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Algorithms for finding structure in data are important both a s tools for scien-

tific discovery (1) and as models of human learning (2, 3). Most of these algo-

rithms assume that theform of the structure is known in advance: clustering

algorithms (2) assume that the data fall into some number of disjoint groups,

hierarchical clustering algorithms assume that the data are tree-structured,

and algorithms for dimensionality-reduction (4–6) typically assume an un-

derlying Euclidean geometry. Unlike these algorithms, humans can discover

structural forms from data, and this ability drives major ad vances in scientific

understanding and cognitive development: Linnaeus and Mendeleev discov-

ered forms for biological species and the chemical elements, and young chil-

dren may make analogous discoveries as they learn about social networks and

category hierarchies. We present a computational model that explains discov-

eries like these as Bayesian inferences over probabilistic models generated by

graph grammars. The model simultaneously discovers the formand the spe-

cific structure of that form that best explain the available data.

Philosophers, psychologists, and statisticians have suggested that scientists and children use

similar strategies to learn about the structure of the world(7–13). In both science and cognitive

development, the problem of structure discovery can be addressed on at least two levels. At the
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first level, the form of the data is assumed known and the task is to choose the instance of that

form that best explains the data (Figure 1A). Biologists, forinstance, have long agreed that tree

structures are useful for organizing living kinds but stilldebate which tree is best. Traditional

taxonomies group crocodiles with lizards, snakes and turtles, but contemporary phylogenies

assert that crocodiles are better grouped with birds (Figure 1A) (?). Similar problems arise

when chemists attempt to locate a new element in the periodictable, or when children attempt

to locate a newly encountered animal or food in an intuitive hierarchy of categories

At the second, deeper level, the problem is to discover the structural form of a domain: to

discover, for example, that living kinds are tree structured, or that the chemical elements have

a periodic structure (Figure 1B). The problem of form discovery is prominent in the history

of biological classification. For centuries, the great chain of being (14) was thought to be the

natural representation for living kinds (Figure 1B), but this linear form has been replaced by

the tree structures introduced by Linnaeus (15). Other forms are also logically possible: a ring

structure might not seem suitable for the species in Figure 1B, but has recently been suggested

as the best model of relationships between microbes (16). Form discovery is also a problem for

children, who learn, for example, that social networks are often organized into cliques, that the

seasons can be arranged into a cycle, that relations like “heavier than” are transitive (17,18), and

that category labels can be organized into hierarchies (19). It may even be solved by members

of other species: baboons, for example, may make the genuinediscovery that their troops are

organized into dominance hierarchies (20).

We present a computational framework that addresses structure discovery at both these lev-

els. Form discovery is mostly ignored by existing approaches, but is arguably the more funda-

mental problem. Solving this problem can have dramatic consequences: structural forms pro-

vide powerful constraints on inductive inference, allowing confident predictions about objects

that are sparsely observed, or perhaps not observed at all. Discovering the periodic structure
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of the elements allowed Mendeleev to predict both the existence and the properties of several

novel elements. Similarly, a baboon who has discovered thatdominance relations are linearly

ordered within his troop should be able to predict the outcome of a confrontation between two

animals who may never have interacted previously.

Form discovery, then, is one way of acquiring inductive constraints, a possibility that is

rarely considered by theories of human or machine learning.One tradition recognizes the need

for structural constraints, but assumes that they are provided as part of the initial specification

of the learning algorithm (?, 21–25). Chomsky (21), for instance, has claimed that “the belief

that various systems of mind are organized along quite different principles leads to the natural

conclusion that these systems are intrinsically determined, not simply the result of common

mechanisms of learning or growth.” Many approaches to unsupervised learning implicitly en-

dorse this claim: they assume the form of the data is known andsearch for the best instance of

that form (26,27). A second tradition denies the importance of structural form, proposing mod-

els like associative networks (28), multilayer perceptrons (29) and Bayesian networks (30) that

can apply to domains with any kind of structure. Without the benefit of domain-specific con-

straints, generic models like these can require massive quantities of data to achieve human-level

performance (23) — data that are often unavailable in scientific applications or in real-world

human learning. Our framework offers a third approach to structure discovery that combines

insights from both of these traditions. We show how structured, domain-specific representations

cna be acquired using domain-general statistical inference, and demonstrate that the structural

forms of many real-world domains can be discovered from relatively sparse data sets.

Any algorithm for form discovery must specify, explicitly or otherwise, the space of struc-

tural forms it is able to discover. We represent structures using graphs, and use graph gram-

mars (?) as a unifying language for expressing a wide range of structural forms (Figure 2). Of

the many possible forms, we assume that the most natural are those that can be derived from
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simple generative processes (31). The first six forms in Figure 2A can be generated using a

single context-free production that replaces a parent nodewith two children, and specifies how

to connect the children to each other and to the neighbors of the parent node. Figures 2B and

2C show how two of these productions generate linear structures and orders. More complex

forms, including multidimensional spaces and cylinders, can be generated by combining these

basic forms.

It is striking that the simple grammars in 2a generate many ofthe structural forms discussed

by psychologists (26) and assumed by algorithms for unsupervised learning. Partitions (2, 32),

chains (33), orders (7, 32, 34), rings (35), trees (7, 36, 37), hierarchies (38, 39) and grids (40)

recur again and again in formal models across many differentliteratures. To highlight just one

example, Inhelder and Piaget (7) suggest that the elementary logical operations in children’s

thinking are founded on two forms: a classification structure that can be modelled as a tree, and

a seriation structure that can be modelled as an order. The popularity of the forms in Figure

2 suggests that they are useful for describing the world, andthat they spring to mind naturally

when scientists seek formal descriptions of a domain.

The problem of form discovery can now be posed. Given observed dataD about a finite

set of entities, we wish to find the formF and the structureS of that form that best capture

the relationships between these entities. We take a Bayesianapproach, defining a hierarchical

generative model (Figure 1A) and searching for the structure S and formF that maximize the

posterior probability:

P (S, F |D) ∝ P (D|S)P (S|F )P (F ). (1)

P (F ) is a uniform distribution over the forms under consideration. StructureS is a cluster

graph: an instance of one of the forms in Figure 2, where the nodes represent clusters of entities.

Working with clusters allows the model to learn representations that are only as complex as the

data require. The priorP (S|F ) favors graphs with small numbers of nodes: for any structure
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S that is compatible withF , P (S|F ) ∝ θ(1 − θ)k, whereθ is a parameter andk is the number

of nodes inS; P (S|F ) = 0 if S is incompatible withF (see Supporting Online Material for

the definition of compatibility). The normalizing constantfor P (S|F ) depends on the number

of structures allowed by a given form, and ensures that simpler forms are preferred whenever

possible. For example, any chainSchain is a special case of a grid, butP (Schain|Fchain) >

P (Schain|Fgrid) since there are more possible grids than chains given a fixed number of entities.

The remaining term in Equation 1, the likelihoodP (D|S), depends on the nature of the dataD.

We consider three kinds of data: feature data, similarity data, and relational data.

Suppose first thatD is an entity-feature matrix, where the(i, j) entry in the matrix indicates

the value of entityi for featurej. We represent the structure of the data set using undirected

entity graphs. Cluster graphs are converted to entity graphs by adding a node for each entity,

connecting each entity to the cluster node that contains it,and replacing each directed edge

with an undirected link. Given an entity graph, we expect nearby entities in the graph to have

similar features. Formally, this expectation can be captured by assuming that the features are

independently generated by a Gaussian process over the graph (41). Under this generative

model, a graph accounts well for the dataD if the features vary smoothly over the graph.

We generated synthetic data to test this model on cases wherethe true structure was known.

Figure 3 shows graphs used to generate five data sets, and the structures found by fitting five

different forms to the data. For each data set, we ran a greedysearch for each of the candidate

forms. The search begins with all the entities at a single cluster, and splits a node at each

iteration using a production from Figure 2. After each split, the algorithm attempts to improve

the current score using several additional proposals, including proposals that move an entity

from one cluster to another (see Supporting Online Material). The final column in Figure 3

compares the scores for the five forms, and we see that the trueform is correctly recovered in

each case.
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Next we applied the model to several real-world data sets, ineach case considering all eight

forms in Figure 2. The first data set is a matrix of human judgments about the features of an-

imal species. The tree is the form that scores best under Equation 1, which is consistent with

the finding that cultures all over the world organize living kinds into tree-structured representa-

tions (22). The best tree (Figure 4A) organizes the animals into mammals, birds, fish, insects

and reptiles, and includes subtrees that correspond to intuitively plausible subcategories (e.g.,

primates, cetaceans, flying insects, rodents, flightless birds). The second data set is a matrix of

Supreme Court votes (42). Others (43) have argued that a unidimensional structure accounts

for most of the variance in Supreme Court data, and we find that the chain is the form with the

highest score. The best chain (Figure 4B) organizes the thirteen judges from liberal (Marshall

and Brennan) to conservative (Thomas and Scalia).

Under our generative model for features, the matrixD influences the distributionP (D|S)

only through the number of featuresm and the covariance matrix1
m

DDT. As long as these

components are provided, our approach to structure discovery can be used even if none of the

features is observed. Assuming that similarity is a measureof covariance, we used this idea

to discover structure in similarity data. First we analyzedsimilarity ratings between 14 pure-

wavelength color hues (44). The ring in Figure 4C is the best structure for these data, and

corresponds to the color circle described by Newton. Next weanalyzed a similarity data set

where the entities are faces that vary along two dimensions of masculinity and race. The model

chooses a grid structure that recovers these dimensions (Figure 4D). Finally, we applied the

model to a data set of distances between 35 world cities. Our model chooses a cylinder where the

chain component corresponds roughly to latitude, and the ring component corresponds roughly

to longitude.

Consider now a distributionP (D|S) that can be used with Equation 1 to analyze data about

relationships between entities. Suppose thatD is a square frequency matrix whereD(i, j)
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indicates the number of times a certain relation has been observed betweeni andj. We define a

model whereP (D|S) is high if if the large entries inD correspond to edges in the cluster graph

S. Given a relationD it is important to discover whether the relation tends to hold between

elements in the same cluster or only between different clusters, and whether the relation is

directed or not. The forms in Figure 2A all have directed edges and nodes without self-links,

and we expanded this collection to include forms with self-links, forms with undirected edges,

and forms with both of these properties.

First we applied the model to a data set representing interactions among a troop of sooty

mangabeys. The model discovers that the order is the most appropriate form, and the best

order found (Figure 5A) is consistent with the dominance hierarchy inferred by primatologists

studying this troop (45). We then applied the model to a data representing interactions between

13 high-ranking members of Bush’s first-term administration. The best form is an undirected

hierarchy, and the best hierarchy found (Figure 5B) closely matches an organizational chart built

by connecting individuals to their immediate superiors. Next we analyzed social preference

data (46) that represent friendships between prison inmates. Cliquestructures are often claimed

to be characteristic of social networks (?), and the model discovers that a partition (a set of

cliques) gives the best account of the data. Finally, we analyzed trade relations between 20

communities in New Guinea (47). The model discovers the Kula ring, an exchange structure

first described by Malinowski (48).

We have presented a framework for structure discovery that subsumes many popular ap-

proaches to unsupervised learning, discovers the structural form of a data set, and suggests how

human learners or other primates might do the same. Our hypothesis space of forms (Figure 2)

includes some of the most commonly encountered forms, but does not exhaust the set of cogni-

tively natural or scientifically important forms. Ultimately, psychologists should aim to develop

a “Universal Structure Grammar” (cf (49)) that characterizes more fully the representational
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resources available to human learners. This universal grammar might consist of a set of sim-

ple principles that generate all and only the cognitively natural forms. We can only spectulate

about how these principles might look, but one starting place is a meta-grammar for generating

graph grammars. For instance, all of the grammars shown in Figure 2a can be be generated by

a simple meta-grammar described in the Supporting Online Material.

Our framework may be most readily useful as a tool for data analysis and scientific discov-

ery, but we hope that it will also be explored and tested as a model of conceptual development.

As they learn about the structure of different domains, children make discoveries as impressive

as those of Linnaeus and Mendeleev, and approaches like oursmay ultimately explain how these

discoveries are possible. As our model encounters more data, it can show qualitative transitions

from a simple form to a more complex form that more faithfullyrepresents the structure of the

domain (see Supplementary Online Material). These transitions resemble the conceptual leaps

of children (8) or the paradigm shifts of scientists (10), and deciding how deep this resemblance

goes is a major question for future research.
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Figure 1: (A) Discovering the structure that best accounts for a set of binary features. The
structure is assumed to be a tree: the first candidate is inspired by the Linnaean taxonomy, and
the second is a cladogram. (B) Simultaneously discovering the form and the structure that best
account for the data. Three possible pairs of forms and structures are shown — the chain is
inspired by Bonnet’s “scale of natural beings” (50).
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Figure 2: (A) Eight structural forms and the generative processes that produce them. The first
six processes are node-replacement graph grammars. Each grammar uses a single production,
and each production specifies how to replace a parent node with two children. (B,C) Growing
chains and orders. At each step in each derivation, the parent and children nodes are shown in
grey. The red arrows in each production representall edges that enter or leave a parent node.
When applying the order production, all nodes that sent a linkto the parent node now send links
to both children.
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Figure 3: Structure discovery results for synthetic data. Five sets of features were generated
over the graphs in the left column, and five forms were fit to each dataset. The structures found
are drawn so that entity positions correspond to positions in the picture of the true structure.
The final column shows log posteriorslog(P (S, F |D)) for the best structures found. Each plot
has been scaled so that the worst performing structure receives a score of zero.
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