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Abstract Because estrogen contributes to the promotion

and progression of breast cancer, a greater understanding of

the role of estrogen in breast cancer has led to therapeutic

strategies targeting estrogen synthesis, the estrogen recep-

tor, and intracellular signaling pathways. The enzyme

aromatase catalyses the final step in estrogen biosynthesis

and was identified as an attractive target for selective

inhibition. Modern third-generation aromatase inhibitors

(AIs) effectively block the production of estrogen without

exerting effects on other steroidogenic pathways. The

discovery of letrozole (Femara1) achieved the goal of

discovering a highly potent and totally selective AI.

Letrozole has greater potency than other AIs, including

anastrozole, exemestane, formestane, and aminoglutethi-

mide. Moreover, letrozole produces near complete

inhibition of aromatase in peripheral tissues and is asso-

ciated with greater suppression of estrogen than is achieved

with other AIs. The potent anti-tumor effects of letrozole

were demonstrated in several animal models. Studies with

MCF-7Ca xenografts successfully predicted that letrozole

would be clinically superior to the previous gold standard

tamoxifen and also indicated that it may be more effective

than other AIs. An extensive program of randomized

clinical trials has demonstrated the clinical benefits of le-

trozole across the spectrum of hormone-responsive breast

cancer in postmenopausal women.
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Introduction

Studies have consistently shown that lifetime exposure to

estrogens increases the risk of breast cancer [1]. The degree

of risk is increased by persistently elevated blood con-

centrations of estrogen [2]; clinical indicators of

persistently elevated blood estrogen concentrations, for

example, age at menarche, first live birth, menopause,

alcohol consumption, and obesity [3–5]; and, although still

controversial, exposure to exogenous estrogen, for exam-

ple, some forms of hormone replacement therapy and oral

contraceptives [6–12]. The presence of some of these

factors also increases the risk of breast cancer being

estrogen receptor (ER)-positive [13]. Studies have shown

that higher levels of endogenous estrogen and testosterone

(which is converted to estrogen by aromatase) increases

breast cancer risk, regardless of predicted breast cancer risk

[14–16]. These data indicate that estrogen is an important

risk factor even in women considered at high risk of

developing the disease, for example, those with a family

history of breast cancer.

Estrogen is thought to contribute to the initiation and

contributes to the promotion and progression of breast

cancer via two complementary mechanisms [1], the car-

cinogenic effects of estrogen metabolites, notably hydroxyl

metabolites [3, 17, 18], and stimulation of ER signaling

pathways, including those initiated by activation of epi-

dermal growth factors, notably the mitogen-activated

phosphoinositide 3 kinase pathway [19–30]. Greater

understanding of the role of estrogen in breast cancer has

led to therapeutic strategies targeting estrogen synthesis

(aromatase inhibitors [AIs]) [31], the ER (selective ER

modulators [SERMs], pure antagonists) [32], and intra-

cellular signaling pathways (signal transduction inhibitors)

[33].

A. S. Bhatnagar (&)

World Wide Services Group Ltd, Geispelgasse 13,

CH-4132 Muttenz, Switzerland

e-mail: ajay.bhatnagar@wwsgroup.com

123

Breast Cancer Res Treat (2007) 105:7–17

DOI 10.1007/s10549-007-9696-3



Hormone receptor (HR)-positive tumors are defined as

those with ER or progesterone receptor (PgR) expression

detectable above a pre-set limit [34]. Patients whose ER or

PgR expression is below this pre-set limit are considered

HR–. Approximately two thirds of breast cancer patients

have HR+ tumors [13] and are candidates for treatment

strategies designed to counteract the growth effects of

estrogen. This review describes the rational development of

the potent AI letrozole, which has therapeutic utility in

HR+ tumors across the breast cancer continuum.

Mechanism of action of aromatase inhibitors

Aromatase

Aromatase (cytochrome P-450 [CYP] 19) catalyzes the

rate-limiting step (conversion of steroidal C-19 androgens

to C-18 estrogens) in estrogen biosynthesis [35–37]. Aro-

matization is the final step in steroid biosynthesis (Fig. 1)

[38]; and, therefore, aromatase is an attractive target for

selective inhibition [39, 40]. Aromatase is expressed pri-

marily in the ovary and also in central and peripheral

tissues, fat, muscle, liver, and breast [41, 42]. With

increasing age, as ovarian estrogen production declines

[43], the contribution of peripheral production of estrogens

increases [44], and in postmenopausal women, peripheral

aromatization of androstenedione produced by the adrenal

gland (Fig. 1) [38] becomes the main source of endogenous

estrogens [45–49]. Of note, normal and malignant breast

tissue contributes to the peripheral synthesis of estrogens

[14, 50–53]. Thus, expression of aromatase in breast

tumors may contribute significantly to the degree of cel-

lular exposure to estrogens [14]; therefore, it is important

to target both intra-tumoral and peripheral aromatase [31].

The presence of intracellular aromatase activity could

explain why estrogen concentrations are 10–20 times

higher in peripheral tissue than blood in postmenopausal

but not pre-menopausal women [41, 54–58]. Moreover,

estrogen concentrations are higher in tumors than in sur-

rounding non-malignant tissue [41, 54–58]. Recent

research has increased understanding of how aromatase is

regulated by tissue-specific promoters [59] and how genetic

variation may affect the pathophysiology of estrogen-

dependent disease [60]. Pharmacogenomics may become

an increasingly important tool for individualizing hormonal

therapy for patients with breast cancer.

Aromatase inhibitors

Modern third-generation AIs effectively block the pro-

duction of estrogen without exerting effects on other

steroidogenic pathways and have been heralded as a ‘‘tri-

umph of translational oncology’’ [61]. The search for

potent and selective inhibitors of aromatase started with the

first-generation inhibitor aminoglutethimide [62]. How-

ever, aminoglutethimide lacked selectivity for aromatase

[63] and inhibited biosynthesis of cortisol, aldosterone, and

thyroid hormone [64] as well as aromatase; moreover,

aminoglutethimide was also found to induce hepatic

enzymes (Fig. 2) [65, 66]. Second-generation AIs included

the nonsteroidal inhibitor fadrozole and the steroidal
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Fig. 1 Aromatization of androgens to estrogens in postmenopausal

women. A androstenedione, E1 estrone, E1S estrone sulfate, E2
estradiol, T testosterone. Reprinted from [38] with permission from

the Society of Endocrinology
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Fig. 2 The development of aromatase inhibitors (AIs) has culmi-

nated in agents with high specificity and potency for aromatase.

Spectrum of action of first- through third-generation AIs: The third-

generation AIs act exclusively on the aromatase enzyme and do not

appear to exert additional effects. Potency of AIs determined by

degree of inhibition of total body aromatase: 4-OHA 4-hydroxyandr-

ostenedione. Reprinted from [66] with permission from the Society of

Endocrinology
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inhibitor formestane (4-hydroxyandrostenedione). Fadroz-

ole was superior to aminoglutethimide in terms of potency,

selectivity, and safety [67], but its selectivity was not

complete and clinical trials suggested that it was no more

effective than tamoxifen [68, 69].

To improve on fadrozole, Novartis synthesized a series

of new compounds. Structure-activity relationship studies

were then performed to identify the most potent AI from a

series of benzyl-azole derivatives of fadrozole [70]. The

third-generation AI letrozole (Femara1) was the result of

this structure-activity approach to drug design and

achieved the research goal of creating a highly potent and

totally selective AI [71]. These compounds were also used

to design pioneering molecular modeling techniques used

to map the active site of aromatase [70, 72]. Other third-

generation AIs developed during this period were the

nonsteroidal agents vorozole (since discontinued) and an-

astrozole [73] (Fig. 2) [66] and the steroidal agent

exemestane [74]. AIs have been classified as steroidal (type

I; for example, exemestane) or nonsteroidal (type II; for

example, letrozole and anastrozole) [75]. A comprehensive

review of AIs focuses on the pharmacology and clinical

development of letrozole [76].

Letrozole pharmacodynamics and pharmacokinetics

Potency

The chemical structure of letrozole (4,40-[(1H-1,2,4-triazol-

1-yl) methylene] bis-benzonitrile) is compared with other

AIs in Fig. 3 [77]. The nitrogen-containing structures like

the imidazoles and the triazoles bind to the iron in the heme

moiety of CYP-450, whereas the cyanobenzyl moiety

present in the nonsteroidal AIs such as letrozole partially

mimics the steroid backbone of the enzyme’s natural sub-

strate androstenedione. Furthermore, the triazole

compound letrozole was found to be superior to other

derivatives of fadrozole in terms of in vivo inhibition of

aromatase [70].

Letrozole is a highly potent inhibitor of aromatase in

vitro, in vivo in animals, and in humans. The relative

potencies of letrozole, anastrozole, and fadrozole were

determined in a variety of model cellular endocrine and

tumor systems containing aromatase (hamster ovarian tis-

sue fragments, adipose tissue fibroblasts from normal

human breast, the MCF-7Ca human breast cancer cell line

transfected with the human aromatase gene, and the JEG-3

human choriocarcinoma cell line) [31]. These studies

showed that although letrozole and anastrozole are

approximately equipotent in a cell-free aromatase system

(human placental microsomes), letrozole is 10–30 times

more potent than anastrozole in inhibiting intracellular

aromatase in intact rodent cells, normal human adipose

fibroblasts, and human cancer cell lines (Fig. 4) [31]. In

several other studies, letrozole has consistently demon-

strated greater potency compared with anastrozole,

exemestane, formestane, and aminoglutethimide (Table 1)

[31, 71, 75, 78–82].

The degree of aromatase inhibition can be determined in

vivo by measuring uterine weight after treatment with a

standard dose of androstenedione in immature female rats

[71]. Using this assay, it was found that the in vivo potency

of letrozole is more than four orders of magnitude greater

than aminoglutethimide (50% effective dose [ED50],

1–3 lg/kg vs. 30 mg/kg, respectively) [71]. It has also

been shown that neoadjuvant letrozole profoundly inhibits

in situ aromatase activity and reduces endogenous
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estrogens within the breast in postmenopausal women with

large primary breast cancers [75].

In postmenopausal women, letrozole achieves signifi-

cantly greater plasma estrogen suppression of estrogens

and greater inhibition of in vivo aromatization than anas-

trozole [83]. In the study, levels of aromatase were

detectable in 11 of 12 patients during treatment with an-

astrozole (mean percentage inhibition in the whole group,

97.3%) but in none of the 12 patients during treatment with

letrozole ([99.1% suppression in all patients; Wilcoxon,

P = 0.0022, comparing the two drug regimens). Suppres-

sion of estrone and estrone sulfate was found to be

significantly greater during treatment with letrozole com-

pared with anastrozole (P = 0.019 and 0.0037,

respectively). Another study conducted in 54 postmeno-

pausal women with invasive breast cancer showed that

more complete inhibition of aromatase was achieved with

2.5 mg of letrozole than 1 mg of anastrozole, resulting in

significantly greater suppression of estradiol (P \ 0.0001),

the most bioactive estrogen [84]. This recent study con-

firms previous observations showing that letrozole

produces near complete inhibition of aromatase in periph-

eral tissues, associated with greater suppression of estrogen

than achieved with other AIs [78, 85–90].
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Fig. 4 Relative potencies with which letrozole, anastrozole, and

fadrozole inhibit aromatase from non-cellular and intracellular

sources. Reprinted from [31] with permission from Elsevier

Table 1 Inhibitory concentrations of letrozole, anastrozole, exemestane, fadrozole, 4-hydroxyandrostenedione and aminoglutethimide against

the aromatase enzyme derived from various cellular and non-cellular sources. Reprinted from [77] with permission from Elsevier

Aromatase

inhibitor

IC50 values (nM), (relative potency; letrozole = 1)

Human

placental

microsomes

Particulate

fractions of

human breast

cancer

Rat ovarian

microsomes

MCF-7Ca

cancer cells

JEG-3

cancer cells

CHO

cells

Hamster

ovarian

tissue

Human

breast

Letrozole 2 (1) 0.8 (1)

Anastrozole 8 (0.25) 15 (0.053)

Exemestane 15 (0.13) 5 (0.16)

4-OHA 30 (0.07) 30 (0.027)

AG 20,000 (0.0001) 10,000 (0.0008)

Letrozole 11 (1) 0.07 (1) 0.07 (1) 20 (1) 0.8 (1)

Anastrozole 23 (0.48) 0.82 (0.085) 0.99 (0.071) 600 (0.033) 14 (0.057)

Fadrozole 5 (2.2) 0.05 (1.4) 0.07 (1.0) 30 (0.67) 1 (0.80)

4-OHA 62 (0.18)

AG 1900 (0.0058)

Letrozole 1.02 (1) 0.35 (1.0) 0.45 (1) 0.14 (1)

Anastrozole 5.35 (0.19) 3.62 (0.097) 5.66 (0.080) 17.17 (0.0082)

4-OHA 0.59 (0.59) 1.6 (0.28) 0.72 (0.19)

Letrozole 7 (1)

Anastrozole 25 (0.28)

Fadrozole 7 (1)

Letrozole 1.4 (0)

Anastrozole 27 (0.052)

4-OHA 60 (0.023)

AG 5500 (0.00025)

4-OHA 4-hydroxyandrostenedione, AG aminoglutethimide

Values quoted are IC50 values representing the concentration needed to achieve 50% inhibition of aromatase activity. The relative potency of

each inhibitor compared with letrozole is shown in parentheses
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Selectivity

Letrozole is highly selective for aromatase and unlike first-

and second-generation AIs does not significantly affect

cortisol, aldosterone, or thyroxine [77]. In vitro studies

showed that letrozole was more than three orders of mag-

nitude more selective than aminoglutethimide in its effects

on progesterone and corticosterone production, and more

than 300-fold more selective against aldosterone than

fadrozole [71, 78]. In vivo adrenocorticotrophic hormone

(ACTH) stimulation tests in rats showed that letrozole had

no significant effect on either aldosterone or corticosterone

levels, even at a dose 1,000 times greater than that required

for inhibition of aromatase [71].

The selectivity of letrozole has been demonstrated in

clinical studies in postmenopausal women. These studies

showed that letrozole has no effect on the plasma levels of

17a-OH progesterone, thyroid-stimulating hormone (TSH),

luteinizing hormone (LH), follicle-stimulating hormone

(FSH), or androstenedione and does not affect normal urine

electrolyte excretion or thyroid function [86, 91–93]. Of

note, the vast majority of patients treated with letrozole

have a normal response to synthetic ACTH [86].

Anti-tumor activity in vivo

The potent anti-tumor effects of letrozole have been

demonstrated in several animal models [77, 78, 94].

Letrozole induced complete regression of estrogen-depen-

dent, 9,10-dimethylbenz-a-anthracene (DMBA)-induced

mammary tumors in adult female rats [95]. The ED50 for

letrozole was determined to be 10–30 lg/kg/day.

The use of MCF-7 cells transfected with human aro-

matase gene (MCF-7Ca) and implanted into athymic nude

mice has proved to be an effective in vivo model for pre-

dicting clinical results with AIs [61, 96, 97]. Using this

model, it has been shown that letrozole produces dose-

dependent inhibition of tumor growth, resulting in com-

plete inhibition at a daily dose of 10 lg/animal/day [94,

98]. Comparative studies using the MCF-7Ca model have

shown that letrozole is more effective at suppressing tumor

growth than the pure anti-estrogen fulvestrant and the

SERM tamoxifen [99]. While anastrozole was also better

than fulvestrant and tamoxifen in suppressing tumor

growth, only letrozole was shown to induce tumor regres-

sion [99].

Another study, also using the MCF-7Ca model, dem-

onstrated that letrozole potently inhibits mammary tumor

growth but does not have the estrogenic effects of tamox-

ifen, as measured by its uterotrophic effects [100]. The

observation that tamoxifen has an agonist effect even when

estrogen synthesis is inhibited by letrozole suggests that

there may be a degree of antagonism between these com-

pounds [100]. Interestingly, studies in the MCF-7Ca model

showed that letrozole is more effective as monotherapy

than when combined with tamoxifen [80, 101]. In the study

reported by Long et al. [101] tumor volume doubling times

were 3–4 weeks in controls, 16 weeks with tamoxifen

alone, 18 weeks with tamoxifen plus letrozole, and

34 weeks with letrozole alone. First-line treatment with

letrozole was shown to be significantly superior to treat-

ment with tamoxifen alone or with the two drugs combined

(at week 16, both P \ 0.001). Tumors that progressed

during treatment with tamoxifen remained sensitive to

second-line letrozole therapy, whereas tumors that pro-

gressed on letrozole did not respond to second-line

treatment with tamoxifen or fulvestrant. In another series of

experiments conducted by the same group using the MCF-

7Ca model, letrozole was even effective as third-line

therapy for a limited period when administered after

treatment with tamoxifen and exemestane [102]. The

studies showed that although exemestane was more effec-

tive than tamoxifen in controlling tumor growth, letrozole

as first-line therapy was the most effective treatment

overall, both in terms of the degree of tumor suppression

and the length of effectiveness of treatment [102].

The potential of letrozole as a chemopreventive agent

was investigated in an in vivo model using aromatase-

transgenic female mice [103]. The model provided evi-

dence to show that aromatase overexpression is sufficient

to induce and maintain early preneoplastic and neoplastic

changes that can be completely abrogated by treatment

with letrozole. Carcinogenicity studies have also found that

letrozole decreases the incidence of spontaneous mammary

tumors and granular cell tumors in rats [104].

Pharmacokinetics of letrozole

Clinical pharmacokinetic studies of letrozole have been

conducted in healthy volunteers [105–107] and in patients

with breast cancer [108, 109]. Following oral administra-

tion, letrozole is rapidly and completely absorbed (mean

absolute bioavailability of 99.9%) and extensively distrib-

uted to tissues. It has a large apparent volume of

distribution at steady state (1.87 l/kg [range, 1.47–3.24]),

and approximately 60% is bound to plasma proteins,

mainly to albumin (55%). The terminal half-life (T1/2) of

letrozole is 42 h. The terminal T1/2 was observed to be

longer and area under the curve (AUC) greater in patients

with breast cancer than in healthy volunteers, possibly due

to reduction in metabolic clearance [109]. The major route

of elimination of letrozole is metabolism by CYP-450

isoenzymes (CYP 3A4 and CYP 2A6) into an inactive

carbinol metabolite. Systemic exposure to metabolites is,

Breast Cancer Res Treat (2007) 105:7–17 11
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therefore, low. Steady-state concentrations of letrozole are

reached after 2–6 weeks and maintained for long periods

with no evidence of drug accumulation.

In marked contrast to the first-generation AI aminoglu-

tethimide, no significant drug interactions have been

reported for letrozole; however, when combined with

tamoxifen, letrozole plasma concentrations are reduced by

between 35% and 40% [110]. Age does not have an effect

on the pharmacokinetics of letrozole. Exposure to letroz-

ole, measured by AUC, is increased in renally impaired

subjects but remains in the range seen in subjects without

impaired function. However, hepatic impairment can

markedly increase the T1/2 of letrozole, and caution is

required in such patients.

Differences in pharmacokinetics, including uptake rates,

elimination T1/2, and metabolism and clearance exist

between AIs and have been reviewed by Lønning et al.

[111]. The clinical significance of such differences is not

known.

Clinical development of letrozole

Letrozole entered clinical trials on the basis of its high

potency and selectivity for aromatase, the demonstration of

unsurpassed anti-tumor effects in models of human breast

cancer, and the development of a convenient oral formu-

lation. Daily doses of 0.1–5 mg have been shown to

suppress estradiol, estrone, and estrone sulfate plasma

concentrations by 75–95% from baseline, while doses

[0.5 mg suppress estrogens to below limit of detection

[92, 112, 113]. Based on pharmacokinetic and pharmaco-

dynamic studies, the recommended dose of letrozole is one

2.5 mg tablet once daily.

Preclinical models [97, 101] successfully predicted that

letrozole would be superior to tamoxifen, the previous gold

standard in the treatment of breast cancer. An extensive

program of clinical trials has been conducted with letrozole

across the spectrum of hormone-responsive breast cancer in

postmenopausal women. The first randomized controlled

trials demonstrated consistent superiority for letrozole

compared with megestrol acetate, aminoglutethimide, and

tamoxifen in patients with advanced breast cancer [114–

118]. The clinical efficacy of letrozole in advanced breast

cancer is described in a review by Dr. Mouridsen in this

supplement.

Preclinical MCF-7Ca models have also predicted that

letrozole should be clinically more effective than other less

potent third-generation AIs [99, 102]. Letrozole (2.5 mg/

day) and anastrozole (1 mg/day) were directly compared in

a randomized, open-label phase IIIb/IV study involving

713 postmenopausal women with advanced breast cancer

previously treated with an anti-estrogen [119]. While there

was no difference between the treatment arms in the time

to progression, letrozole produced a significantly higher

overall response rate than anastrozole (19.1 vs. 12.3%,

P = 0.013). Letrozole and anastrozole are currently being

compared in a large randomized head-to-head trial in early

breast cancer (ClinicalTrials.gov identifier NCT00248170)

[120]. A review by O’Shaughnessy in this supplement

provides the rationale for this trial and a description of its

design.

The clinical benefits of letrozole in early breast cancer

have already been demonstrated in landmark randomized

clinical trials. MA.17 was the first trial to show improved

clinical outcomes with extended adjuvant hormone therapy

[121]. In this trial, letrozole given after initial adjuvant

therapy with tamoxifen significantly improved disease-free

survival compared with placebo [121, 122]. Full details of

this trial are provided in a review by Dr. Goss in this

supplement.

Subsequently, the Breast International Group 1-98

trial provided high-level evidence for the superiority of

letrozole over tamoxifen as initial adjuvant therapy [123].

A detailed description of this ongoing trial, which will also

help to define the optimal sequence for hormone therapies

in hormone-responsive early breast cancer, is provided in a

review by Dr. Thürlimann in this supplement. Letrozole

has also demonstrated superior efficacy compared with

tamoxifen when used as neoadjuvant therapy [124]. This

treatment setting is particularly interesting in terms of drug

development because the effects of hormone therapy on

breast tumors can be detected early and may be predictive

of long-term outcome [125].

Conclusions

Letrozole is a highly potent and selective AI that inhibits

the enzyme activity of intracellular aromatase at the major

sites where it is found, resulting in almost complete sup-

pression of whole body aromatization. By effectively

blocking estrogen synthesis, letrozole inhibits the growth

or induces the regression of hormone-responsive breast

tumors in vivo. Estrogen is implicated as a major risk

factor in the majority of breast cancers; therefore, use of

the most potent AI is a logical treatment strategy.

Studies conducted using in vitro and in vivo models

have demonstrated that letrozole is the most potent of the

third-generation AIs. Preclinical data obtained from MCF-

7Ca xenograft models suggest that the greater potency of

letrozole compared with anastrozole and exemestane may

translate into clinically meaningful differences in post-

menopausal women with hormone-responsive breast

cancer. These models accurately predicted that letrozole

would be more effective than tamoxifen in the clinical

12 Breast Cancer Res Treat (2007) 105:7–17
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setting. The superiority of letrozole over tamoxifen has

been consistently demonstrated in advanced and early

breast cancer [118, 123]. Outstanding clinical questions,

including what is the most effective AI and what is the

optimal sequence for adjuvant hormonal therapy, will be

answered by the results of ongoing trials involving

letrozole.

In conclusion, experimental data indicating that letrozole

efficiently inhibits aromatase activity have been confirmed

clinically, leading to approved indications across the spec-

trum of breast cancer. The broad range of indications for

letrozole in unique clinical settings is reshaping the man-

agement of hormone-sensitive breast cancer.
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