The Direct Organocatalytic Asymmetric Mannich-Reaction – Unmodified Aldehydes as Nucleophiles

Wolfgang Notz, Fujie Tanaka, Shin-ichi Watanabe, Naidu S. Chowdari, James M. Turner, Rajeswari Thayumanavan, Carlos F. Barbas III*

Contribution from The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

Supporting Information

Contents

General and typical experimental procedures	S1-2
Characterization data for compounds 6-29	S2-7
1H NMR and 13C NMR spectra for compounds 6-29	S8-34

General. Chemicals and solvents were either purchased *puriss p.A.* from commercial suppliers or purified by standard techniques. For thin-layer chromatography (TLC), silica gel plates were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid (25 g), $Ce(SO_4)_2 \cdot H_2O$ (10 g), conc. H_2SO_4 (60 mL), and H_2O (940 mL) followed by heating or by treatment with a solution of p-anisaldehyde (23 mL), conc. H_2SO_4 (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating. Flash chromatography was performed using silica gel (particle size 0.040-0.063 mm). For 'H NMR and chemical shifts are given in δ relative to tetramethylsilane (TMS), the coupling constants J are given in Hz. The spectra were recorded in $CDCl_3$ or CD_3OD as solvents at room temperature, TMS served as internal standard (δ = 0 ppm) for 'H NMR, and $CDCl_3$ was used as internal standard (δ = 77.0 ppm) for 'C NMR. Optical rotations were recorded at λ =589 nm (1 dm cell). High resolution mass spectra were recorded on a FTMS mass spectrometer with a DHB-matrix.

Typical experimental procedure for the catalytic asymmetric Mannich-type reaction with propionaldehyde and preformed aldimines: Anhydrous DMF (3 mL) was added to a vial containing the corresponding aldimine (0.5 mmol) and proline (30 mol%) and placed in a 4 °C cold room. The reaction was initiated by slow addition (0.2 μL/min) of a pre-cooled mixture of propionaldehyde (5.0 mmol) in anhydrous DMF (2 mL) with syringe pump at 4 °C. After 14-15h of total reaction time the reaction mixture was diluted with anhydrous Et₂O (2 mL) and the temperature decreased to at 0 °C followed by reduction with NaBH₄ (400 mg). for 10 minutes. Next, the reaction mixture was poured into a vigorously stirred bi-phasic solution of Et₂O and saturated aqueous NH₄Cl solution (or alternatively sodium phosphate buffer pH=7.2). The organic layer was separated and the aqueous phase was extracted thoroughly with ethyl acetate.

saturated aqueous NH_4Cl solution (or alternatively sodium phosphate buffer pH=7.2). The organic layer was separated and the aqueous phase was extracted thoroughly with ethyl acetate. The combined organic phases were dried (MgSO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired β -amino alcohols. The enantiomeric excesses of the products were determined by HPLC analysis using chiral stationary phases.

Typical three-component one-pot experimental procedure for the catalytic asymmetric Mannich-type reaction of aldehydes and p-anisidine: To a vial containing the acceptor aldehyde (0.5 mmol), p-anisidine (0.5 mmol), proline (30 mol%) and anhydrous DMF (3 mL) was added the corresponding donor aldehyde (5.0 mmol) in anhydrous DMF (2 mL) at 4 °C with syringe pump. After 15-16h of total reaction time the temperature was decreased to 0°C followed by dilution with anhydrous Et₂O (2 mL) and reduction with NaBH₄ (400 mg) for 10 minutes. Next, the reaction mixture was poured into a vigorously stirred bi-phasic solution of Et₂O and saturated aqueous NH₄Cl solution (or alternatively sodium phosphate buffer pH=7.2). The organic layer was separated and the aqueous phase was extracted thoroughly with ethyl acetate. The combined organic phases were dried (MgSO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired β-amino alcohols. The enantiomeric excesses of the products were determined by HPLC analysis using chiral stationary phases.

Typical experimental procedure for the formation of self-Mannich products: To a vial containing *p*-anisidine (0.5 mmol), L-proline (30 mol%) in DMF (5 mL) was added aldehyde (4 mmol) at - 15 °C and stirred for 7 h. After completion of the reaction, the mixture was diluted with ether (2 mL) and treated with NaBH₄ (400 mg) at 0 °C for 10 minutes. The reaction mixture was poured into a half saturated NH₄Cl solution and ether under vigorous stirring, the layers were separated and the aqueous phase was extracted thoroughly with ether. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford the desired amino alcohols.

Experimental protocol for studying the water effect on Mannich-reaction with α -imino ethyl glyoxylate (**Table 3**): A mixture of heptanal (0.75 mmol) α -imino ethyl glyoxylate (0.5 mmol), and L-proline (0.05 mmol) in the indicated dioxane-H₂O mixture (5 mL) was stirred for 16–24 h at r.t. The mixture was worked up by the addition of saturated NH₄Cl and extracted with EtOAc. The combined organic layer was washed with saturated NaCl, dried over MgSO₄, filtered, concentrated, and purified by silica gel column chromatography (EtOAc-hexanes) to afford **5**. The enantiomeric excess of *syn-5* was determined by HPLC. HPLC (Daicel Chiralpak AS-H, hexane/*i*-PrOH = 99:1, flow rate 1.0 mL/min, 254 nm): 25.8 min (*anti*-major enantiomer), 28.7 min (*anti*-minor enantiomer), 30.9 min ((*S*,*S*)-**5**), 46.9 min ((*R*,*R*)-**5**).

Experimental protocol for studying the water effect on Mannich-reaction with preformed aromatic imines (**Table 5**): A solution of propional dehyde (2.5 mmol) in the indicated DMF-H₂O mixture (2 mL) was slowly added to a mixture of imine (0.5 mmol) and L-proline (0.15 mmol) in the indicated DMF-H₂O mixture (3 mL) over 5 h at 0 °C and the mixture was stirred for 1 h at the same temperature. When the solvent of the Mannich reaction includes H₂O (for entries 3–8), the mixture was added to saturated NH₄Cl and extracted with EtOAc. The

combined organic layers were washed with saturated NaCl and concentrated. The residue in EtOAc (10 mL) was cooled to 0°C and NaBH₄ (200 mg, 5.3 mmol) was added to the mixture. After 30 min, the mixture was added to a mixture of ice and saturated NH4Cl and extracted with EtOAc. The combined organic layer was washed with saturated NaCl, dried over MgSO₄, filtered, concentrated, and purified by silica gel column chromatography (EtOAc-hexanes) to afford 11. For entries 1 and 2, the Mannich-type reaction mixture was diluted with Et₂O (2 mL) and NaBH₄ (200 mg, 5.3 mmol) was added to the mixture at 0 °C. The same work up and purification as that of entries 3–8 afforded 11. The enantiomeric excess of *syn*-11 was determined by HPLC analysis.

Ethyl (2S,3S)-6-tert-Butyldimethylsilyloxy-3-formyl-2-(p-methoxyphenylamino)-hexanoate (6):
¹H NMR (~1.5:1-mixture of diastereomers): 0.04 (s, 6H), 0.89 (s, 9H), 1.22-1.26 (m, 3H), 1.50-1.95 (m, 4H), 2.78 (m, 1H), 3.61 (m, 2H), 3.74 (s, 3H, OMe), 3.97 (bs, 1H), 4.06 (bs, 1H), 4.16 (m, 2H), 4.27 (m, 1H), 4.34 (m, 1H), 6.65 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 9.66 (s, 1H), 9.72 (s, 1H);
¹³C NMR: 14.4, 18.5, 22.0, 26.1, 30.5, 30.8, 53.7, 53.9, 55.7, 55.9, 58.7, 61.8, 62.6, 62.7, 115.0, 115.1, 116.0, 116.3, 140.6, 140.7, 153.4, 13.6, 172.4, 172.6, 202.5, 202.8; HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 99:1, flow rate 0.7 mL/min, λ = 254 nm): major diastereomer: t_R (major) = 9.49 min; t_R (minor) = 12.49 min; HR-MS: 446.2339; $C_{22}H_{37}NO_5SiNa^+$ (calcd 446.2333)

Ethyl (2S,3S,4S)-4,8-dimethyl-3-formyl-2-(p-methoxyphenylamino)-non-7-enoate (7): 1 H NMR: 1.13-1.23 (m, 6H), 1.53-1.72 (m, 7H), 1.85-2.22 (m, 4H), 2.64 (m, 1H), 3.74 (s, 3H, OMe), 3.84 (bs, 1H), 4.16 (m, 2H), 4.33 (m, 1H), 5.03 (m, 1H), 6.67 (d, J = 8.6 Hz, 2H), 6.77 (d, J = 8.6 Hz, 2H), 9.75 (m, 1H); 13 C NMR: 14.4, 17.7, 17.9, 25.8, 25.9, 30.8, 34.3, 55.9, 57.1, 59.2, 61.7, 115.1, 116.1, 123.9, 132.5, 140.5, 153.4, 173.0, 203.8; HR-MS: 384.2145; $C_{21}H_{31}NO_{4}Na^{+}$ (calcd 384.2145)

(2S,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-(4-nitrophenyl)-propan-1-ol (11): ¹H NMR (CDCl₃): δ = 0.91 (d, 3H, J = 7.0 Hz); 2.21 (m, 1H); 3.64 (m, 2H), 3.67 (s, 3H, OMe); 4.65 (d, 1H, J = 4.0 Hz); 6.42 (d, 2H, J = 8.8 Hz); 6.68 (d, 2H, J = 8.8 Hz);); 7.51 (d, 2H, J = 8.8 Hz); 8.17 (d, 2H, J = 8.8 Hz); ¹³C NMR (CD₃OD): δ = 11.9, 41.6, 56.0, 60.8, 66.0; 115.0, 115.1, 123.9, 128.3, 141.0, 147.3, 150.6, 152.6; HPLC (Daicel Chiralpak AD, hexanes/*i*-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm): major isomer: t_R = 36.10 min; minor isomer: t_R = 21.49 min; [α]_D = -65.2 (c=0.2, MeOH); HR-MS: 317.1496; C₁₇H₂₀NO₂ (M+H⁺: calcd 317.1496).

Anti/syn-11 (from SMP-reaction): HPLC (Daicel Chiralpak OD-H, hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, 254 nm): 28.0 min ((S,S)-11), 31.4 min ((R,R)-11), 35.6 min (anti), 50.0 min (anti); 1 H NMR (400 MHz, CDCl₃) (syn:anti = 1:1, * donates the anti-diastereomer) δ 0.89 (d, J = 7.0 Hz, 3H* x 1/2), 0.90 (d, J = 7.0 Hz, 3H x 1/2), 2.12 (m, 1H* x 1/2), 2.21 (m, 1H x 1/2), 3.67 (s, 3H), 3.63–3.74 (m, 2H), 4.38 (d, J = 7.0 Hz, 1H* x 1/2), 4.65 (d, J = 3.8 Hz, 1H x 1/2), 6.43 (d, J = 8.8 Hz, 2H x 1/2), 6.44 (d, J = 8.8 Hz, 2H* x 1/2), 6.67 (d, J = 8.8 Hz, 2H* x 1/2), 6.68 (d, J = 8.8 Hz, 2H x 1/2), 7.48 (d, J = 8.8 Hz, 2H* x 1/2), 7.51 (d, J = 8.8 Hz, 2H x 1/2), 8.16 (d, J = 8.8 Hz, 2H* x 1/2), 8.17 (d, J = 8.8 Hz, 2H x 1/2). 13 C (100 MHz, CDCl₃) (syn:anti = 1:1) 11.6, 14.4, 41.0, 55.6, 60.4, 65.6, 66.2, 114.6, 114.7, 115.3, 123.6, 123.7, 128.0, 140.5, 140.7, 146.9, 147.0, 150.4, 152.2, 152.5

(2S,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-(4-cyanophenyl)-propan-1-ol (12): ¹H NMR (CD₃OD): δ = 0.85 (d, 3H, J = 7.0 Hz); 1.98 (m, 1H); 3.32 (dd, 1H), 3.45 (dd, 1H) 3.67 (s, 3H, OMe); 4.47 (d, 1H, J = 4.0 Hz); 6.38 (d, 2H, J = 8.8 Hz); 6.68 (d, 2H, J = 8.8 Hz);); 7.44 (d, 2H, J = 8.0 Hz); 7.54 (d, 2H, J = 8.0 Hz); ¹³C NMR (CD₃OD): δ = 12.3, 43.4, 56.1, 60.7, 65.5; 115.6, 115.7, 129.5, 133.1, 143.2, 151.3, 153.1; HPLC (Daicel Chiralpak AS-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, 254 nm): 34.8 min ((*S*,*S*)-12), 42.5 min ((*R*,*R*)-12). [α]_D = +11.2 (c=1, CHCl₃); HR-MS: 297.1597; C₁₈H₂₀N₂O₂ (M+H⁺: calcd 297.1583).

(2S,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-(4-bromophenyl)-propan-1-ol (13): ¹H NMR (CD₃OD): δ = 0.94 (d, 3H, J = 7.3 Hz); 2.03 (m, 1H); 3.37 (dd, 1H), 3.55 (dd, 1H) 3.62 (s, 3H, OMe); 4.43 (d, 1H, J = 5.1 Hz); 6.47 (d, 2H, J = 9.2 Hz); 6.61 (d, 2H, J = 8.8 Hz);); 7.25 (d, 2H, J = 8.4 Hz); 7.40 (d, 2H, J = 8.4 Hz); ¹³C NMR (CD₃OD): δ = 12.7, 43.6, 56.3, 60.8, 65.8; 115.7, 115.9, 130.6, 132.3, 143.7, 144.1, 153.2; HPLC (Daicel Chiralpak AS-H, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, 254 nm): 22.5 min ((*S*,*S*)-13), 27.5 min ((*R*,*R*)-13). [α]_D = -38.9 (c=0.6, CHCl₃); HR-MS: 350.0753; C₁₇H₂₀BrNO₂ (M+H⁺: calcd 350.0753).

(2S,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-(4-chlorophenyl)-propan-1-ol (14): ¹H NMR (CD₃OD): δ = 0.93 (d, 3H, J = 7.0 Hz); 2.02 (m, 1H); 3.38 (m, 1H), 3.53 (m, 1H); 3.67 (s, 3H, OMe); 4.45 (d, 1H, J = 4.8 Hz); 6.47 (d, 2H, J = 8.4 Hz); 6.62 (d, 2H, J = 9.2Hz);); 7.25 (d, 2H, J = 8.4 Hz); 7.31 (d, 2H, J = 8.4 Hz); ¹³C NMR (CD₃OD): δ = 12.7, 43.6, 56.3, 60.7, 65.8, 115.7, 115.9, 129.3, 130.2, 133.3, 143.6, 153.1; HPLC (Daicel Chiralpak AS-H, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, 254 nm): 22.0 min ((*S*,*S*)-14), 25.4 min ((*R*,*R*)-14). [α]_D = +11.2 (c=1, CHCl₃); HR-MS: 305.1173; C₁₇H₂₀CINO₂ (M[†]: calcd 305.1182).

(2S,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-phenylpropan-1-ol (**15**): ¹H NMR (CD₃OD): δ = 0.95 (d, 3H, J = 7.0 Hz); 2.05 (m, 1H); 3.38 (dd, 1H), 3.56 (dd, 1H) 3.62 (s, 3H, OMe); 4.43 (d, 1H, J = 4.0 Hz); 6.38 (d, 2H, J = 8.8 Hz); 6.50 (d, 2H, J = 8.8 Hz); 7.12 (m, 1H); 7.24 (m, 2H); 7.31 (d, 2H, J = 7.7 Hz) ¹³C NMR (CD₃OD): δ = 12.8, 43.7, 56.3, 61.4, 66.0; 115.7, 116.0, 127.7, 128.6,129.3, 143.9, 144.6, 151.9, 153.1, 157.7; HPLC (Daicel Chiralpak AS-H, hexane/*i*-PrOH = 98:2, flow rate 1.0 mL/min, 254 nm): 52.5 min ((*S*,*S*)-**15**), 57.5 min ((*R*,*R*)-**15**). [α]_D = -6.2. (c=1, MeOH); HR-MS: 272.1647; C₁₂H₂₁NO₂ (M+H⁺: calcd 272.1645).

(2S,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-(3-bromophenyl)-propan-1-ol (**16**): ¹H NMR (CD₃OD): δ = 0.85 (d, 3H, J = 7.0 Hz); 1.98 (m, 1H); 3.32 (dd, 1H), 3.45 (dd, 1H) 3.54 (s, 3H, OMe); 4.35 (d, 1H, J = 5.9 Hz); 6.39 (d, 2H, J = 9.2 Hz); 6.52 (d, 2H, J = 9.2 Hz);); 7.15 (dd, 2H, J = 8.1 Hz, J = 7.5 Hz); 7.21 (m, 2H); 7.42 (bs, 1H); ¹³C NMR (CD₃OD): δ = 12.5, 43.5, 56.2, 60.6, 65.7; 115.6, 115.7, 127.3, 130.6, 130.8, 131.6, 147.0, 147.6, 153.0; HPLC (Daicel Chiralpak AS-H, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, 254 nm): 21.0 min ((*S*,*S*)-**16**), 25.4 min ((*R*,*R*)-**16**). [α]_D = -28.6 (c=1.7, MeOH); HR-MS: 350.0753; C₁₇H₂₀BrNO₂ (M+H⁺: calcd 350.0753).

(2S,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-phenylpropan-1-ol and (2R,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-phenylpropan-1-ol (syn/anti-15) A 1.1:1 diasteromeric mixture of anti and syn (3S)-methyl-2-methyl-3-(4-methoxyphenylamino)-3-phenylpropanoate (0.1 mmol) in THF (5mL) was reduced by addition of LiAlH₄ (1 mmol) at 0° C. After 4h at this reaction time the reaction was left to attain room temperature and quenched after 24 h by addition of

Na₂SO₄·10H₂O and filtered through Celite. Next, the filtrate was diluted with ethyl ether and washed with brine. The organic layer was separated and the aqueous phase was extracted thoroughly with ethyl acetate. The combined organic phases were dried (MgSO₄), concentrated, and purified by flash column chromatography (silica gel, mixtures of hexanes/ethyl acetate) to afford β-amino alcohol **15** with a dr of (syn/anti=0.9:1). ¹H NMR (CD₃OD): (* denotes the anti-diastereomer) δ = 0.79 (d, 3H*, J = 7.0 Hz); 0.95 (d, 3H, J = 7.0 Hz); 2.05 (m, 1H, 1H*); 3.38 (dd, 1H), 3.56 (dd, 1H) 3.61 (d, 2 H*, J = 5.9 Hz); 3.62 (s, 3H, 3H*, OMe); 4.27 (d, 1H*, J = 7.0 Hz); 4.43 (d, 1H, J = 4.0 Hz); 6.50 (dd, 2H, 2H*); 6.61 (dd, 2H, 2H*); 7.12 (m, 1H, 1H*); 7.24 (m, 2H, 2H*); 7.31 (m, 2H, 2H*) ¹³C NMR (CD₃OD): δ = 12.8, 14.6, 42.8, 43.6, 56.2, 56.3, 61.4, 66.0, 66.3, 115.6, 115.7, 116.0, 116.5, 127.7, 127.9, 128.6, 129.2, 129.3, 143.9, 144.4, 153.2, 153.4; HPLC (Daicel Chiralpak AD, hexanes/*i*-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm): major isomer: t_R = 14.02 min; minor isomer: t_R = 12.18 min; major isomer*: t_R = 15.55 min; minor isomer*: t_R = 13.55 min; HR-MS: 272.1647; C₁₇H₂₁NO₂ (M+H*: calcd 272.1645).

(1S,2S)-2-Hydroxymethyl-1-(4-methoxyphenylamino)-1-(4-nitrophenyl)-heptane (17): ¹H NMR (400 MHz, CDCl₃) δ 0.82–1.50 (m, 11H), 2.03 (m, 1H), 2.7–3.1 (br, 1H), 3.68 (s, 3H), 3.64–3.75 (m, 3H), 4.70 (d, J = 3.5 Hz, 1H), 6.43 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 8.17 (d, J = 8.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 22.4, 25.6, 27.4, 31.8, 46.4, 55.7, 60.6, 63.5, 114.7, 114.8, 123.6, 128.1, 140.7, 146.9, 150.2, 152.2. HRMS calcd for C₂₁H₂₉N₂O₄ (MH⁺) 373.2122, found 373.2123. HPLC (Daicel Chiralpak OD-H, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, 254 nm): 42.3 min ((*S*,*S*)-22), 47.4 min ((*R*,*R*)-22), 38.5 min (anti), 55.9 min (anti).

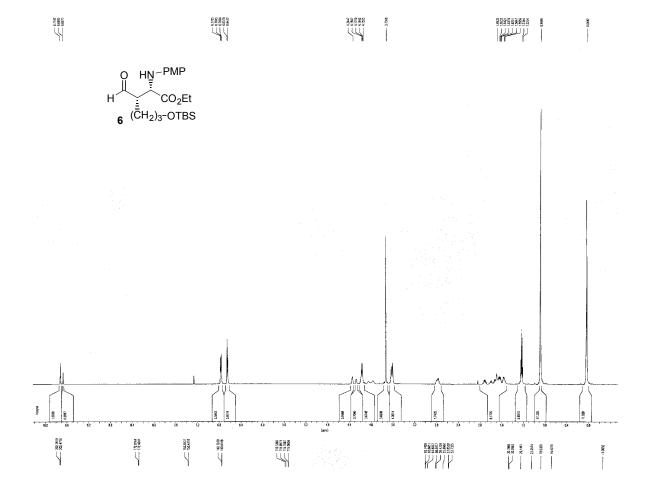
(2S,3S)-2-Methyl-3-(4-methoxyphenylamino)-3-pentan-1-ol (18): 1 H NMR (CD₃OD): δ = 0.92 (t, 3H, J = 6.9 Hz), 0.95 (d, 3H, J = 7.7 Hz); 1.52 (m, 2H), 1.87 (m, 1H), 3.50 (dd, 1H), 3.66 (dd, 1H) 3.68 (s, 3H, OMe); 6.70 (d, 2H, J = 8.8 Hz); 6.81 (d, 2H, J = 8.8 Hz); 13 C NMR (CD₃OD): δ = 11.9, 12.3, 26.7, 40.0, 56.4, 58.8, 66.3, 115.9, 116.0, 145.3, 153.0; HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, λ = 254 nm): t_R = 26.76 min (major), t_R = 13.94 min (minor). [α]_D = +6.4. (c=1, MeOH); HR-MS: 224.1645; $C_{13}H_{21}NO_2$ (M+H⁺: calcd 224.1645.1645).

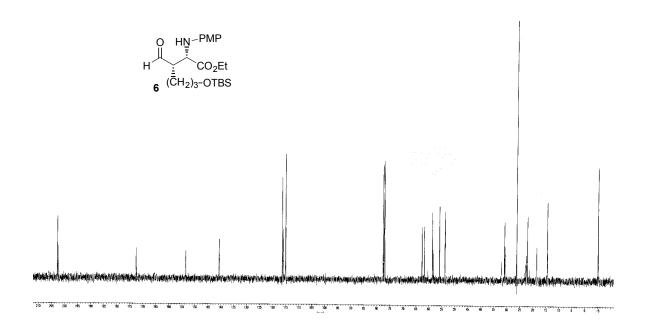
(5S,6S)-5-Hydroxymethyl-6-(4-methoxyphenylamino)-undecane (19): ¹H NMR (400MHz, CDCl₃): δ 0.89 (m, 6H), 1.32 (m, 10H), 1.48 (m, 1H), 1.82 (m, 1H), 3.61(dt, 1H), 3.73 (m, 2H), 3.75 (s, 3H), 6.66 (m, 2H), 6.78 (m, 2H); ¹³C NMR (100MHz, CDCl₃): δ 13.94, 13.97, 22.5, 22.9, 25.5, 26.5, 30.0, 31.3, 31.7, 41.4, 55.6, 58.7, 64.7, 114.7, 116.1, 141.7, 152.6; MALDI-FTMS calcd for $C_{19}H_{34}NO_2$ (MH⁺) 308.2584, found 308.2578. HPLC (Daicel Chiralcel OJ-H, hexane/*i*-PrOH = 95:1, flow rate 1.0 mL/min, λ = 254 nm): t_R = 82.80 min (major), t_R = 51.79 min (minor).

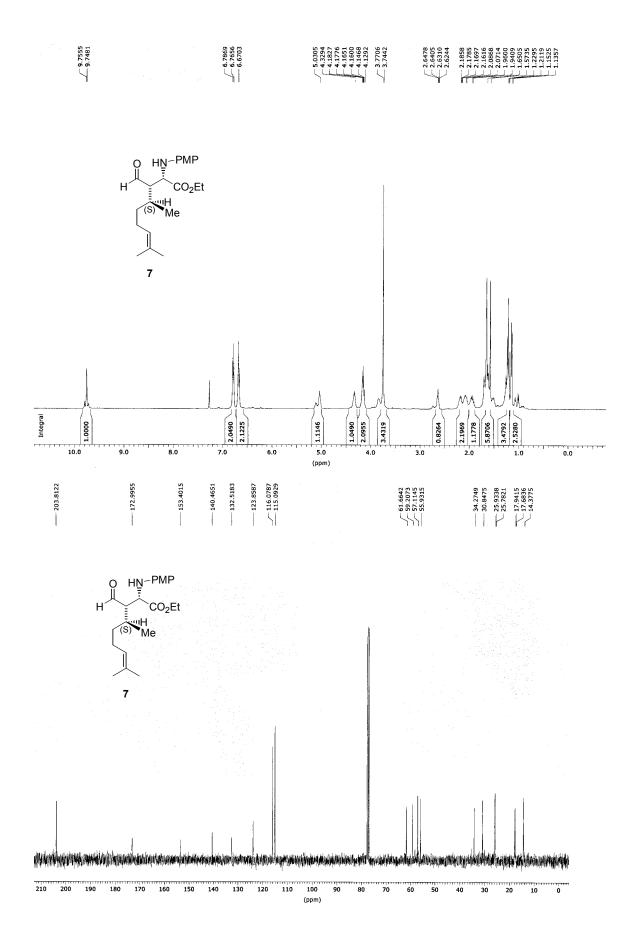
(7*S*,8*S*)-7-Hydroxymethyl-8-(4-methoxyphenylamino)-pentadecane (**20**): ¹H NMR (400 MHz, CDCl₃) (a diastereomer mixture of 3:1, * donates the minor diastereomer) δ 0.82–1.85 (m, 37H), 3.20 (br, 2H), 3.30–3.36 (m, 1H* x1/4), 3.38–3.44 (m, 1H x 3/4), 3.62–3.83 (m, 2H), 3.73 (s, 3H), 6.61 (d, J = 8.8 Hz, 2H* x 1/4), 6.65 (d, J = 8.8 Hz, 2H x 3/4), 6.75 (d, J = 8.8 Hz, 2H* x 1/4), 6.76 (d, J = 8.8 Hz, 2H x 3/4). ¹³C NMR (125 MHz, CDCl₃) (a diastereomer mixture of 3:1, * donates the minor diastereomer) δ 14.1, 22.6, 25.9, 26.9, 27.9, 29.2, 29.3, 29.5, 29.6, 29.9, 31.4, 31.6, 31.8, 31.9, 41.5, 55.7, 58.9, 64.9, 114.8, 116.2, 141.6, 152.8. MALDI-FTMS calcd

for $C_{27}H_{50}NO_2$ (MH⁺) 420.3836, found 420.3850. HPLC (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, λ = 254 nm): t_R = 14.44 min (major), t_R = 6.00 min (minor).

(4S,5S)-4-Hydroxymethyl-5-(4-methoxyphenylamino)-nona-1,8,-diene (21): 1 H NMR (CDCl₃): δ 1.61 (m, 2H), 1.92 (m, 1H), 2.10 (m, 4H), 3.02 (brs, 2H), 3.49 (h, 1H), 3.69 (s, 1H), 3.70 (d, J = 1.6 Hz, 1H), 3.73 (s, 3H), 4.94-5.06 (m, 2H), 5.04-5.11 (m, 2H), 5.72-5.88 (m, 2H), 6.30 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H); 13 C NMR (CDCl₃): δ 30.81, 30.88, 31.4, 42.0, 55.6, 56.6, 64.0, 114.8, 115.0, 115.6, 116.5, 136.8, 138.0, 141.6, 152.4; HRMS for $C_{17}H_{25}NO_2$ (M+H⁺): calcd 276.1958, obsd 276.1962; HPLC (Daicel Chiralcel OJ-H, hexane/*i*-PrOH = 95:1, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_R = 82.80$ min (major), $t_R = 51.79$ min (minor).

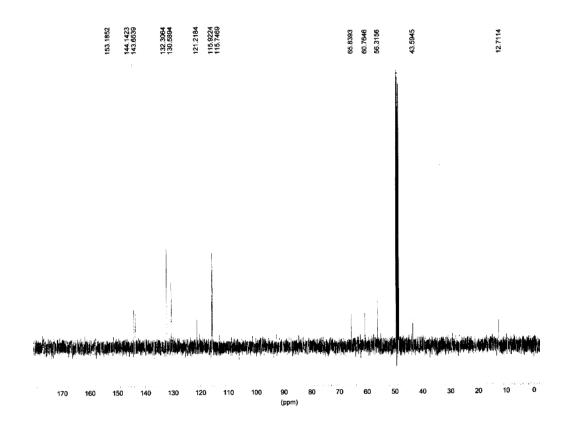

(3S,4S)-3-Hydroxymethyl-4-(4-methoxyphenylamino)-2,6-dimethyl-heptane **(22)**: Major diastereomer (TLC down). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 0.88 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H), 1.04 (d, J = 6.8 Hz, 3H), 1.34 (m, 1H), 1.46–1.62 (m, 2H), 1.70–1.81 (m, 2H), 3.20 (bs, 2H), 3.62 (m, 1H), 3.74 (s, 3H), 3.72–3.83 (m, 2H), 6.65 (d, J = 8.8 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 21.7, 21.8, 24.0, 25.1, 26.9, 39.4, 47.6, 54.3, 55.7, 62.8, 114.9, 115.6, 141.6, 152.6. MALDI-FTMS calcd for C₁₇H₃₀NO₂ (MH⁺) 280.2271, found 280.2274. HPLC (Daicel Chiralpak AD, hexane/i-PrOH = 95:3, flow rate 1.0 mL/min, λ = 254 nm): t_R = 27.23 min (major), $t_R = 18.03$ min (minor). Minor diastereomer (TLC up). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 0.82 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H), 1.28 (m, 1H), 1.45 (t, J = 6.8 Hz, 2H), 1.62 (m, 1H), 1.95 (m, 1H), 3.20 (bs, 1H)2H), 3.55 (m, 2H), 3.74 (s, 3H), 3.79–3.89 (m, 2H), 6.60 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 19.3, 21.6, 22.7, 22.9, 24.6, 26.4, 44.4, 49.6, 54.8, 55.7, 61.4, 114.9, 115.0, 142.6, 152.0. MALDI-FTMS calcd for C₁₇H₃₀HNO₂ (MH⁺) 280.2271, found 280.2274. HPLC (Daicel Chiralpak AD, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, 254 nm): 24.6 min (minor enantiomer), 27.6 min (major enantiomer).

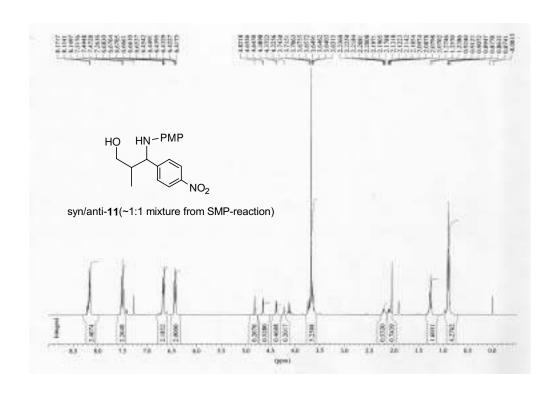

(2S,3S)-3-Hydroxymethyl-2-(p-methoxyphenylamino)-4-methyl-pentan-1-ol (27): A solution of 1 (1.46 g, 5 mmol; crude from previous reaction) in THF (100 mL) was cooled to 0°C and LAH (30 mL, 1M solution in THF) was added. After stirring for 30 min, the ice-bath was removed and the mixture was stirred for 1.5 h at room temperature. The mixture was quenched by careful addition of aqueous NH₄Cl solution, followed by 3M HCl, and then extracted with CH₂Cl₂. The combined organic layers were dried (MgSO₄), filtered, and concentrated. Purification of the residue by flash column chromatography (hexanes/ethyl acetate = 1:5) afforded diol 14 (1.12 g, 88%) as pale yellow oil. ¹H NMR (600 MHz, CDCl₃): 0.93 (d, J = 7.9 Hz, 3H), 1.02 (d, J = 7.9 Hz, 3H), 1.55 (m, 1H), 1.92 (m, 1H), 3.55 (m, 1H), 3.63 (m, 1H) 3.71-3.3.83 (m, 6H), 6.58 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): 20.1, 21.3, 25.9, 47.5, 55.2, 55.7, 59.1, 60.8, 115.0, 115.2, 141.1, 152.1; HPLC (Daicel Chiralpak AS, hexane/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm): t_R (major) = 23.12 min; t_R (minor) = 26.64 min; HR-MS: 254.1752; $C_{14}H_{12}NO_3H^+$ (calcd 254.1751)

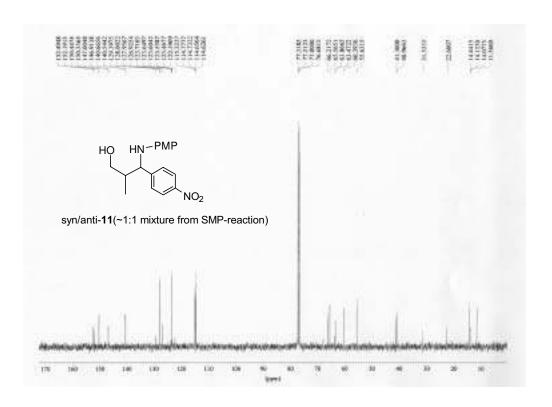

Ethyl (E)-(2S, 3S)-3-benzyloxyiminomethyl-2-(p-methoxyphenylamino)-4-methylpentanoate (28): N-PMP-Protected α-imino ethyl glyoxylate (0.5 mmol) was dissolved in anhydrous dioxane and isovaleraldyde (1.0 mmol) was added, followed by L-proline (20 mol%). The total volume of the reaction mixture was 5 mL. After stirring overnight at room temperature, O-benzylhydroxylamine hydrochloride (1.3 mmol) and pyridine (0.5 mL) were added directly to the

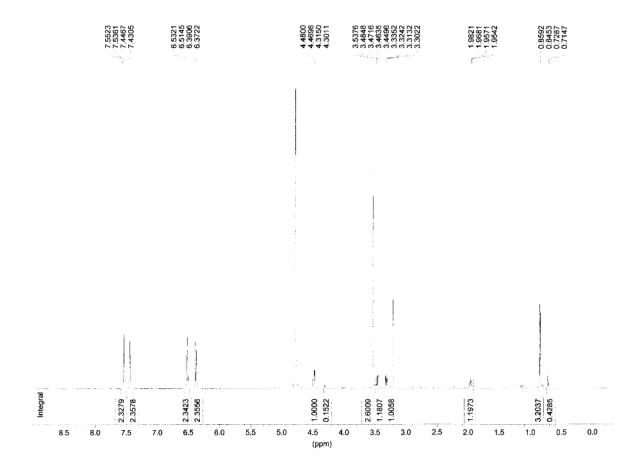
reaction mixture. The mixture was stirred for an additional 2h at room temperature, filtered through Celite, concentrated and the residue purified by column chromatography (silica, hexanes/ethyl acetate = 10/1) to afford oxime **28** (129 mg, 78%): ¹H NMR (500MHz, CDCl₃) δ = 0.89 (d, 3H, J = 6.6 Hz, CHCH₃), 1.04 (d, 3H, J = 6.6 Hz, CHCH₃), 1.16 (t, 3H, OCHCH₃), 2.12 (m, 1H), 2.40 (m, 1H), 3.69 (s, 3H, OCH₃), 3.81 (bs, 1H, ArNHCH), 4.05 (q, 2H, OCH₂CH₃), 4.14 (bs, 1H), 5.09 (s, 2H, PhCH₂), 6.48 (d, 2H, J = 8.8 Hz, ArH), 6.71 (d, 2H, J = 8.8 Hz, ArH), 7.25-7.40 (m, 6H, ArH and HC=N); ¹³C NMR (125 MHz, CDCl₃) δ = 172.4, 152.8, 150.0, 140.3, 137.8, 128.3, 127.9, 127.6, 115.4, 114.6, 75.5, 60.8, 58.0, 55.5, 49.1, 27.3, 20.9, 19.4, 14.1; HPLC (Daicel Chiralpak AD, hexane/i-PrOH = 92:8, flow rate 1.0 mL/min, λ = 254 nm); t_R (major) = 12.52 min; t_R (minor) = 23.86 min; HRMS: Calcd for $C_{23}H_{30}N_2O_4$ (M+H⁺): 399.2278, found: 399.2281.

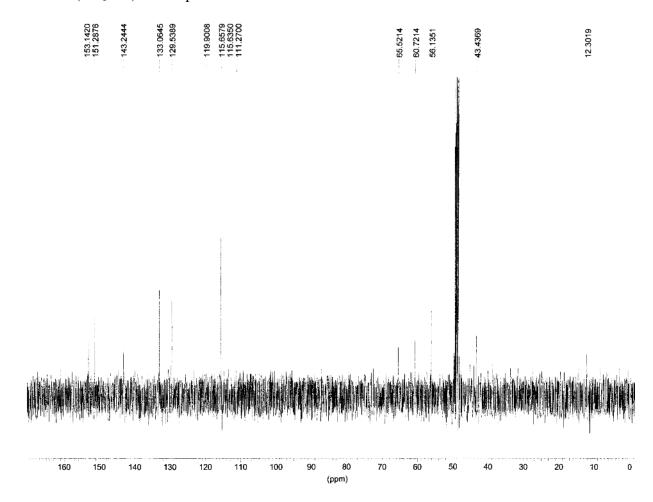

Ethyl (E)-(2S,3S)-3-benzyloxyiminomethyl-2-(p-methoxyphenylamino)-octanoate (29): 1 H NMR (400 MHz, CDCl₃) δ 0.85–1.65 (m, 11H), 1.21 (t, J = 7.0 Hz, 3H), 2.70 (m, 1H), 3.73 (m, 3H), 3.88 (brd, J = 10.2 Hz, 1H), 4.02 (m, 1H), 4.08-4.17 (m, 2H), 5.10 (s, 2H), 6.51 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 7.28–7.40 (m, 6H). 13 C (100 MHz, CDCl₃) δ 14.0, 14.2, 22.4, 26.7, 28.8, 31.4, 42.8, 55.6, 60.6, 61.6, 75.6, 114.7, 115.6, 127.7, 128.1, 128.4, 137.8, 140.6, 151.6, 152.9, 172.4. HRMS calcd for $C_{25}H_{35}N_2O_4$ (MH $^+$) 427.2591, found 427.2601. HPLC (Daicel Chiralpak AD, hexane/*i*-PrOH = 84:14, flow rate 1.0 mL/min, 254 nm): 6.6 min (*anti*), 9.5 min (*anti*), 10.3 min ((S,S)-enantiomer, major), 16.9 min ((R,R)-enantiomer, minor).

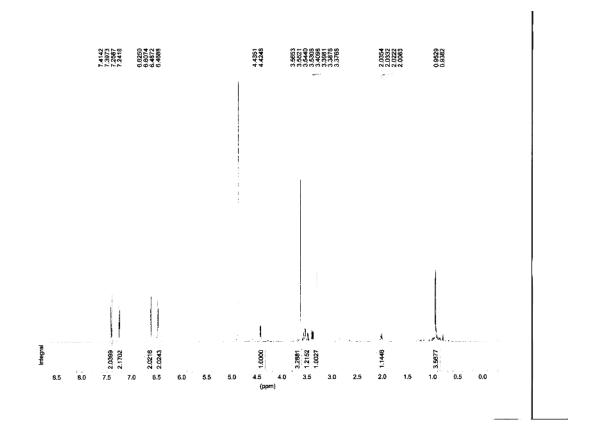


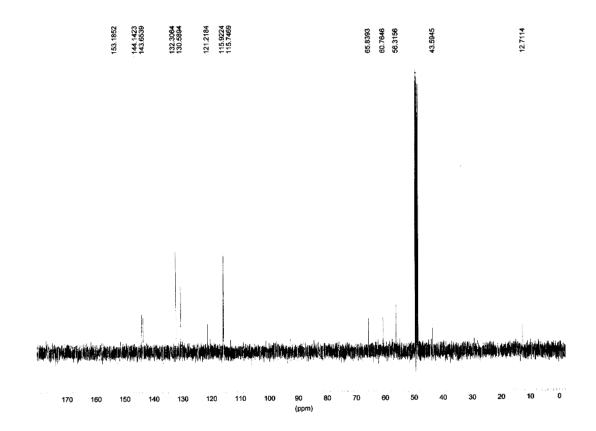


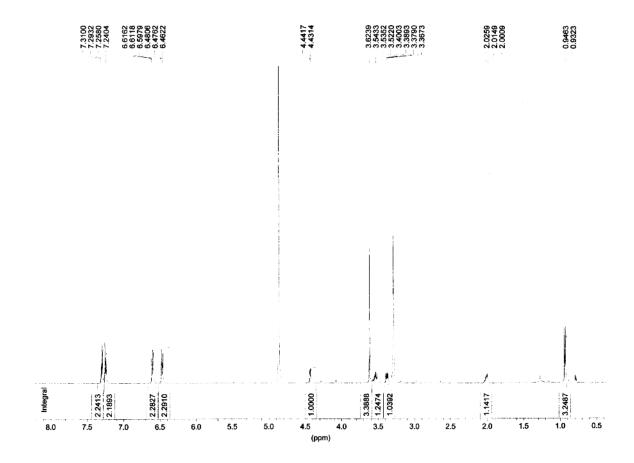

¹H NMR (CDCl3) of compound **11**.

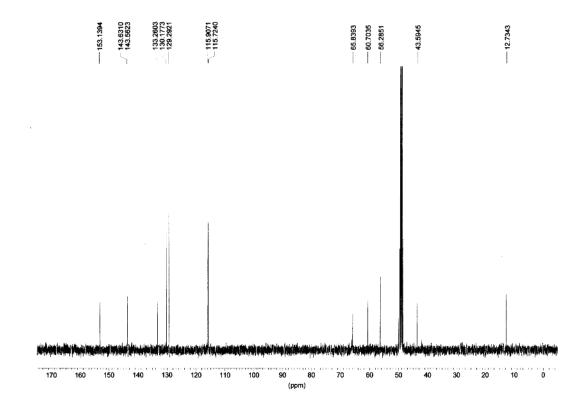

¹³C NMR (CD3OD) of compound **11**.

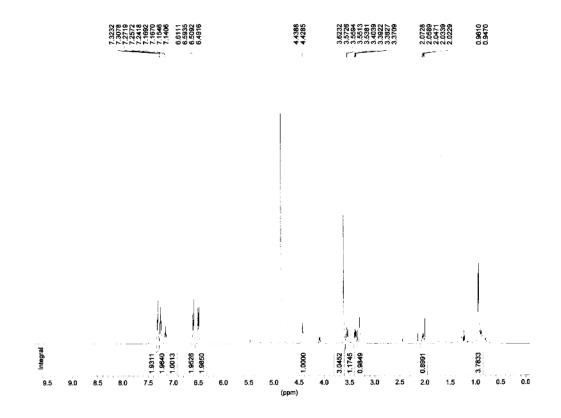


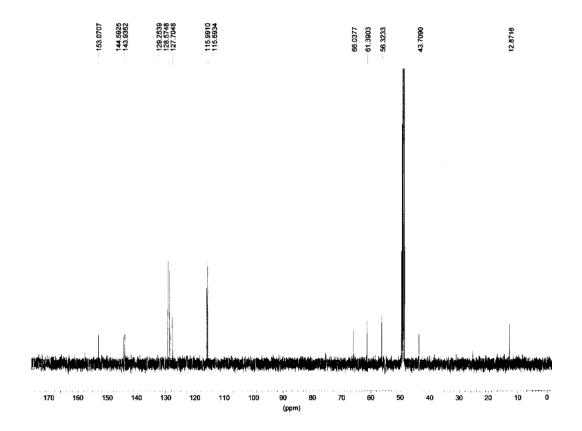

¹H NMR (CD₃OD) of compound **12**.

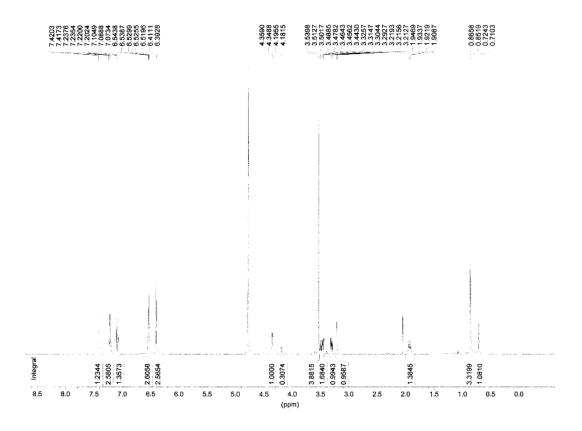

¹³C NMR (CD₃OD) of compound **12**.

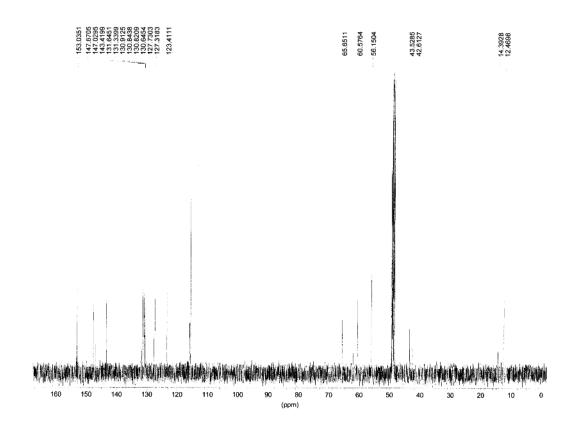

¹H NMR (CD₃OD) of compound **13**.

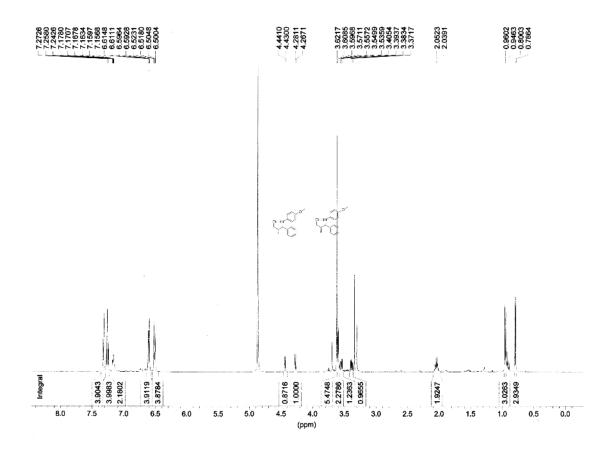

¹³C NMR (CD₃OD) of compound **13**.

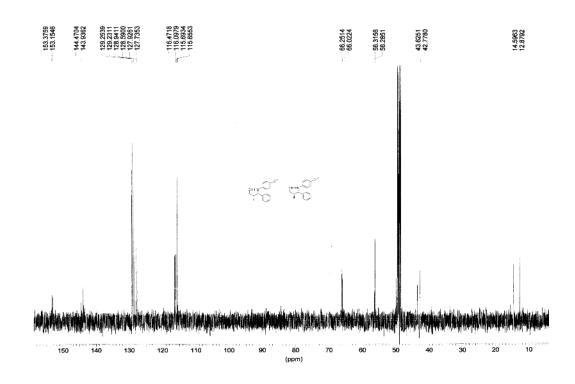

¹H NMR (CD₃OD) of compound **14**.

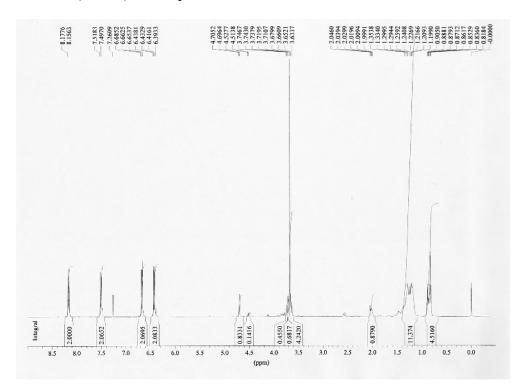

¹³C NMR (CD₃OD) of compound **14**.

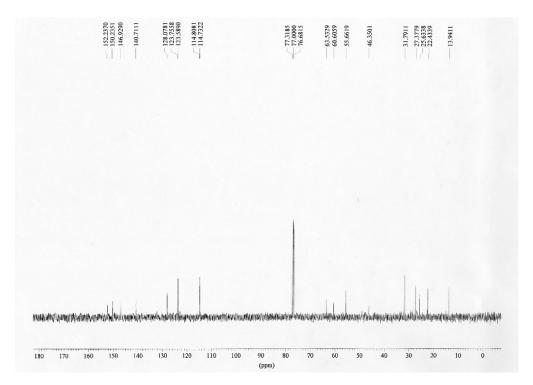

¹H NMR (CD₃OD) of compound **15**.

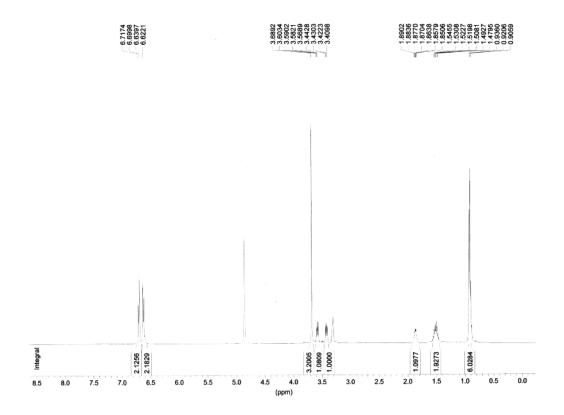

¹³C NMR (CD₃OD) of compound **15**.

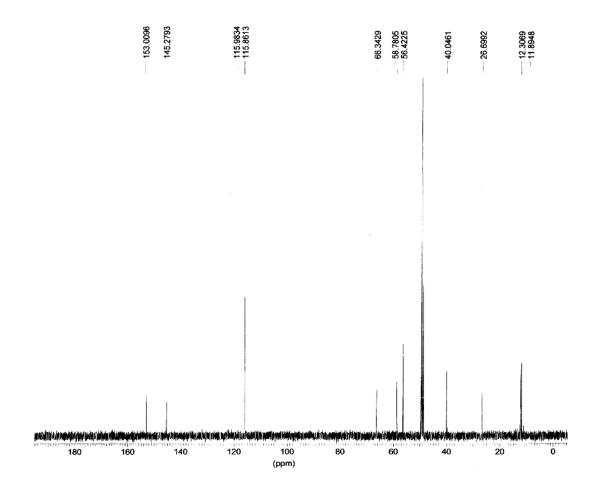


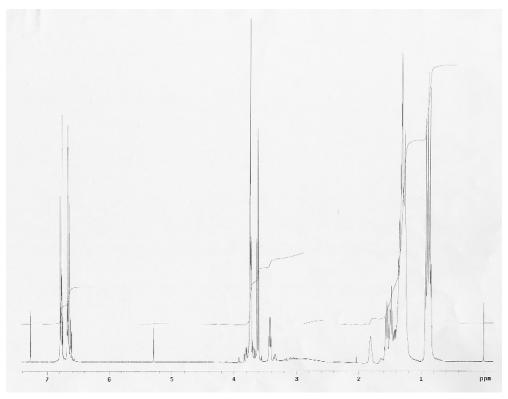

¹H NMR (CD₃OD) of compound **16** (syn/anti-3/1).

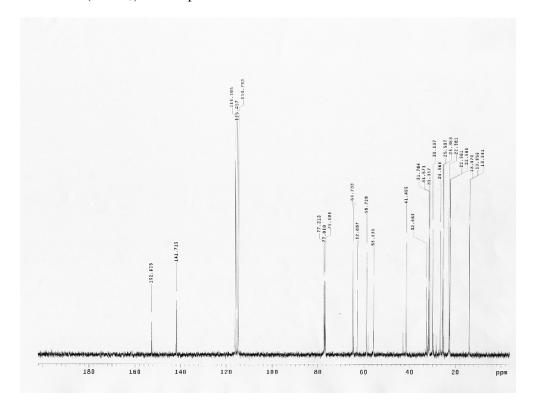

¹³C NMR (CD₃OD) of compound **16** (syn/anti-3/1).

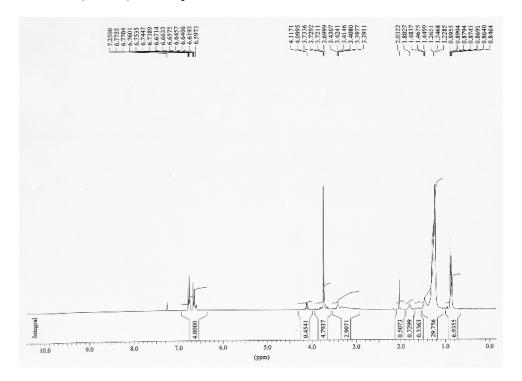


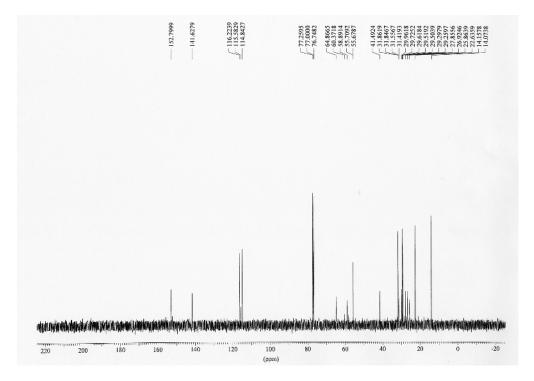

¹H NMR (CDCl₃) of compound **17**.

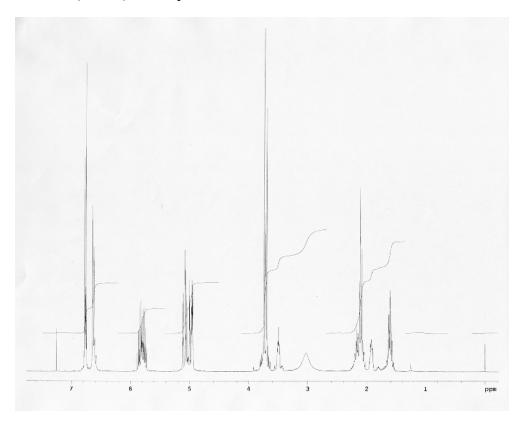

¹³C NMR (CDCl₃) of compound **17**.

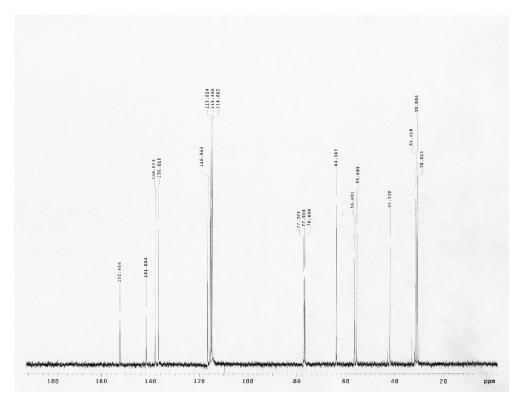

¹H NMR (CD₃OD) of compound **18**.

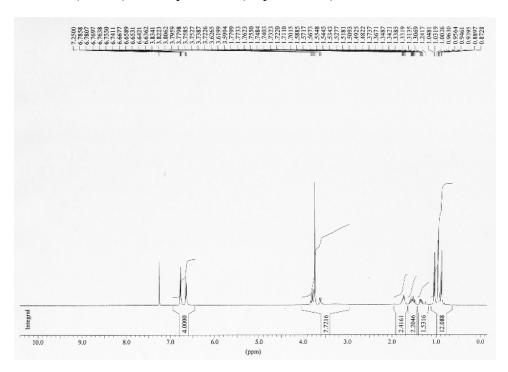

¹³C NMR (CD₃OD) of compound **18**.

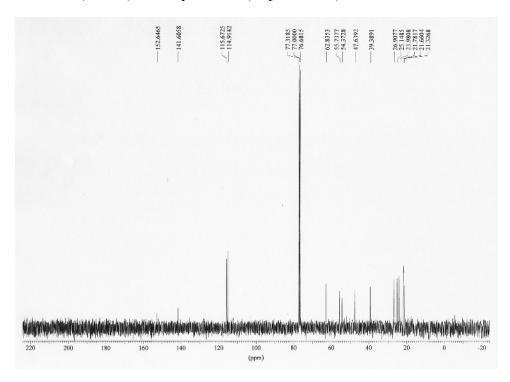

¹H NMR (CDCl₃) of compound **19**.

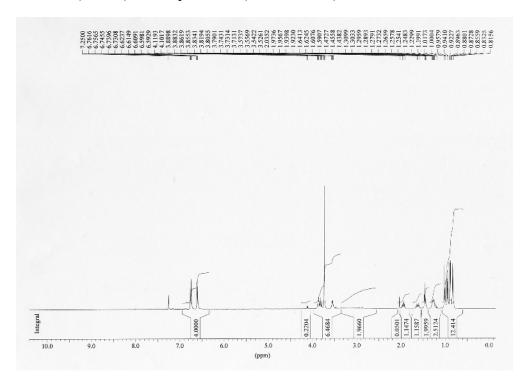

¹³C NMR (CDCl₃) of compound **19**.

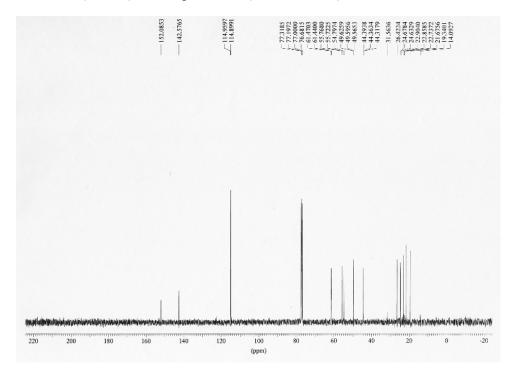

¹H NMR (CDCl₃) of compound **20**.

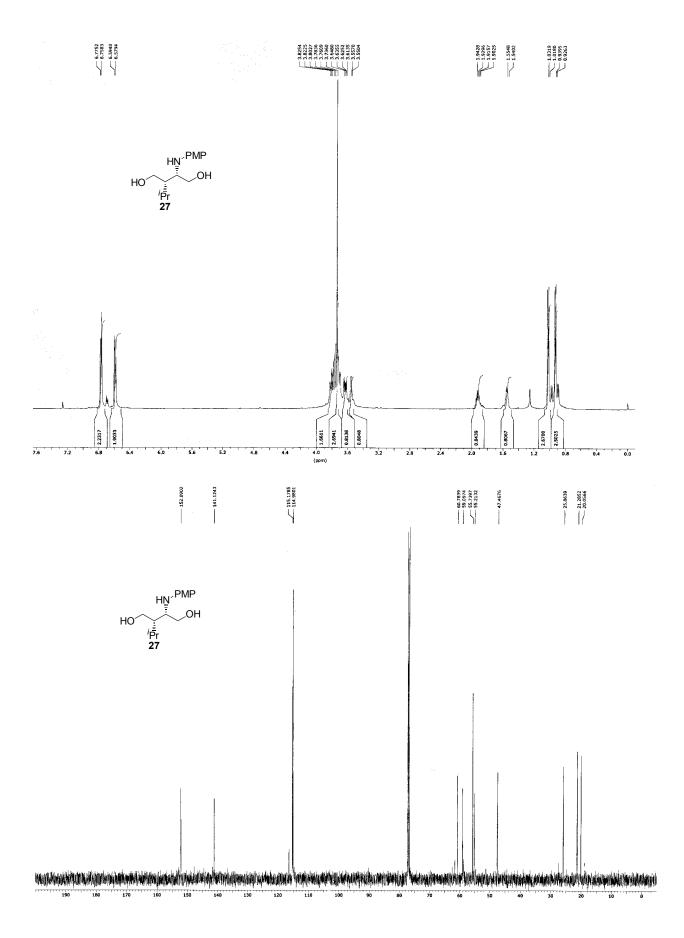

¹³C NMR (CDCl₃) of compound **20**.

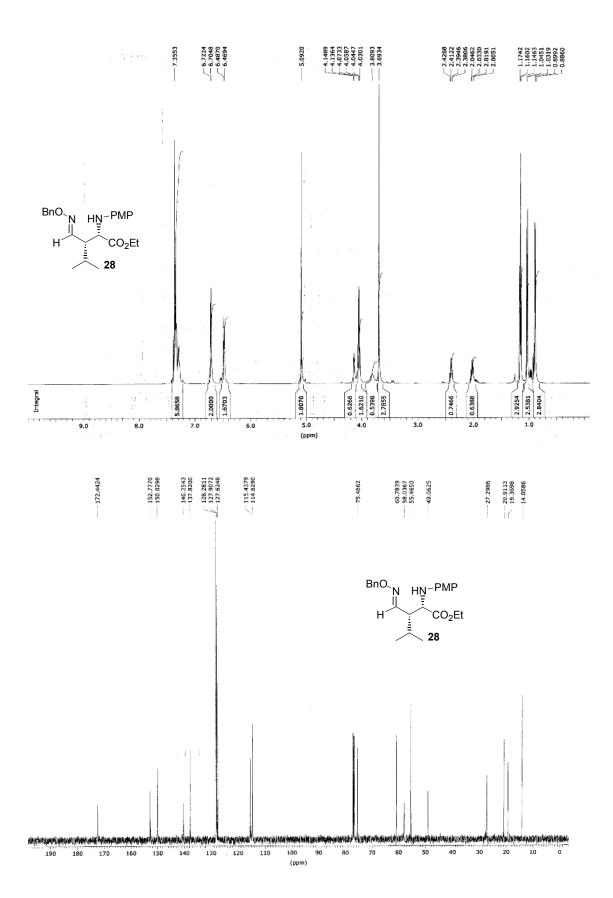

¹H NMR (CDCl₃) of compound **21**.

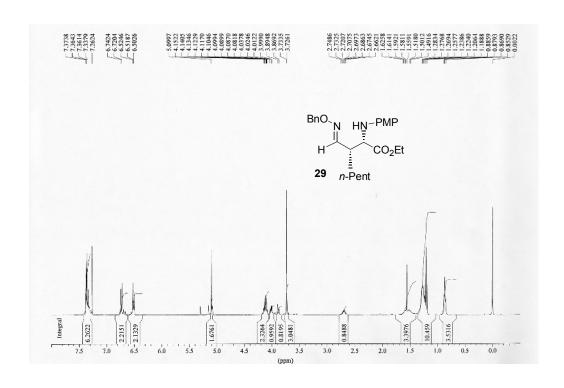

¹³C NMR (CDCl₃) of compound **21**.

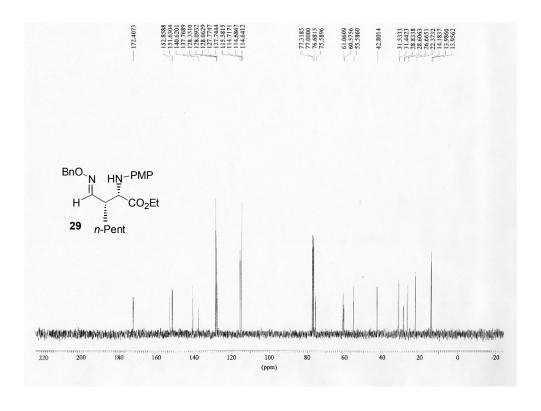

¹H NMR (CDCl₃) of compound **22** (major isomer).


¹³C NMR (CDCl₃) of compound **22** (major isomer)




¹H NMR (CDCl₃) of compound **22** (minor isomer).




¹³C NMR (CDCl₃) of compound **22** (minor isomer).

