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THE DISCONTINUITY SET OF SOLUTIONS OF THE TV
DENOISING PROBLEM AND SOME EXTENSIONS∗

VICENT CASELLES† , ANTONIN CHAMBOLLE‡ , AND MATTEO NOVAGA§

Abstract. The main purpose of this paper is to prove that the jump discontinuity set of the
solution of the total variation based denoising problem is contained in the jump set of the datum
to be denoised. We also prove some extensions of this result for the total variation minimization
flow, for anisotropic norms, and for some more general convex functionals, which include the minimal
surface equation case and its anisotropic extensions.
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1. Introduction. The use of total variation as a regularization term for image
denoising and restoration was introduced by Rudin, Osher, and Fatemi in [30]. If Ω
denotes the image domain, when dealing with the restoration problem one minimizes
the total variation functional

(1.1) u �→
∫

Ω

|Du|

under some constraints which model the process of image acquisition, including blur
and noise. The constraint can be written as f = K ∗ u + n, where f ∈ L2(Ω) is the
observed image, K is a convolution operator whose kernel represents the point spread
function of the optical system, n is the noise (typically a white Gaussian noise of
zero mean), and u is the ideal image, previous to distortion. The denoising problem
corresponds to K = I, and, in this case, the constraint becomes

(1.2) f = u + n.

In practice, the only information we have about the noise is statistical. Assuming that
n is a Gaussian white noise of zero mean and standard deviation σ, the constraint
(1.2) can be imposed in an integral form as

(1.3)

∫
Ω

(f − u)2 dx ≤ σ2|Ω|,

where σ2 denotes a bound on the noise variance. Among all images satisfying this
constraint, the denoised image is chosen as the one minimizing (1.1) [30]. As proved
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by Chambolle and Lions in [20], minimizing (1.1) under the constraint (1.3) amounts
to solving

(1.4) min
u∈BV (Ω)

{∫
Ω

|Du| + 1

2λ

∫
Ω

(u− f)2 dx

}
for some Lagrange multiplier λ > 0. When the noise bound is not known, λ acts as a
penalization term.

One of the main features of total variation denoising (1.4), confirmed by numerical
experiments, is its ability to restore the discontinuities of the image [30, 20, 23]. The
a priori assumption is that functions of bounded variation (the BV model [8]) are a
reasonable functional model for many problems in image processing, in particular, for
denoising and restoration problems. Typically, functions of bounded variation admit
a set of discontinuities which is countably rectifiable [8], being continuous in some
sense (in the measure theoretic sense) away from discontinuities. The discontinuities
could be identified with edges. The ability of total variation regularization to recover
edges is one of the main features which advocates for the use of this model which
had a strong influence in the use of BV functions in image processing (its ability to
describe textures is less clear, even if some textures can be recovered, up to a certain
scale of oscillation).

The main purpose of this paper is to prove that the jump discontinuities of the
solution u of the denoising problem (1.4) are contained in the jump discontinuities
of the datum f , assuming that f ∈ BV (Ω) ∩ L∞(Ω). Partial information on this
question was known through the computation of explicit solutions in several works
[31, 13, 28, 14, 5, 6]. In particular, let us mention the full description of the solution in
the case that f = χC , where C is a convex subset of R

N , N ≥ 2 [5, 6, 4]. In this case,
it is clear from the explicit solution that the jump set of the solution u is contained
in ∂C, and it coincides with it when ∂C is of class C1,1 and λ is small enough. When
N = 2, a more detailed analysis, given in [5], also proves that the solution is W 1,1

inside C, being 0 outside. Other explicit solutions for piecewise constant data f made
of sums of characteristic functions of convex sets were given in [14]. The case of
solutions when f has a radial symmetry can be found in [9, 11, 28, 31]. The picture
coming out from these works is completed with the main result of this paper.

Let us mention that our result gives some information about the nature of the
“staircasing effect.” Staircasing, i.e., the creation of image flat regions separated by
boundaries, is one of the observed artifacts which appear in total variation image
denoising. The most obvious example is when denoising a smooth ramp plus noise
(see Figure 1.1). In the discrete framework, this effect has been reported to be a
consequence of the nondifferentiability of the total variation norm when the gradient
vanishes [29]. Indeed, this reason is at the origin of the appearance of flat regions at
points where the gradient vanishes, as is shown by explicit solutions in the radially
symmetric case [9, 11, 28, 31] as well as in one dimension (see below and Figure 1.1).
We also believe that this is the correct explanation in the continuous framework (see,
for instance, [5]).

But our result says that, at the continuous level, no new jump discontinuities
may appear in the solution that were not present in the (BV ) datum f . Hence, if
the original signal f is smooth enough, one expects that flat areas will appear, but
they should not be, strictly speaking, separated by jumps (however, steep transitions
between flat areas might look close to being jumps and still look like a “staircase”).
Observe, for instance, that if Ω = (0, 1), f : (0, 1) → R is a smooth oscillating ramp
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Fig. 1.1. Top, left: a monotonous ramp and its BV -regularization; observe that nothing hap-
pens except at the boundaries. Right: staircasing in a (smooth) sinusoidal ramp (see explicit com-
putation in the text). Bottom: a noisy ramp; the staircasing effect is maximal.

(for instance, the function x + .1 sin(100x)), then it is easy to show that, actually,
u does not present any discontinuity and the “staircasing” effect is reduced to a
flattening of u near the local extrema of f . Indeed, the Euler–Lagrange equation for
(1.4) turns out to be

−λφ′(x) + u(x) = f(x),

where −1 ≤ φ ≤ 1 a.e., and φu′ = |u′|. First, by the maximum principle and standard
techniques, one easily shows that u is Lipschitz, with ‖u′‖∞ ≤ max[0,1] |f ′| (from which
we deduce that φ is C1,1). Then one easily deduces that u must be constant on each
interval of {u 
= f} (since there φ′ does not vanish, and hence φ /∈ {−1, 1}). Hence,
when u is not constant, u = f (which is easily seen from the equation, since then φ
must be identically 1, if u increases, or −1 if u decreases), and if u 
= f , u is flat.

On the other hand, if we are given some discrete noisy data, we could interpret it
both as a BV data with high norm and discontinuity around each pixel (although this
point of view is a bit strange) or as a non-BV data: in both cases, a strong staircasing
effect is compatible with our result (and we find that the total variation flow will reduce
progressively the number of discontinuities, in particular, by a progressive merging of
the flat areas). See Figures 1.1 and 1.2 for numerical experiments illustrating these
comments.

The main result of the paper is extended in several directions. First, we prove a
similar statement for the solutions of the gradient descent flow of the total variation,
starting from f ∈ L∞(Ω). In this case, using nonlinear semigroup theory, we have
a partial answer: the jump discontinuity set Ju(t) of the solution u(t) is contained
in the jump set Jf of f when f is BV and lies in the closure of the domain of the
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Fig. 1.2. Top: an image, original and noisy. Bottom: the corresponding total variation-
regularized image (same λ). Observe that the staircasing is hardly visible on the regularized version
of the original image, which is “closer” to BV than the noisy version.

operator −div
(

Du
|Du|

)
in L∞(Ω). If f is just bounded, we get only that Ju(t) ⊆ Ju(s)

for any t ≥ s > 0. Other extensions concern the case of several boundary conditions
or anisotropic total variation norms. Eventually, we also see how the above results can
be extended to convex functionals with linear growth, of the form F (ξ) = φ(ξ,−1),
ξ ∈ R

N , where φ : R
N+1 → R is a smooth and elliptic norm on R

N+1. This includes,
in particular, the case where F (ξ) =

√
1 + |ξ|2, ξ ∈ R

N , which is more carefully
analyzed.

Let us describe the plan of the paper. In section 2 we recall some basic facts about
functions of bounded variation. In section 3 we prove the main result of the paper
concerning the jumps of the solutions of the denoising problem (1.4). We then extend
this result to the case of the total variation flow (section 4). We discuss in section 5 the
extension of our results to similar problems (other boundary conditions, anisotropic
norms, or more general convex functionals as described in our last paragraph).

2. Notation and preliminaries on BV functions. Let Ω be an open subset
of R

N . A function u ∈ L1(Ω) whose gradient Du in the sense of distributions is a
(vector-valued) Radon measure with finite total variation in Ω is called a function of
bounded variation. The class of such functions will be denoted by BV (Ω). The total
variation of Du on Ω turns out to be

(2.1) sup

{∫
Ω

u div z dx : z ∈ C∞
0 (Ω; RN ), |z(x)| ≤ 1 ∀x ∈ Ω

}
,
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where for a vector v = (v1, . . . , vN ) ∈ R
N we set |v|2 :=

∑N
i=1 v

2
i , and will be denoted

by |Du|(Ω) or by
∫
Ω
|Du|. The map u → |Du|(Ω) is L1

loc(Ω)-lower semicontinuous.
BV (Ω) is a Banach space when endowed with the norm ‖u‖ :=

∫
Ω
|u| dx + |Du|(Ω).

A measurable set E ⊆ Ω is said to be of finite perimeter in Ω if (2.1) is finite
when u is substituted with the characteristic function χE of E. The perimeter of E
in Ω is defined as P (E,Ω) := |DχE |(Ω). We denote by LN and HN−1, respectively,
the N -dimensional Lebesgue measure and the (N−1)-dimensional Hausdorff measure
in R

N .
Let u ∈ [L1

loc(Ω)]m (m ≥ 1). We say that u has an approximate limit at x ∈ Ω if
there exists z ∈ R

m such that

(2.2) lim
ρ↓0

1

|B(x, ρ)|

∫
B(x,ρ)

|u(y) − z| dy = 0.

The set of points where this does not hold is called the approximate discontinuity
set of u, and it is denoted by Su. Using Lebesgue’s differentiation theorem, one can
show that the approximate limit z exists at LN -a.e. x ∈ Ω and is equal to u(x): in
particular, |Su| = 0.

If x ∈ Ω \ Su, the vector z is uniquely determined by (2.2), and we denote it by
ũ(x). We say that u is approximately continuous at x if x /∈ Su and ũ(x) = u(x),
that is, if x is a Lebesgue point of u (with respect to the Lebesgue measure). Let
u ∈ [L1

loc(Ω)]m and x ∈ Ω \ Su; we say that u is approximately differentiable at x if
there exists an m×N matrix L such that

(2.3) lim
ρ↓0

1

|B(x, ρ)|

∫
B(x,ρ)

|u(y) − ũ(x) − L(y − x)|
ρ

dy = 0.

In that case, the matrix L is uniquely determined by (2.3) and is called the approxi-
mate differential of u at x.

For u ∈ BV (Ω), the gradient Du is an N -dimensional Radon measure that de-
composes into its absolutely continuous and singular parts Du = Dau + Dsu. Then
Dau = ∇u dx, where ∇u is the Radon–Nikodym derivative of the measure Du with
respect to the Lebesgue measure in R

N . The function u is approximately differen-
tiable LN -a.e. in Ω, and the approximate differential coincides with ∇u(x) LN -a.e.
The singular part Dsu can be also split into two parts: the jump part Dju and the
Cantor part Dcu. We say that x ∈ Ω is an approximate jump point of u if there exist
u+(x) 
= u−(x) ∈ R and |νu(x)| = 1 such that

lim
ρ↓0

1

|B+
ρ (x, νu(x))|

∫
B+

ρ (x,νu(x))

|u(y) − u+(x)| dy = 0,

lim
ρ↓0

1

|B−
ρ (x, νu(x))|

∫
B−

ρ (x,νu(x))

|u(y) − u−(x)| dy = 0,

where B+
ρ (x, νu(x)) = {y ∈ B(x, ρ) : 〈y − x, νu(x)〉 > 0} and B−

ρ (x, νu(x)) =
{y ∈ B(x, ρ) : 〈y − x, νu(x)〉 < 0}. We denote by Ju the set of approximate jump
points of u. If u ∈ BV (Ω), the set Su is countably HN−1 rectifiable, Ju is a Borel
subset of Su, and HN−1(Su \Ju) = 0 [8]. In particular, we have that HN−1-a.e. x ∈ Ω
is either a point of approximate continuity of ũ or a jump point with two limits in the
above sense. Eventually, we have

Dju = Dsu Ju = (u+ − u−)νuHN−1
Ju and Dcu = Dsu (Ω\Su).
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If E ⊆ R
N is a measurable set and x ∈ R

N , we define the upper (resp., lower)
density of E at x by

D(E, x) := lim sup
r→0

|E ∩B(x, r)|
|B(x, r)|

(
resp., D(E, x) := lim inf

r→0

|E ∩B(x, r)|
|B(x, r)|

)
.

If u ∈ BV (Ω) and we define

u∗(x) := inf{t : D({u > t}, x)} and u∗(x) := sup{t : D({u < t}, x)},

then u is approximately continuous at x ∈ Ω if and only if u∗(x) = u∗(x). Moreover,
u∗(x) = u+(x) and u∗(x) = u−(x) HN−1 a.e. on Ju.

For a comprehensive treatment of functions of bounded variation, we refer the
reader to [8].

3. The discontinuities of solutions of the total variation denoising prob-
lem. Given a function f ∈ L2(Ω) and λ > 0 we consider the minimum problem

(3.1)

min
u∈BV (Ω)

Fλ(u), with

Fλ(u) =

∫
Ω

|Du| + 1

2λ

∫
Ω

(u− f)2 dx.

Notice that problem (3.1) always admits a unique solution uλ, since the functional
Fλ is strictly convex.

Let us recall the following observation, which is proved in [21, 6] (see also [19, 15]).
Proposition 3.1. For any t ∈ R, consider the minimal surface problem

(3.2) min
E⊆Ω

P (E,Ω) +
1

λ

∫
E

(t− f(x)) dx

(whose solution is defined in the class of finite-perimeter sets and hence up to a
Lebesgue-negligible set). Then, {uλ > t} (resp., {uλ ≥ t}) is the minimal (resp.,
maximal) solution of (3.2). In particular, for all t but a countable set, the solution of
this problem is unique.

A proof that {uλ > t} and {uλ ≥ t} both solve (3.2) is found in [21, Prop. 2.2]. A
complete proof of this proposition, which we do not give here, follows from the coarea
formula, which shows that

Fλ(u) ∼
∫ (

P ({u > t},Ω) +
1

λ

∫
{u>t}

(t− f) dx

)
dt,

and from the following comparison result for solutions of (3.2) which is proved in [6,
Lemma 4].

Lemma 3.2. Let f, g ∈ L1(Ω) and E and F be, respectively, minimizers of

min
E

P (E,Ω) −
∫
E

f(x) dx and min
F

P (F,Ω) −
∫
F

g(x) dx.

Then, if f < g a.e., |E \ F | = 0 (in other words, E ⊆ F up to a negligible set).
The proof of this last lemma relies only on the inequality P (A∪B,Ω)+P (A∩B,

Ω) ≤ P (A,Ω)+P (B,Ω) and is easily generalized to other situations (Dirichlet bound-
ary conditions, anisotropic and/or nonlocal perimeters, etc.; see the proof in [6]—see
also [1] for a similar general statement).
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Eventually, we mention that the result of Proposition 3.1 remains true if the term
(u(x)− f(x))2/(2λ) in (3.1) is replaced with a term of the form Ψ(x, u(x)), with Ψ of
class C1 and strictly convex in the second variable, and replacing (t − f(x))/λ with
∂uΨ(x, t) in (3.2). A variant of this principle for Ψ = | · | is found in [22]

From Proposition 3.1 and the regularity theory for minimal surfaces (see, for
instance, [7, 27]), we obtain the following regularity result (see also [1]).

Corollary 3.3. Let f ∈ Lp(Ω), with p > N . Then, for all t ∈ R, the superlevel
set Et := {uλ > t} (resp., {uλ ≥ t}) has boundary of class C1,α, for all α < (p−N)/p,
out of a closed singular set Σ of Hausdorff dimension at most N − 8. Moreover, if
p = ∞, the boundary of Et is of class W 2,q out of Σ, for all q < ∞, and is of class
C1,1 if N = 2.

We now show that the jump set of uλ is always contained in the jump set of f .
Theorem 3.4. Let f ∈ BV (Ω) ∩ L∞(Ω). Then, for all λ > 0,

(3.3) Juλ
⊆ Jf

(up to a set of zero HN−1-measure).
Proof. Let Et := {uλ > t}, and let Σt be its singular set given by Corollary 3.3.

We show that for all t1 
= t2 there holds

(3.4) HN−1 (∂Et1 ∩ ∂Et2 \ Jf ) = 0.

Suppose by contradiction that (3.4) does not hold for some values t1 < t2, and let
x ∈ ∂Et1 ∩ ∂Et2 \ Jf . We can assume that x does not belong to Σt1 ∪Σt2 . Therefore,
by Corollary 3.3, we know that both ∂Et1 and ∂Et2 are regular in a neighborhood of
x; therefore we may write the set ∂Eti locally as the graph of a function vi ∈ W 2,p(U),
i ∈ {1, 2}, where U is a neighborhood of x in the tangent space to ∂Eti at x (which
we identify with R

N−1). In this way, the Euler–Lagrange equation for (3.2) becomes

(3.5) div
∇vi(y)√

1 + |∇vi(y)|2
+

1

λ
(ti − f(y, vi(y))) = 0, y ∈ U.

From t1 < t2 and Lemma 3.2, it follows that Et2 ⊆ Et1 , which in turn gives v2 ≥ v1

in U . Recall that since f ∈ BV (Ω), HN−1-a.e. x /∈ Jf is a Lebesgue point for f [8].
Hence, without loss of generality, we may also assume that x is a Lebesgue point for
f and, also, a point of approximate differentiability for both vi and ∇vi, i ∈ {1, 2}.
In particular, (3.5) has a pointwise meaning at x, and there holds v1(x) = v2(x) = 0
and ∇v1(x) = ∇v2(x) = 0. As a consequence, subtracting the two equations satisfied
by v1 and v2 at x, we obtain

Δv1(x) − Δv2(x) =
t2 − t1

λ
> 0,

which contradicts the inequality v2 ≥ v1.
Remark 1. Notice that if f is continuous at x ∈ ∂Et1 ∩ ∂Et2 , reasoning as in the

proof of Theorem 3.4 it follows that x ∈ Σt1 ∪ Σt2 . Indeed, using the continuity of f
we can choose the neighborhood U small enough such that there exist two constants
c1, c2 with the property

(3.6) div
∇v1(y)√

1 + |∇v1(y)|2
≥ c1 > c2 ≥ div

∇v2(y)√
1 + |∇v2(y)|2

, y ∈ U,

which contradicts v2 ≥ v1 as above.
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In particular, if N ≤ 7 and f ∈ C(Bρ(x)) ⊂ Ω, then uλ ∈ C(Bρ(x)).
Remark 2. By a result of Calderón [18], if p > N , any function v ∈ W 1,p(Ω)

is differentiable a.e. (this reduces to Rademacher’s theorem when p = +∞). We
could have used this result in the proof of Theorem 3.4, but we used the simpler
result that both vi and ∇vi are a.e. approximately differentiable. In any case we have
that D2(v2 − v1)(x) ≥ 0, since v2 − v1 has a minimum at x and ∇v1 and ∇v2 are
approximately differentiable at x.

4. The total variation flow. To fix ideas, let us assume in this section that
Ω is an open bounded set with Lipschitz boundary. Let us consider the minimizing
total variation flow

(4.1)

∂u

∂t
= div

(
Du

|Du|

)
in QT = ]0, T [ × Ω,

Du

|Du| · ν
Ω = 0 in QT = ]0, T [ × ∂Ω

with the initial condition

(4.2) u(0, x) = f(x), x ∈ Ω.

Let us recall that, in the Hilbertian framework (in L2), it is the gradient flow of the
total variation as defined in [17]. In the general case we shall follow [9, 13]. The
purpose of this section is to prove the following result.

Theorem 4.1. Let f ∈ LN (Ω). Let u(t) be the solution of (4.1) with initial
condition u(0, x) = f(x). Then u(t) ∈ L∞(Ω) ∩BV (Ω) for any t > 0, and

(4.3) Ju(t) ⊆ Ju(s) ∀t > s > 0.

Moreover, if u(s) is continuous at x ∈ Ω, then so is u(t) for any t > s > 0. If
f ∈ Dom(A∞) ∩BV (Ω), then the above assertions are true up to s = 0.

The operator A∞ is the intersection of the (L2-) subdifferential of the total vari-
ation with L∞ and is defined precisely later; see Definition 4.2.

To prove Theorem 4.1, let us recall some basic facts about the operator −div
(

Du
|Du|

)
in Lp spaces. Since it suffices for our purposes, we shall consider only the case
p ∈ [ N

N−1 ,∞]. For any p ∈ [1,∞], let us define the space

X(Ω)p :=
{
z ∈ L∞(Ω,RN ) : div(z) ∈ Lp(Ω)

}
.

If z ∈ X(Ω)p and w ∈ BV (Ω) ∩ Lq(Ω), p−1 + q−1 = 1, we define the functional
(z ·Dw) : C∞

0 (Ω) → R by the formula

〈(z ·Dw), ϕ〉 := −
∫

Ω

wϕdiv z dx−
∫

Ω

w z · ∇ϕdx.

Then (z ·Dw) is a Radon measure in Ω, and (z ·Dw) = z ·∇w if w ∈ W 1,1(Ω)∩Lq(Ω).
Finally, we observe that (see [12]) if z ∈ X(Ω)p, then there exists a function

[z · νΩ] ∈ L∞(∂Ω) satisfying ‖[z · νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ) and such that for any
u ∈ BV (Ω) ∩ Lq(Ω) we have∫

Ω

u div z dx +

∫
Ω

(z ·Du) =

∫
∂Ω

[z · νΩ]u dHN−1.
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Definition 4.2. We define the operator Ap ⊆ Lp(Ω) × Lp(Ω), N
N−1 ≤ p ≤ ∞,

by

(u, v) ∈ Ap if and only if u, v ∈ Lp(Ω), u ∈ BV (Ω), and

there exists z ∈ X(Ω)p with ‖z‖∞ ≤ 1 such that (z ·Du) = |Du|, [z · νΩ] = 0, and

v = −div(z) in D′(Ω).

By v ∈ Apu we mean that (u, v) ∈ Ap. By L1
w(]0, T [;BV (Ω)) we denote the

space of weakly measurable functions w : [0, T ] → BV (Ω) (i.e., t ∈ [0, T ] → 〈w(t), φ〉
is measurable for any φ ∈ BV (Ω)∗, where BV (Ω)∗ denote the dual of BV (Ω)) such

that
∫ T

0
‖w(t)‖ dt < ∞.

Definition 4.3. A function u ∈ C([0, T ];Lp(Ω)) is called a strong solution of
(4.1) if u ∈ W 1,1

loc (0, T ;Lp(Ω))∩L1
w(]0, T [;BV (Ω)) and there exists z ∈ L∞ (

]0, T [×Ω;

R
N
)

with ‖z‖∞ ≤ 1 such that∫
Ω

(z(t) ·Du(t)) =

∫
Ω

|Du(t)| for a.e. t > 0,(4.4)

[z(t) · νΩ] = 0 in ∂Ω for a.e. t > 0,(4.5)

and

ut = div z in D′ (]0, T [ × Ω) .

Proposition 4.4. The operator Ap is m-accretive in Lp(Ω); that is, for any
f ∈ Lp(Ω) and any λ > 0 there is a unique solution u ∈ Lp(Ω) of the problem

(4.6) u + λApu � f.

Moreover, if u1, u2 ∈ Lp(Ω) are the solutions of (4.6) corresponding to the right-hand
sides f1, f2 ∈ Lp(Ω), then

‖u1 − u2‖p ≤ ‖f1 − f2‖p.

Moreover, the domain of Ap is dense in Lp(Ω) when p < ∞.
We denote by Rλf the solution of (4.6), and by Rk

λf its k-iterate, for any k ≥ 1.
Recall the notion of strong solution for nonlinear semigroups generated by accretive
operators.

Definition 4.5. A function u is called a strong solution of in the sense of
semigroups of du

dt + Apu � 0 with u(0) = f if

(4.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u ∈ C([0, T ];Lp(Ω)) ∩W 1,1

loc (]0, T [;Lp(Ω)),

u(t) ∈ Dom(Ap) a.e. in t > 0 and u′ + Apu(t) � 0 a.e. t ∈ ]0, T [,

u(0) = f.

Using Proposition 4.4, by Crandall and Ligget’s semigroup generation theorem
[24] we obtain the following result.

Theorem 4.6. Let f ∈ Lp(Ω) if N
N−1 ≤ p < ∞, or let f ∈ Dom(A∞) if p = ∞.

Then there is a unique strong solution in the sense of semigroups u(t) = S(t)f :=
limλ↓0, kλ→t Rk

λf ∈ C([0, T ], Lp(Ω)) of the problem

(4.8)
du

dt
+ Apu � 0, u(0) = f.
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Moreover, the semigroup solution is a strong solution of (4.1), and, conversely, any
strong solution of (4.1) is a strong solution in the sense of semigroups of (4.8).

Remark 3. Notice that given p ∈ [ N
N−1 ,∞] the limit limλ↓0, kλ→t Rk

λf is taken in
Lp(Ω).

To prove Theorem 4.1, we need the following lemma.
Lemma 4.7. Let (un)n∈N be a sequence of functions in BV (Ω)∩L∞(Ω). Assume

that Jun ⊆ Ju0
, for all n ∈ N, and un → u strongly in L∞(Ω). Then HN−1-almost

every point of Ω \ Ju0
is a Lebesgue point for u. In particular, if u ∈ BV (Ω), then

Ju ⊆ Ju0 . Moreover, if all the functions un are continuous at x ∈ Ω, then also u is
continuous at x.

Proof. The thesis follows observing that if x ∈ Ω is a Lebesgue point for all
the functions un, then it is also a Lebesgue point for u, and the same is true for a
continuity point.

Proof of Theorem 4.1.
Step 1. Assume that f ∈ Dom(A∞) ∩ BV (Ω). Then we know that Rk

λf →
u(t) when λ → 0+ and kλ → t [24]. Then the result follows as a consequence of
Theorem 3.4, Remark 3, and Lemma 4.7.

Step 2. Let f ∈ L∞(Ω). Observe that the functions u(t) = S(t)f ∈ C([0, T ];L∞(Ω))
and u(t) ∈ BV (Ω) for any t > 0. Moreover, recall the following estimate, a conse-
quence of the 0-homogeneity of the operator A∞ [9, 11]:

(4.9)

∥∥∥∥ d

dt
S(t)fλ

∥∥∥∥
∞

≤ 2
‖fλ‖∞

t
≤ 2

‖f‖∞
t

for any t > 0.

This implies that u(t) ∈ Dom(A∞). Notice that by Step 1 and Theorem 3.4, we know
that Ju(t) ⊆ Ju(s) and the corresponding assertion for the continuity points.

Step 3. Let f ∈ LN (Ω). Then we know [11, 25] that u(t) ∈ L∞(Ω) for any t > 0,
and the result follows as a consequence of Step 2.

The analogous statement of Theorem 4.1 holds when the domain is R
N . For

simplicity, let us give in that case a geometric condition on the level sets of f ∈
L∞(RN ) ∩BV (RN ) which implies that f ∈ Dom(A∞). We say that the set E ⊆ R

N

satisfies the internal (external) r-ball condition if for any x ∈ ∂E there exists yx ∈ R
N

such that B(yx, r) ⊆ E (resp., B(yx, r) ⊆ R
N \ E) modulo a Lebesgue null set and

x ∈ ∂B(yx, r).
Proposition 4.8. Let f ∈ L∞(RN )∩BV (RN ). If {f > t} satisfies the internal

and external r-ball condition for almost any t ≥ 0, then f ∈ Dom(A∞) and there is
g ∈ A∞f such that ‖g‖∞ ≤ N

r .
Proof. Let u ∈ BV (RN ) ∩ L∞(RN ) be the solution of

(4.10) u− λ div

(
Du

|Du|

)
= f in R

N .

We know that u ∈ BV (RN ) ∩ L∞(RN ) and ‖u‖∞ ≤ ‖f‖∞. Using the notation
introduced above, let us observe that a.e. in x ∈ R

N we have

h(x′) := f∗(x)χB(yx,r)(x
′) − ‖f‖∞(1 − χB(yx,r)(x

′)) ≤ f(x′), x′ ∈ R
N a.e.

Indeed, since f satisfies the internal r-ball condition, this follows easily from the
definition of f∗(x) given in section 2.

By the comparison principle, since the explicit solution of (4.10) with right-hand
side h is given by the left-hand side of the next inequality (see, for instance, [11]), we
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have that

max

(
−‖f‖∞,−‖f‖∞ +

(
‖f‖∞ + f∗(x)− λ

N

r

)
χB(y,r)(x

′)

)
≤ u(x′), x′ ∈ R

N a.e.

Proceeding in an analogous way with the external ball condition, since

(4.11) f(x′) ≤ f∗(x)χB(yx,r)(x
′) + ‖f‖∞(1 − χB(yx,r)(x

′)), x′ ∈ R
N a.e.,

we obtain that
(4.12)

u(x′) ≤ max

(
‖f‖∞, ‖f‖∞ −

(
‖f‖∞ − f∗(x)− λ

N

r

)
χB(yx,r)(x

′)

)
, x′ ∈ R

N a.e.

From (4.11) and (4.12), we deduce that∥∥∥∥u− f

λ

∥∥∥∥
∞

≤ N

r
.

Since u−f
λ ∈ A∞u, letting λ → 0+ we deduce that f ∈ Dom(A∞) and there is

g ∈ A∞f such that ‖g‖∞ ≤ N
r (see [17, 24]).

5. Extensions and remarks. In this section we discuss some extensions of the
previous results.

5.1. Boundary conditions. Theorem 3.4 is purely local, in the sense that it
also holds considering Dirichlet boundary conditions in the minimization problem,
and hence, by localization in appropriate balls, considering any kind of boundary
condition.

The results concerning the evolution problem also hold in the case of Dirichlet
boundary conditions or in R

N [10, 13, 11].

5.2. Anisotropic total variation. Let φ be a norm on R
N . Following [2, 3],

we say that φ is smooth if φ ∈ C∞(RN \ {0}), and we say that φ is elliptic if there
exist two constants 0 < c ≤ C < +∞ such that

c Id ≤ ∇2

(
φ(x)2

2

)
≤ C Id ∀x ∈ R

N \ {0}.

Given a function f ∈ L2(Ω) and λ > 0 we consider the anisotropic version of problem
(3.1):

(5.1) min
u∈BV (Ω)

∫
Ω

φ(Du) +
1

2λ

∫
Ω

(u− f)2 dx,

where the integrand has to be suitably understood on the jump set Ju [8, sect. 5].
See [26] for some explicit examples in this setting.

Then Proposition 3.1 holds for the solution u of (5.1), provided the perimeter in
(3.2) is replaced with the anisotropic perimeter

Pφ(E,Ω) :=

∫
Ω

φ(DχE) =

∫
∂∗E

φ(νE(x)) dHN−1(x),

where ∂∗E = JχE
is the jump set defined in section 2, and νE is the corresponding

normal vector. The following result follows from standard regularity theory [2, 3].
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Proposition 5.1. Let φ be smooth and elliptic. Let f ∈ Lp(Ω), with p > N , and
let uλ ∈ BV (Ω) be the (unique) minimizer of (5.1). Then, for all t ∈ R, the superlevel
set {uλ > t} (resp., {uλ ≥ t}) has boundary of class C1,α, for all α < (p−N)/p, out
of a closed singular set Σ of Hausdorff dimension less than N − 2.

Reasoning as above, if f ∈ BV (Ω)∩L∞(Ω), we obtain that uλ satisfies (3.3) also
in the anisotropic setting. Moreover, the analogous statement as in Theorem 4.1 also
holds, provided we substitute (4.1) with

(5.2)

∂u

∂t
= div (∇φ (Du)) in QT = ]0, T [ × Ω,

∇φ (Du) · νΩ = 0 in QT = ]0, T [ × ∂Ω

with an initial condition f ∈ LN (Ω). Indeed, this statement follows as a consequence
of two basic ingredients, the regularizing effect of (5.2) due to the homogeneity of the
operator in its right-hand side and the LN to L∞ regularizing effect of the solutions
of div (∇φ (Du)) = f . The proofs of these facts can be done as in the total variation
case [25, 11]. As in section 5.1, we notice that Neumann boundary conditions may be
replaced by Dirichlet ones and that we can also work in R

N .
Remark 4. Notice that Theorems 3.4 and 4.1 cannot be expected to hold without

further assumptions on the norm φ. Indeed, letting N = 2 and φ(x1, x2) = |x1|+ |x2|,
from an example discussed in [16] it follows that we can find a set E ⊂ R

2 (which is
the union of two rectangles) such that, letting f = χE , both the solution uλ of (5.1)
and the solution u of (5.2) have a jump set which strictly contains the jump set of f .

5.3. Convex functionals with linear growth. Let us now show that Theo-
rems 3.4 and 4.1 also hold if we substitute (5.1) with a more general convex functional
of the type

(5.3)

∫
Ω

F (Du) +
1

2λ

∫
Ω

(u− f)2 dx,

where F (ξ) = φ(ξ,−1), and φ : R
N+1 → R is a smooth and elliptic norm on R

N+1.
An important example is the Lagrangian F (ξ) =

√
1 + |ξ|2 of the minimal surface

problem. Given a function u ∈ Lp(Ω), with p ∈ [1,+∞], we define ũ ∈ Lp(Ω × ]0, 1[)
as ũ(x, xN+1) = u(x) − xN+1. If u ∈ BV (Ω), then ũ ∈ BV (Ω × ]0, 1[), and using the
coarea formula [7] it is easy to show that∫

Ω×]0,1[

φ(Dũ) =

∫
Ω

F (Du).

As a consequence, letting uλ be the minimizer of (5.3), we have that ũλ is the unique
minimizer of ∫

Ω×]0,1[

φ(Dv) +
1

2λ

∫
Ω×]0,1[

(v − f̃)2 dx dxN+1,

among v ∈ BV (Ω × ]0, 1[), with boundary conditions v(x, 0) = u(x) and v(x, 1) =
u(x) − 1, for x ∈ Ω.

From the discussion above, if f ∈ L∞(Ω) ∩BV (Ω), we get

Jũλ
= Juλ

× ]0, 1[ ⊆ Jf̃ = Jf × ]0, 1[,
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which yields, in particular, Juλ
⊆ Jf . Let us state the corresponding result for the

evolution problem.
Theorem 5.2. Let f ∈ L∞(Ω). Let u(t) be the solution of

(5.4)

∂u

∂t
= div (∇F (Du)) in QT = ]0, T [ × Ω,

∇F (Du) · νΩ = 0 in QT = ]0, T [ × ∂Ω

with initial condition u(0, x) = f(x). Then u(t) ∈ L∞(Ω)∩BV (Ω) for any t > 0, and

Ju(t) ⊆ Ju(s) ∀t > s > 0.

Moreover, if u(s) is continuous at x ∈ Ω, then so is u(t) for any t > s > 0. If
f ∈ Dom(A∞) ∩BV (Ω), then the above assertions are true up to s = 0.

We have a corresponding statement for Dirichlet boundary conditions or for the
Cauchy problem.

This result can be proved if we have a regularizing effect for the evolution problem,
i.e., if as in the proof of Theorem 4.1 we are able to prove that

u(t) ∈ Dom (−div (∇F (Du))) (where the closure is taken in L∞(Ω)).

This follows again from the estimate ‖ut‖∞ ≤ 2‖f‖∞
t which has been proved in [13]

for the minimal surface operator (corresponding to F (ξ) =
√

1 + |ξ|2) and can be
extended in a similar way to a general norm φ in R

N+1.
Notice that we have restricted our statement to the case where f ∈ L∞(Ω), since

we have no general LN to L∞ estimates for the equation div (∇F (Du)) = f , without
further assumptions on f or on the domain Ω.

5.4. Further remarks on the case F (ξ) =
√

1 + |ξ|2. To fix ideas, we shall
work in R

N . Let us consider the functional

(5.5)

∫
RN

√
1 + |Du|2 +

1

2λ

∫
RN

(u− f)2 dx,

which is used sometimes instead of functional (3.1) in problems related to image
denoising and restoration. Our aim is to show that if f is discontinuous in some
boundary, then, for small values of λ, the discontinuities are still preserved in the
solution uλ of (5.5). Moreover, the graph of uλ has a vertical contact angle at the
discontinuity.

Let us recall the following lemma, whose proof can be found in [6].

Lemma 5.3. Let R, c > 0. Then for any λ−1 > max
(

4N2

c , 2N
cR

)
there is a value

of R̃ ∈ (0, R) such that there exists a radial solution wB̃ of

(5.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w − λ div

(
∇w√

1 + |∇w|2

)
= c in B̃ = B(0, R̃),

w = 0 on ∂B̃

such that

0 > w′
B̃

(r) > −∞, U < wB̃(r) < c for 0 < r < R̃, and

w′
B̃

(r) → −∞, wB̃(r) → U as r → R̃−
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for some U > 0.
Lemma 5.4. For any c > 0 there is λ0 > 0 such that for any 0 < λ ≤ λ0 there

is Rλ > 0 such that the solution wλ of (5.6) in B(0, Rλ) satisfies inf∂B(0,Rλ) wλ > 0.
Moreover, wλ → c uniformly as λ → 0.

Proof. Let us choose λ = 1, R = 1, and c′ > 4N2 in Lemma 5.3. Let w̃ be the
solution of (5.6) with right-hand side c′ in a ball B̃ of radius 0 < R̃ < 1 given by
that lemma. Let g(x) = c′ − w̃ in B̃. Then g = div(∇g/

√
1 + |∇g|2). Let c > 0 and

λ0 > 0 be such that c′
√
λ0 < c. Then for any λ ∈ (0, λ0), wλ(x) = c−

√
λg( x√

λ
) is the

solution of (5.6) in B(0, Rλ) with Rλ =
√
λR̃ and satisfies inf∂B(0,Rλ) wλ > 0. The

last assertion follows from the continuity of w̃.
Proposition 5.5. Let Ω be an open bounded domain whose boundary is of class

C1,1, and let f ∈ L∞(RN ), f ≥ 0, with f ≥ c > 0 in Ω and f = 0 in R
N \ Ω. Let uλ

be the solution of

(5.7)

{
u− λ div

(
∇u√

1 + |∇u|2

)
= f in R

N .

Then for λ small enough uλ is discontinuous on ∂Ω, having a vertical contact angle.
We recall that if u ∈ BV (RN ) is a solution of (5.7) for some f ∈ L1(RN ), then

the vector field Tu = ∇u/
√

1 + |∇u|2 is such that u − λ div Tu = f in D′(RN ) and

(Tu ·Du) = |∇u|2/
√

1 + |∇u|2 + |Dsu|.
Proof. Let us take R > 0 such that for any point p ∈ ∂Ω there are open balls B,B′

of radius R such that B ⊆ Ω, B′ ⊆ R
N \Ω and p ∈ ∂B, p ∈ ∂B′. Observe that, by the

maximum principle (see [11]), we know that uλ ∈ L2(RN ) and 0 ≤ uλ ≤ ‖f‖∞. First,
we observe that uλ is a supersolution of (5.6) on any ball B̃ ⊆ B. By the comparison
principle for (5.6) we obtain that uλ ≥ uB̃ ≥ U for some U > 0. Since we can do this

for any ball B̃ inside Ω, we deduce that uλ ≥ U . Notice that, by Lemma 5.4, we may
take λ and the balls B̃ small enough so that uλ is greater than c

2 in ∂Ω. On the other
hand, uλ is a subsolution of

(5.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u− λ div

(
Du√

1 + |Du|2

)
= 0 in B̃′,

u = ‖f‖∞ on ∂B̃′

for any ball B̃′ of radius smaller than R contained in R
N \ Ω. Again, by Lemma 5.4,

we know that for λ > 0 small enough, the solution uλ is strictly below c
2 in ∂Ω. We

deduce that uλ is discontinuous on ∂Ω.
Let Tuλ = ∇uλ/

√
1 + |∇uλ|2. Let us prove that uλ has vertical contact angle

from both sides of the discontinuity, i.e., [Tuλ · νΩ] = −1 and [Tuλ · νR
N\Ω] = 1. For

that, let ϕ ∈ C∞
0 (RN ). Then∫

RN

div Tuλ ϕdx = −
∫

RN

Tuλ · ∇ϕ = −
∫

Ω

Tuλ · ∇ϕ−
∫

RN\Ω
Tuλ · ∇ϕ

=

∫
Ω

div Tuλ ϕ +

∫
RN\Ω

div Tuλ ϕ

−
∫
∂Ω

[Tuλ · νΩ]ϕ−
∫
∂Ω

[Tuλ · νR
N\Ω]ϕ.



DISCONTINUITY SET OF SOLUTIONS OF TV DENOISING 15

That is,
(5.9)

div Tuλ = div Tuλ χΩ +div Tuλ χRN\Ω− [Tuλ ·νΩ]HN−1|∂Ω− [Tuλ ·νR
N\Ω]HN−1|∂Ω.

Hence

〈div Tuλ, uλ〉 =

∫
Ω

div Tuλ uλ +

∫
RN\Ω

div Tuλ uλ

−
∫
∂Ω

[Tuλ · νΩ]u∗
λ −

∫
∂Ω

[Tuλ · νR
N\Ω]u∗

λ,

where u∗
λ =

u+
λ +u−

λ

2 . Now∫
RN

div Tuλ uλ dx = −
∫

RN

Tuλ ·Duλ = −
∫

Ω

Tuλ ·Duλ −
∫

RN\Ω
Tuλ ·Duλ

−
∫

RN

(Tuλ ·Duλ)s dHN−1|∂Ω

=

∫
Ω

div Tuλ uλ +

∫
RN\Ω

div Tuλ uλ −
∫

RN

(Tuλ ·Duλ)s dHN−1|∂Ω

−
∫
∂Ω

[Tuλ · νΩ]uλ −
∫
∂Ω

[Tuλ · νR
N\Ω]uλ.

Comparing the above two expressions and using

(Tuλ ·Duλ)sHN−1|∂Ω = |(Duλ)s|HN−1|∂Ω = |[uλ]|HN−1|∂Ω

(where [uλ] denotes the jump of uλ on ∂Ω), we deduce that

|[uλ]| =
(
[Tuλ · νΩ] − [Tuλ · νR

N\Ω]
) [uλ]

2
.

Since [uλ] 
= 0, this implies that

[Tuλ · νR
N\Ω] − [Tuλ · νΩ] = 2,

which in turn implies

[Tuλ · νΩ] = −1 and [Tuλ · νR
N\Ω] = 1,

since both |[Tuλ · νΩ]|, |[Tuλ · νR
N\Ω]| ≤ 1.
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