
0018-9162/07/$25.00 © 2007 IEEE32 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

We see the main culprit as the lack of rigorous tech-
niques for embedded systems design. At one extreme,
computer science research has largely ignored embed-
ded systems, using abstractions that actually remove
physical constraints from consideration. At the other,
embedded systems design goes beyond the traditional
expertise of electrical engineers because computation
and software are integral parts of embedded systems.

Fortunately, with crises comes opportunity—in this
case, the chance to reinvigorate computer science
research by focusing on embedded systems design. The
embedded systems design problem certainly raises tech-
nology questions, but more important, it requires build-
ing a new scientific foundation that will systematically
and even-handedly integrate computation and physi-
cality from the bottom up.2 Support for this foundation
will require enriching computer science paradigms to
encompass models and methods traditionally found in
electrical engineering.3,4

In parallel, educators will need to renew the computer
science curriculum. In industry, trained electrical engi-
neers routinely design software architectures, and
trained computer scientists routinely deal with physi-
cal constraints. Yet embedded systems design is periph-
eral to both computer science and electrical engineering
curricula. Much of the cultural wall between the two
fields can be traced to differences between the discrete
mathematics of computer science and the continuous

The wall between computer science and electrical engineering has kept the potential of

embedded systems at bay. It is time to build a new scientific foundation with embedded

systems design as the cornerstone, which will ensure a systematic and even-handed

integration of the two fields.

Thomas A. Henzinger, EPFL

Joseph Sifakis, Verimag

C omputer science is maturing. Researchers have
solved many of the discipline’s original, defin-
ing problems, and many of those that remain
require a breakthrough that is impossible to
foresee. Many current research challenges—the

Semantic Web, nanotechnologies, computational biol-
ogy, and sensor networks, for example—are pushing
existing technology to the limits and into new applica-
tions. Many of the brightest students no longer aim to
become computer scientists, but choose to enter directly
into the life sciences or nanoengineering.1 At the same
time, computer technology has become ubiquitous in
daily life, and embedded software is controlling com-
munication, transportation, and medical systems.

From smart buildings to automated highways, the
opportunities seem unlimited, yet the costs are often pro-
hibitive, and dependability is generally poor. The auto-
motive industry is a good example. As each car receives
an ever-increasing number of electronic control units,
software complexity escalates to the point that current
development processes and tools can no longer ensure
sufficiently reliable systems at affordable cost.
Paradoxically, the shortcomings of current design, val-
idation, and maintenance processes make software the
most costly and least reliable part of embedded appli-
cations. As a result, industries cannot capitalize on the
huge potential that emerging hardware and communi-
cation technologies offer.

The Discipline of
Embedded Systems
Design

October 2007 33

mathematics of traditional engineering. The
industry desperately needs engineers who feel
equally at home in both worlds. The embed-
ded systems design discipline has the poten-
tial to produce such integrated talent. But
defining its scientific foundation will take a
concerted, coordinated effort on the part of
research, academia, industry, and policy
makers.

THE DESIGN PROBLEM
An embedded system is an engineering arti-

fact involving computation that is subject to
physical constraints. The physical constraints
arise through the two ways that computa-
tional processes interact with the physical
world: reaction to a physical environment and
execution on a physical platform. Common reaction con-
straints specify deadlines, throughput, and jitter and orig-
inate from behavioral requirements. Common execution
constraints bound available processor speeds, power,
and hardware failure rates and originate from imple-
mentation choices. Control theory deals with reaction
constraints; computer engineering deals with execution
constraints. The key to embedded systems design is gain-
ing control of the interplay between computation and
both kinds of constraints to meet a given set of require-
ments on a given implementation platform.

General versus embedded systems design
Systems design derives an abstract system representa-

tion from requirements—a model—from which a sys-
tem can be generated automatically. Software design,
for example, derives a program from which a compiler
can generate code; hardware design derives a hardware
description from which a computer-aided design tool
can synthesize a circuit. In both domains, the design
process usually mixes bottom-up activities, such as the
reuse and adaptation of component libraries, and top-
down activities, such as successive model refinement to
meet a set of requirements.

Although they are similar to other computing systems
because they have software, hardware, and an environ-
ment, embedded systems differ in an essential way: Since
they involve computation that is subject to physical
constraints, the powerful separation of computation
(software) from physicality (platform and environ-
ment)—traditionally, a central enabling concept in com-
puter science—does not work for embedded systems.
Instead, embedded systems design requires a more holis-
tic approach that integrates essential paradigms from
hardware and software design and control theory.

Differing design principles
Embedded systems design is not a straightforward

extension of either hardware or software design. Rather,

design theories and practices for hardware and software
are tailored toward the individual properties of these
two domains, often using abstractions that are diamet-
rically opposed.

Hardware systems designers, for example, compose
a system from interconnected, inherently parallel build-
ing blocks, which can represent transistors, logic gates,
functional components such as adders, or architectural
components such as processors. Although the abstrac-
tion level changes, the building blocks are always deter-
ministic, or probabilistic, and their composition is
determined by how data flows among them. A building
block’s formal semantics consist of a transfer function,
typically specified by equations. Thus, the basic opera-
tion for constructing hardware models is the composi-
tion of transfer functions. This type of equation-based
model is an analytical model, such as the example in
Figure 1. Examples of analytical models include netlists,
dataflow diagrams, and other notations for describing
system structure.

Software systems designers, in contrast, use sequential
building blocks, such as objects and threads, whose
structure often changes dynamically. Designers can cre-
ate, delete, or migrate blocks, which can represent
instructions, subroutines, or software components. An
abstract machine, also known as a virtual machine or
automaton, defines a block’s formal semantics opera-
tionally. Abstract machines can be nondeterministic, and
designers define the blocks’ composition by specifying
how control flows among them. For example, the
atomic blocks of different threads are typically inter-
leaved, possibly using synchronization operations to
constrain them. Thus, the basic operation for con-
structing software models is the product of sequential
machines. This type of machine-based model is a com-
putational model, such as the state diagram fragment5

in Figure 2. Examples of computational models include
programs, state machines, and other notations for
describing system dynamics.

xo x
xo

Pendulum

In1

Jitter
xd
x
xo

xo

Discrete
controller

Scope

Input
generator

Band−limited
white noise

Out1' ''

Figure 1. An analytical model.The block diagram models an inverted pen-

dulum controlled by a discrete controller, described in Matlab’s Simulink.

From feedback signals and a periodic input, the controller generates an

ideal control signal, which jitter and noise functions transform.

34 Computer

Analytical and computational models embody orthog-
onal abstractions. Analytical models deal naturally with
concurrency and with quantitative constraints, but
struggle with partial and incremental specifications
(nondeterminism) and computational complexity.
Equation-based models and associated analytical meth-
ods are used not only in hardware design and control
theory, but also in scheduling and performance evalua-
tion. Computational models, on the other hand, natu-
rally support nondeterministic abstraction hierarchies
and a rich theory of computational complexity, but
taming concurrency and incorporate physical con-
straints is difficult.

Many major computer science paradigms, such as the
Turing machine and the thread concurrency model, have
succeeded precisely because they abstract away all physi-
cal notions of concurrency and all physical constraints on
computation. Indeed, entire computer science subfields
are built on and flourish because of such abstractions. In
operating systems and distributed computing, both time
sharing and parallelism are famously abstracted to the

same concept, namely, nonde-
terministic sequential computa-
tion. In algorithms and com-
plexity theory, real time is
abstracted to big-O time, and
physical memory to big-O
space. These powerful abstrac-
tions are inadequate for em-
bedded systems design.

Differing system
requirements

Analytical and computa-
tional models aim to satisfy
different system requirements.
Functional requirements spec-
ify the expected services, func-
tionality, and features—inde-
pendent of the implementation.
Extrafunctional requirements
specify performance and ro-
bustness. The former demand
the efficient use of real-time
and implementation resources,
while the latter require the abil-
ity to deliver some minimal
functionality under circum-
stances that deviate from nom-
inal. Functional requirements
are naturally expressed in dis-
crete, logic-based formalisms.
However, to express many
extrafunctional requirements,
designers need real-valued
quantities to represent physical

constraints and probabilities.
For software, the dominant driver is correct func-

tionality, and designers often discretely specify even
performance and robustness, such as the number of mes-
sages exchanged or failures tolerated. For hardware,
continuous performance and robustness measures are
more prominent and refer to physical resource levels,
such as clock frequency, energy consumption, latency,
mean time to failure, and cost. Critical to embedded sys-
tems design is the ability to quantify tradeoffs among
functionality, performance, and robustness under given
technical and economic constraints.

Differing design processes
Analytical and computational models support different

design processes. Equation-based modeling yields rich ana-
lytical tools, especially if stochastic behavior is present.
Moreover, for a system with only a few basic building block
types, as in circuit design, automatic synthesis techniques
have proved extraordinarily successful in designing very
large systems. Indeed, they have basically spawned the elec-

Wait_Ignition_Time

Open_EVBO

Wait_Start
Abort

time-out(clock) /
current_is_ok:=EVVP.Open()

Stop1

Stop2
[current_is_ok = false]

[current_is_ok = true]

Wait_Close_EVBO

time-out(clock) / begin current_is_ok:=EVBO.Close();
Cyclics!Anomaly();Acyclic!Anomaly();Guidance_Task!

Anomaly(); EAP!Anomaly(); Thrust_Monitor!Anomaly() end

 / clock.set(TimeConstants.MS_100)

Wait_Close_EVVP

 / clock.set(TimeConstants.MS_100)

Start(H0_time) / begin
clock.set(298900);

H0.set(H0_time) end

time-out(clock) / begin
clock.set(TimeConstants.MS_100);
current_is_ok:=EVBO.Open() end

[current_is_ok = false] / clock.reset()

[current_is_ok = true]
timeout(clock) / current_is_ok:=EVVP.Close()

Figure 2. A computational model.The state diagram fragment models a part of the flight

controller for the Ariane 5 rocket, described in Rational Rose UML. State diagrams are

extended automata that specify the behavior of objects.The transitions are labeled with

guarded commands involving two types of interaction between objects: synchronous

function calls and asynchronous message passing.

October 2007 35

CURRENT DESIGN PRACTICES
The sidebar “Three Generations of Embedded

Systems Design” describes the historical progression
of embedded systems design practices. Current trends
are moving away from the specificity that particular
programming languages and implementation platforms
offer toward greater genericity. Practices typically
use higher levels of abstraction, as in model-based
design, and apply either critical or best-effort systems
engineering.

tronic design automation industry. Machine-based mod-
els, on the other hand, while sacrificing powerful analyti-
cal and synthesis techniques, are directly executable. They
also give the designer more fine-grained control and pro-
vide a greater space for design variety and optimization.
Indeed, robust software architectures and efficient algo-
rithms are still designed individually, not automatically gen-
erated, and this will likely remain so for some time. The
emphasis, therefore, shifts from design synthesis to design
verification—the proof of correctness.

Three Generations of Embedded Systems Design

The evolution of embedded systems design shows
how design practices have moved from a close cou-
pling of design and implementation levels to relative
independence between the two.

Language- and synthesis-based origins

The first generation of methodologies traced their
origins to one of two sources: Language-based meth-
ods lie in the software tradition, and synthesis-based
methods stem from the hardware tradition. A lan-
guage-based approach is centered on a particular
programming language with a particular target run-
time system (often fixed-priority scheduling with
preemption). Early examples include Ada and, more
recent, RT-Java. Synthesis-based approaches have
evolved from circuit design methodologies. They
start from a system description in a tractable, often
structural, fragment of a hardware description lan-
guage such as VHDL and Verilog and automatically
derive an implementation that obeys a given set of
constraints.

Implementation platform independence

The second generation of methodologies intro-
duced a semantic separation of the design level from
the implementation level to gain maximum indepen-
dence from a specific execution platform during early
design phases. There are several examples. The syn-
chronous programming languages embody an
abstract hardware semantics (synchronicity) within
software; implementation technologies are available
for different platforms, including bare machines and
time-triggered architectures. SystemC combines a
synchronous hardware semantics with asynchronous
execution mechanisms from software (C++); imple-
mentations require partitioning into components that
will be realized in hardware on the one side and in
software on the other. The semantics of common
dataflow languages such as Matlab’s Simulink are
defined through a simulation engine, as is the con-
troller specification in Figure 1; implementations focus

on generating efficient code. Languages for describ-
ing distributed systems, such as the Specification
and Description Language (SDL), generally adopt an
asynchronous semantics.

Execution semantics independence

The third generation of methodologies is based on
modeling languages such as the Unified Modeling
Language (UML) and Architecture Analysis and Design
Language (AADL) and go a step beyond implementa-
tion independence. They attempt to be generic not
only in the choice of implementation platform, but
even in the choice of execution and interaction seman-
tics for abstract system descriptions. This leads to inde-
pendence from a particular programming language, as
well as to an emphasis on system architecture as a
means of organizing computation, communication,
and resource constraints.

Much recent attention has focused on frameworks for
expressing different models of computation and their
interoperation.1-4 These frameworks support the con-
struction of systems from components and high-level
primitives for their coordination. They aim to offer not
just a disjoint union of models within a common meta-
language, but also to preserve properties during model
composition and to support meaningful analyses and
transformations across heterogeneous model bound-
aries.

References

1. F. Balarin et al., “Metropolis: An Integrated Electronic
System Design Environment,” Computer, Apr. 2003, pp.
45-52.

2. J. Eker et al., “Taming Heterogeneity: The Ptolemy
Approach,” Proc. IEEE, vol. 91, no. 1, 2003, pp. 127-144.

3. K. Balasubramanian et al., “Developing Applications Using
Model-Driven Design Environments,” Computer, Feb. 2006,
pp. 33-40.

4. J. Sifakis, “A Framework for Component-Based Construc-
tion,” Proc. Software Eng. and Formal Methods, IEEE Press,
2005, pp. 293-300.

forms, such as bare machines without operating systems
and processor architectures that allow time predictabil-
ity for code execution. Typical examples of such
approaches are those used for safety-critical systems in
avionics. In these systems, real-time constraint satisfac-
tion is guaranteed on the basis of worst-case execution
time analysis and static scheduling. The maximum nec-
essary computing power is available at all times, and
designers achieve dependability by using massive redun-
dancy and statically deploying all equipment for failure
detection and recovery.

The time-triggered architecture (TTA)7 is an example of
critical systems engineering. Developers use it for distrib-
uted real-time systems in certain safety-critical applica-
tions, such as brake-by-wire or drive-by-wire systems in

cars. A TTA node consists of two sub-
systems: the communication con-
troller and host computer. All com-
munication among nodes follows a
predetermined static schedule. Each
communication controller has a mes-
sage description list that determines
at what point a node is allowed to
send a message, and when it is ex-

pected to receive a message from another node. A fault-
tolerant clock synchronization protocol provides each
node with global time ticks.

Best effort. Best-effort systems engineering is based
on average-case, not worst-case, analysis and on
dynamic rather than static resource allocation. It seeks
the efficient use of resources, as in optimizing through-
put or power, and is useful in applications that can tol-
erate some degradation or even temporary denial of
service. Instead of the worst-case, or hard, requirements
applied to critical systems, best-effort systems have soft
quality-of-service (QoS) requirements, such as jitter and
error rate in telecommunications networks. Hard dead-
lines must be met; soft deadlines can occasionally be
missed. QoS requirements are enforced by adaptive
scheduling mechanisms that use feedback to adjust some
system parameters at runtime to optimize performance
and recover from behavioral deviations.

Many networks and multimedia systems are exam-
ples of best-effort engineering. These systems often use
control mechanisms that, under different workloads,
provide different priorities to different users or data
flows and, in that way, guarantee certain performance
levels. Deviations from a nominal situation, such as
accepted error or packet loss rate, guide the control
mechanisms.

Bridging the gap. Critical and best-effort engineer-
ing are largely disjoint, since meeting hard constraints
and making the best possible use of available resources
work against each other. Critical systems engineering
can lead to the underutilization of resources, best-effort
systems engineering to temporary unavailability.

36 Computer

Model-based design
The goal in any model-based design approach is to

describe system components within a modeling language
that does not commit the designer early on either to a
specific execution and interaction semantics or to specific
implementation choices.

Central to all model-based design is an effective theory
of model transformations. Design often involves the use
of multiple models that represent different system views
at different granularity levels. Usually, design proceeds
neither strictly top-down, from the requirements to the
implementation, nor strictly bottom-up, by integrating
library components, but in a less directed fashion, by iter-
ating model construction, analysis, and transformation.
Model transformation must preserve essential properties.
Some transformations can be auto-
mated; for others, the designer must
guide the model construction.

The ultimate success story in model
transformation is compilation theory.
It is difficult to manually improve on
the code a good optimizing compiler
produces from computational mod-
els written in a high-level language.
On the other hand, code generators often produce inef-
ficient code from equation-based models: They can com-
pute the solutions of fixed-point equations or
approximate them iteratively, but a designer must supply
more efficient algorithmic insights and data structures.

For extrafunctional requirements, such as timing, the
separation of human-guided design decisions from auto-
matic model transformations is even less well under-
stood. Indeed, engineering practice often relies on a
trial-and-error loop of code generation, followed by test,
followed by redesign. An alternative is to develop high-
level programming languages that can express reaction
constraints, together with compilers that guarantee the
satisfaction of reaction constraints on a given execution
platform.6 Such a compiler must mediate between pro-
gram-specified reaction constraints, such as time-outs,
and the platform’s execution constraints, typically pro-
vided as worst-case execution times.

Systems engineering
Today’s systems engineering methodologies are either

critical or best effort. Critical methods try to guarantee
system safety at all costs, even when the system oper-
ates under extreme conditions. Best-effort methods try
to optimize system performance (and cost) when the sys-
tem operates under expected conditions. One views
design as a constraint-satisfaction problem; the other
views it as an optimization problem.

Critical. Critical systems engineering is based on con-
servative approximations of system dynamics and on
static resource reservation. Tractable conservative
approximations often require simple execution plat-

Model-based design seeks

independence from specific

execution semantics or

implementation choices.

We believe that the gap between the two approaches
will continue to widen, as the uncertainties in embed-
ded systems design increase. First, as embedded systems
become more widespread, their environments are
known less perfectly, with greater distances between
worst-case and expected behaviors. Second, because of
VLSI design’s rapid progress, developers are imple-
menting embedded systems on sophisticated, layered
multicore architectures with caches, pipelines, and spec-
ulative execution. The ensuing difficulty of accurate
worst-case analysis makes conservative, safety-critical
designs ever more expensive, in both resource and design
cost, relative to best-effort designs.

As the gap between critical and best-effort designs
increases, partitioned architectures are likely to become
more prevalent. Partitions physically
separate critical and noncritical sys-
tem parts, letting each run in dedi-
cated memory space during dedicated
time slots. The result is a guarantee of
minimal-level worst- and average-
case performance. Such designs can
find support in the ever-growing com-
puting power of system-on-chip and
network-on-chip technologies, which reduce communi-
cation costs and increase hardware reliability, thereby
allowing more rational and cost-effective resource man-
agement. Corresponding design methodologies must
guarantee a sufficiently strong separation between criti-
cal and noncritical components that share resources.

THE RESEARCH CHALLENGE
Embedded systems design must deal even-handedly

with

� computation and physical constraints,
� software and hardware,
� abstract machines and transfer functions,
� nondeterminism and probabilities,
� functional and performance requirements,
� qualitative and quantitative analysis, and
� Boolean and real values.

The solution is not simply to juxtapose analytical and
computational techniques. It requires their tight inte-
gration within a new mathematical foundation that
spans both perspectives. There must also be a way to
methodically quantify tradeoffs between critical and
best-effort engineering decisions.

In arriving at a solution, research must address two
opposing forces—the ability to cope with heterogeneity
and the need for constructivity during design.
Heterogeneity arises from the need to integrate compo-
nents with different characteristics. It has several sources
and manifestations, and the existing body of knowledge
is largely fragmented into unrelated models and corre-

sponding results. Constructivity is the capacity for build-
ing complex systems from building blocks and glue com-
ponents with known properties. It is achievable through
algorithms, as in compilation and synthesis, as well as
through architectures and design disciplines.

Heterogeneity and constructivity pull in different
directions. Encompassing heterogeneity looks outward,
toward the integration of multiple theories to provide a
unifying view. Constructivity looks inward, toward
developing a tractable theory for system construction.
Since constructivity is most easily achieved in restricted
settings, a scientific foundation for embedded systems
design must provide a way to intelligently balance and
trade off both ambitions.

Finally, the resulting systems must not only meet func-
tional and performance require-
ments, they must also do so robustly.
Robustness includes resilience and
measured degradation in the event
of failures, attacks, faulty assump-
tions, and erroneous use. Ensuring
robustness is, in our view, a central
issue for the embedded systems
design discipline.

Coping with heterogeneity
Systems designers deal with a variety of components

from many viewpoints. Each component has different
characteristics, and each viewpoint highlights different
system dimensions. Such complexity gives rise to two
central problems. One is how to compose heterogeneous
components to ensure their correct interoperation; the
other is how to transform and integrate heterogeneous
viewpoints during the design process. Superficial classi-
fications distinguish hardware and software compo-
nents, or continuous-time (analog) and discrete-time
(digital) components, but heterogeneity has two more
fundamental sources: the composition of subsystems
with different execution and interaction semantics, and
the abstract view of a system from different distances
and perspectives.

Execution and interaction semantics. At one
extreme of the semantic spectrum are fully synchronized
components, which proceed in lockstep with a global
clock and interact in atomic transactions. Such a tight
component coupling is the standard model for most
synthesizable hardware and for synchronous real-time
software. The synchronous model considers a system’s
execution as a sequence of global steps. It assumes that
the environment does not change during a step, or equiv-
alently, that the system is infinitely faster than its envi-
ronment. In each execution step, all system components
contribute by executing some quantum of computation.
The synchronous execution paradigm, therefore, has a
built-in strong assumption of fairness: In each step all
components can move forward.

October 2007 37

There must be a way to

quantify tradeoffs between

critical and best-effort

engineering decisions.

38 Computer

At the other extreme are completely asynchronous
components, which proceed at independent speeds and
interact nonatomically. Such a loose component cou-
pling is the standard model for multithreaded software.
The lack of built-in mechanisms for sharing computa-
tion among components can be compensated through
scheduling constraints, such as priorities and fairness,
and through interaction mechanisms, such as messages
and shared resources. Between the two extremes are a
variety of intermediate and hybrid models. The frag-
ment of the Ariane 5 rocket flight controller specifica-
tion in Figure 2 uses both synchronous interaction
through function calls and asynchronous interaction
through message passing.

Abstraction levels and view-

points. System design involves the
use of system models that have vary-
ing degrees of detail and are related
to each other in an abstraction or
refinement hierarchy. Heterogeneous
abstractions, which relate diverse
model styles, are often the most
powerful. A notable example is the
Boolean-valued gate-level abstraction of real-valued
transistor-level models for circuits. In embedded sys-
tems, a key abstraction relates application software to its
implementation on a given platform. Application soft-
ware refers to real time through reaction constraints,
such as time-outs. The application code running on a
given platform is subject to real-time implementation
constraints, such as worst-case execution times. It is pos-
sible to model both as dynamic systems that are speci-
fied, for example, by timed or hybrid automata, but
formal refinement relations between such automata are
both unnecessarily precise and prohibitively expensive.

Another cause of heterogeneity in abstractions is the
use of different viewpoints, such as computational or
analytical perspectives. Heterogeneous models also arise
when representing different extrafunctional system
dimensions, such as timing, power consumption, and
fault tolerance. In certain settings, these dimensions
might be tightly correlated; in others, these dimensions
might allow independent solutions.

Achieving constructivity
The system construction problem is basically “Build

a system that meets a given set of requirements from a
given set of building blocks.” This problem is at the root
of systems design activities such as modeling, architect-
ing, programming, synthesis, upgrading, and reuse.
Because a general formulation of the problem is
intractable, the goal must be limited to practical success
in common scenarios. The main obstacle to reaching this
goal is scalability, which is rarely achievable through
algorithmic verification and synthesis techniques alone.
It requires a combination of two fundamental tech-

niques: compositionality—design rules and disciplines
for building correct systems from correct components—
and the use of architectures and protocols that ensure
global system properties.

Compositionality. Correct-by-construction bottom-
up design is based on component interfaces and nonin-
terference rules. A well-designed interface exposes
exactly the component information needed to check for
composability with other components. In a sense, an
interface formalism is a type theory for component com-
position.8 Recent trends have been toward rich interfaces,
which expose not only functional but also extrafunc-
tional component information, such as resource con-
sumption levels. The composition of two or more

interfaces then specifies the combined
resources consumed by putting to-
gether the underlying components.

A noninterference rule guarantees
that all essential component proper-
ties are preserved during system
construction. However, often the
requirements for different resources
are interdependent, as in timeliness

and power efficiency. In such cases, concerns cannot be
completely separate, and construction methods must
meet multiple requirements.

Architectural properties. Correct-by-construction
top-down design is based on the preservation of archi-
tectural properties through refinement—ideally, the
independent refinement of different components.
Scalable, lightweight analyses exist for very specific
architectures and properties. TTAs, for example, ensure
timely and fault-tolerant communication for distributed
real-time systems; a token-ring protocol guarantees
mutual exclusion for strongly synchronized processes
that are connected in a ring. It is essential to study the
interplay between architectures and properties in more
general terms.

Ensuring robustness
A robust system maintains certain performance lev-

els even under circumstances that deviate from the nor-
mal operating environment. Such deviations can include
extreme input values, platform failures, malicious
attacks, wrong modeling assumptions, and human error.
Consequently, robustness requirements include a broad
spectrum of properties, such as safety (resistance to fail-
ures), security (resistance to attacks), and availability.
Robustness cuts across all design activities and influ-
ences all design decisions in system construction. System
security, for example, must account for software and
hardware architectures, information treatment—such
as encryption, access, and transmission—and program-
ming disciplines.

In dynamic systems, robustness can be formalized as
continuity, so that small perturbations of input values

Scalable design techniques

require rules for

building correct systems

from correct components.

cause small perturbations of output values. No such for-
malization is available for discrete systems, where the
change of a single input or state bit can lead to a com-
pletely different output behavior. Therefore, in computer
science, redundancy is often the only solution for build-
ing reliable systems from unreliable components.

There is a critical need for theories, methods, and tools
that support the construction of robust embedded sys-
tems without forcing designers to resort to such massive,
expensive over-engineering. Continuity might be achiev-
able in fully quantitative models, where quantitative infor-
mation expresses not only probabilities, time, and other
resource-consumption levels, but also functional charac-
teristics. For example, if the interest is in mean time to
failure, not the Boolean-valued pos-
sibility or impossibility of failure,
designers should be able to build con-
tinuous models, in which small
changes in certain parameters induce
only small changes in the failure rate.

THE EDUCATION CHALLENGE
Embedded systems are not central

to the computer science curriculum or to the electrical
engineering or computer engineering curricula. When
embedded computing is taught at all, it is often as a pro-
ject course that emphasizes tinkering with sensors and
actuators, not as an engineering discipline with a solid
scientific foundation. A commendable exception is the
recent textbook by Edward Lee and Pravin Varaiya,9

which attempts a bicultural education of freshmen in
both computer science and electrical engineering. The
text goes beyond traditional bicultural education, which
covers both software and hardware. Rather, it combines
computational and analytical thinking.

The lack of adequately trained bicultural engineers
impacts industrial practice, creating fragmentation, inef-
ficiencies, and difficulties in communication and shar-
ing experiences within a company. For example,
aeronautics and space engineering—two closely related
fields that address similar problems—use different
methodologies, design flows, and tools for reasons that
seem more cultural than technical.10 Often, engineers
untrained in software abstractions or control theory are
asked to architect complex embedded systems that crit-
ically rely on both disciplines.

The lack of a common cultural background also
results in fragmented research. Different communities
use different terminologies. Even commonly used terms
such as “timed” and “untimed” or “synchronous” and
“asynchronous” do not have the same meaning across
communities. This is a circular phenomenon: The teach-
ers do not understand each other, so neither do the stu-
dents. Conferences are separate, communities do not
interact, and papers do not have the desired impact.

The educational system has significant inertia and will

take time to adapt to evolving industrial and cultural
needs. It is particularly difficult to gather specialists who
are spread among several university departments to
design and implement new curricula. We recommend, at
a minimum, exposing computer science students to both
computational and analytical thinking and correspond-
ing approaches to embedded systems design. Another
near-term goal should be to define and distribute a com-
puter science reference curriculum with an optional track
for specializing in embedded systems. The curriculum
can serve as a basis for certifying courses and materials.

A dvances in hardware compo-
nents technology are creating
an enormous potential for the

widespread application of embedded
systems in all economic sectors, but
without some well-grounded design
paradigm, society cannot fully bene-
fit from this potential. Unfortunately,
many groups and the public at large
fail to grasp the importance of

embedded software. Unlike many innovations, such as
the Web, that are tangible and thus well known and
appreciated, embedded systems are visible only through
the improved function and performance of devices and
products. Indeed, the more seamlessly embedded com-
puters and software are integrated into the products and
the less often they fail, the less visible they are. It is thus
important to raise awareness about how vital embed-
ded computing is to society.

What is needed in research? A first step would be to
derive a mathematical basis for systems modeling and
analysis that integrates both abstract-machine models
and transfer-function models. Such a theory could unite
two sets of practices: those from critical systems engi-
neering that guarantee hard requirements and those
from best-effort systems engineering that optimize per-
formance. From there, the theory, methodologies, and
tools must

� encompass heterogeneous execution and interaction
mechanisms for system components,

� provide abstractions that isolate the design subprob-
lems requiring human creativity from those that can
be automated,

� scale by supporting compositional, correct-by-con-
struction techniques, and

� ensure the robustness of the resulting systems.

This effort is a true Grand Challenge, demanding
departures from the prevailing views on both hardware
and software design, but if successful, it will substan-
tially reduce the cost and increase the quality of tomor-
row’s embedded infrastructure.

October 2007 39

The lack of adequately trained

bicultural engineers causes

fragmentation and

inefficiencies in industry.

40 Computer

What is needed in education? To adequately train
new generations of engineers and researchers, institu-
tions must focus on embedded systems design as a sci-
entific discipline and as a specialization area within
existing curricula. This requires taking down the cultural
wall that exists between many computer science and elec-
trical engineering departments. Embedded systems design
is not computer engineering. It centrally includes soft-
ware, which most view as pure computer science, and
control, which most view as pure electrical engineering.
In spite of the recent efforts by research societies such as
the IEEE and the ACM to promote and integrate the field
of embedded systems, much inertia is preventing greater
integration of the concerned communities. It is essential
to create a critical mass by colocating and fusing exist-
ing conferences. A promising step in this direction is the
recent organization of the annual Embedded Systems
Week as an umbrella for several research conferences
that are related to embedded systems design.

What is needed from industry? Industry tends to stay
with available technologies, optimizing existing invest-
ments and competencies. Moreover, the trend is to build
systems incrementally by modifying existing solutions,
so the emphasis is on backward compatibility to reduce
costs. This design rigidity often leads to overly complex
systems that new design and analysis techniques could
radically improve and simplify.

On the other hand, the inherent limits of ad hoc
approaches to manage system complexity and the result-
ing cost explosion provide strong incentives for industry
to look for alternatives. New standardization efforts,
such as the Automotive Open System Architecture
(AUTOSAR) initiative in the automotive industry, are
appearing. It is important to seize this opportunity and
develop new technologies through joint academic-indus-
trial pilot projects. Researchers must reinvent many soft-
ware abstraction layers, such as high-level languages,
operating systems, middleware, and network layers to
allow better control of system resources. Current prac-
tices to improve system dependability by over-engineer-
ing and using massive component redundancy must be
replaced with lightweight techniques that are based on
solid scientific foundations.

What is needed from policy makers? Embedded
technologies have enormous impact on societal and eco-
nomic transformations, but without a firm scientific
basis, current practices in embedded systems design can-
not fulfill the public needs and expectations in system
dependability. Significant resources for basic research
are required to face the embedded systems design chal-
lenge, which requires policy makers and funding agen-
cies to become fully aware of the issues. ■

Acknowledgments

An earlier version of this article appeared as “The

Embedded Systems Design Challenge,” Proc. 14th Int’l
Symp. Formal Methods, LNCS 4085, Springer, 2006,
pp. 1-15.

The work reported in this article is supported in part
by the Artist2 European Network of Excellence on
Embedded Systems Design, by the National Science
Foundation’s Information Technology Research (ITR)
project on Foundations of Hybrid and Embedded
Software Systems, and by the Swiss National Science
Foundation’s National Center of Competence in Research
(NCCR) on Mobile Information and Communication
Systems (MICS). We thank Paul Caspi for valuable com-
ments on a draft of this article.

References

1. P.J. Denning and A. McGettrick, “Recentering Computer Sci-
ence,” Comm. ACM, vol. 48, no. 11, 2005, pp. 15-19.

2. T.A. Henzinger et al., “Mission Statement: Center for Hybrid
and Embedded Software Systems,” Univ. of California, Berke-
ley; http://chess.eecs.berkeley.edu, 2002.

3. E.A. Lee, “Absolutely Positively on Time: What Would It
Take?” Computer, July 2005, pp. 85-87.

4. J.A. Stankovic et al., “Opportunities and Obligations for Phys-
ical Computing Systems,” Computer, Nov. 2005, pp. 23-31.

5. S. Graf, I. Ober, and J. Ober, “Validating Timed UML Mod-
els by Simulation and Verification,” Software Tools for Tech-
nology Transfer, vol. 8, no. 2, 2006, pp. 128-145.

6. T.A. Henzinger et al., “From Control Models to Real-Time
Code Using Giotto,” IEEE Control Systems Magazine, Feb.
2003, pp. 50-64.

7. H. Kopetz, Real-Time Systems: Design Principles for Distribu-
ted Embedded Applications, Kluwer Academic Publishers, 1997.

8. L. de Alfaro and T.A. Henzinger, “Interface-Based Design,”
Engineering Theories of Software Intensive Systems, M. Broy,
et al., eds., NATO Science Series: Mathematics, Physics, and
Chemistry, vol. 195, Springer, 2005, pp. 83-104.

9. E.A. Lee and P. Varaiya, Structure and Interpretation of Sig-
nals and Systems, Addison-Wesley, 2003.

10. P. Caspi et al., “Guidelines for a Graduate Curriculum on
Embedded Software and Systems,” ACM Trans. Embedded
Computing Systems, vol. 4, no. 3, 2005, pp. 587-611.

Thomas A. Henzinger is a professor of computer and com-
munication sciences at EPFL in Lausanne, Switzerland, and
an adjunct professor of electrical engineering and computer
sciences at the University of California, Berkeley. He
received a PhD in computer science from Stanford Univer-
sity and is a fellow of the IEEE and the ACM and a mem-
ber of the German Academy of Sciences (Leopoldina) and
of Academia Europaea. Contact him at tah@epfl.ch.

Joseph Sifakis is a research director at CNRS and the
founder of Verimag laboratory. He received a PhD in com-
puter science from the University of Grenoble. Contact him
at Joseph.Sifakis@imag.fr.

