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Abstract
Lovell and Rouse (LR) have recently proposed a modification of the stan-

dard DEA model that overcomes the infeasibility problem often encountered in
computing super-efficiency. In the LR procedure one appropriately scales up
the observed input vector (scale down the output vector) of the relevant super-
efficient firm thereby usually creating its inefficient surrogate. An alternative pro-
cedure proposed in this paper uses the directional distance function introduced by
Chambers, Chung, and Fre and the resulting Nerlove-Luenberger (NL) measure
of super-efficiency. The fact that the directional distance function combines fea-
tures of both an input-oriented and an output-oriented model, generally leads to
a more complete ranking of the observations than either of the oriented models.
An added advantage of this approach is that the NL super-efficiency measure is
unique and does not depend on any arbitrary choice of a scaling parameter. A
data set on international airlines from Coelli, Perelman, and Griffel-Tatje (2002)
is utilized in an illustrative empirical application.
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THE DIRECTIONAL DISTANCE FUNCTION AND MEASUREMENTOF
SUPER-EFFICIENCY: AN APPLICATION TO AIRLINES DATA

Data Envelopment Analysis (DEA) provides an objective basis for ranking firms in an industry in order of

their measured technical efficiency scores. This, however, is not possible for the sub-group of firms that lie

on the graph of the technology and are all rated at 100% technical efficiency. A procedure first proposed by

Andersen and Petersen (1993) uses the super-efficiency measures of these efficient firms to resolve this

problem. A firm is regarded as super-efficient if its DEA efficiency score exceeds 100% when measured

against a production possibility set constructed from the input-output data of all other firms in the sample.

While this modified DEA procedure is quite useful in most cases, the relevant linear programming problem

for measuring the super-efficiency score may not have any feasible solution in certain situations. Chavas

and Cox (1999) point out that Shephard (1970) made an input attainability assumption that ensures that all

output bundles can be produced from the rescaling of any non-zero input bundle. Similarly, by the output

attainability assumption, every input bundle is feasible in the production of any rescaled non-zero output

bundle. The problem of feasibility arises in an output-oriented (input-oriented) super-efficiency model

when an efficient input-output bundle fails to satisfy the input (output) attainability assumption with respect

to the modified production possibility set. Several authors (e.g., Thrall (1996), Zhu (1996), Dula and

Hickman (1997), Seiford and Zhu (1999), and Harker and Xue (2002)) have noted various necessary and

sufficient conditions for infeasibility in super-efficiency DEA models. Lovell and Rouse (LR) (2003) have

recently proposed a modification of the standard DEA model that overcomes the infeasibility problem. The

essence of the LR procedure is to appropriately scale up the observed input vector (scale down the output

vector) of the relevant super-efficient firm thereby usually creating its inefficient surrogate1. Because an

inefficient firm plays no role in defining the frontier, it would not make any difference whatsoever if the

firm with the revised input/output data is retained in the reference set. An alternative procedure proposed in

this paper uses the directional distance function introduced by Chambers, Chung, and Färe (1996) and the

resulting Nerlove-Luenberger (NL) measure of super-efficiency. The paper unfolds as follows. Section 2

describes the directional distance function and the associated NL efficiency measure. Section 3 presents the

standard Debreu-Farrell super-efficiency model along with the NL super-efficiency model. Section 4

addresses the infeasibility problem that sometimes arises in a super-efficiency model and compares the LR

approach with the one presented in this paper in solving the problem. A data set on international airlines

from Coelli, Perelman, and Griffel-Tatje (2002) is utilized in an illustrative empirical application presented

in section 5. The main conclusions are summarized in section 6.

2. The Directional Distance Function and Nerlove-Luenberger Efficiency

Chambers, Chung, and Färe (1996) introduced the directional distance function based on Luenberger’s

benefit function to obtain a measure of technical efficiency reflecting the potential for increasing outputs

                                                
1 As discussed below, in some cases with 0 values of individual outputs or inputs, even the surrogate
remains efficient.
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while reducing inputs simultaneously. Consider some input-output bundle ),( 00 yx and a reference input-

output bundle ).,( yx gg Then, with reference to some production possibility set, T, the directional

distance function can be defined as:

=),;,( 00 yx ggyxD
ρ

max .),(: 00 Tgygx yx ∈++ βββ    (1)

Clearly, the directional distance function evaluated at any specific input-output bundle will depend on

),( yx gg as well as on the reference technology. The bundle ),( yx gg defines the direction along which

the observed bundle, if it is an interior point, is projected on to the efficient frontier of the production

possibility set.  In (1) above, the bundle ),( yx gg is chosen quite arbitrarily. As suggested by Chambers,

Chung, and Färe, we may select ),( 00 yx− for ),( yx gg and in that case the directional distance function

becomes

=),( 00 yxD
ρ

max .))1(,)1((: 00 Tyx ∈+− βββ    (2)

In other words, we seek to increase the output and reduce the input simultaneously by the proportion β. For

example, if β equals 10%, we expand all outputs by 10%, while at the same time reducing all inputs by

10%.

Under the standard assumptions of convexity and free disposability of inputs and outputs, the

production possibility set constructed from a set of N observed input-output bundles (xj, yj) (j = 1, 2,…,N) is

∑ ∑ ∑ =≥=≤≥=
N N

j

N

j
j

j
j

j NjyyxxyxT
1 1 1

)}.,...,2,1(;0;1;;:),{( λλλλ    (3)

The VRS DEA formulation for the directional distance function for this production possibility set is:

                          max  β

      s.t. ∑ ≥−
N

j
j yyy

1

00 ;βλ

∑ ≤+
N

j
j xxx

1

00 ;βλ (4)

∑ =
N

j
1

;1λ

βλ );,...,2,1(0 Njj =≥  unrestricted.
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This is a straightforward LP problem and can be solved quite easily. The factor β  is the Nerlove-

Luenberger measure of technical inefficiency of the firm. By implication, its efficiency equals (1-β).

3. Debreu-Farrell and Nerlove-Luenberger Super-efficiency Measures

The standard DEA models – both the CCR model for CRS and the BCC model for VRS – provide

measures of technical efficiency of a firm relative to the others within the same sample. Firms that are

found to be technically inefficient can be ranked in order of their measured levels of efficiency. Firms that

are found to be efficient are, however, all ranked equally by this criterion. Andersen and Petersen (1993)

suggest a criterion that permits one to rank order firms that all found to be at 100% technical efficiency by

DEA.  The underlying idea behind this criterion is quite simple. Consider the single-input, single-output

case. Suppose that a firm with input-output ),( 00 yx has been found to be technically efficient in an

output-oriented DEA problem. Obviously, if its output had been any larger than 0y it would have remained

efficient. But a small reduction in its output will not necessarily lower its technical efficiency rating from

100%. In that sense, this firm may allow some deterioration in its performance without becoming

inefficient. In other words, its observed output exceeds what is necessary for this firm to be considered

efficient relative to other firms in the sample. In that case, the firm may be regarded as super-efficient.

Naturally, between two firms both of which are technically efficient, the one with a greater room for

reducing its output without becoming inefficient is, in a sense, more super-efficient than the other.

For any individual firm k, the modified production possibility set can be constructed as

∑∑∑
≠
=

≠
=

≠
=

− ≠==≤≥=
N

kj
j

j
j

N

kj
j

j

N

kj
j

j
jk kjNjyyxxyxT

111
)}.;,...,2,1(;1;;:),{( λλλ (5)

 In the general case of N firms with the observed input-output bundle ),( jj yx for firm j (=1,2,…,N), for

each technically efficient firm k, we solve the following DEA problem for measuring the usual Debreu-

Farrell super-efficiency of firm k:

      =−
kφ max φ

s.t. ∑
≠

≥
kj

kj
j yy ;φλ

     ∑
≠

≤
kj

kj
j xx ;λ                                             (6)

    ∑
≠

≠=≥=
kj

jj kjNj ).;,..,2,1(0;1 λλ
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The output bundle k
kk yy −− = φ is what the firm k needs to produce from the input bundle kx in order to

remain (output-oriented) technically efficient relative to the other firms in the sample. Thus, −
kϕ

1 is a

measure of its super-efficiency. Two things may be noted. First, as noted before, if firm k is found to be

technically inefficient in a conventional BCC DEA model, its exclusion from the reference set has no

impact on its measured efficiency level. Thus, its super-efficiency measure is the same as its standard

efficiency measure. Second, if the firm k is “extreme efficient” as defined by Charnes, Cooper, and Thrall

(1994), 1<−
kϕ and its super-efficiency is greater than 1.  Hence, between two firms i and j, both

technically efficient by the standard measure, j is ranked above i, if .−− < ij φφ

The directional distance function for firm k with reference to the modified production possibility

set is

.))1(,)1((:max −− ∈−+= k
kk

k Txy ββββ (7).

The relevant DEA model for computing the Nerlove-Luenberger super-efficiency of firm k is:

                          max  β

      s.t. ∑
≠
=

≥−
N

kj
j

kkj
j yyy

1
;βλ

∑
≠
=

≤+
N

kj
j

kkj
j xxx

1
;βλ (8)

∑
≠
=

=
N

j
j

j

1
1

;1λ

βλ );;,...,2,1(0 kjNjj ≠=≥  unrestricted.

If firm k is Nerlove-Luenberger super-efficient, 0<−
kβ implying that the output bundle of the firm has to

be scaled down while its input bundle is scaled up in order to get an attainable input-output bundle in the

modified production possibility set. Between two firms both Nerlove-Luenberger super-efficient, the one

with a lower (i.e., more pronouncedly negative) value of β is ranked higher in terms of super-efficiency.

4. The Problem of Infeasibility in Super-efficiency Models

It is apparent that this super-efficiency DEA problem in (6) is infeasible if all possible convex

combinations of the input vectors of the remaining firms are weakly greater than xk. A special case of this is
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one where any one of the element of the input bundle xk is strictly smaller than the corresponding element

of the input bundles of all the other firms in the sample.2

Note, however, that in most cases this does not pose any problem in a VRS DEA model of

Nerlove-Luenberger super-efficiency. By selecting a negative value of β one can scale down the output

bundle and scale up the input bundle of the firm under evaluation. Typically a negative optimal value of β

yields a projection of (xk, yk) on to a non-negative input-output bundle that lies on the frontier of the

modified production possibility set .−kT There are two exceptions, however.

First, if

∑
≠
=

<
N

kj
j

j
j

k xx
1

2 λ for all λjs satisfying

                                  ∑
≠
=

≠=≥=
N

kj
j

jj kjNj
1

),;,...,2,1(0;1 λλ

one must set β at a value lower than –1 (i.e., more than double the input bundle xk). But in the process the

output bundle is rendered negative. Although, the relative magnitude of the optimal β, whether positive or

negative, remains a valid criterion for ranking firms in terms of their super-efficiency, a negative output

bundle at the efficient projection of (xk, yk) creates a conceptual problem.

The other case is one where at least one element of the input bundle of firm k is 0 and all other

firms in the sample use strictly positive quantities of that input. For every β (whether positive negative, or

zero) the corresponding element of the bundle (1-β)xk remains zero and the relevant input constraint in the

problem (7) remains infeasible.

For reasons explained below, the method proposed by LR, by contrast, always yields a feasible

solution of the relevant LP problem. This is true even when the firm under review is the only one in the

sample with a 0 input of any factor. This, however, is a mere artifact of the way the model is constructed

and the resulting super-efficiency measure has no economic meaning. Moreover, even though it does

provide a super-efficiency measure of each firm, the problematic firms are all tied at the top.

The Lovell-Rouse Method:

Consider again the output-oriented DEA problem for Debreu-Farrell super-efficiency in (6) above.

Now replace the output bundle of firm k by kk yy δ= where 10 << δ is a scale factor that is determined

in light of the sample data. Next solve the following conventional output-oriented BCC DEA problem for

the surrogate of firm k  with input-output bundles :),( kk yx

                                                
2 Analogous conditions for infeasibility of input-oriented BCC super-efficiency models can be found in the
relevant literature (e.g., Harker and Xue (2002)).
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                    =kφ max φ

s.t. ∑
≠

≥+
kj

kk
k

j
j yyy ;φλλ

     ∑
≠

≤+
kj

kk
k

j
j xxx ;λλ                                             (9)

    ∑
≠

=≥=+
kj

jkj Nj φλλλ );,..,2,1(0;1  unrestricted.

In most situations, by selecting an appropriately small value of δ one can ensure that ),( kk yx is an

inefficient input-output combination and, hence, λk equals 0 at the optimal solution of (9). Thus,

φ provides a measure of the (inverse) of the output-oriented Debreu-Farrell super-efficiency of a firm

producing the output bundle ky from the input bundle xk. Hence, a measure of the corresponding  output-

oriented super-efficiency of the observed input-output pair is

 .
φ
δτ =O (10)

Note that the only time λk will be strictly positive at the optimal solution of (9) is when all convex

combinations of the input vectors of the other firms in the sample are weakly greater than the observed

input bundle of firm k.  In this case, φ equals unity and

.δτ =O

But this is the case where the input-attainability assumption fails for the output bundle yk with reference to

the modified production possibility set constructed from the input-output bundles of the sample firms other

than k and the conventional DEA problem shown in (6) would be infeasible. As noted by LR, the optimal

solution for both the standard output-oriented BCC DEA and the modified super-efficiency DEA for firm k

would be unity and, as defined by  Harker and Xue (2002), firm k is strongly super-efficient in this case.

For the comparable input-oriented problem we define the revised input vector kk xx α= where α>1 is an

arbitrary scale factor.  Next we solve the DEA problem:

=kθ min θ

s.t. ∑
≠

≥+
kj

kk
k

j
j yyy ;λλ

     ∑
≠

≤+
kj

kk
k

j
j xxx ;θλλ                                             (11)

    ∑
≠

=≥=+
kj

jkj Nj );,..,2,1(0;1 λλλ  θ unrestricted.
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The corresponding input-oriented super-efficiency measure is

.αθτ =I (12)

LR suggest selecting

 1}min/{maxmax += ijij xxiα

for the input-oriented model. Similarly, for the output-oriented approach, one may set

[ ] .1}min/{maxmax 1−+= rjrj yyrδ

An advantage of this procedure is that because the bundle ),( kk yx is in the reference set of the problem in

(9),a  solution with φ equal to unity will always be feasible for this problem. This is true, even when firm k

is the only firm with a 0 level of any one input. Similarly, ),( kk yx is in the reference set and θ  equal to

unity is always a feasible solution for the problem in (11). By contrast, as noted earlier, the Luenberger-

Nerlove super-efficiency problem in (8) will not have a feasible solution in such cases.

There are two problems with this approach, however. First, whenever for any firmφ  equals unity,

its output-oriented Debreu-Shephard super-efficiency equals .1
δ  Similarly, whenever θ equals unity, the

corresponding input-oriented super-efficiency equals α. Thus, this approach fails to provide a ranking of

these strongly super-efficient firms. Secondly, and just as important, the super-efficiency measure is

entirely determined by the arbitrarily chosen value of δ or α and has no meaningful economic

interpretation.

A Comparison of the Two Approaches:

We use the following data from Seiford and Zhu (19978; Table 7) to illustrate the difference between the

modified super-efficiency model due to RL and the Nerlove-Luenberger super-efficiency model proposed

here.
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Table 1. Hypothetical Input-output Data for 10 Firms

Name x1 x2 x3 y1 y2

D1 182 237 468 5008 5303
D2 74 82 148 1857 2336
D3 160 195 400 4041 5001
D4 183 150 339 2779 2418
D5 133 155 329 3506 3602
D6 106 120 138 1306 956
D7 109 110 188 1515 2282
D8 240 243 806 7763 9601
D9 276 188 574 4577 6493
D10 191 117 466 3322 4233

Source: Seiford and Zhu (1998; Table 7)

The various super-efficiency measures for the firms shown in Table 1 are reported below in Table 2.

     Table 2. Alternative Measures of Super Efficiency
name Super-EI Super-EO MsuperE1 MSuper-EO NL

D1 1.0626 1.0551 1.0626 1.0551 1.02847
D2 1.5277 infeasible 1.5277 11 1.44299
D3 0.9765 0.9796 0.9765 0.9796 0.98894
D4 0.7354 0.7617 0.7354 0.7617 0.85662
D5 0.9752 0.9777 0.9752 0.9777 0.98812
D6 1.0725 infeasible 1.0725 11 1.07246
D7 0.7852 0.8216 0.7852 0.8216 0.88626
D8  infeasible 1.6223 6 1.6223 1.38359
D9 0.9246 0.9224 0.9246 0.9224 0.95808
D10 1.0642 1.0811 1.0642 1.0811 1.03339

The column identified as Super-EI shows the input-oriented Debreu-Shephard super-efficiency measures of

the individual firms. Firms D1, D2, D6, and D10 are super-efficient whereas firm D8 without a feasible

solution for the conventional input-oriented super-efficiency DEA problem is strongly super-efficient.

MSuper-EI shows the modified input-oriented super-efficiency obtained from the solution of problem (11).

For this problem, we set α equal to 6. Note that, for the strong super-efficient firm D8, this measure equals

6. Super-EO shows the conventional super-efficiency measures of the same 10 firms. Three firms, D1, D8,

and D10 are super-efficient while firms D2 and D6 without feasible solutions for the conventional output-

oriented super-efficiency DEA problem are strongly efficient. Both of these firms are assigned an output-

oriented super-efficiency value 11 (equal to the inverse of the value chosen for δ) in the column showing

the modified super-efficiency (MSuper-EO). Finally, NL shows the levels of Nerlove-Luenberger super-
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efficiency (1 –β) for the different firms. Note that for the super-efficient firms, the optimal value of β is

negative leading to measured super-efficiency levels exceeding unity. Unlike the modified super-efficiency

measures (either input or output-oriented), however, the NL measures are not identical for the strongly

super-efficient firms. For example, firms D2 and D6 cannot be ranked in order of output-oriented super-

efficiency although D2 ranks way above D6 in terms of input-oriented super-efficiency. The Nerlove-

Luenberger directional super-efficiency measure clearly ranks D2 higher than D6.

The more important point to note is that the unlike the RL modified super-efficiency measures, the

NL directional super-efficiency measures can be easily interpreted. For example, firm D2 could increase all

of  its inputs and at the same time reduce all of  its outputs by about 44.3% without becoming inefficient

relative to the other firms in the sample. Firm D6 could similarly scale up its input bundle and scale down

its output bundle by 7% and still remain efficient. Their, modified output-oriented super-efficiency rating

of 1100% does not mean that they actually produce 11 times what would be minimally required for them to

retain an output-oriented technical efficiency of 100%. A different choice of the scale factor β would yield

a different super-efficiency rating.

5. An Application to Airlines Data:

This example considers the performance of 28 international airlines from North America, Europe,

and Asia-Australia during the year 1990. The data set is taken from Coelli, Grifell-Tatje, and Perelman

(2002, Table 1). Each firm produces two outputs:  (a) passenger-kilometers flown (PASS)  and (b) freight

tonne-kilometers flown (CARGO)  . Inputs used are: (i) number of employees (LAB) , (ii) fuel measured in

millions of gallons) (FUEL) , (iii) other inputs (millions of U.S. dollar equivalent) consisting of operating

and maintenance expenses excluding labor and fuel expenses, (MATERIAL)   and (iv) capital (sum of the

maximum take-off weights of all aircrafts flown multiplied by the number of days flown) (CAP) . The

input-output data set is shown in Table 3.  Various super-efficiency measures are reported for these firms in

Table 4. For the modified input-oriented problem we set α equal to 39.4.  The optimal value of θ equals

unity for 3 airlines (LUFTHANSA, AMERICAN, and UNITED). Each of these strongly super-efficient firms

is assigned a LR input-oriented super-efficiency score of 39.4. From the entries in the column identified as

“LR-inp”, we find that 12 other firms (JAL, SAUDIA, SINGAPORE, AUSTRIAN, FINNAIR, SWISSAIR,

PORTUGAL, NORTHWEST, PANAM, and TWA) are also super-efficient. Note that while these 13 firms

can be ranked in order of super-efficiency, the earlier 3 are all tied at 39.4. For the output-oriented LR
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Table 3. Input-Output Data from Selected Airlines for the year 1990
Obs NAME PASS CARGO LAB FUEL MATL CAP

1 NIPPON 35261 614 12222 860 2008 6074
2 CATHAY 23388 1580 12214 456 1492 4174
3 GARUDA 14074 539 10428 304 3171 3305
4 JAL 57290 3781 21430 1351 2536 17932
5 MALAYSIA 12891 599 15156 279 1246 2258
6 QUANTAS 28991 1330 17997 393 1474 4784
7 SAUDIA 18969 760 24708 235 806 6819
8 SINGAPORE 32404 1902 10864 523 1512 4479
9 AUSTRIA 2943 65 4067 62 241 587

10 BRITISH 67364 2618 51802 1294 4276 12161
11 FINNAIR 9925 157 8630 185 303 1482
12 IBERIA 23312 845 30140 499 1238 3771
13 LUFTHANSA 50989 5346 45514 1078 3314 9004
14 SAS 20799 619 22180 377 1234 3119
15 SWISSAIR 20092 1375 19985 392 964 2929
16 PORTUGAL 8961 234 10520 121 831 1117
17 AIR CANADA 27676 998 22766 626 1197 4829
18 AM. WEST 18378 169 11914 309 611 2124
19 AMERICAN 133796 1838 80627 2381 5149 18624
20 CANADIAN 24372 625 16613 513 1051 3358
21 CONTINENTAL 69050 1090 35661 1285 2835 9960
22 DELTA 96540 1300 61675 1997 3972 14063
23 EASTERN 29050 245 21350 580 1498 4459
24 NORTHWEST 85744 2513 42989 1762 3678 13698
25 PANAM 54054 1382 28638 991 2193 7131
26 TWA 62345 1119 35783 1118 2389 8704
27 UNITED 131905 2326 73902 2246 5678 18204
28 USAIR 59001 392 53557 1252 3030 8952

Source: Coelli, Griffel-Tatje, and Perelman (2002), Table 1.
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Table 4. Alternative Measures of Super-efficiency
Ob

s
NAME LR-inp LR-out beta NL

1 NIPPON 0.0251 0.9888 83.917 0.993 0.00431 0.99569
2 CATHAY 0.02337 0.9209 91.977 0.906 0.04486 0.95514

3
GARUDA 0.01883 0.7419 117.943 0.7066 0.15919 0.84081

4 JAL 0.04432 1.7463 60.028 1.3882 -0.20343 1.20343
5 MALAYSIA 0.01965 0.7741 109.681 0.7598 0.13417 0.86583

6 QUANTAS 0.02876 1.133 74.184 1.1233 -0.06009 1.06009
7 SAUDIA 0.02954 1.1638 70.362 1.1844 -0.07982 1.07982
8 SINGAPORE 0.03692 1.4546 56.174 1.4835 -0.17072 1.17072

9 AUSTRIAN 0.0617 2.4309 1 83.3333 -1.4309 2.4309

10 BRITISH AIR 0.02263 0.8915 91.925 0.9065 0.05287 0.94713

11 FINNAIR 0.03519 1.3865 46.007 1.8113 -0.20747 1.20747
12 IBERIA 0.02008 0.7912 103.563 0.8047 0.11307 0.88693
13 LUFTHANSA 1 39.4 39.5 2.1097 -0.42583 1.42583

14 SAS 0.02218 0.874 94.455 0.8823 0.06481 0.93519
15 SWISSAIR 0.02763 1.0885 75.567 1.1028 -0.04539 1.04539
16 PORTUGAL 0.03115 1.2275 65.33 1.2756 -0.11081 1.11081

17 AIR
CANADA

0.02348 0.9252 89.583 0.9302 0.03745 0.96255

18 AMER
WEST

0.03031 1.1943 68.972 1.2082 -0.09132 1.09132

19 AMERICAN 1 39.4 75.325 1.1063 -0.05345 1.05345

20 CANADIAN 0.023 0.9061 91.155 0.9142 0.04693 0.95307

21 CONTINENT
AL

0.02542 1.0015 83.22 1.0014 -0.00071 1.00071

22 DELTA 0.02394 0.9433 88.165 0.9452 0.02867 0.97133
23 EASTERN 0.02118 0.8344 98.992 0.8418 0.08802 0.91198
24 NORTHWES

T
0.02582 1.0175 82.134 1.0146 -0.00789 1.00789

25 PANAM 0.02612 1.029 81.124 1.0272 -0.01384 1.01384
26 TWA 0.02561 1.0088 82.618 1.0087 -0.00436 1.00436
27 UNITED 1 39.4 77.882 1.07 -0.05154 1.05154
28 USAIR 0.02221 0.8752 94.429 0.8825 0.06442 0.93558

θϕ
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problem, we set δ equal to 0.012. This time, only one airline (AUSTRIAN) was strongly super-efficient and

was assigned an LR super-efficiency score of 83.3333.   Of the rest , 15 airlines (JAL, QUANTAS, SAUDIA,

SINGAPORE, FINNAIR, LUFTHANSA, SWISSAIR, PORTUGAL, AMER WEST, AMERICAN,

CONTINENTAL, NORTHWEST< PANAM, TWA, and UNITED) were super-efficient. The modified super-

efficiency scores are reported in the column “LR-out”. Finally, the column “beta” reports the directional

distance function values and the Nerlove-Luenberger super-efficiency measures are shown in the column

“NL”. For one airline (AUSTRIAN) the directional distance function (β) is lower than -1. As a result, at the

projection of the observed input-output bundle onto the modified frontier, the output bundle would be

negative. This clearly, is problematic. For the other airlines, however, the results are quite sensible and can

be easily interpreted. The NL super-efficiency of 16 firms permits a completed ordering of all of these

firms. Note that while the RL input-oriented measure results in a tie for LUFTHANSA, AMERICAN, and

UNITED, the NL measure ranks LUFTHANSA way above the other two firms while AMERICAN barely

dominates UNITED. It is interesting to note that the LR-output oriented super-efficiency would generate

the same ranking of these firms. The fact that the directional distance function combines features of both an

input-oriented and an output-oriented model, generally leads to a more complete ranking of the

observations than either of the oriented models. An added advantage of this approach is that the NL super-

efficiency measure is unique and does not depend on any arbitrary choice of a scaling parameter.

6. Conclusion:

A radial DEA models of super-efficiency has no feasible solution if  Shephard’s input (output) attainability

assumption is violated. The method proposed by LR ensures a feasible solution of the appropriately

modified problem. However, even under this procedure firms that are strongly super-efficient are all tied at

the maximum score. Moreover, the super-efficiency score of these firms depends on the arbitrary choice of

the scaling parameter and cannot be interpreted.  By contrast, the NL super-efficiency scores obtained from

the direction distance function are unique, easily interpreted, and yield a complete ranking of firms in the

sample.  There are two limitations of this approach, however. First, no feasible solution is obtained if the

firm under evaluation has any input at the zero level. Second, when the NL super-efficiency score exceeds

2, the projected point in the input-output space involves negative output quantities.
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