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THE DIRICHLET PROBLEM FOR MONGE-AMPÈRE
EQUATIONS IN NON-CONVEX DOMAINS AND SPACELIKE

HYPERSURFACES OF CONSTANT GAUSS CURVATURE

BO GUAN

Abstract. In this paper we extend the well known results on the existence
and regularity of solutions of the Dirichlet problem for Monge-Ampère equa-
tions in a strictly convex domain to an arbitrary smooth bounded domain in
Rn as well as in a general Riemannian manifold. We prove for the nondegener-
ate case that a sufficient (and necessary) condition for the classical solvability
is the existence of a subsolution. For the totally degenerate case we show
that the solution is in C1,1(Ω) if the given boundary data extends to a locally

strictly convex C2 function on Ω. As an application we prove some existence
results for spacelike hypersurfaces of constant Gauss-Kronecker curvature in
Minkowski space spanning a prescribed boundary.

1. Introduction

Let Ω be a bounded domain in Rn with C∞ boundary ∂Ω. In this paper we
consider the Dirichlet problem for Monge-Ampère equations

det(uij) = ψ(x, u,Du) in Ω, u = ϕ on ∂Ω,(1.1)

where ϕ ∈ C∞(∂Ω), ψ ∈ C∞(Ω × R× Rn), ψ ≥ 0, Du = (u1, · · · , u2) denotes the
gradient of u, ui = ∂u/∂xi and uij = ∂2u/∂xi∂xj .

When Ω is a strictly convex domain, this problem has received considerable
study both in the non-degenerate case (ψ > 0) and in the degenerate case (ψ =
0 somewhere). A well known theorem (see Caffarelli, Nirenberg and Spruck [6],
Ivochkina [17] and Krylov [19]) states that in the non-degenerate case ψ > 0,
(1.1) has a strictly convex solution in C∞(Ω), provided Ω is strictly convex and
there exists a strictly convex subsolution in C2(Ω). (Please see, for example, [6],
[12] and [22] for further references, including the earlier work of, among others,
Pogorelov, Cheng and Yau, and P. L. Lions.) For the degenerate case (ψ ≥ 0),
counterexamples have been found showing that the Dirichlet problem, in general,
does not have a solution in C2(Ω); whether or not the weak solutions belong to
C1,1(Ω) has attracted a lot of attention. In the totally degenerate case ψ ≡ 0, the
C1,1 regularity was established by Caffarelli, Nirenberg and Spruck [7], who proved
that if Ω is a strictly convex domain with ∂Ω ∈ C3,1 and ϕ ∈ C3,1(∂Ω), then the
unique convex solution to the degenerate problem

det(uij) = 0 in Ω, u = ϕ on ∂Ω(1.2)
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belongs to C1,1(Ω). Earlier Trudinger and Urbas [26] obtained local C1,1 regularity
under the weaker hypotheses that ∂Ω ∈ C1,1 and ϕ ∈ C1,1(∂Ω). The recent work
of Krylov [20], [21] provides a unified treatment of the non-degenerate and totally
degenerate cases. The main purpose of the present paper is to extend the above
mentioned results to non-convex domains.

The Monge-Ampère equations are closely related to problems involving Gauss-
Kronecker curvature in differential geometry, such as the Minkowski and Weyl prob-
lems. From the viewpoint of geometric applications, it is of interest to study the
Dirichlet problem for Monge-Ampère equations in non-convex domains. In his book
[2], T. Aubin also raised the question of whether one can remove the hypothesis
of convexity of the domain for a problem. Recently, an effort to extend the re-
sults of [6] to non-convex domains was made by J. Spruck et al. in [16] and [15].
It was proved in [15] that for ψ > 0 the Dirichlet problem (1.1) in an arbitrary
smooth domain Ω admits a locally strictly convex solution in C∞(Ω) provided that
(ψ(x, z, p))1/n is a convex function with respect to p and that there exists a locally
strictly convex strict subsolution u ∈ C2(Ω) (i.e., assuming u satisfies the strict
inequality in (1.4) below). This result applies to, for example, the Gauss curvature
equation

det(uij) = K(x, u)(1 + |Du|2)n+2
2(1.3)

for hypersurfaces in Euclidean space and has interesting geometric consequences
(see, for example, [15], [23]). In this paper we will prove

Theorem 1.1. Let ϕ ∈ C∞(∂Ω), ψ ∈ C∞(Ω × R × Rn), ψ > 0. Assume there
exists a locally strictly convex subsolution u ∈ C2(Ω) satisfying

det(uij) ≥ ψ(x, u,Du) in Ω, u = ϕ on ∂Ω.(1.4)

Then there exists a locally strictly convex solution u ∈ C∞(Ω) of (1.1) with u ≥ u.
The solution is unique if ψu ≥ 0.

Here a function v ∈ C2(Ω) is said to be locally strictly convex if its Hessian
matrix {vij} is positive definite everywhere in Ω. Obviously, condition (1.4) in
Theorem 1.1 cannot be removed even when Ω is strictly convex. In case ψ ≡ ψ(x)
or, more generally (due to P. L. Lions; see [6]), when ψ satisfies

0 < ψ(x, z, p) ≤ C(1 + |p|2)n/2 for x ∈ Ω, z ≤ maxϕ, p ∈ Rn,

one can construct a strictly convex subsolution if Ω is strictly convex; this fails for
non-convex Ω.

There has been some recent work on the Dirichlet problem for Monge-Ampère
equations on general smooth Riemannian manifolds. In [14], Y. Y. Li and the author
established an analogue of the result of Guan-Spruck [15] cited above. Some of the
result was also obtained independently by A. Atallah and C. Zuily [1]. Building on
[14] we will, in Section 5, extend Theorem 1.1 to general Riemannian manifolds.

The totally degenerate problem (1.2) is important to understanding hypersur-
faces of vanishing Gauss-Kronecker curvature. It is of interest to study the regu-
larity of its solution in non-convex domains. Applying Theorem 1.1 to the problem

det(uij) = ε in Ω, u = ϕ on ∂Ω(1.5)

for sufficiently small ε > 0, by approximation we find that (1.2) has a unique locally
convex weak solution (in the sense of Alexandrov, which is the same as weak solution
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in the viscosity sense; see [4]) in C0,1(Ω), provided ϕ extends to a locally strictly
convex function in C2(Ω). We will prove that this solution actually belongs to
C1,1(Ω). More precisely, we have the following extension of the regularity theorem
in [7].

Theorem 1.2. Assume ∂Ω is in C3,1 and ϕ ∈ C3,1(∂Ω). Suppose there exists a
locally strictly convex function u ∈ C2(Ω) with u = ϕ on ∂Ω. Then there is a
unique locally convex weak solution of (1.2) in C1,1(Ω).

As we have observed, a major motivation for our studying the Dirichlet prob-
lem (1.1) in non-convex domains comes from its close connection with geometric
problems. In this paper we consider one such problem, which concerns existence
of spacelike hypersurfaces of constant Gauss-Kronecker curvature with specified
boundary in Minkowski space Rn,1. (Please see [15], [13] for related results for
hypersurfaces in Euclidean space, and [23] in hyperbolic space.) We are inter-
ested in the following question: given a disjoint collection Γ = {Γ1, . . . ,Γm} of
codimension-two closed smooth submanifolds of Rn,1, decide whether there exists
a spacelike hypersurface M of constant Gauss-Kronecker curvature with boundary
∂M = Γ. Locally M is given as the graph of a function xn+1 = u(x), x ∈ Rn,
satisfying the spacelike condition |Du| < 1 and the Monge-Ampère equation (1.1)
with

ψ(x, u,Du) = K(1− |Du|2)n+2
2 ,(1.6)

where K is the Gauss-Kronecker curvature of M . We note that the right hand side
of (1.6), in contrast with that of (1.3), is not a convex function with respect to the
gradient Du.

Theorem 1.3. Suppose Γ bounds a compact C2 spacelike locally strictly convex
hypersurface M̃ . Then for any constant 0 ≤ K ≤ minq∈M̃ K[M̃ ](q), where K[M̃ ]
denotes the Gauss-Kronecker curvature of M̃ , there exists a compact spacelike hy-
persurface MK of constant Gauss-Kronecker curvature K with boundary ∂MK = Γ.
Moreover, MK is C∞ for K > 0 and M0 is C1,1.

The corresponding problem for spacelike hypersurfaces with prescribed boundary
value and mean curvature was treated by R. Bartnik and L. Simon [3]; see also [10]
and references therein for related results.

This paper is organized as follows. In Section 2 we first derive a priori estimates
for the C2 norms of the desired solutions of (1.1) for the non-degenerate case. Then
Theorem 1.1 is proved using the continuity method and degree theory based on these
a priori estimates. Section 3 contains the proof of Theorem 1.2. Theorem 1.3 is
proved in Section 4 as a consequence of more general theorems presented there.
We note that since in general the hypersurface MK is not globally a graph over a
domain in Rn, Theorem 1.3 does not follow directly from Theorems 1.1 and 1.2. To
overcome this difficulty, we will reformulate the problem in a more general setting
and appeal for its proof to Theorem 5.1, the extension of Theorem 1.1 to general
Riemannian manifolds, which is proved in Section 5.

2. The non-degenerate Monge-Ampère equations

In this section we prove Theorem 1.1 using the method of continuity and degree
theory. As usual, the proof is based on the establishment of global C2,α a priori
estimates for prospective solutions. A somewhat surprising fact to us is that in
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deriving these estimates one only needs the assumption that u is a locally strictly
convex C2 function; it does not necessarily satisfy (1.4). As we shall see, condition
(1.4) is needed in the proof of Theorem 1.1 only to guarantee that, when ψu ≥ 0,
the unique solution u of (1.1) satisfies u ≥ u in Ω by the maximum principle.

2.1. A priori estimates. In this subsection we only assume u ∈ C2(Ω) is a lo-
cally strictly convex function; thus there exists a constant ε > 0 (without loss of
generality, we may assume ε ≤ 1) such that

{uij} ≥ ε {δij} on Ω.(2.1)

Set

A = {w ∈ C∞(Ω) : {wij} > 0, w ≥ u,w|∂Ω = ϕ}.
As in [15] it is easy to see that

|w|+ |Dw| ≤ K1, for any w ∈ A,(2.2)

where the constant K1 depends only on Ω, n, and ‖u‖C1(Ω). From (2.2) we have

0 < ψ0 ≡ inf
x∈Ω,w∈A

ψ(x,w(x), Dw(x)) ≤ sup
x∈Ω,w∈A

ψ(x,w(x), Dw(x)) ≡ ψ1 <∞.

(2.3)

Theorem 2.1. Let u ∈ A be a solution of (1.1). Then

|D2u| ≤ C on Ω.(2.4)

Here the constant C depends on Ω, n, ε, K1, ψ0, ψ1, ‖ϕ‖C3,1(Ω), ‖ψ‖C2(Ω) and
‖u‖C2(Ω).

Proof. It is shown in [6] how to derive (2.4) from C2 estimates on the boundary.
Thus we need only estimate D2u on ∂Ω. Consider any point 0 on ∂Ω; we may
assume it is the origin of Rn and choose the coordinates so that the positive xn

axis is the interior normal to ∂Ω at 0. Near the origin, ∂Ω can be represented as a
graph

xn = ρ(x′) =
1
2

∑
α,β<n

Bαβxαxβ +O(|x′|3), x′ = (x1, . . . , xn−1).(2.5)

Since u− u = 0 on ∂Ω,

(u− u)αβ(0) = −(u− u)n(0)Bαβ , α, β < n.(2.6)

It follows that

|uαβ(0)| ≤ C, α, β < n.(2.7)

Next we estimate the mixed normal-tangential derivative uαn(0). Rewrite equa-
tion (1.1) in the form

log det(uij) = logψ(x, u,Du) ≡ f(x, u,Du)(2.8)

and let L denote the linear operator defined by

Lw = uijwij − fpi(x, u,Du)wi for w ∈ C2(Ω),(2.9)

where {uij} is the inverse matrix of {uij} and fpi = fpi(x, u, p). For fixed α < n
consider the operator

T = ∂α +
∑
β<n

Bαβ(xβ∂n − xn∂β).
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As in [6] we have

|LT (u− u)| ≤ C(1 +
∑

uii).(2.10)

Since |Du| ≤ K1, |T (u− u)| ≤ C in Ω. Moreover, on ∂Ω near the origin

|T (u− u)| ≤ C|x|2.(2.11)

We will employ a barrier function of the form

v = (u− u) + t(h− u)−Nd2,(2.12)

where h is the harmonic function in Ω with h|∂Ω = ϕ, d is the distance function
from ∂Ω, and t, N are positive constants to be determined. We may take δ > 0
small enough so that d is smooth in Ωδ = Ω ∩ Bδ(0). The key ingredient is the
following:

Lemma 2.2. For N sufficiently large and t, δ sufficiently small,

Lv ≤ −ε
4
(1 +

∑
uii) in Ωδ, v ≥ 0 on ∂Ωδ.

Proof. By (2.1) we have uij(uij − uij) ≤ n− ε
∑
uii. It follows that

L(u − u) ≤ C0 − ε
∑

uii.(2.13)

Next, since ∆u ≥ nε > 0,

(h− u)(x) ≥ c0d(x), for x ∈ Ω

for some uniform constant c0 > 0. Moreover, we have

L(h− u) ≤ C1(1 +
∑

uii),

for some constant C1 > 0 under control. Thus

Lv ≤ C0 + tC1 + (tC1 − ε)
∑

uii − 2N(dLd+ uijdidj) in Ωδ.

It is easy to see that

Ld ≥ −C2(1 +
∑

uii).

Furthermore, since {uij} is positive definite and dn(0) = 1, dβ(0) = 0 for all β < n,
we have, for δ sufficiently small,

uijdidj ≥ unnd2
n + 2

∑
β<n

unβdndβ ≥ unn

2
− C3δ

∑
uii in Ωδ.(2.14)

Let λ1 ≤ · · · ≤ λn be the eigenvalues of {uij}. We have
∑
uii =

∑
λ−1

i and
unn ≥ λ−1

n . By the inequality for arithmetic and geometric means,
ε

4

∑
uii +Nunn ≥ nε

4
(Nλ−1

1 · · ·λ−1
n )

1
n ≥ nε

4(ψ1)1/n
N

1
n ≡ c1N

1
n .

Now we fix t > 0 sufficiently small so that tC1 ≤ ε
4 and fix N so that c1N1/n ≥

C0 + ε. We obtain

Lv ≤ −ε
4
(1 +

∑
uii) in Ωδ

if we require δ to satisfy 2(C2 + C3)Nδ ≤ ε
4 in Ωδ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4960 BO GUAN

It remains to examine the value of v on ∂Ωδ. On ∂Ω∩Bδ(0) we have v = 0. On
Ω ∩ ∂Bδ(0),

v ≥ tc0d−Nd2 ≥ (tc0 −Nδ)d ≥ 0,

if we require, in addition, Nδ ≤ tc0. Now we can fix δ sufficiently small to complete
the proof of Lemma 2.2.

Using Lemma 2.2 we can choose A� B � 1 so that

L(Av +B|x|2 ± T (u− u)) ≤ 0 in Ωδ

and

Av +B|x|2 ± T (u− u) ≥ 0 on ∂Ωδ

by (2.10) and (2.11). It thus follows from the maximum principle that

|uαn(0)| ≤ C.(2.15)

Finally, the tangential strict convexity of u has been established in [15]; i.e.∑
α,β<n

wαβ(0)ξαξβ ≥ c0 > 0(2.16)

for any unit vector ξ = (ξ1, . . . , ξn−1) ∈ Rn−1. Thus it follows as in [6] that

|unn(0)| ≤ C.(2.17)

The proof of Theorem 2.1 is complete.

From the Evans-Krylov theory (see [11], [24], [18] and [5]) we thus have an a
priori bound for the C2,α norm of u,

‖u‖C2,α(Ω) ≤ C, 0 < α < 1,(2.18)

with constant C depending only on Ω, n, ε, ψ0, ψ1, ‖ϕ‖C3,1(Ω), ‖ψ‖C3(Ω) and
‖u‖C2(Ω). By the standard Schauder theory, we thus obtain the a priori bound for
each integer k ≥ 3:

‖u‖Ck,α(Ω) ≤ C.(2.19)

With the aid of such estimates we can apply the continuity method and degree
theory to prove Theorem 1.1 as in [6] with some modifications.

2.2. Proof of Theorem 1.1. We first assume that the subsolution u is in C∞(Ω)
and prove the existence of a solution to (1.1) in A in two steps as follows.

(a) The special case: ψu ≥ 0. For each fixed t ∈ [0, 1] consider the Dirichlet
problem

det(uij) = tψ(x, u,Du) + (1− t) det(uij) in Ω, u = ϕ on ∂Ω.(2.20)

Note that since u is a subsolution of (2.20), it follows from the maximum principle
that any locally strictly convex solution u ∈ C∞(Ω) of (2.20) satisfies u ≥ u and
hence (2.19), independent of t. Thus we can utilize the continuity method to show
that for each t ∈ [0, 1] there exists a locally strictly convex solution of (2.20) in
C∞(Ω). The uniqueness follows from the maximum principle.

(b) Turning to the general case, we assume u is not a solution of (1.1) and let
u0 ∈ A be the unique solution of

det(uij) = ψ0 in Ω, u = ϕ on ∂Ω,(2.21)
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where ψ0 is as in (2.3). The existence of u0 follows from part (a).
For r > 0 we consider the open convex set of functions in C5(Ω)

Cr =
{
v ∈ C5(Ω) : ‖v‖C5(Ω) < r, v > 0 in Ω, v|∂Ω = 0 and vν > 0 on ∂Ω

}
.

where ν is the unit interior normal to ∂Ω. We want to prove that for each t ∈ [0, 1]
there exists a solution in A of the form

u = u+ v, v ∈ Cr with r sufficiently large,(2.22)

to the Dirichlet problem

det(uij) = tψ(x, u,Du) + (1− t)ψ0 ≡ ψt(x, u,Du) in Ω, u = ϕ on ∂Ω.
(2.23)

As we observed, any solution u ∈ A of (2.23) satisfies the a priori bound

‖u‖C5(Ω) ≤ C independent of t.(2.24)

Moreover, by the maximum principle and the Hopf lemma we have

u > u in Ω and (u − u)ν > 0 on ∂Ω.(2.25)

Thus we can choose r sufficiently large so that (2.23) has no solution in A of the
form (2.22) with v ∈ ∂Cr, the boundary of Cr.

Now for 0 ≤ t ≤ 1 and fixed v ∈ Cr consider the Dirichlet problem

det(uij) = ψt(x, u,Du)etΛ(u−u−v) ≡ ηt(x, u,Du) in Ω, u = ϕ on ∂Ω,(2.26)

where

Λ =
1
ψ0

sup
x∈Ω

sup
u∈A

ψu(x, u,Du) <∞, ψ0 as in (2.3).

We observe that u is a subsolution of (2.26) and ηt
u ≥ 0. Thus by part (a) there

exists a unique solution ut ∈ A for each t ∈ [0, 1]. For t = 0, this solution is our u0.
From elliptic theory, the map T tv = ut−u is compact in C5. On the other hand,

we have seen that there are no solutions of

v − T tv = 0(2.27)

on the boundary of Cr. Thus the degree

deg (I − T t, Cr, 0) = γ(2.28)

is well defined and independent of t. For t = 0, (2.27) has a unique solution
v0 = u0 − u. By the maximum principle, when t = 0 the linearized operator
of (2.23), linearized at u0, is invertible. Thus v0 is a regular point of I − T 0.
Consequently γ = ±1, and (2.27) has a solution vt ∈ Cr for all 0 ≤ t ≤ 1. The
function u1 = u + v1 is then a solution of (1.1). The elliptic regularity theory
implies that u1 ∈ C∞(Ω).

To finish the proof, we have to consider the case u ∈ C2(Ω). We may take a
sequence of locally strictly convex functions um ∈ C∞(Ω) converging to u in C2(Ω),
such that

det(um
ij ) ≥ m

m+ 1
ψ(x, um, Dum) in Ω.

For each integer m ≥ 1, set

ψm =
m

m+ 1
ψ, ϕm = um|∂Ω
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and consider the Dirichlet problem

det(uij) = ψm in Ω, u = ϕm on ∂Ω.(2.29)

Note that um is a subsolution of (2.29). Consequently, there exists a locally strictly
convex solution um ∈ C∞(Ω) of (2.29) satisfying the a priori estimates

‖um‖Ck(Ω) ≤ C(m, k) for every k ≥ 1,

where the constant C(m, k) only depends on, besides other known data, um and its
derivatives up to second order. It follows that a subsequence of um converges to a
solution of (1.1) in C∞(Ω). This completes the proof of Theorem 1.1.

3. The totally degenerate Monge-Ampère equation

The main purpose of this section is to prove Theorem 1.2. We will first obtain
a weak solution in C0,1(Ω) of the totally degenerate Monge-Ampère equation by
approximation. The major part of the section is devoted to the proof of the C1,1

regularity of this weak solution.
For each small constant λ > 0, we may first take smooth approximations of Ω

and u and apply Theorem 1.1, then pass to the limit to obtain, under the hypothesis
of Theorem 1.2, a locally strictly convex function uλ ∈ C2(Ω) satisfying

det(uλ
ij) = λ in Ω, uλ = ϕ on ∂Ω(3.1)

and the C1 estimate

‖uλ‖C1(Ω) ≤ C0(3.2)

for some constant C0 > 0 independent of λ. Therefore, there exists a sequence uλk

that converges to a locally convex function u ∈ C0,1(Ω), and

‖u‖C0,1(Ω) ≤ C0.(3.3)

By the maximum principle, u is the unique locally convex solution of (1.2). In the
rest of this section we will modify the proof of [7] to show that u is in C1,1(Ω).

We say a subset U of Ω is relatively convex in Ω if any segment contained in
Ω with endpoints in U lies completely in U . The relative convex hall, denoted by
ΓΩ(U), of a set U ⊂ Ω is the smallest relatively convex set in Ω containing U .

Lemma 3.1. Assume x0 ∈ Ω is such that u(x0) = 0 and u ≥ 0 near x0. Let Sx0

be the component of {x ∈ Ω : u(x) = 0} containing x0. Then Sx0 = ΓΩ(Sx0 ∩ ∂Ω).

Proof. By the local convexity of u, we see that Sx0 is relatively convex in Ω. Thus
we only have to show that Sx0 ⊂ ΓΩ(Sx0 ∩ ∂Ω). If not, there is a point, which we
may assume to be the origin after translation and rotation of coordinates, in Ω∩Sx0

such that 0 is the only point in Sx0 ∩ Bδ0(0) that lies in the half space {xn ≥ 0},
for some small δ0 > 0. Therefore, there is a constant δ1 > 0 small such that u ≥ a
on ∂Bδ0(0) ∩ {xn ≥ −δ1} for some constant a > 0. But then the function

v = δ2(δ1 + 2xn + δ3|x|2) for δ2, δ3 > 0 small

satisfies

det(vij) = 2δ2δ3 > 0 in U, v ≤ u on ∂U,

where U ≡ Bδ0(x0) ∩ {xn > −δ1}. Consequently, u(0) ≥ v(0) = δ1δ2 > 0 by the
maximum principle. This contradicts the fact that u(0) = 0.
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In this section a constant is said to be under control if it depends only on Ω,
‖ϕ‖C3,1(∂Ω) and u (up to its second derivatives).

Theorem 3.2. There is a constant C under control such that for every x0 ∈ Ω
there exist δ(x0) > 0 and V (x0) ∈ Rn so that for every x ∈ Ω with |x−x0| ≤ δ(x0),
we have

|u(x)− u(x0)− (x − x0) · V (x0)| ≤ C|x− x0|2.(3.4)

We note that Theorem 3.2 implies that u is differentiable and Du(x0) = V (x0).
Thus it follows from (3.3) that

|Du| ≤ C0 on Ω.(3.5)

According to [7], Theorem 3.2 then implies that u ∈ C1,1(Ω); namely, for some
constant C under control,

|Du(x)−Du(y)| ≤ C|x− y| for all x, y ∈ Ω.(3.6)

Proof of Theorem 3.2. For any fixed point x0 ∈ Ω, since u is locally convex, there
exists an affine function p such that p(x0) = u(x0) and p ≤ u near x0. Let V (x0) =
Dp(x0); (3.4) is then equivalent to

|u(x)− p(x)| ≤ C|x− x0|2.(3.7)

Without loss of generality, we may suppose p ≡ 0 and, therefore, u(x0) = 0 and
u ≥ 0 near x0. By Lemma 3.1, x0 then lies in a simplex S ⊂ {x ∈ Ω|u(x) = 0} of
dimension k ≤ n with vertices on ∂Ω. According to [7], we only have to consider
the case k = 1. So we assume S is a segment with end points x1, x2 ∈ ∂Ω. By the
local convexity of u we have u ≥ 0 in a neighborhood of S.

Of the two end points of S, suppose x2 is closer to x0. We may assume x2 = 0.
After rotation of coordinates, we suppose the positive xn-axis is interior normal to
∂Ω at 0 and x0 = (x0

1, 0, · · · , 0, x0
n) with x0

1 ≥ 0, x0
n = x0

1 tan θ, 0 ≤ θ ≤ π
2 . Near

the origin, ∂Ω is represented as a graph

xn = ρ(x′) =
1
2

∑
i,j<n

ρij(0)xixj +O(|x′|3), x′ = (x1, . . . , xn−1).(3.8)

Lemma 3.3 below implies that if θ is sufficiently small, x1 falls in that piece of ∂Ω
given by (3.8). Set ξ = (cos θ, 0, · · · , 0, sin θ) ∈ Rn.

Lemma 3.3. For some constants c1, C1 under control,

0 < c1θ ≤ |x1| ≤ C1θ.(3.9)

Proof. We have

u(x1) = u(0) + uξ(0)|x1|+ uξξ(tx
1)|x1|2, for some 0 < t < 1.

But u(0) = u(x1) = 0 and uξ(0) = un(0) sin θ, since ui(0) = 0 for 1 ≤ i ≤ n − 1;
thus

uξξ(tx
1)|x1| = −un(0) sin θ,

and (3.9) follows from the local strict convexity of u and the comparison principle.

Lemma 3.3 also implies that θ > 0; that is, S cannot be tangential to ∂Ω at 0.
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Lemma 3.4. There exist uniform positive constants ε0 and θ0 sufficiently small so
that if θ ≤ θ0 then

ρ11(0) ≥ ε0 > 0.

Proof. For any µ > 0, there exists uλ ∈ C2,1(Ω) satisfying (3.1) for some λ > 0
such that

‖uλ − u‖C0,1(Ω) ≤ µ.

Since u(0) = uλ(0) = 0, it follows that

0 ≤ u(0, t)− uλ(0, t) ≤ tµ, for any t > 0 with (0, t) ∈ Ω.

But u(0, t) ≥ 0 for all t sufficiently small; thus

uλ
n(0) ≥ −µ.(3.10)

As in the proof of Lemma 3.3, we have

uλ
ξξ(tx

1)|x1| = −uλ
n(0) sin θ, for some 0 < t < 1,

since uλ(x1) = uλ(0) = 0 and uλ
ξ (0) = uλ

n(0) sin θ. Since uλ ∈ C2(Ω), it follows
from Lemma 3.3 that

|uλ
ξξ(tx

1)− uλ
ξξ(0)| < µ, when θ is sufficiently small.

By (3.10) and Lemma 3.3 we thus obtain

uλ
ξξ(0) ≤ C2µ, for θ sufficiently small.(3.11)

Next,

uλ
ξξ(0) = uλ

11(0) cos2 θ + uλ
nn(0) sin2 θ + 2uλ

1n(0) sin θ cos θ.

We have uλ
nn(0) > 0 and, from the proof of (2.15) in Section 2, |uλ

1n(0)| ≤ C for
some constant C independent of λ. Thus, by (3.11),

uλ
11(0) ≤ C3µ+ C4θ, for θ sufficiently small.(3.12)

Finally, it follows from (see (2.6)) u11(0)−uλ
11(0) = (uλ

n(0)−un(0))ρ11(0) and (3.2),
(3.12) that

ρ11(0) ≥ c0(u11(0)− C3µ− C4θ),

where c0 > 0 is a uniform constant. By the strict convexity of u we can first fix µ
small, then choose θ0 sufficiently small to complete the proof of Lemma 3.4.

Returning to the proof of Theorem 3.2, we first consider the case θ ≤ θ0, where
θ0 is fixed such that Lemma 3.4 holds for some ε0 > 0. To set up notation we fix a
positive constant r0 depending only on Ω such that Γ ≡ {(x′, ρ(x′)) : |x′| ≤ r0} ⊂
∂Ω; by Lemma 3.3 we may assume θ0 is sufficiently small so that x1 ∈ Γ. As in [7],
using Lemma 3.3 and the hypothesis that ϕ ∈ C3,1(∂Ω), one can prove that

|ϕ11(0)| ≤ Aθ2, |ϕ1j(0)| ≤ Aθ, |ϕij(0)| ≤ A, 1 < i, j ≤ n− 1,(3.13)

where A is a constant under control.
It follows from Lemma 3.4 that for any point x ∈ Ω with |x−x0| ≤ δ sufficiently

small (depending on ε0 and possibly on x0), the ray from x1 to x strikes Γ at a
point x̄ = (x̄′, x̄n) with x̄′ = (x̄1, x̄2, · · · , x̄n−1) satisfying

θ2(x̄1)2 + (x̄2)2 + · · ·+ (x̄n−1)2 ≤ C|x − x0|2(3.14)
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for a constant C under control (here we also use the fact that |x1 − x0| ≥ |x0|).
Since u(x1) = 0 it follows from the local convexity of u that

u(x) ≤ u(x̄) = ϕ(x̄′) =
n−1∑
i,j=1

ϕij x̄ix̄j +O(|x̄′|3).(3.15)

Consequently by (3.13) and (3.14),

u(x) ≤ C

(
A+

δ

θ3

)
|x− x0|2,

with C under control. Now we may fix δ = δ(x0) ≤ θ3 to obtain (3.7) for θ ≤ θ0.
The case θ > θ0 is simple, and we refer the reader to [7] for the details.
The proof of Theorem 3.2 is complete, and thus so is that of Theorem 1.2.

4. Spacelike hypersurfaces of prescribed Gauss curvature

Recall that Minkowski space Rn,1 is the space Rn×R endowed with the Lorentz
metric ds2 =

∑n
i=1 dx

2
i − dx2

n+1, where x = (x1, . . . , xn) and xn+1 are the co-
ordinates in Rn and R. A spacelike hypersurface of Rn,1 is a codimension-one
submanifold whose induced metric is Riemannian. Locally a spacelike hypersurface
M is given as the graph of a function xn+1 = u(x) satisfying the spacelike con-
dition |Du| < 1. (We will also denote the hypersurface by u when it is globally
given as the graph of u). The first and second fundamental forms of M are given
respectively by

gij = δij − uiuj , Aij =
uij

(1 − |Du|2) 1
2
.

We say M is a locally strictly convex hypersurface if its second fundamental form
is positive definite everywhere. The Gauss-Kronecker curvature of M has the ex-
pression

K[M ] =
det(uij)

(1 − |Du|2)n+2
2

.

Thus the equation

det(uij(x)) = K(x, u(x))(1 − |Du(x)|2)n+2
2(4.1)

locally describes spacelike hypersurfaces with prescribed Gauss-Kronecker curva-
ture K. As an immediate consequence of Theorem 1.1, we first state an existence
result for spacelike graphs with prescribed boundary value and Gauss-Kronecker
curvature. (By a graph in Rn,1, we always mean a submanifold, with or without
boundary, that can be represented globally as the graph of a function xn+1 = u(x)
defined in a subset of Rn.)

Theorem 4.1. Let Ω be a bounded smooth domain in Rn. For given ϕ ∈ C∞(∂Ω)
and K ∈ C∞(Ω×R), K > 0, suppose there exists a spacelike locally strictly convex
hypersurface u ∈ C2(Ω) with K[u](x) ≥ K(x, u(x)) for x ∈ Ω and u|∂Ω = ϕ.
Then there exists a spacelike locally strictly convex hypersurface u ∈ C∞(Ω) with
prescribed boundary value u|∂Ω = ϕ and Gauss-Kronecker curvature K[u](x) =
K(x, u(x)) for x ∈ Ω, i.e., u satisfies (4.1) in Ω and the gradient bound

|Du| < 1 on Ω.(4.2)
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Proof. Note that since u is a locally strictly convex subsolution of (4.1), Theorem 4.1
will follow from Theorem 1.1 once the a priori gradient bound (4.2) is established.
By the local convexity of u we see that |Du| attains its maximum value on ∂Ω.
Next, we want to show that

max
∂Ω

|Du| ≤ max
∂Ω

|Du|,(4.3)

which implies (4.2) since u is a spacelike hypersurface.
Let γ denote the interior normal vector to ∂Ω and let ξ ∈ Rn be a unit vector.

Consider an arbitrary point x̄ ∈ ∂Ω. If ξ · γ(x̄) ≤ 0, then

uξ(x̄) ≤ uξ(x̄) ≤ |Du(x̄)|,(4.4)

since u ≥ u in Ω and u = u on ∂Ω. Now suppose ξ · γ(x̄) > 0, and let y ∈ ∂Ω be
the first point where the ray x̄+ tξ, t > 0, touches ∂Ω. Then we have

uξ(x̄) ≤ uξ(y) ≤ uξ(y) ≤ |Du(y)|.(4.5)

The first inequality follows from the local convexity of u, the second from (4.4)
since ξ ·γ(y) ≤ 0. Finally, suppose |Du(x̄)| 6= 0 and take ξ = Du(x̄)/|Du(x̄)|. From
(4.4) and (4.5) it follows that

|Du(x̄)| = uξ(x̄) ≤ max
∂Ω

|Du|.
This proves (4.3).

We note that if M is a compact spacelike hypersurface and ∂M is a graph over
the boundary of a domain Ω ⊂ Rn, then M is necessarily a graph over Ω. Thus
Theorem 1.3 follows from Theorem 4.1 and Theorem 1.2 when Γ is a graph. To prove
Theorem 1.3 in the general situation, we formulate an extension of Theorem 4.1 as
follows: Let U be a compact domain that immerses into Rn with smooth boundary
∂U , and let π : U → Rn denote this immersion. Given a function u : U → R, one
obtains a hypersurface of Rn,1 defined by

X : U → Rn,1, X(q) = (π(q), u(q)) for q ∈ U.(4.6)

Theorem 4.2. Let ϕ ∈ C∞(∂U) and K ∈ C∞(Rn+1), K > 0. Suppose there
exists a spacelike locally strictly convex hypersurface M̃ of Rn,1 represented by

q ∈ U 7→ (π(q), u(q)) ∈ Rn,1(4.7)

with u ∈ C2(U) and u|∂U = ϕ, such that K[M̃ ](q) ≥ K(π(q), u(q)) for q ∈ U . Then
there exists a spacelike locally strictly convex hypersurface M given by (4.6) with
u ∈ C∞(U) satisfying

K[M ](q) = K(π(q), u(q)) for q ∈ U, u|∂U = ϕ.(4.8)

Proof. We observe that it suffices to prove that, with respect to the metric on U
induced by the immersion π : U → Rn, the Monge-Ampère equation

det(uij) = K(1− |Du|2)n+2
2 in U, u = ϕ on ∂U(4.9)

has a locally strictly convex solution in C∞(U) that satisfies the spacelike condition

|Du| < 1 in U.(4.10)

The existence of such a solution will follow from Theorem 5.1 in Section 5 once
(4.10) is derived. To complete the proof, one observes that (4.10) can be derived
as in the proof of Theorem 4.1 with some slight modification.
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The case K ≡ 0 leads to the degenerate Monge-Ampère equation.

Theorem 4.3. Let ϕ ∈ C3,1(∂U) and suppose there exists a spacelike locally strictly
convex hypersurface M̃ of Rn,1 given by (4.7) with u ∈ C2(U) and u|∂U = ϕ.
Then there exists a locally convex spacelike hypersurface M given by (4.6) with
u ∈ C1,1(U) and u|∂U = ϕ, whose Gauss-Kronecker curvature vanishes everywhere.

Proof. The existence of M of the form (4.6) with u ∈ C0,1(U) follows from The-
orem 4.2 by approximation. In order to obtain the desired C1,1 regularity, we
observe that for an arbitrary point q ∈ U , since it is locally convex, M has a sup-
porting hyperplane, T , at Q ≡ (π(q), u(q)) ∈M . By Lemma 3.1, there is a simplex
S ⊂ M ∩ T , containing Q, of dimension k ≤ n with vertices on ∂M . In a neigh-
borhood of S, M lies above T and is given as a graph xn+1 = ũ(x) which solves
det(ũij) = 0 weakly. Now we can repeat the proof of Theorem 3.2 to show that
ũ satisfies an inequality of the form (3.4), which implies that u ∈ C1,1(U) since,
clearly, ũ = u ◦ π locally.

Finally, in order to see that Theorem 1.3 is a consequence of Theorems 4.2 and
4.3, we take U = M̃ and let π : U → Rn be the orthogonal projection from
M̃ ⊂ Rn+1 to Rn. By the spacelike condition, we see π is an immersion and M̃ can
be represented in the form (4.7) with u ∈ C2(U). Theorem 1.3 thus follows.

Entire spacelike hypersurfaces with constant or prescribed mean curvature have
also been studied in Minkowski space and in more general Lorentzian manifolds
as well; for references please see, for example, [10]. In [9], Cheng and Yau proved
a Bernstein type theorem for entire maximal spacelike hypersurfaces. It seems of
interest to study entire spacelike hypersurfaces of constant Gauss-Kronecker curva-
ture.

5. Monge-Ampère equations on manifolds

In this section we extend Theorem 1.1 to Monge-Ampère equations on Riemann-
ian manifolds. Let Mn be a smooth Riemannian manifold of dimension n ≥ 2 and
Ω ⊂ Mn a smooth domain with compact closure Ω. We consider the Dirichlet
problem

g−1 det(∇iju) = ψ(x, u,∇u) in Ω, u = ϕ on ∂Ω,(5.1)

where g = det(gij) > 0, gij denotes the metric of Mn, ∇ is the Levi-Civita con-
nection, and ∇iju denotes the Hessian of u (with respect to the metric gij). We
assume ϕ ∈ C∞(∂Ω) and ψ > 0 is C∞ with respect to (x, z, p) ∈ Ω × R × TxM ;
here TxM denotes the tangent space at x ∈ M . The main result of this section is
the following analogue of Theorem 1.1, which extends some of the results in [14].

Theorem 5.1. There exists a locally strictly convex solution of (5.1) in C∞(Ω),
provided that there exists a locally strictly convex subsolution u ∈ C2(Ω) to (5.1).
Furthermore, the solution is unique if ψz ≥ 0.

Proof. Let A be as in Section 2. We shall prove the existence of a solution of (5.1)
in A. It is clear that the proof of Theorem 1.1 in Section 2 still works in this general
case once C2 a priori estimates are established for such solutions. According to [14],
we need only estimate the second derivatives at the boundary.

About a point x0 ∈ ∂Ω, let e1, . . . , en be a local orthonormal frame on Mn

obtained by parallel translation of a local orthonormal frame on ∂Ω and the interior
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unit normal vector field to ∂Ω along the geodesics perpendicular to ∂Ω on Mn. We
assume en is the parallel translation of the unit normal field on ∂Ω.

Let u ∈ A be a solution of (5.1). Since u− u = 0 on ∂Ω, it is straightforward to
bound the pure tangential second derivatives

|∇αβu| ≤ C on ∂Ω for α, β < n.(5.2)

Next, we note that Lemma 2.2 readily extends to the present general case. For
completeness we restate the lemma. As in (2.9), set

L = uij∇ij − fpi(x, u,∇u)∇i,

where {uij} is the inverse matrix of the Hessian {∇iju}, f = logψ. Let v be the
function as defined in (2.12).

Lemma 5.2. For N sufficiently large and t, δ sufficiently small,

Lv ≤ −ε
4
(1 +

∑
uii) in Ωδ, v ≥ 0 on ∂Ωδ,

where Ωδ = Ω∩Bδ(x0); here Bδ(x0) denotes the geodesic ball of radius δ about x0.

Proof. It is the same as that of Lemma 2.2 except that (2.14) takes a simpler form:

uij∇id∇jd ≥ unn(∇nd)2,

since ∇βd = 0 for all β < n.

Using Lemma 5.2 one can estimate ∇nαu on ∂Ω for α ≤ n as in [14]. For any
fixed α ≤ n, differentiate equation (5.1) and use the formula for commuting the
covariant derivatives

∇ijkw −∇jikw = Rl
kji∇lw,

to find

|L∇α(u− u)| ≤ C(1 +
∑

uii).(5.3)

The mixed normal tangential derivatives ∇αnu(x0), α < n, can be estimated the
same way as in Section 2. Namely, by (5.3), we may choose A� B � 1 such that

L(Av +B|x|2 ±∇α(u − u)) ≤ 0 in Ωδ,

where |x| denotes the (geodesic) distance between x and x0, and

Av +B|x|2 ±∇α(u − u) ≥ 0 on ∂Ωδ,

since ∇α(u − u) = 0 on ∂Ω ∩ Bδ(x0), and |∇α(u − u)| ≤ C in Ω. It follows from
the maximum principle that Av +B|x|2 ≥ |∇α(u− u)| in Ωδ. Consequently,

|∇nαu(x0)| ≤ A∇nv(x0) + |∇nαu(x0)| ≤ C, α < n.(5.4)

For the double normal derivative ∇nnu, since u is locally convex, it suffices to
derive an upper bound

∇nnu ≤ C on ∂Ω.(5.5)

We use an idea of Trudinger [25]. For x ∈ ∂Ω let

λ(x) = min
|ξ|=1,ξ∈Tx(∂Ω)

∇ξξu(x),
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and assume that λ(x) is minimized at x0 ∈ ∂Ω with ξ = e1(x0), that is, ∇11u(x0) ≤
∇ξξu(x) for all x ∈ ∂Ω and any unit vector ξ ∈ Tx(∂Ω). As in [6], (5.5) will follow
from

∇11u(x0) ≥ c0 > 0.(5.6)

To show (5.6), we may assume ∇11u(x0) < 1
2∇11u(x0), since otherwise we are done

as ∇11u(x0) ≥ c1 > 0 for some uniform c1 > 0. We have

∇11u = ∇11u−B11∇n(u− u) on ∂Ω,(5.7)

where Bαβ = 〈∇αeβ , en〉, 1 ≤ α, β ≤ n− 1. It follows that

B11(x0)∇n(u− u)(x0) ≥ 1
2
∇11u(x0) ≥ c1

2
,

and for x ∈ ∂Ω near x0, since ∇11u|∂Ω is minimized at x0,

B11(x)∇n(u− u)(x) ≤ ∇11u(x) −∇11u(x0) +B11(x0)∇n(u− u)(x0).

Because B11 is smooth near ∂Ω and 0 < ∇n(u−u) ≤ C, we must have B11 ≥ c2 > 0
on Ωδ for some uniform c2 > 0, if δ is chosen sufficiently small. Therefore,

∇n(u− u)(x) ≤ Ψ(x) for x ∈ Ωδ ∩ ∂Ω and ∇n(u − u)(x0) = Ψ(x0)(5.8)

where Ψ(x) = B−1
11 (x)[∇11u(x) −∇11u(x0) +B11(x0)∇n(u− u)(x0)].

We observe that since Ψ is smooth in Ωδ, by (5.3), (5.8) and Lemma 5.2 we may
choose A� B � 1 such that

Av +B|x|2 + Ψ−∇n(u− u) ≥ 0 on ∂Ωδ,

L(Av +B|x|2 + Ψ−∇n(u − u)) ≤ 0 in Ωδ.

By the maximum principle, v + Ψ−∇n(u− u) ≥ 0 in Ωδ, and therefore

∇nnu(x0) ≤ C.

This shows that the eigenvalues of {∇iju(x0)} are all bounded (and all positive).
On the other hand, equation (5.1) says the product of these eigenvalues is bounded
below away from zero by a uniform positive constant (ψ0 as in (2.3)). Thus each of
them must be bounded below away from zero. In particular, we obtain the estimate
(5.6), which in turn implies (5.5).

We conclude this section by a remark on the following equation of Monge-Ampère
type on Sn:

g−1 det(ugij +∇iju) = ψ(x, u,∇u).(5.9)

This equation arises in various geometric problems related to Gauss curvature such
as the Minkowski problem (see for example Cheng and Yau [8] and the references
therein). The Dirichlet problem was studied, in connection with the boundary value
problem of finding hypersurfaces in Rn+1 of prescribed Gauss-Kronecker curvature,
by J. Spruck and the author in [15] and [13] under the hypothesis that ψ1/n is a
convex function with respect to the gradient ∇u. By employing a better barrier
similar to that in Lemma 5.2, we may refine the argument in [13] to prove
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Theorem 5.3. Let Ω ⊂ Sn be a smooth domain that does not contain any hemi-
sphere. Let ϕ ∈ C∞(∂Ω), and let ψ > 0 be a smooth function. Then (5.9) has a
solution u ∈ C∞(Ω) satisfying {ugij +∇iju} > 0 in Ω and u = ϕ on ∂Ω, provided
that there exists a subsolution u ∈ C2(Ω) with {ugij +∇iju} > 0 in Ω and u = ϕ
on ∂Ω.
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