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The direct response of the gonads to cues
of stress in a temperate songbird species
is season-dependent
Nicolette L. McGuire1, Annie Koh1 and George E. Bentley1,2

1 Laboratory of Reproductive Neuroendocrinology, Department of Integrative Biology,
University of California at Berkeley, USA

2 Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA

ABSTRACT
The gonadotropin releasing hormone (GnRH) system in the hypothalamus is often
considered the final point in integration of environmental cues as they pertain to the
reproductive axis. However, cues such as stress and food availability are detectable
in the plasma (as glucocorticoid and metabolic fuel fluctuations). Vertebrate gonads
express glucocorticoid receptor, therefore we hypothesized that the gonads can detect
and respond directly to cues of stress. We provide evidence here that, in addition to
regulation by the brain, the gonads of European starlings (Sturnus vulgaris) respond
directly to fluctuations in corticosterone and metabolic fuels by modulating sex
steroid secretion. Using a 4-h gonad culture, we show that physiologically-relevant
concentrations of corticosterone and metabolic stress (via use of the glucose uti-
lization inhibitor 2-deoxy-D-glucose and the fatty acid oxidation inhibitor ethyl
2-mercaptoacetate (2DG/MA)) can directly decrease testosterone and estradiol
secretion from luteinizing hormone and follicle-stimulating hormone (LH/FSH)-
stimulated testes and ovaries. This effect is regulated seasonally. Prior to the breeding
season, testes and ovaries respond to corticosterone and 2DG/MA by significantly
decreasing gonadal steroid release. Within the breeding season, the testes do not
respond to these cues of stress, while the ovaries respond only to corticosterone.
This seasonal difference in response may be due in part to the influence of these
cues of stress on gonadal neuropeptide expression: corticosterone upregulates GnIH
expression in the testes while metabolic stress upregulates GnIH in the ovaries. Thus
the gonads can directly respond to fluctuations in corticosterone and metabolic fuels
during a time of critical importance to the onset of breeding.

Subjects Ecology, Zoology, Diabetes and Endocrinology
Keywords Stress, Gonadotropin inhibitory hormone (GnIH), Corticosterone, Gonadotropin
releasing hormone (GnRH), Testes, Estradiol, Testosterone, Avian, Supplementary cues,
Photoperiod, Ovary

INTRODUCTION
Many seasonal breeders undergo seasonal cycles of gonadal growth and regression,

accompanied by changes in sex steroid production and gamete maturation. These

cycles are modulated primarily by photoperiod cues (Dawson et al., 2001; Nicholls,

Goldsmith & Dawson, 1988). Despite the strong influence of changing day length on the
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timing of reproduction, the precise timing of the onset of breeding can be modulated

by multiple supplementary cues: food availability, temperature, weather, social cues

and sustained stress (Gibb, 1950; Wingfield, 1984; Wingfield, 1985a; Wingfield, 1985b;

Wingfield, Moore & Farner, 1983). Traditionally, release or inhibition of the neuropeptide

gonadotropin-releasing hormone (GnRH) from the hypothalamus has been considered as

the final integration point of photoperiodic and supplemental information (Ball, 1993).

However, the appropriate timing of reproduction and synchrony with conspecifics is so

important that multiple regulatory points in the hypothalamo-pituitary-gonad (HPG) axis

might well be required.

Gonadotropin inhibiting hormone (GnIH) is another hypothalamic neuropeptide

that modulates the secretion of luteinizing hormone (LH) and follicle stimulating

hormone (FSH) from the anterior pituitary gland; it also inhibits action of GnRH neurons

directly (Bentley et al., 2006; Bentley et al., 2009; Ducret, Anderson & Herbison, 2009;

Tsutsui et al., 2000; Ubuka et al., 2008). Both GnRH and GnIH in the brain are altered

in response to food restriction and stimulation of the hypothalamo-pituitary-adrenal

(stress) axis (Bergendahl, Perheentupa & Huhtaniemi, 1991; Calisi, Perfito & Bentley, 2010;

Ciccone, Dunn & Sharp, 2007; Grieves et al., 2008; Kirby et al., 2009; Rivest, Plotsky & Rivier,

1993). Recently, GnIH and GnIH receptor (GnIHR) expression were identified in the

gonads of songbirds and primates, in addition to the brain (Bentley et al., 2008; McGuire

& Bentley, 2010b). Furthermore, GnIH was able to decrease directly and dose-dependently

the amount of testosterone secreted by gonadotropin-stimulated house sparrow testes

in vitro (McGuire & Bentley, 2010a). The gonadal GnIH system can be modulated directly

by circulating melatonin, thereby influencing gonadal steroid release independently of

the brain (McGuire, Kangas & Bentley, 2011). Gonadotropin releasing hormone (GnRH)

and its receptor (GnRHR) are also expressed in the gonads of vertebrates and have direct

and typically inhibitory effects on sex steroid synthesis in species from protochordates

to mammals, also the way in which the gonadal GnRH system is modulated is less clear

(McGuire & Bentley, 2010b).

Vertebrate gonads are physiologically capable of detecting some stress cues. Plasma

corticosterone and cortisol vary in response to stress in a season-specific manner (Romero,

2002) and receptors for glucocorticoids are present in gonadal tissues of songbirds (Kwok

et al., 2007; Lattin et al., 2011) and other vertebrates (Bambino & Hsueh, 1981; Denari &

Ceballos, 2006; Hsueh & Erickson, 1978; Kwok et al., 2007). Acute stress can also decrease

plasma testosterone in a wild male songbird, apparently in the absence of a reduction

in plasma LH (Deviche et al., 2010), indicating a potentially direct effect of stress on

the gonads. This effect can persist for up to 6 h (Deviche et al., 2012). In addition, food

restriction can be detected in the plasma through fluctuations in metabolic fuels, and can

have an effect on reproduction (Szymanski et al., 2007). As metabolic fuels are required for

gamete and sex steroid production, it is likely that the gonads detect these fluctuations

in plasma glucose and fatty acids directly in addition to fluctuations in circulating

glucocorticoids.
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As a result of the fact that mammalian and avian gonads express glucocorticoid

receptors, and because food restriction can inhibit reproduction and sexual behavior

(Schneider, 2004), we sought to determine whether gonads of European starlings (Sturnus

vulgaris) decrease sex steroid secretion in direct response to exposure to glucocorticoids or

reduced access to metabolic fuel, via the gonadal GnIH and GnRH systems.

MATERIALS AND METHODS
All procedures were performed in accordance with federal and state laws and with

appropriate agreements from the UC Berkeley Office of Laboratory Animal Care.

European starlings (Sturnus vulgaris) housed under natural photoperiods in outdoor

aviaries in Berkeley, CA were captured in mist and hand nets on February 5, 2010 (n = 6

males, 6 females) and April 7, 2010 (n = 6 males, 5 females). February 5, 2010 had a day

length of 10 h 27 min and was preceded by>6 weeks of natural short days. April 7, 2010

had a day length of 12 h 52 min. All birds were terminally anesthetized using isoflurane and

then decapitated within 3 min of capture.

Gonad culture
Gonad culture was performed on each day of capture with an identical procedure, except

where noted. Testes and ovaries from each bird were removed, measured and incubated

in individual tubes of Dulbecco’s modified eagle medium (DMEM; Sigma cat# D8437)

for 4 h at 4◦C prior to experimentation to establish basal levels of steroidogenesis and

protein transcription. Then each left testis (TL) and each ovary (O) was snipped into pieces

using clean dissection scissors. Hierarchical follicles, if present, were removed and not

used for this experiment. The mass of each piece was recorded and then placed in to fresh

culture medium containing: (1) 500 µl DMEM alone, (2) 0.25 µg/ml LH/FSH (44 LH:

1 FSH; National Hormone and Peptide Program, Torrance, CA) in DMEM, (3) 400 nM

corticosterone (Sigma cat# C2505) and 0.25 µg/ml LH/FSH in DMEM, (4) 75 µg/ml

2-deoxy-D-glucose (2DG, Sigma cat# D8375) or 2.5 µg/ml ethyl 2-mercaptoacetate

(MA, Spectrum Chemical Mfg. cat#E2833) and 0.25 µg/ml LH/FSH in DMEM. We

hereafter refer to culture medium 1 as “basal” since it contains no treatment agents

that would affect steroidogenesis. The ratio and concentration of LH/FSH we used has

been previously defined as physiological and used successfully to stimulate sex steroid

production (Kubokawa, Ishii & Wingfield, 1994; McGuire & Bentley, 2010a). Corticosterone

is the native glucocorticoid in European starlings, and its plasma concentration is elevated

during times of stress (Romero & Remage-Healey, 2000). 2DG is a pharmacological agent

which potently inhibits glucose utilization (Wick et al., 1957). MA is a pharmacological

agent which prevents tissues from oxidizing fatty acids (Bauche et al., 1983; Bernard,

Mioskowski & Groscolas, 2002). 2DG/MA prevent the utilization of metabolic fuels,

thus they were used here, in culture, to simulate the lack of available metabolic fuels

experienced by European starlings under food-limited conditions. Concentration of

total corticosterone used was within physiological range (Li et al., 2008; Romero &

Remage-Healey, 2000). 2-DG and MA are pharmacological agents (Bauche et al., 1983;

Wick et al., 1957).
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All cultures were placed in a sealed incubator for a 4 h, high humidity incubation

at 37◦C immediately after placement of tissue. 100% oxygen was pumped into the

chamber at 4L/min to allow for maximum respiration of cells. A time period of four

hours was chosen to simulate a stress event of longer duration than typical capture

restraint. The type of chronic stress that we are referring to would be experienced during

an environmental perturbation (i.e., winter storm, habitat disturbance, microclimate

change, human disturbance, temperature stress or food shortage). Corticosterone levels

in birds are often chronically elevated during such events and these birds may also

experience restricted access to food (Astheimer, Buttemer & Wingfield, 1992; Breuner

& Hahn, 2003; Fernandez-Juricic, 2000; Jenni-Elermann et al., 2008; Ketterson & King,

1977; Lynn, Breuner & Wingfield, 2003; Morton, 2002; Wingfield & Ramenofsky, 1997).

Although we aimed to mimic chronic stressors, the time period we chose may also be

applicable to capture restraint stress paradigms as corticosterone can remain elevated for

30–180 min post-stimulus/CRS in a number of species (Wingfield, Vieck & Moore, 1992).

Experimentally, the elevation of corticosterone in response to chronic stress is dampened

only after days to weeks of exposure to stressors, thus a 4 h stress event would not elicit this

phenomenon (Rich & Romero, 2005). A four hour culture is also applicable to metabolic

stress, as birds have significantly reduced plasma glucose and triglycerides after a 2–12 h

fast (Jenni-Elermann & Jenni, 1996). The ex vivo culture was not extended beyond 8 h so as

to prevent artifacts associated with tissue death.

Following incubation, cultures were removed from the incubator, placed on ice and

centrifuged at 1500 g 4◦C. The supernatant was pipetted to a clean tube and stored at

−20◦C for sex steroid analysis using ELISA. The tissues were washed once each with

DMEM and 0.01 M phosphate buffered saline, then stored at−20◦C prior to analysis for

GnIH and GnRH expression using semi-quantitative PCR with an endogenous control.

Analysis of testosterone and estradiol secretion
The culture media supernatants from testes cultures were assayed for testosterone using

ELISA (Cayman Chemical cat# 582701) and the culture media supernatants from ovary

cultures were assayed for estradiol using ELISA (Cayman Chemical cat# 582251) according

to the manufacturer’s instructions. These kits were developed specifically for use with

tissue culture supernatants, and have specific instructions and general precautions for

using this type of sample (see https://www.caymanchem.com/pdfs/582701.pdf and https://

www.caymanchem.com/pdfs/582251.pdf for information on this and on specificity).

Briefly, standards and samples were incubated with testosterone or estradiol antiserum

and testosterone or estradiol acetylcholinesterase tracer in mouse anti-rabbit IgG-coated

microplate wells at room temperature for 2 h at 45 rpm. Blank and maximum binding

(buffer only) wells were also prepared at this time. After washing, the wells were developed

with Ellman’s reagent, 5, 5′-dithiobis-2-nitrobenzoic acid, in the dark for 60 min. Assays

were performed in duplicate and were read at 415 nm on a microplate reader (BioRad,

Model 680XR) at +0, +5, +15 and +30 min. Data were collected when maximum

binding wells reached an absorbance within 0.3–1 A.U. All readings were corrected to the
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absorbance of the blank wells, then standards and samples were converted to percentages

of maximum binding. A standard curve was drawn using log(agonist) v. response variable

slope four parameter curve fit in GraphPad Prism 5.0 software. The concentrations of

testosterone or estradiol in the culture media were interpolated from the appropriate

standard curves.

Testosterone and estradiol concentrations from each culture were corrected to the

amount of tissue in each culture. To control for differences in mass of gonad sections in

each culture, testosterone and estradiol data are corrected to testes or ovary section mass

measured just prior to placement in treatment cultures (pg testosterone or estradiol/mg

tissue).

All samples were assayed in duplicate in a single assay. Assay characteristics were

20 pg/ml for estradiol and 6 pg/ml for testosterone. The intra-assay coefficient of variation

for estradiol was 4.524 and for testosterone was 1.463.

Analysis of GnIH and GnRH expression
Tissues from the February 5 cultures were analyzed for the effects of treatments on

relative GnIH and GnRH mRNA expression using semi-quantitative PCR with an

endogenous control. This method has been previously described (Foley, Leonard &

Engel, 1993; McGuire, Kangas & Bentley, 2011; Spencer & Christensen, 1999). Briefly,

RNA was isolated from tissue in each culture using TRIzol (Invitrogen cat# 15596018)

according to the manufacturer’s protocol. RNA concentration, quality and contamination

were assessed using NanoDrop and NanoDrop-1000 3.3.0 accessory software. RNA

samples with 10 mm absorbance at wavelengths from 220–350 nm or 260/280 ratio of

>1.6 were not used for further analysis. 1 ug total RNA from each tissue sample was

then reverse transcribed using oligo(deoxythymidine)15 primer and M-MLV Reverse

Transcriptase (Promega cat #s: C1101, M1701). Partial European starling GnIH and GnRH

precursors were amplified from 500 ng cDNA by PCR using primers based on European

starling GnIH and GnRH precursor cDNA sequences (respective GenBank accession #s

EF486798, FJ514493): GnIH forward primer 5′-GGAAGAAAAGCAGAGGAGTCTC-3′,

reverse primer 5′-TGGAGATCTCCCAAGCCTGT-3′; GnRH forward

primer 5′-TCTCTCAGGCAGCAGGATGGA-3′, reverse primer 5′-5′-

CTTTCTTCTGCCTTGTTCCTCC-3′. β-actin was also amplified from the cDNA and used

as the endogenous control. All PCR amplifications were performed using a Taq polymerase

kit (TaKaRa Ex TaqTM; Takara Bio Inc., Shiga, Japan). Products were run on a 1.5% agarose

gel and quantified by fluorescence of ethidium bromide under a UV Transilluminator

(UVP Inc., Upland, CA) using a two-dimensional image analysis of the gel in Adobe

Photoshop CS2. The intensity of each of the GnIH and GnRH signals was normalized to

the B-actin internal control intensity of the same bird. The relative mRNA levels of GnIH

and GnRH from the tissue in each culture (expressed as 0%–100% of B-actin) were then

compared.
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Statistical analysis
Data were analyzed using one-way analysis of variance (ANOVA), followed by the post-hoc

Tukey’s multiple comparison test if the ANOVA provided P < 0.05.

To determine if the treatments were any more or less effective in photostimulated birds

versus photosensitive birds, 2-way ANOVA was performed with time and treatment as

independent variables.

RESULTS
February 5, 2010 had a day length of 10 h 27 min. This daylength is less than the critical

daylength of 11.5 h required for full photostimulation (and for the onset of ensuing

photorefractoriness several weeks later) and was preceded by >6 weeks of short days.

Birds were thus classified as photosensitive (pre-breeding) (Boulakoud & Goldsmith, 1995;

Nicholls et al., 1987). Testes collected from European starling males had an average volume

of 76.0± 22.5 mm3 (volume= 4/3πa2b, where a is half the width and b is half the length

(long axis) of the testis). Ovaries collected from European starling females had an average

ovarian mass of 6.2± 1.5 mg and all follicles were<1 mm in diameter.

April 7, 2010 had a day length of 12 h 52 min, which exceeds the critical daylength of

11.5 h required for photostimulation and for the resulting onset of photorefractoriness

several weeks later. Birds were thus classified as photostimulated (breeding) (Nicholls et

al., 1987). Testes collected from European starling males had an average testes volume of

502.0± 168.9 mm3 and ovaries collected from European starling females had an average

ovarian mass of 30.2± 11.3 mg and had hierarchical follicles present.

Testosterone secretion in cultured European starling testes is significantly affected by

culture treatments. However, the treatments are more effective prior to the breeding season

compared to breeding birds (Fig. 1A: photostimulated, one way ANOVA F(5,3) = 3.33,

p < 0.048); Fig. 1B: photosensitive, one way ANOVA F(3,5) = 10.67, p = 0.0005.

When either photosensitive or photostimulated, testes are able to respond to culture

with LH/FSH by increasing testosterone production significantly above basal levels

(breeding: p < 0.05, prior to breeding: p < 0.001). Post-hoc comparison showed that

when photosensitive, cultured testes exhibit significantly reduced testosterone secretion in

the presence of corticosterone or metabolic inhibition (via 2DG/MA) compared to testes

cultured in LH/FSH alone (corticosterone: p< 0.01; 2DG/MA: p< 0.01). Testes collected

from photostimulated birds do not show reduced testosterone secretion in response

to corticosterone or metabolic inhibition. Overall, there was an effect of season on the

response to treatment (2-way ANOVA F(1,3)= 12.66, p< 0.01).

Estradiol secretion in cultured European starling ovaries is significantly affected by

culture treatments in photosensitive (prior to breeding) and photostimulated (breeding)

birds (Fig. 2A: photostimulated, one way ANOVA F(3,5) = 6.6, p = 0.0046; Fig. 2B:

photosensitive, one way ANOVA F(3,5) = 7.31, p = 0.003. When photostimulated or

photosensitive, ovaries are able to respond to culture with LH/FSH by increasing estradiol

production significantly above basal levels (post-hoc comparison for photostimulated:

p < 0.01; photosensitive: p < 0.01). Ovaries from photosensitive birds show significantly
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Figure 1 Seasonal differences in response to corticosterone and metabolic stress in European starling
(Sturnus vulgaris) testes. (A) In testes collected from photostimulated male starlings, testosterone
secretion is significantly increased in culture by incubation with LH/FSH compared to media alone.
Corticosterone and the metabolic inhibitors 2DG/MA do not attenuate LH/FSH-stimulated testosterone
levels in photostimulated starlings. (B) In testes collected from photosensitive male starlings, testos-
terone secretion is significantly increased in culture by incubation with LH/FSH compared to media
alone. Corticosterone and the metabolic inhibitors 2DG/MA significantly attenuate LH/FSH-stimulated
testosterone levels. Bars are mean testosterone secreted± S.E.M. Different letters above columns indicate
statistically significant differences.

reduced estradiol secretion in the presence of corticosterone or metabolic inhibition (via

2DG/MA) compared to ovaries cultured in LH/FSH alone (corticosterone: p < 0.05;

2DG/MA: p< 0.05). Ovaries collected from photostimulated birds show reduced estradiol

secretion in response to corticosterone only (corticosterone: p < 0.05). Overall, there was

an effect of season on the response to treatment (2-way ANOVA F(1,3)= 7.58, p< 0.02).

Corticosterone and the metabolic stressors 2DG/MA directly affect the expression of

gonadal GnIH in gonadotropin-stimulated photosensitive European starling testes and

ovaries (testes, Fig. 3A: one way ANOVA F(2,5) = 12.70, p = 0.0018; ovaries, Fig. 3B:

one way ANOVA F(2,4) = 7.81, p = 0.013). In the testes, incubation with corticosterone
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Figure 2 Seasonal differences in response to corticosterone and metabolic stress in European starling
(Sturnus vulgaris) ovaries. (A) In ovaries collected from photostimulated female starlings, estradiol
secretion is significantly increased in culture by incubation with LH/FSH compared to media alone.
Corticosterone significantly attenuates LH/FSH-stimulated estradiol levels in photostimulated starlings.
(B) In ovaries collected from photosensitive female starlings, estradiol secretion is significantly increased
in culture by incubation with LH/FSH compared to media alone. Corticosterone and the metabolic in-
hibitors 2DG/MA significantly attenuate LH/FSH-stimulated testosterone concentrations. Bars are mean
estradiol secreted± S.E.M. Different letters above columns indicate statistically significant differences.

significantly increases relative GnIH expression compared to LH/FSH-stimulated tissue

(post-hoc comparison: p< 0.01). In the ovaries, incubation with the metabolic inhibitors

2-DG/MA significantly increases relative GnIH expression compared to LH/FSH-

stimulated tissue (p < 0.05). GnIH expression did not differ between LH/FSH-treated

ovarian tissue and LH/FSH+ cort-treated ovarian tissue.

Stressors do not directly affect the expression of gonadal GnRH in gonadotropin-

stimulated photosensitive European starling testes and ovaries (testes: one way ANOVA

F(2,5)= 1.00, p= 0.408; ovaries: one way ANOVA F(2,5)= 2.794, p= 0.109). These data

are shown in Fig. 4.
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Figure 3 Stressors upregulate gonadal expression of GnIH mRNA in photosensitive birds. Expression
of GnIH is significantly upregulated by corticosterone in the testes and by the metabolic inhibition via
2DG/MA in the ovary compared to LH/FSH stimulation alone. Bars are mean GnIH expressed± S.E.M.
Different letters above columns indicate statistically significant differences.

DISCUSSION
In addition to regulation from the brain, the gonads of European starlings (Sturnus

vulgaris) are able to detect cues of stress directly and respond (in a season-specific manner)

by modulating sex steroid secretion. The testes and ovaries of photosensitive (prior to

breeding) European starlings show significantly reduced gonadotropin-stimulated testos-

terone and estradiol secretion when cultured with the glucocorticoid corticosterone, or

with the metabolic inhibitors, 2DG/MA, compared to gonadotropin-stimulation alone. As

birds become photostimulated and reach full reproductive condition, the testes no longer
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Figure 4 Stressors do not affect gonadal expression of GnRH mRNA in photosensitive birds. Expres-
sion of GnRH in the testes and ovaries is not significantly different in cultures treated with LH/FSH alone,
LH/FSH + corticosterone or LH/FSH + 2DG/MA. Bars are mean GnRH expressed± S.E.M.

respond to corticosterone or 2DG/MA in culture with reduced testosterone secretion. The

ovaries of photostimulated starlings do maintain their responsiveness to corticosterone at

this time, but no longer respond to 2DG/MA in culture with reduced estradiol secretion.

What accounts for these seasonal and sex differences? Photosensitive birds are still

making the ‘decision’ to breed, while photostimulated birds are already maximally

stimulated by gonadotropins from the HPG axis. Supplementary cues (i.e., non-photic

cues of the suitability of the future environment for breeding and rearing young, such as

habitat quality, presence of mates, weather and stress) are much more important in the

decision to delay or advance the onset of breeding, and appear to be less influential once
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birds have already committed to breeding (Ball, 1993; Dawson, 2008; Hinde & Steel, 1976;

Wingfield & Sapolsky, 2003). This may be mediated physiologically in the gonads by a

dampening of the responsiveness to stress hormones and metabolic stress during breeding.

Additionally, recrudescence of the gonads represents a higher metabolic cost than simply

maintaining large gonads once they have recrudesced (Vezina & Salvante, 2010), although

in a study on wild birds housed indoors with ad libitum food, testicular growth was not

thought to be energy-demanding (Caro & Visser, 2009). Thus when metabolic fuels are

limited, the onset of gonadal growth (which would occur in photosensitive birds) is

delayed, but maintenance of gonads (which would occur in photostimulated birds) is

not. Interestingly, ovaries do continue to respond to corticosterone by locally reducing

sex steroid secretion even while in breeding condition, while testes do not. This result

might reflect the differing breeding strategies of males and females. Female songbirds do

not initiate full follicle growth until conditions are favorable for laying (Morton, 2002).

However, males will continue to support testosterone-stimulated behaviors/physiology

even while stressed, so that fertilization opportunities are not lost (Ball & Ketterson, 2008;

Beletsky, Orians & Wingfield, 1989).

Our data indicate that gonadal GnIH may be involved in mediating the season- and

sex-specific responses to cues of stress. GnIH has been previously identified as a local

inhibitor of testosterone production (McGuire & Bentley, 2010a) and GnIH is upregulated

in the testes of photosensitive males in response to corticosterone and in the ovaries of

photosensitive females in response to metabolic stress (via 2DG/MA). Thus the gonads

are able to respond to cues of stress directly by up-regulating this hormone. In this way,

the gonads of birds are able to fine-tune their steroid secretion and possibly optimize

the onset and degree of gonadal recrudescence in response to their local environment.

Alternatively, other hormones may be involved. An obvious difference between breeding

and non-breeding birds is exposure level to circulating gonadotropins. LH and FSH may

play a role in decreasing the responsiveness of the gonads to corticosterone and metabolic

stress. Additionally, prior to the breeding season, photosensitive birds experience shorter

days than photostimulated birds. Light cues are normally mediated through the brain

and affect the gonads via hormones of the HPG axis (Dawson et al., 2001). However, it

is possible the gonads can respond directly to cues of day length. Melatonin, a hormone

secreted by the pineal gland at night (thus providing a proxy of day length), is detectable

in the plasma in the same phase and duration as the brain (Maywood et al., 1993; Rollag,

O’Callaghan & Niswender, 1978). Melatonin receptors are expressed in the gonads of birds

and mammals, and melatonin appears to affect directly the physiological actions of the

gonads (Ahmad & Haldar, 2010; Ayre & Pang, 1994; Frungieri et al., 2005; Murayama et

al., 1997; Niedziela, Lerchl & Nieschlag, 1995). Melatonin may thus also play a role in the

regulation of seasonal responsiveness to stress in the gonads. Additionally, glucocorticoid

receptor may be seasonally regulated in the gonads of birds, much like amphibians (Denari

& Ceballos, 2006). Alternatively, avian gonads may respond to stress through an additional

pathway in vivo that circumvents the HPG axis: the neural brain-testicular pathway

identified in rats (James, Rivier & Lee, 2008). The existence and seasonal regulation of
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this system is as yet unknown in birds and requires further investigation. The possible use

of seasonal cycles of LH/FSH, melatonin or glucocorticoid receptors, however, does not

exclude the use of seasonal cycles of gonadal GnIH. In fact, GnIH in the hypothalamus

is upregulated independently by both melatonin and stress, and GnIH neurons express

glucocorticoid receptors and melatonin receptors (Calisi, Perfito & Bentley, 2010; Ubuka et

al., 2005). Thus there is a precedent for melatonin and corticosterone to influence GnIH

directly.

The regulation and action of gonadal GnRH in songbirds requires further determi-

nation. However, we conclude here that GnRH mRNA is not upregulated in the gonads

of photosensitive European starlings by the stress hormone, corticosterone, nor by the

metabolic inhibitors, 2DG/MA.

In sum, the evidence provided by our model shows that the testes and ovaries of

European starlings respond directly to chronically elevated corticosterone and metabolic

stress independently of the brain by modulating testosterone and estradiol secretion. This

modulation is season- and sex-specific: it occurs only while birds are deciding to breed,

and it appears to involve the gonadal GnIH system. It is likely that this direct modulation

of gonadal function in response to stress is most important prior to the onset of breeding

because the gonads are not already maximally stimulated by components of the HPG axis

and fully recrudesced. Taken together, our data indicate that photosensitive temperate

songbird testes and ovaries are capable of responding directly to corticosterone and

metabolic stress, in addition to GnRH-induced gonadotropin release, by increasing GnIH

expression and decreasing testosterone and estradiol secretion. Thus, we suggest that the

GnRH system is not the only pathway for integration of cues into a gonadal response.
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