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[1] Multiple‐point geostatistics is a general statistical framework to model spatial
fields displaying a wide range of complex structures. In particular, it allows controlling
connectivity patterns that have a critical importance for groundwater flow and transport
problems. This approach involves considering data events (spatial arrangements of values)
derived from a training image (TI). All data events found in the TI are usually stored in a
database, which is used to retrieve conditional probabilities for the simulation. Instead, we
propose to sample directly the training image for a given data event, making the database
unnecessary. Our method is statistically equivalent to previous implementations, but in
addition it allows extending the application of multiple‐point geostatistics to continuous
variables and to multivariate problems. The method can be used for the simulation of
geological heterogeneity, accounting or not for indirect observations such as geophysics.We
show its applicability in the presence of complex features, nonlinear relationships between
variables, and with various cases of nonstationarity. Computationally, it is fast, easy to
parallelize, parsimonious in memory needs, and straightforward to implement.
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1. Introduction

[2] Geological heterogeneity has a critical influence on
groundwater flow and related processes such as solute
transport or rock‐water interactions. Consequently, a broad
range of models of heterogeneity have been developed over
the last 50 years to improve the understanding of ground-
water‐related processes in complex media [Dagan, 1976,
1986;DeMarsily et al., 2005; Freeze, 1975;Koltermann and
Gorelick, 1996; Matheron, 1966, 1967; Sanchez‐Vila et al.,
2006]. These models are used on the one hand to investi-
gate the influence of heterogeneity on the processes, see for
example Rubin [2003] or Zhang [2002] for recent and
detailed synthesis of the most important results. On the other
hand, even if the stochastic models of heterogeneity are not
used as much as they could be in practice [Dagan, 2004;
Renard, 2007], they make it possible to quantify the uncer-
tainty related to the lack of data and therefore constitute a base
for rationale water management under uncertainty [Alcolea
et al., 2009; Feyen and Gorelick, 2004; Freeze et al.,
1990]. Within this general framework, the most standard
mathematical model of heterogeneity is the multi‐Gaussian
model [Dagan, 1989; Gelhar, 1993; Rubin, 2003; Zhang,
2002]. However, alternative methods are used when one is
interested in specific connectivity patterns [Capilla and
Llopis‐Albert, 2009; Emery, 2007; Gómez‐Hernández and

Wen, 1998; Kerrou et al., 2008; Klise et al., 2009; Knudby
and Carrera, 2005; Neuwiler and Cirpka, 2005; Sánchez‐
Vila et al., 1996; Schaap et al., 2008; Wen and Gomez‐
Hernandez, 1998; Western et al., 2001; Zinn and Harvey,
2003]. This motivated the development of a large number
of modeling techniques [DeMarsily et al., 2005; Koltermann
and Gorelick, 1996]. Among them, multiple‐point statistics
[Guardiano and Srivastava, 1993] is very promising as dis-
cussed in the recent review by Hu and Chugunova [2008].
One of the most efficient and popular implementations of that
theory is the snesim algorithm [Strebelle, 2002]. This method
is now increasingly used in the oil industry [Aitokhuehi and
Durlofsky, 2005; Caers et al., 2003; Hoffman and Caers,
2007; Liu et al., 2004; Strebelle et al., 2003] and in hydro-
geology [Chugunova and Hu, 2008; Feyen and Caers, 2006;
Huysmans and Dassargues, 2009; Michael et al., 2010;
Renard, 2007]. It has also been applied with inversemodeling
techniques [Alcolea and Renard, 2010; Caers and Hoffman,
2006; Ronayne et al., 2008;Mariethoz et al., 2010]. Although
the method is gaining popularity, it still suffers from several
shortcomings. Some of the most acute ones are the difficulties
involved in simulating continuous variables and performing
cosimulations, as well as the computational burden involved.
[3] In this paper, we propose an alternative multiple‐point

simulation technique (Direct Sampling) that can deal both
with categorical data, such as rock types, and continuous
variables, such as permeability, porosity, or geophysical at-
tributes, and can also handle cosimulations. The primary use
of the direct sampling method in hydrogeology is the simu-
lation of geological heterogeneity. Its main advantages are
simplicity and flexibility. The approach allows for the con-
struction of models presenting a wide variety of connectivity
patterns. Furthermore, nonstationarity is a very frequent
feature in most real case situations. Therefore, a special effort
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has been devoted to developing a set of techniques that can be
applied when nonstationarity occurs. Because the method can
handle cosimulation between categorical and continuous
variable when the relation between the variables is complex,
it allows for the integration of geophysical measurements and
categorical rock types observations in the model. Further-
more, even though the method has been developed with the
aim to improve the characterization of heterogeneous aqui-
fers, it is general and can be applied to other fields of water
resources such as rainfall simulation, integration of remote
sensing data, and flood forecasting. These last aspects will not
be treated in the present paper. Instead, we will focus only on
the presentation of the direct sampling method and its use for
heterogeneity modeling. The first section of the paper pro-
vides an overview of multiple‐point geostatistics and high-
lights the novel aspects of the direct sampling method (DS).
Section 2 is a detailed description of the DS algorithm. The
following sections illustrate the possibilities offered by the
method, such as simulating continuous properties, addressing
multivariate problems, and dealing with nonstationarity.
Finally, the last section discusses a recursive syn‐processing
method that is an improvement from existing postprocessing
algorithms [Stien et al., 2007; Strebelle and Remy, 2005;
Suzuki and Strebelle, 2007]. It offers a way of controlling the
trade‐off between numerical efficiency and quality of the
simulation. The syn‐processing is applied in conjunction with
DS but could be used with any other multiple‐point simula-
tion algorithm.

2. Background on Multiple‐Point Geostatistics

[4] Multiple‐point geostatistics is based on three concep-
tual changes that were formalized by Guardiano and
Srivastava [1993]. The first one is to state that data sets
may not be sufficient to infer all the statistical features that
control what the modeler is interested in. For example, on the
basis only of point data, it is not possible to know whether the
high values of hydraulic conductivity are connected or belong
to isolated blocks [Gómez‐Hernández and Wen, 1998].
Therefore, any statistical inference based only on the analysis
of point data (even if it uses complex statistics) will be blind to
that characteristic of the underlying field [Sánchez‐Vila et al.,
1996; Zinn and Harvey, 2003].
[5] The second conceptual change is to adopt a non‐para-

metric statistical framework to represent heterogeneity
[Journel, 1983; Wasserman, 2006]. The proposal of
Guardiano and Srivastava [1993] is to use a training image
(TI), i.e., a grid containing spatial patterns deemed repre-
sentative of the spatial structures to simulate. The training
image can be viewed as a conceptual model of the hetero-
geneity in the case of aquifer characterization but should be
seen more generally as an explicit prior model [Journel and
Zhang, 2006]. The statistical model is then based not on the
data only but also on the choice of the training image and on
the algorithm and parameters that control its behavior
[Boucher, 2007]. One can choose training images that reflect
various spatial models [Suzuki and Caers, 2008] and that
integrate external information about spatial variability, such
as geological knowledge not contained in the data itself. This
is especially useful in cases where data are too scarce for the
inference of a spatial model. Conversely, when large amounts
of hard data are present, it is possible to abandon the TI and to

adopt an entirely data‐driven approach by inferring multiple‐
point statistics from these data [Mariethoz and Renard, 2010;
Wu et al., 2008].
[6] The use of a TI makes the third conceptual change

possible, which is to evaluate the statistics of multiple‐point
data events [Guardiano and Srivastava, 1993]. The multiple‐
point statistics are expressed as the cumulative density
functions for the random variable Z(x) conditioned to local
data events dn = {Z(x1), Z(x2), � � �, Z(xn)}, i.e., the values of Z
in the neighboring nodes xi of x,

F z; x; dnð Þ ¼ Prob Z xð Þ � zjdnf g: ð1Þ

Simulations based on multiple‐point statistics proceed
sequentially. At each successive location, the conditional
cumulative distribution function (ccdf) F(z, x, dn) is condi-
tioned to both the previously simulated nodes and the actual
data. A value for Z(x) is drawn from the probability distri-
bution and the algorithm proceeds to the next location. Since
F(z, x, dn) depends on the respective values and relative po-
sitions of all the neighbors of x simultaneously, it is very rich
in terms of information content. To estimate the nonpara-
metric ccdf (1) at each location, Guardiano and Srivastava
[1993] proposed to scan entirely the training image at each
step of the simulation. The method was inefficient and
therefore could not be used in practice.
[7] A solution to that problem was developed by Strebelle

[2002]: the snesim simulation method proceeds by scanning
the training image for all pixel configurations of a certain size
(the template size) and storing their statistics in a catalogue of
data events having a tree structure before starting the
sequential simulation process. The tree structure is then used
to rapidly compute the conditional probabilities at each
simulated node. In general, to limit the size of the tree in
memory, the template size is kept small, which prevents
capturing large‐scale features such as channels. To palliate
this problem, Strebelle [2002] introduced multigrids (or
multiscale grids) to simulate the large‐scale structures first
and later the small‐scale features. Although multigrids allow
good reproduction at different scales, they generate problems
related to the migration of conditioning data at each multigrid
level. Artifacts may appear, especially with large data sets
that cannot be fully used on the coarsest multigrids levels.
Since all configurations of pixel values that are found in the
TI are stored in the search tree, the use of snesim is often
limited by the memory usage. The size of the template, the
number of lithofacies, and the degree of entropy of the
training image directly control the size of the search tree and
therefore control the memory requirement for the algorithm.
In practice, these parameters are limited by the available
memory especially for large 3‐D grids. For example, with
four lithofacies and a template made of 30 nodes, there can be
up to 430 possible data events, which by far exceeds the
memory limit of any present‐day computer (although in
practice, the number of data events is limited by the size of the
TI). This imposes limits on the number of facies and the
template size, and hence complex structures described in the
TI can often not be properly reproduced. Straubhaar et al.
[2010] mitigate this problem by storing multiple‐point sta-
tistics in lists instead of tree structures. In addition, to account
for nonstationarity either in the training image or in the
simulation, it is necessary to include additional variables that
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further increase the demand for memory storage [Chugunova
and Hu, 2008].
[8] The approaches described in the previous paragraphs

can only deal with categorical variables because of the dif-
ficulty to infer (1) from a continuous TI. Zhang et al. [2006]
propose an alternative method in which the patterns are
projected (through the use of filter scores) into a smaller
dimensional space in which the statistical analysis can be
carried out. The resulting filtersim algorithm does not simu-
late nodes one by one sequentially, but proceeds by pasting
groups of pixels (patches) into the simulation grid. It uses the
concept of similarity measure between groups of pixels and
can be applied both to continuous or categorical variables. For
completeness, it should be noted that Arpat and Caers [2007]
and El Ouassini et al. [2008] also proposed alternative tech-
niques based on pasting entire patterns.
[9] In this paper, we adopt the point of view that generating

simulations satisfying the ccdf expressed in equation (1) does
not involve explicitly computing this ccdf. We therefore
suggest that the technical difficulties involved in the com-
putation of the ccdf can be avoided. Instead of storing and
counting the configurations found in the training image, it is
more convenient to directly sample the training image in a
random manner but conditional to the data event. Mathe-
matically, this is equivalent to using the training image (TI) to
compute the ccdf and then drawing a sample from it. The

resulting direct sampling (DS) algorithm is inspired by
Shannon [1948], who produced Markovian sequences of
random English by drawing letters from a book conditionally
to previous occurrences.
[10] In addition, we use a distance (mismatch) between

the data event observed in the simulation and the one sam-
pled from the TI. During the sampling process, if a pattern is
found that matches exactly the conditioning data or if the
distance between these two events is lower than a given
threshold, the sampling process is stopped and the value at
the central node of the data event in the TI is directly pasted
in the simulation. Choosing an appropriate measure of dis-
tance makes it possible to deal with either categorical or
continuous variables and to accommodate complex multi-
variate problems such as relationships between categorical
and continuous variables.

3. Direct Sampling Algorithm

[11] The aim of the direct sampling method is to simulate a
random function Z(x). The input data are a simulation grid
(SG) whose nodes are denoted x, a training image (TI) whose
nodes are denoted y, and, if available, a set of N conditioning
data z(xi), i 2 [1, � � �, N] such as borehole observations. The
principle of the simulation algorithm is illustrated in Figures 1
and 2 and proceeds as follows.

Figure 1. Illustration of the direct sampling (DS) method. (a) Define the data event in the simulation grid.
The question mark represents the node to be simulated. The two white and the black pixels represent nodes
that have been previously simulated. (b) Define a search window in the TI grid by using the dimensions a, b,
c, d of the data event. (c) Linearly scan the search window starting from a random location until (d) the sim-
ulation data event is satisfactorily matched. (e) Assign the value of the central node of the first matching data
event to the simulated node.
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[12] 1. Each conditioning data is assigned to the closest
grid node in the SG. If several conditioning data should be
assigned to the same grid node, we assign the closest one to
the center of the grid node.
[13] 2. Define a path through the remaining nodes of the

SG. The path is a vector containing all the indices of the grid
nodes that will be simulated sequentially. Random [Strebelle,
2002], unilateral (where nodes are visited in a regular order
starting along one side of the grid [e.g. Daly, 2004]) or any
other path can be used.
[14] 3. For each successive location x in the path:
[15] a. Find the neighbors of x. They consist of a maximum

of the n closest grid nodes {x1, x2, � � �, xn} that were already
assigned or simulated in the SG. If no neighbor is found for x
(e.g., for the first node of an unconditional simulation), ran-
domly take a node y in the TI and assign its value Z(y) to Z(x)
in the SG. The algorithm can then proceed to the next node in
the path.
[16] b. Compute the lag vectors L = {h1, � � �, hn} = {x1 − x,

� � �, xn − x} defining the neighborhood of x,N(x,L) = {x + h1,
� � �, x + hn}. For example, in Figure 1a the neighborhood of
the gray pixel (that represents the node to be simulated)
consists of three lag vectors L = {(1, 2), (2, 1), (−1, 1)}
corresponding to the relative locations of the three already
simulated grid nodes.
[17] c. Define the data event dn (x, L) = {Z(x + h1), � � �,

Z(x + hn)}. It is a vector containing the values of the
variable of interest at all the nodes of the neighborhood. In the
example of Figure 1a, the data event is dn (x, L) = {0, 0, 1}.
[18] d. Define the search window in the TI. It is the

ensemble of the locations y such that all the nodesN(y,L) are
located in the TI. The size of the search window is defined by
the minimum and maximum values of the individual com-
ponents of the lag vectors (Figure 1b).
[19] e. Randomly draw a location y in the search window

and from that location scan systematically the searchwindow.
For each location y:
[20] i. Find the data event dn(y, L) in the training image. In

Figure 1c, a random grid node has been selected in the search
window of the TI. The data event is retrieved and is found to
be dn(y, L) = {1, 0, 1}.

[21] ii. Compute the distance d{dn(x, L), dn(y, L)}
between the data event found in the SG and the one found
in the TI. The distance is computed differently for contin-
uous or discrete variables. Therefore we will describe this
step more in detail later in the paper.
[22] iii. Store y, Z(y) and d{dn(x, L), dn(y, L)} if it is the

lowest distance obtained so far for this data event.
[23] iv. If d{dn(x, L), dn(y, L)} is smaller than the accep-

tance threshold t, the value Z(y) is sampled and assigned to
Z(x). This step is illustrated in Figure 1d. In that case, the
current data event in the TI matches exactly the data event
in the SG. The distance is zero and the value Z(y) = 1 is
assigned to the SG (Figure 1e).
[24] v. If the number of iterations of the loop i–iv exceeds a

certain fraction of the size of the TI, the node ywith the lowest
distance is accepted and its value Z(y) is assigned to Z(x).
[25] The definition of the data event by considering the n

closest informed grid nodes is very convenient as it allows the
radius of the data events to decrease as the density of
informed grid nodes becomes higher. This natural variation of
the data events size has the same effect as multiple grids
[Strebelle, 2002] and makes their use unnecessary. Figure 2
illustrates the decrease of the data events radius with neigh-
borhoods defined by the four closest grid nodes.
[26] In the proposed method, the concept of a distance

between data events d{dn(x), dn(y)} is extremely powerful,
because it is flexible and can be adapted to the simulation of
both continuous and categorical attributes. For categorical
variables, we propose to use the fraction of nonmatching
nodes in the data event, given by the indicator variable a that
equals 0 if two nodes have identical value and 1 otherwise,

d dn xð Þ; dn yð Þf g ¼
1

n

X

n

i¼1

ai 2 0;1½ �;

where ai ¼
0 if Z xið Þ ¼ Z yið Þ

1 if Z xið Þ 6¼ Z yið Þ

�

: ð2Þ

This measure of distance gives the same importance to all the
nodes of the data event regardless of their location relative to
the central node. It may be preferable to weight equation (2)
according to the distance of each node in the template from

Figure 2. Illustration of the natural reduction of the data events size. The neighborhoods for simulating
three successive grid nodes a, b, and c are defined as the four closest grid nodes. As the grid becomes more
densely informed, the data events become smaller.
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the central node, such as the norm of the lag vector hi using a
power function of order d,

d dn xð Þ; dn yð Þf g ¼

P

n

i¼1

ai khik
��

P

n

i¼1

khik��

2 0;1½ �;

where ai ¼
0 if Z xið Þ ¼ Z yið Þ

1 if Z xið Þ 6¼ Z yið Þ

�

: ð3Þ

Specific weights can be defined if some of the data event
nodes are conditioning data, as described by Zhang et al.
[2006]. This can be used to enforce more pattern consis-
tency in the neighborhood of conditioning data or to give
less importance to data presenting measurement errors. For
all examples presented in this paper, we did not define
specific weights for conditioning data. We also used d = 0
(i.e., all nodes of the data event have the same importance),
which generally gives good results. Nevertheless, adjusting
d may be a way of obtaining images more representative of
the TI while reducing CPU time.Kriging weights could be
used here instead of power distance weighting, but this
would involve tedious adjustment of covariance functions.
Moreover, the CPU overburden involved in inverting a
krigingmatrix for each simulated node would be a high price
to pay.
[27] For continuous variables, we propose to use a

weighted Euclidian distance,

d dn xð Þ; dn yð Þf g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

�i Z xið Þ � Z yið Þ½ �2

s

2 0;1½ �; ð4Þ

where

�i ¼
khik

��

d2
max

P

n

j¼1

khjk��

; dmax ¼ max
y2TI

Z yð Þ �min
y2TI

Z yð Þ: ð5Þ

The proposed distance is the square root of the weighted
mean square differences between dn(x) and dn(y). In prac-
tice, the data event dn(y) matching perfectly dn(x) is often
not found in the TI, especially for continuous variables.
This is why an acceptance threshold t is introduced. When
d{dn(x), dn(y)} is smaller than t, the data event dn(y) is
accepted.
[28] The numerator in ai weights the contribution of the

data event nodes according to their distance to the central
node. The denominator, although not needed for comparing
distances between data events, is useful in practice to ensure
that the distances are defined within the interval [0,1], making
it easier to choose an appropriate acceptance threshold (for
example, numerical tests have shown that 0.05 is a low
threshold and 0.5 is a high threshold, whereas it can be more
tedious without normalization).
[29] We do not suggest that the distances proposed above

are exhaustive or appropriate for all possible situations. Other
distances than the ones proposed above can be developed. For
example, an alternative to (4) for continuous variables could
be the normalized pair wise Manhattan distance,

d dn xð Þ; dn yð Þf g ¼
1

n

X

n

i¼1

Z xið Þ � Z yið Þj j

dmax

2 0;1½ �: ð6Þ

The choice of the distance measure used to compare data
events of the simulation and of the TI should be adapted to the
nature of the variable to simulate. For example, using distance
(4) for the simulation of a categorical variable such as litho-
facies would induce order relationships between the facies
(i.e., facies 1 would be closer to facies 2 than to facies 3),
which is conceptually wrong because facies codes are arbi-
trarily attributed. In section 7.1, we show how custom dis-
tances can be defined for specific problems.
[30] The quality of the pattern reproduction in the gener-

ated images depends on the size of the neighborhoods, the
value of the acceptance threshold and the fraction of the TI
that can be scanned for the simulation of each node. Certain
settings of these parameters can be expensive in terms of CPU
time. However, CPU burden can be alleviated using paral-
lelization. Parallelizing the DS algorithm is straightforward
on shared memory machines: each CPU performs the search
in a limited portion of the TI. Our experience showed that this
parallelization technique, using the OpenMP libraries, is very
efficient in terms of speed‐up. On a dual‐core processor, the
code runs about 1.9 times faster on two cores than on one,
using various test cases. Moreover, recent parallelization strat-
egies using Graphics Processing Units (GPU) may allow
much shorter computation times. Parallelization on distributed
memory machines is more challenging, but specific methods
have been developed and have proven to be very efficient
when applied to DS, showing good performance with as much
as 54 processors [Mariethoz, 2010]. Nevertheless, even with-
out parallelization, DS takes about the same time as traditional
multiple‐point simulators to obtain images of a similar quality.

4. Simulation of a Continuous Variable

[31] Flow and transport simulators deal with continuous
properties, such as hydraulic conductivity, storativity,
porosity, etc. However, categorical image generation meth-
ods are often used to obtain realistic connectivity patterns by
reproducing the facies architecture of the subsurface. The
simulated facies are then populated with continuous proper-
ties using other geostatistical techniques [Caers, 2005]. By
directly simulating continuous variables, DS does not need
this two‐step approach to generate continuous variables fields
presenting realistic connectivity patterns.
[32] Figure 3 shows a simulation using a TI borrowed from

Zhang et al. [2006], consisting of a continuous variable with
high connectivity of the low values. The TI (Figure 3a) and
the simulation (Figure 3b) have the same size of 200 by 200
grid nodes. Distance (4) was used in the DS simulation.
Conditioning data are 100 values taken in the TI and located
at random positions in the simulation. This ensures that the
conditioning data are not spatially coherent with the model
but belong to the univariate marginal distribution. Despite
this situation, the DS algorithm produces realizations that are
consistent with the TI (high connectivity of the low values)
and satisfactorily respect the conditioning data. Figure 3c
shows the histogram reproduction. Note that a unilateral
path was used here [Daly, 2004; Pickard, 1980]. Condition-
ing to data is possible with the unilateral path; this is
accomplished by using large data events (80 nodes) including
distant data points, which was not easily feasible with tradi-
tional multiple‐point methods.
[33] This example shows that the DS method is able to

simulate complex fields of continuous variables while con-
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straining properties such as the statistical distribution and the
connectivity patterns. Therefore, the method can produce
specific types of heterogeneity that control the flow and
transport behavior of the model.

5. Multivariate Case

[34] Contrary to existing multiple‐point simulation tech-
niques, DS is not limited by the dimension of the data events
because there is no need to store their occurrences. Hence the
data events can be defined through several variables that can
be simulated jointly or used for conditioning following the
same principle as cosimulation (it may be collocated or not).
The training image is a multivariate field comprising m
variables Z1(x), � � �, Zm(x). Such multivariate fields are pre-
sented as “vector images” by Hu and Chugunova [2008].
Accounting for multiple‐point dependence between variables
means to respect cross correlations between all combinations
of nodes within multivariate data events. The conditional
cumulative density function (1) for the variable Zk is then
expressed as

Fk z; x; d1n1 ; � � � ; d
m
nm

� �

¼ Prob Zk xð Þ � zjd1n1 ; � � � ; d
m
nm

n o

;

k ¼ 1; � � � ;m: ð7Þ

Each variable Zk involved in the multivariate analysis can
have a different neighborhood and a specific data event
dnk
k (x, Lk) = {Zk(x + h1

k), � � �, Zk(x + hnk
k )}. The number

nk of nodes in the data event of each variable can be
different, as well as the lag vectors Lk. To simplify the
notation, we just extend the previous concept of data event to
the multivariate case: here the data event dn(x) is the joint

data event including all the individual data events dn(x) =
{dn1

1 (x, L1), � � �, dnm
m (x, Lm)}. The distance between a joint

data event found in the simulation and one found in the TI

is defined as a weighted average of the individual distances

defined previously,

d dn xð Þ; dn yð Þf g ¼
X

m

k¼1

wkd dknk x;Lk
� �

; dknk y;Lk
� �

n o

2 0;1½ �;

with

X

m

k¼1

wk ¼ 1; and wk � 0: ð8Þ

The weights wk are defined by the user. They can for the

fact that the pertinent measure of distance may be different

for each variable. Multivariate simulations are performed

using a single (random) path that visits all components of

vector Z at all nodes of the SG.
[35] Figure 4 shows an example of a joint simulation of two

variables that are spatially Dependent by some unknown
function. For this synthetic example, the TI for variable 1
(Figure 4a) is a binary image representing a channel system
[Strebelle, 2002]. The TI for variable 2 (Figure 4b) was ob-
tained by smoothing variable 1 using a moving average with a
window made of the 500 closest nodes and then adding an
uncorrelated white noise uniformly distributed between 0 and
0.5. This secondary variable could represent the resistivity
map corresponding to the lithofacies given by variable 1. The
result is a bivariate training image where variables 1 and 2 are
related via a multiple‐point dependency. Figures 4c and 4d
show one unconditional bivariate simulation using the TI
described above. The categorical variable 1 uses distance (3)

Figure 3. Illustration of the method using a continuous variable. (a) Training image with continuous
variable. (b) One simulation using the unilateral path with 100 randomly located conditioning data (n =
80, t = 0.01). Positions of conditioning data are marked by circles whose colors indicate the values of the
data. (c) Comparison of the histograms.
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and the continuous variable 2 uses distance (4). The multiple‐
point dependence relating both variables is well reproduced,
both visually and in terms of cross variograms (Figure 4e),
which is a measure of two‐point correlation. Note that ad-
dressing dependencies between categorical and continuous
variables is usually awkward. The scatter plot depends on the
facies numbering (which is arbitrary) and correlation factors
are meaningless. Here DS is able to reproduce multiple‐point
dependence, including statistical parameters more complex
than the scatterplot (e.g., cross variograms).
[36] Problems traditionally addressed by including

exhaustively known secondary variables [e.g., Mariethoz
et al., 2009] are particular cases of the multivariate DS
approach. Whereas existing MP methods consider only the
secondary variable at the central node x, DS accounts for
complex spatial patterns of the secondary variable because
multiple‐point statistics are considered for both primary and
secondary variables.

[37] When one (or several) of the joint variables is already
known, DS uses this information as indirect conditioning data
(secondary variable) guiding the simulation of the other
variables (primary variables) and then reducing uncertainty.
In the following example, the aim is to simulate the pri-
mary variable knowing only the secondary variable and the
multiple‐point statistical relationship between primary and
secondary variables, which is given via the bivariate TI. For
illustration, consider Figures 4a and 4b as the bivariate TI
and Figure 5b as the auxiliary variable for the simulation
grid. Figure 5b was obtained as follows. First, Figure 5a was
generated with an univariate unconditional simulation using
Figure 4a as TI. Then, Figure 5b was computed from
Figure 5a, applying a moving average followed by addition
of a white noise. Hence, the aim is to reconstruct the ref-
erence field Figure 5a from Figure 5b and the multiple‐point
dependence given by the bivariate TI (Figures 4a and 4b),
using multivariate DS.

Figure 4. Joint simulation of two variables (n1 = 30, n2 = 30, t = 0.01, w1 = 0.5, w2 = 0.5). (a and b) The
bivariate training image, with a complex multiple‐point dependence. (c and d) One resulting bivariate sim-
ulation, where the MP dependence is reproduced. (e) Cross‐variograms reproduction. Note that no vario-
gram adjustment was necessary.
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[38] Figure 5c displays one realization of the primary
variable, conditional to the exhaustively known secondary
variable (Figure 5b). No conditioning data are available for
the primary variable. The features of the reference field are
correctly inferred from the information contained in the sec-
ondary variable, as shown in Figure 5d, where the reference
(Figure 5a) and the simulation (Figure 5c) are superposed. In
Figure 5e, the mean of 100 simulations is presented. In
average, the channels are correctly located when compared to
the reference.
[39] This technique could be applied for example, when a

ground penetrating radar survey provides an exhaustive data
set (secondary variable) and when the primary variable that
needs to be characterized is the hydraulic conductivity [e.g.,
Langsholt et al., 1998]. The relation between both variables is
complex and not necessarily linear. DS can be applied to this
type of problem if one can provide a bivariate TI. A possi-
bility to construct the bivariate TI is to use first a TI of the
hydraulic conductivity and then use a forward geophysical
model to simulate the secondary variable.

6. Dealing With Nonstationarity

[40] Geological processes are intrinsically nonstationary.
The ability to address nonstationarity is vital for the appli-

cability of a geostatistical method in Earth Sciences. For
existing MP methods, several techniques can be found in the
literature to account for nonstationarity either of the TI or of
the simulated field [Chugunova andHu, 2008;De Vries et al.,
2009; Journel, 2002; Strebelle, 2002]. One of the ways of
dealing with nonstationary TIs is to divide a nonstationary TI
in stationary zones, each considered as a separate stationary
TI [Boucher, 2009; De Vries et al., 2009]. The simulation
domain is then also divided into zones, each corresponding to
a specific TI. In the framework of traditional multiple‐point
statistics, usingmultiple TIs involves creating one data events
catalogue per training image [Wu et al., 2008]. Although, it
may be difficult in practice to define the stationary zones, it
could be applied easily with DS by scanning a different part of
a TI or different TIs for each simulated zone. There would be
no limitations to the number of TIs and zones related to
memory requirements. More generally, all the techniques
cited above can be used with DS, but new possibilities are
also offered by exploiting the specificities of DS.

6.1. Addressing Nonstationarity With Specific
Distances

[41] We discussed above how the distance measure should
be chosen according to the nature of the variables at stake.

Figure 5. The use of a secondary variable to guide the simulation of a primary variable. (a) The reference
primary variable, obtained with a univariate unconditional simulation using Figure 4a as TI. (b) The ref-
erence secondary variable computed by transformations of the primary variable (see text for details). The
bivariate training images a and b describe the MP relationship between primary and secondary variables.
(c) One multivariate simulation generated using the fully known secondary variable b as conditioning
data (n1 = 30, n2 = 30, t = 0.01, w1 = 0.5, w2 = 0.5). (d) Superposition of one simulation and the reference.
(e) Mean of 100 simulations.
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Following this idea, we propose to forge distances adapted to
nonstationary cases. An example of such custom distance
measure is the pair‐wise Euclidean distance relative to the
mean of the data event,

d dn xð Þ; dn yð Þf g

¼
X

n

i¼1

�i Z xið Þ � �Z xð Þð Þ � Z yið Þ � �Z yð Þð Þ½ �
2

 !1=2

2 0;1½ �;

ð9Þ

with Z xð Þ ¼ 1

n

P

n

i¼1

Z(xi). When a matching data event is found

in the TI, the local mean of the SG data event is added to the
value found in the TI. Therefore, the value Z(y) − Z(y) + Z(x)
is attributed to the simulated node. The distance described in
equation (9) compares data events by their relative varia-
tions only and not their actual values. This variation‐based
distance can be very useful when considering first‐order
nonstationary phenomena. We illustrate this situation with
the example depicted in Figure 6. The available training
image (Figure 6a) is a multi‐Gaussian field with zero mean
and unit variance, resulting in minimum and maximum
values of −3.52 and 3.99, respectively. It was generated
using an exponential variogram model, with ranges of 35
units along the x axis and 25 units along the y axis. Its size is
250 by 250 grid nodes. One hundred conditioning data are
available (Figure 6b), but they are not compatible with the
training image, as their values span between a minimum of
99.55 and a maximum of 110.92, with a mean of 105.12.
Moreover, these data show nonstationarity. Because the
distance (9) is based on the variations of the values in the
data event, it is possible to find matches between the data
events found in the data and the ones of the TI despite the
difference in the range and the nonstationarity. The resulting
simulations (one is shown in Figure 6c) display the same
variable range (minimum, 98.13; maximum, 111.72; mean,
104.87) and the same nonstationary behavior as the data, but
also a spatial structure similar to what is found in the TI. In
this case, nonstationarity can be seen as a locally varying
mean, and therefore distance (9) can accommodate it well. If
the nonstationarity was more complex, such as, for example,
structures ranging from channels to lenses, this distance
measure would not be appropriate.

[42] This example shows that variation‐based distance can
be used when a conceptual model allows the geologist to
provide a training image, but when the data indicate the
presence of nonstationarity and inadequacy of the ranges
given in the TI. Moreover, it emphasizes the flexibility
offered by using distances between data events, which is one
of the major advantages of the DS approach.

6.2. Addressing Nonstationarity With Transformation
of Data Events

[43] Traditional multiple‐point simulation implementa-
tions such as snesim include the possibility of imposing
transformations on the structures found in the TI. This is done
by first constructing the data events catalogue using a trans-
formed template and then simulating values with a non-
transformed template [Strebelle, 2002]. The most commonly
implemented transformations are rotation and affinity
(application of homothetic transformations on the template).
This feature is very useful when the modeler has a single
stationary training image and wants to use it for the simula-
tion of nonstationary fields. If many different transformations
have to be applied on the simulation grid, most approaches
store as many data events catalogues. The DS approach also
allows these transformations. Simply scanning the TI with a
transformed data event gives the same results as the tradi-
tional technique. Moreover, transformations are not defined
by zones, but as a continuum, because the transformation can
be different for each simulated node. In some cases, rotation
or affinity may result in large data events that do not fit in the
TI. In such cases, the data event nodes located outside of the
TI are ignored until it becomes possible to scan the TI with
this new, reduced data event.
[44] Figure 7 shows an example of such transformation,

with angle and affinity maps (Figures 7a and 7b) defined by
continuous variables. All angles between −180° and 180° are
represented, and the affinity ratios range from 1 at the center
of the image to 0.4 in the corners (meaning that all structures
are reduced to 40% of the size they have in the TI). The
training image (Figure 7c) is much smaller (250 by 250
nodes) than the simulation domain (1000 by 1000 nodes) and
represents horizontal channels. This combined transforma-
tion (rotations + affinities) results in channels oriented in all

Figure 6. Simulation using a variation‐based distance. (a) Multi‐Gaussian stationary training image.
(b) Nonstationary data set (100 points data), with values in a different range than those of the training image.
(c) One simulation with variation‐based distance (n = 15, t = 0.01). Circles represent the location of the 100
conditioning data.
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directions and becoming thinner as they are located further
away from the centre (Figure 7d).

6.3. Addressing Nonstationarity With a Secondary
Variable

[45] A situation where a secondary variable can be
extremely powerful occurs when the training image itself is
nonstationary. This is the case, for example, when the TI is
taken from direct field observation or when it is obtained from
a process based simulation. When this type of nonstationarity
occurs, one can introduce one or several secondary variables
to model the nonstationarity in the TI and in the simulation, as
it was proposed by Chugunova and Hu [2008]. The approach
uses spatially continuous auxiliary variables to distinguish
the regions where similar patterns occur. This secondary
variable can be rather abstract, it just needs to be defined on
the training image and on the simulation grid and it must have
similar values in regions where similar patterns occur. While
this idea was implemented by Chugunova and Hu [2008] by
modifying the probability tree structure of snesim, it is
accomplished in a straightforward manner with DS by using a
multivariate TI with variable 1 being the variable of interest

and the other variables describing the non‐stationarity of
variable 1.
[46] Figure 8 illustrates this concept in a simple situation.

The TI for the primary variable is binary and shows a set of
rotating channels. The orientation of the channels changes as
a function of the X coordinate (Figure 8a). Therefore, a simple
way to describe this nonstationarity is to use the X coordinate
as the secondary variable (Figure 8b). On the simulation, if
ones want to have horizontal channels on the top, vertical
channels in the bottom and a smooth transition in between,
one first generates a map of the secondary variable such as the
values of this map describe the required nonstationarity: in
this case, the secondary variable (X coordinate map) is rotated
so that zeros are at the bottom, ones are on top, and inter-
mediate values are in between (Figure 8d). Using that sec-
ondary information and the standard multivariate collocated
cosimulation DS method presented earlier, the resulting
simulation displays the desired non‐stationary behavior
(Figure 8c). For these simulations, the neighborhoods are
made of n1 = 30 nodes for the primary variable and n2 = 1 for
the secondary variable, because a single node is enough to
characterize the nonstationarity. The weights of both vari-
ables are kept equal, with w1 = w2 = 0.5.

Figure 7. Transformations of the data events. (a) Rotation map. (b) Affinity map. (c) Stationary training
image. (d) Simulation with transformed data events (n = 30, t = 0).
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[47] Although this is a simple example, the use of a con-
tinuous secondary variable to describe nonstationarity allows
accounting for very rich types of nonstationarity such as a
change in the type of structures encountered.

7. Improving Pattern Reproduction

[48] Accurate pattern reproduction can be jeopardized
when a data event cannot be found in the TI. This problem is
common to all multiple‐point simulations methods and is
more acute when a random path is used in the simulation grid.
In traditional multiple‐point simulation algorithms, this issue
is usually dealt with by dropping the neighbor node that is the
farthest away from the central node and, by performing a
search in the data events catalogue for this new, reduced
pattern [Strebelle, 2002]. The main drawback of this proce-
dure is that it induces a degradation of the pattern reproduc-
tion by artificially reducing the template size for the com-
putation of the ccdf (1). Such degradation can lead to a lack of
spatial continuity of the simulated structures (such as chan-
nels). Several authors have proposed methods to improve
patterns reproduction. Strebelle and Remy [2005] locate the
nodes that were simulated using a reduced neighborhood and
resimulate the dropped neighbors at the end of each multigrid
step. This method does not remove all the inconsistencies in
the simulated patterns but performs additional simulation
attempts with updated neighborhoods. As problematic values
are temporarily accepted (until the entire multigrid is simu-
lated), they propagate inconsistencies to nodes that are sim-

ulated later. Therefore, if a node is successfully resimulated, it
is not guaranteed that all its neighbors are consistent between
each other. Another algorithm, proposed by Stien et al.
[2007], does not temporarily accept values generating con-
flicts but deletes the problematic nodes in the neighborhood.
At the end of a multigrid level, these nodes are simulated. The
process is iterative and needs specific parameters to ensure
convergence. Although this method avoids the propagation of
inconsistencies by deleting them, it does not resolve the
problem of the origin of these problematic patterns. Indeed,
inconsistencies exist because other nearby problematic pat-
terns occurred previously in the simulation process. In our
opinion, the only way to deal with this problem is to imme-
diately address the entire cascade of causes at the origin of
problematic patterns.
[49] In the context of simulations using a unilateral path

[Daly, 2004], Suzuki and Strebelle [2007] developed the real‐
time postprocessing method (RTPP) that walks back the
unilateral path when problematic neighborhoods are
encountered and resimulates the most recent nodes until the
produced patterns satisfactorily match the ones of the TI. The
limits of this method are that it is applicable to the first stage
of the simulation only (the first multigrid) and only when
using a unilateral path. Therefore, like all simulation methods
using the unilateral model, it suffers from difficulties in
honoring conditioning data. Nevertheless, this method has the
advantage of correcting all inconsistencies because it
resimulates the neighborhoods of the problematic nodes and

Figure 8. The use of a secondary variable to model nonstationarity. (a) Variable 1 of nonstationary train-
ing image. (b) Dependent joint variable describing the nonstationarity of variable 1 in training image.
(c) Resulting simulation for variable 1 (n1 = 30, n2 = 1, t = 0.01, w1 = 0.5, w2 = 0.5). (d) Dependent joint
variable (exhaustively known) describing the nonstationarity of variable 1 in simulation.
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not only the problematic nodes themselves. As incon-
sistencies are resimulated immediately, it avoids propagation
to their neighbors.
[50] In this context, we propose a new algorithm, the syn‐

processing, aimed at improving the reproduction of patterns.
It is generic enough to be applicable to any type of path and
with or without multigrids. As the RTPP, it resimulates values
as soon as inconsistencies are met. It is based on the idea that
when an inconsistent pattern (with respect to the TI) is found,
it is because other inconsistencies occurred previously in the
simulation process. Therefore, before resimulating problem-
atic nodes, their neighborhoods also need to be (at least
partially) resimulated. If inconsistencies appear during this
resimulation, further resimulation needs to be performed.
Hence, the algorithm is of a recursive nature.
[51] The syn‐processing algorithm consists in the follow-

ing steps at each simulated node x: check if the simulated
value Z(x) is acceptable. The acceptance criterion can be a
minimum number of dropped neighbor nodes in the frame-
work of classical multiple‐point implementation. In the case
of DS, the criterion is that the minimum distance d{dn(x),
dn(y)} found is below a threshold.
[52] If the criterion is not met, the simulation of Z(x) is

postponed and one of its neighbors N−1(x), taken among
those that do not belong to the original set of conditioning
data, is resimulated taking into account the same criterion. For
the simulation of the node N−D(x):
[53] 1. If the criterion is not met for Z{N−D(x)}, delete it

and resimulate one of its neighbors, N−(D+1)(x).
[54] 2. If the criterion is met for Z{N−D(x)}, accept this

value and try simulating Z{N1−D(x)}.
[55] Note that D is the number of deleted nodes for the

initial node x. To ensure convergence, a maximum allowed
number of deletions must be set.
[56] Syn‐processing can sometimes delete and resimulate

the same nodes in a cyclic manner. Such cycles are a waste of
time as they do not improve the simulation. This can be
avoided by keeping a record of all deletions. Before each
deletion, the analysis of this record allows finding if the
present state of the SG already occurred in the past. If it is the
case, another random neighbor is chosen in order to break the
cycle.
[57] Tests show that syn‐processing efficiently improves

pattern reproduction, as well as conditioning to local data. As
the algorithm is recursive, CPU time can be adversely
affected depending on the criterion to accept a simulated
value. If the criterion is very strict (such as t = 0 for a con-
tinuous variable) and if the maximum allowed number of
iterations is very large, convergence can be compromised. On
the other hand, improving pattern reproduction increases the
global coherence of the simulation with respect to the TI. It
becomes then easier to find matching data events in the TI,
thus making the scan process faster for the remaining nodes.
In certain cases, syn‐processing can even reduce simulation
time up to a factor 2 while improving simulations quality.
Moreover, tests showed that performing syn‐processing only
at the beginning of the simulation is sufficient to obtain better
reproduction of large‐scale features and general connected-
ness of the simulated structures, as compared to simulations
without syn‐processing. Therefore, a tradeoff needs to be
achieved between the different parameters governing the
simulation, in order to obtain optimal results at the lowest
possible CPU cost.

[58] Note that syn‐processing was used when generating
the simulation examples presented in Figures 5a and 8. For
comparison, note the difference of continuity between
Figure 4c, where no syn‐processing was used, and Figure 5a
that was generated using syn‐processing. The latter figure
reproduces better the sinuosity and the connectivity of the
channels found in the TI.

8. Discussion and Conclusion

[59] In this paper, we presented the direct sampling (DS)
simulation method and a recursive syn‐processing algo-
rithm to enhance the quality of pattern reproductions in the
simulations.
[60] As compared to traditional multiple point techniques

such as snesim [Strebelle, 2002], the proposed method is able
to generate exactly the same ensemble of stochastic realiza-
tions if we use the same neighborhood as snesim and if we use
multigrids. The advantage of DS is that it allows respecting
the conditional probability distribution that could be com-
puted from the training image without having to actually
compute it. Because it is not necessary to estimate this con-
ditional probability distribution, the method can be applied in
situations where the traditional approach failed such as very
large number of facies, continuous variables or multivariate
cases. In addition, when a classical multiple‐point technique
does not find a certain data configuration in a TI, it usually
drops successive data points from the data event until it finds
a configuration that exists in the TI. This procedure may be
rather arbitrary. Here we avoid this practice by using a dis-
tance between two data events.When the data event cannot be
found exactly, we select one data event that is acceptable
within a predefined error range. The distance threshold
between data events is an additional parameter that allows to
control the model and how the DS will reproduce the patterns
found in the TI. Setting this threshold above a value 0 means
that the user accepts differences between the TI and the
simulation. This clearly shows that the probabilistic model
proposed in this work is a numerical model that includes not
only the TI but also the acceptance threshold as well as the
number of neighbors and any additional parameters that
needs to be defined when accounting for nonstationarity. The
validity of a particular model based on the DS method, like
the validity of any stochastic model, can then be tested by
standard cross‐validation techniques on any real data set. This
classical approach can be used to select the best model
amongst a series of possible TI and parameter sets and also to
compare its performances with other more standard stochastic
models.
[61] By using distances between data events, DS offers the

possibility to use training images that can either be categorical
or continuous, uni‐ or multivariate, stationary or nonsta-
tionary. This can be extremely powerful when realistic geo-
logical structures must be modeled, as is commonly the case
for hydrogeological problems like contaminant migration,
which are strongly influenced by heterogeneity and connec-
tivity of the geological structures.
[62] The multivariate framework offered by DS opens new

perspectives for the integration of different data types in
groundwater and surface hydrology. By accounting for
multiple‐point dependence between several variables, DS can
exploit nonparametric relationships between variables of
different nature, such as between categorical and continuous
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variables. Possible applications can be very diverse since
categorical variables (e.g., geology, soil type, land cover
category, vulnerability class) and continuous variables (e.g.,
porosity, concentration, recharge rate, rainfall) are often
related and widely used in hydrology but are very seldom
measured exhaustively. Therefore, these variables often must
be interpolated. The DS method could then be used in this
context.
[63] In addition to the wide spectrum of potential appli-

cations, DS has computational advantages that make it easier
to apply than traditional multiple‐point methods. DS mas-
sively reduces memory usage because no catalogue of data
events needs to be stored. This implies that the size of the
neighborhood is not limited by memory considerations. The
data event can be spread across many different variables,
allowing to perform multivariate simulations of variables
presenting complex multiple‐point dependence.
[64] Because multiple‐point statistics are not stored, DS

does not need a fixed geometry of the data events. The shape
of the data event can change at each simulated node and so
can the search window. Hence, the data events are always
adapted to the simulation path. The size of the data events is
only limited by the size of the TI and is controlled by a
maximum number n of nodes. In certain cases, it can be useful
to limit the radius of the data events, for example, when
considering nonstationary variables, to avoid capturing non-
stationarity within the data events. It is also useful if the
simulation is larger than the training image. In this case, very
large data events can result in very small search windows,
leading to a bias toward reproducing the statistical properties
of a small central portion of the TI.
[65] A related advantage of the DS approach is that mul-

tigrids (a step‐like decrease in the template dimension) are
replaced by a progressive (linear) decrease of the size of the
data event as a function of the density of simulated nodes. It
ensures that structures of all sizes are present in the simula-
tion. Abandoning multigrids avoids problems related to the
migration of conditioning data on coarse multigrid levels. By
avoiding multigrids, DS is easy to implement, easy to
parameterize and has no problems accommodating large data
sets.
[66] A very important point is that DS does not require

prohibitive CPU time, with performances comparable to ex-
isting methods. This good performance is possible because
the algorithm searches only a single matching data event, and
therefore, the whole TI often does not need to be scanned.
There is a tradeoff between CPU time and the quality of the
generated images, controlled by parameters such as the size of
the neighborhoods, the value of the acceptance threshold and
the fraction of the TI that can be scanned for the simulation of
each node. However, using parallelization allows easily
increasing the performance of DS.
[67] The algorithms described in this paper are the object of

an international patent application (PCT/EP2008/009819).
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