µ01
µ02
µ03

 = V


α1

α1

α2

α2

α3

 , (3.13)

13



where αi are any real numbers and α1 6= 0 (which implies that l1 = l2 = α1 6= 0). Furthermore, it is

clear that the pair of V (1) and V (2) are two complex conjugate vectors, so are the pair of V (3) and

V (4), where V (i) denotes the i-th column of V . Thus the starting point of (3.13) is real-valued.

Since (α1 > 0, α2, α3) ∈ <3 form a continuously dense half space, the non-convergent starting

points given by (3.13) with α1 > 0 also form a continuously dense half space. Thus, we conclude the

main result of this paper as follows.

Theorem 3.1. For the three-block convex minimization problem (1.1), there is an example where

the direct extension of ADMM (1.5) is divergent for any penalty parameter β > 0 and for any

starting-point in a continuously dense half space of dimension 3.

4 Extensions
In this section, we extend our previous analysis to some relevant work in the literature.

4.1 Strongly Convex Case of (1.1)

When all functions θi’s in (1.1) are further assumed to be strongly convex and the penalty parameter

β is restricted into a specific range determined by all the strong convex modulus of these functions,

the direct extension of ADMM (1.5) is convergent as proved in [14].

Then, it is interesting to ask whether the scheme (1.5) for a strongly convex minimization model

is still convergent when the restriction on β in [14] is removed. In other words, does the strong

convexity of the objective function help the convergence of the direct extension of ADMM for the

three block convex minimization problem (1.1)? A by-product of this paper is a negative answer to

the question.

Theorem 4.1. For the model (1.1) with the strong convex assumption on its objective function, the

direct extension of ADMM (1.5) is not necessarily convergent for all β > 0.

Recall that the requirement ρ(M) > 1 yields the divergence of the direct extension of ADMM

(1.5) when it is applied to solve (3.1). Consider the following strongly convex minimization problem

with three variables:
min 0.05x21 + 0.05x22 + 0.05x23

s.t.

 1 1 1

1 1 2

1 2 2


 x1

x2
x3

 = 0.
(4.1)

One can verify that each iteration of the direct extension of ADMM (1.5) applied to the problem

remains a fixed matrix mapping. Based on a simple calculation, it is seen that for (4.1), the spectral

radius of the matrix involved in (1.5) with β = 1 is 1.0087. Thus, by a similar discussion to that in

Section 3.2, one can find a proper starting point such that the direct extension of ADMM (1.5) with

β = 1 is divergent. The detail is omitted for succinctness.

4.2 Application to the ADMM Variant with a Small Step-size in [19]

To tackle the convergence ambiguity of the direct extension of ADMM (1.5), it was recently proposed

in [19]5 to attach a shrinkage step-size factor to the Lagrange-multiplier updating step in (1.5). An

5 A more general model with m block of functions and variables was considered in [19]. But here, for the convenience

of notation, we only focus on the model (1.1) with m = 3 and the analysis can be trivially extended to the general case

with a generic m.
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interesting ADMM variant was thus proposed whose iterative scheme differs from (1.5) only in the

step of updating the Lagrange multiplier:

λk+1 = λk − γβ(A1x
k
1 +A2x

k
2 +A3x

k
3 − b), (4.2)

where the “step-size” factor γ is required to be sufficiently small to ensure that a certain error-bound

condition is satisfied. With some additional assumptions on θi’s and Ai’s, this ADMM variant would

be linearly convergent; as it was rigorously proved in [19].

The sufficiently small requirement on γ indeed plays a significant theoretical role in ensuring the

linear convergence of the ADMM variant in [19], and the requirement depends on the objective func-

tion and problem data. It would be valuable to investigate the possibility of a pre-determined range

for the step-size factor γ, say depending only on the number of blocks in the model. This possibility

is not unreasonable. When there is only one block of variable and function in the model, the ADMM

reduces to the standard ALM [18, 23], and it is convergent for all γ ∈ (0, 2) as demonstrated in

[1, 13, 7, 24]. When there are two blocks of variable and function in the model, the original ADMM

(1.4) is convergent for all γ ∈ (0,
√
5+1
2 ) as shown in [10]. Thus, in these two cases, the convergence

is guaranteed even for selecting γ > 1 in the Lagrange-multiplier update, which typically results in

a numerical acceleration of the convergence.

Similarly, we ask whether or not a problem-data-independent positive step-size interval for γ

exists such that the ADMM variant in [19] is guaranteed to be convergent. In the next, we construct

an example to give a negative answer numerically. In particular, we again consider the linear equation

example (3.1) but the matrix A is given by

A =

 1 1 1

1 1 1 + γ

1 1 + γ 1 + γ

 (4.3)

where the positive scalar γ > 0 is the same step-size factor in (4.2). (Note that the matrix in (3.10)

used to show the divergence of the direct extension of ADMM (1.5) is a special case of (4.3) with

γ = 1.)

Let M(γ) be the mapping matrix when the ADMM variant (4.2) is applied to the problem (3.1)

with the new matrix (4.3). Recall that the matrix mapping is divergent from a certain initial point if

the spectral radius of M(γ), denoted by ρ(M(γ)), is greater than 1. In Table 1, we report the values

of ρ(M(γ)) for several choices of γ ranging from 1e-8 to 1. It was found that the ADMM variant

remains divergent even if γ is as small as 10−8. It is thus numerically demonstrated that the ADMM

variant (4.2) is still divergent even if the step-size factor γ is very small. In fact, not similar as the

ALM and the original ADMM, we conjecture that there does not exist a problem-data-independent

interval in which any value of the step-size factor γ can ensure the convergence of the ADMM variant

(4.2).

Table 1: Spectral radius of the small step-size variant of ADMM (β = 1)

γ 1 0.1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

ρ(M(γ)) 1.027839 1.002637 1.000105 1.000004 > 1 > 1 > 1 > 1 > 1
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5 Conclusions

We have shown by an example that the direct extension of the alternating direction method of

multiplier (ADMM) is not necessarily convergent for solving a convex minimization model with

linear constraints and an objective function in sum of three separable convex functions; which solves

a long-standing open problem. Based on the strategies to construct the divergent example, we give

answers to some other questions related to the direct extension of ADMM.

The negative answer to the open question thus justifies the rationale of algorithmic design in

recent work such as [15, 16], where it was suggested to combine several correction steps with the

output of the direct extension of ADMM in order to produce a splitting algorithm with provable

convergence under mild assumptions for multi-block convex minimization models.

We also studied a condition that can guarantee the convergence of the direct extension of ADMM.

This new sufficient condition is significantly different from those in the literature which often require

strong convexity on the objective functions and/or restrictive choices for the penalty parameter.

Instead, the new condition simply depends on the orthogonality of the given coefficient matrices

in the model and poses no restriction on how to choose the penalty parameter β in algorithmic

implementation.

Although our results have focused on the model (1.1) where there are three blocks of variable and

function, our analyses can be easily extended to the application of the direct extension of ADMM

to a more general convex minimization model where the block number of variable and function is

greater than 3.
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