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Abstract. We present an algorithm for computing thiscrete2-centerof a setP of n
points in the plane; that is, computing two congruent disks of smallest possible radius, cen-
tered at two points oP, whose union coverB. Our algorithm runs in tim® (n*3 log® n).

1. Introduction

Problem Statement and Previous Resultset P be a set of points in the plane. The
discrete2-centerproblem forP is to coverP by (the union of) two congruent closed
disks whose radius is as small as possible, and whose centers are two pdts of
This is a restricted version of the standard 2-center problem, where the centers of the
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two covering disks can be any pair of points in the plane. This latter problem has been
studied extensively, where the best algorithm, due to Sharir [14] and slightly improved
by Eppstein [6], runs in randomized expect@¢h log? n) time.

The discrete 2-center problem has been studied in [7], where a near-quadratic al-
gorithm is proposed (such an algorithm is briefly described later in this introduction).
Before discussing it further, we note that the discrete 1-center problem, seeking the
smallest disk centered at a point Bf and containingP, is much easier to solve, in
time O(nlogn), using the furthest-neighbor Voronoi diagramRafThat is, the diagram
allows us to find, inO(nlogn) time, the furthest neighbof (p) of each pointp € P.

The pointp that minimizes the distance betwepiand f (p) is the center of the desired
smallest enclosing disk.

The discrete 2-center problem appears to be more difficult than the standard 2-center
problem. Both problems involve a “decision procedure” that, given a fixed radius
aims to determine whethé? can be covered by two disks of radiusAs an informal
explanation of the additional difficulty of the discrete 2-center problem, suppose that we
have already guessed one centeiThe second center must then lie in (“pierce”) each
of the disks of radius centered at the points & and not containing. In the standard
2-center problem we simply need to determine whether the intersection of all these disks
is nonempty, whereas in the discrete 2-center problem we need to determine whether
this intersection contains a point Bf, which is a harder task.

Main Results and the Overall Approachin this paper we obtain an efficient solution
to the discrete 2-center problem that runs in ti@é*2log® n). This is the first sub-
guadratic algorithm for solving the problem. We note that a near-quadratic solution is
rather easy: It suffices to show a near-quadratic solution to the fixed-size problem, and
then follow (a simpler version of) the binary-search technique (on the rajlilst is
described below, in Section 5, to find the optimal solution. The fixed-size problem, for a
given radiug , determines whether there exjstq € P sothatP c D(p,r) U D(q,r),
whereD (X, r) denotes the closed disk of radiusentered ax. We try each poinp € P
as the first center and obtain the $f C P of points not contained iD(p,r). By
computing the farthest-point Voronoi diagram Nf, we can determine i©(nlogn)
time whether there exists a pointe P so thatN, € D(q, r). The running time of the
fixed-size procedure is therefo@(n?logn).

In order to improve the running time of the fixed-size problem, we proceed as follows:
For eachp € P, let K, be the intersection of all the disk3(q, r) centered at the points
of P and not containingp. If any setK, contains a poing of P, then we are dong and
g are centers of two disks of radiusvhose union coverB. Conversely, ifp, q € P are
centers of two such disks, thene Kq andqg € K. In other words, we need to compute
the unionU of all the K's, and determine wheth&t N P 3 @. The difficult step is to
computeU in time close tan*/3,

We consider a more general problem: Rebe a set ofn points and leD be a set of
n congruent disks. For eaghe P, defineDp, = {D € D | p ¢ D}, Kp = [pep, D,
K ={Ky | pe P},andU = Upep Kp. In Section 2 we present some important
properties ofiC, which we believe to be of independent interest. The main property is
thatK is a collection otonvex pseudodiskise., these sets are compact and convex, and,
for any pairK,, Kq of such sets, botK,\Kq andK\K, are connected.
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In Section 3 we show that the combinatorial complexityds O(m%3n%3log® n+
nlogn). While this bound is nontrivial, and “consistent” with the running time we are
aiming at, we have so far been unable to exploit this bound to obtain an alternative simpler
solution, of comparable complexity, of the discrete 2-center problem. The reasons for
this are technical and are noted below.

In Section 4 we present aB(n*?log* n)-time algorithm for computing) (and for
testing whethetd N P # @) for the case in whiclD = {D(p,r) | p € P}. The algo-
rithm constructs and searcheddnin a semi-implicit manner, using appropriate range-
searching data structures and techniques similar to those used in parametric searching,
for performing various primitive operations on the semi-implicit representatids. of
Finally, we describe the overall algorithm for the discrete 2-center problem in Section 5.
As mentioned, its running time ®(n*3log® n).

2. Structure of

In this section we prove some interesting propertiés.dfhese properties, besides being
of independent interest, are crucial for making our algorithm efficient.

Theorem 2.1. LetD be a finite set of congruent disks in the plaaad let P be a
finite set of pointsLet IC be the same as defined in the IntroductidhenkC is a family
of convex pseudodiskthat is each K, is a compact convex seind for each pair of
distinct sets K, Kq, both sets K\ Ky and Ky;\K, are connected

We prove the theorem by a sequence of lemmas.

Lemma 2.2. For a point p two distinct disks I, D, € D that do not contain p and
another disk De D that contains pthe set D,(D; N Dy) is connected

Proof. Suppose to the contrary thBt\ (D1 N Dy) is disconnected. Since € D and

p € D;, Dy, all three diskdD, D,, D, are distinct. Sinc®\ (D1 N D,) is disconnected,

oD andd(D; N Dy) must cross at exactly four points, all lying on the boundary of
E = DN D;N D,. This however is impossible, since the intersection of three congruent
disks can have at most three such intersection points on its boundary. O

Corollary 2.3.  For a point pe P and a disk De D that contains pthe set K,\D is
connected

Proof. Suppose to the contrary thié,\ D is disconnected. Sind@ ¢ D, it is distinct
from any of the disks that forr,, so any intersection &fD with 9K, must be a proper
crossing. Moreover, sincé\D is disconnected, the boundaries@fand ofK, must
cross at least four times. This, however, implies thakK, is also disconnected (this
follows from the convexity oK,). Nonetheless,

D\Kp = D\ ﬂ D=Dn U (D¢ = U (D\D").

D’eD, D’eD, D’eDy
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If aunion of a collection of sets is disconnected, then either one of the sets is disconnected,
or there exist two distinct sets in the collection whose union is disconnected. In our
setting,D\ D’ is always connected, and the second case contradicts Lemma 2.2 (because
for D', D” € Dy, (D\D') U (D\D") = D\(D’ N D”)). Hence K\ D is connected.C]

Lemma 2.4. For a point p two distinct disks B, D, € D that do not contain p and
two other distinct disks B} D4 € D that contain pthe set(D; N Dy)\(D3 N Dy) is
connected

Proof. Suppose again to the contrary th@; N D2)\ (D3 N Dy) is disconnected.
Lemma 2.2 implies (using the argument in the proof of Corollary 2.3)that D,)\ D3

is connected, and so {®; N D)\ D4. It follows thatd (D1 N D) andd D3 intersect at
most twice, and the same holds #i(D; N D,) andd D4. These conditions, along with
our assumption, imply that(D; N D,) anda(D3z N Dy) intersect exactly four times.
Moreover, putt = D; N D, N D3 N Dy, fix a pointo in the interior ofE, and consider
the boundaries ob4, ..., D4 andE as graphs of functions = D1(0),...,r = E(®)

in polar coordinates abowt Letu, v, w, z be the four points of intersection between
(D1 N Dy) anda(D3z N Dy), appearing in this circular counterclockwise order along
oE. Leto, < 0, < 0, < 6, be the polar orientations af, v, w, z, respectively. Since
Dy, ..., D4 are congruent disks, eaélD; appears alongE in a single connected arc.
Hence, with no loss of generality, we may assumeadkais attained by D; over [y, 6,],

by D3 over p,, 6,)], by 9 D2 over [, 6;], and byd D4 over [p,, 6,]. See Fig. 1. Leb,

be the polar orientation a@fp. It is impossible thag,, lies in [6,, 6,,], for otherwise, since

p € D3, we havelop| < D3(0p) < D1(6p), implying thatp € D4, contrary to assump-
tion. Similarly,8, cannot lie in p,, 6,]. (We use the notatiord[ 6'] to denote the angular
interval extending counterclockwise frafrto 6'.) Suppose then that, < [0y, 6,]. Let

F = D3N D4 and regard it too as a graph= F(6). Sincep € F but p ¢ D,, we have
D2(0p) < F(6p), and this inequality is reversed over the intervéls §,,] and [p;, 6,]. It
follows thatd F anda D, intersect at least twice over the interv@) [0, ], which, together
with w andz, yields four points of intersection between these boundaries, all lying along

Fig. 1. The proof of Lemma 2.4.
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9(D2 N D3N Dy). This is impossible for congruent disks (see the proof of Lemma 2.2).
A similar contradiction occurs whedy € [0, 6;]. All these contradictions establish the
lemma. O

Following the same argument as in the proof of Corollary 2.3, we obtain the following.

Corollary 2.5. For a point pe P and two disks DD’ € D that contain p the set
K\ (D N D’) is connected

We are now ready to prove Theorem 2.1.

Proof of Theoren2.1. Suppose to the contrary that there exisf € P such that
Kp\Kq is disconnected. As in the proof of Corollary 2.3, we can expkgsK as

Kp\Kq = Kp\ (] D=Kpn | J D°

DeDq DeDy

U (Kp\D)

DeDq

U &p\D).

DeDg\ Dy

(The last equality follows from the fact that the diskglpN D, contribute empty sets to
this union.) Again, as in the proof of Corollary 2.3K§,\ Kq is disconnected, then either
there exists a disb € D\ D, so thatK;\ D is disconnected, or there exists two disks
D1, D2 € Dg\Dp so thatK,\ (D1 N D) is disconnected. The first condition contradicts
Corollary 2.3 and the second contradicts Corollary 2.5. HeggKq is connected (and
S0 isKq\Kp). O

Theorem 2.1 fails for noncongruent disks, as is illustrated in Fig. 2. Nevertheless, the
following variant of the theorem holds in even more generality:

Theorem 2.6. LetD be a finite set of convex pseudodisks in the plamat is each
D € D is a compact convex send, for each pair of distinct sets DD’ € D, both

®
P

Fig. 2. Kg\Kp (the shaded region) consists of two connected components.
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sets D\D’ and D'\ D are connectegwe also assume thatD anda D’ cross each other
transversally at any point of intersectigret P be a finite set of pointBor each pe P,
let Dy, denote the set of pseudodiskgrthat do not contain pand let K, denote their
intersectionThen for any p q € P, 3K, anddKq can cross each other at most twice

(Note that for the setk, andKq in Fig. 2, their boundaries do not cross at all.)

Proof. We partitionD into four subsets: the subsep N Dy of pseudodisks that contain
neitherp nor g, the subseD,\D, of pseudodisks that contaimbut not p, the subset
D4\ D, of pseudodisks that contambut notq, and the subséd\ (Dp U Dy) of pseu-
dodisks that contain both andq. We can ignore the last subset since the pseudodisks
in this set have no effect o, or Kq. LetZ = ((Dp N Dg). Clearly, bothK, andKg
are contained T, so any crossing between their boundaries must be interidr bo
particular, if such a crossing occurs between a pseudddigk D, and a pseudodisk
D’ € Dy, then we must hav® € D,\Dy andD’ € Dy\ Dy, (thatis,q € D andp € D).

Now suppose thadK, anddKq cross each other three times, at points, andw.
By the above argument, there exist six (not necessarily all distinct) pseudoﬂfé’?(s,
Di¥, DIP, DI, DI, DI, such thaD{”, D, andD,” are inDy\Dy; DI, DY,
andD\ are inDy\Dp; D{” andD{" cross at; D{” andD!” cross ab; andD}” and
D cross atw.

Let o be a point in the interior oK, N Kq. There must exist two of the crossing
points, sayu andv, such thatp andqg appear between andv in counterclockwise
angular order abouwd. Without loss of generality, assume thatp, g, andv appear in
this counterclockwise order abootand letd, < 6, < 6y < 6, be the orientations of
the vectorsu, op, 0, andov, respectively.

Now consider the two pseudodis” and D™, and regard their boundaries as
functionsr = D (9) andr = D™ (0) in polar coordinates aboat Then we have (see
Fig. 3)

D® @y < D6y,
D@6, > DP(bp),
D% (6g) < DP(6y),
D®®,) = DP®,).

These inequalities follow from the convexity &, and K, from the fact thau and
v lie on their boundaries, and from the fact tat” € Dp\Dq and D{¥ € Dy\Dp.

However, this implies thab{” and D" intersect at least three times, contradicting the
assumption thab is a set of pseudodisks. This completes the proof. O

The following corollary is an immediate consequence of the results of [10]:

Corollary 2.7. In the setting of Theore6, if P has m pointsthen the boundary of
Upep Kp consists of @m) connected portions of the boundaries of the individughsK
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Fig. 3. Proof of Theorem 2.6.

We now return to the assumption tHais a set of congruent disks. For a popt P,
we say thatp lies above(resp.below) K, if the downward-directed (resp. upward-
directed) vertical ray fronp intersectsK,,, andp lies to theleft (resp.right) of K, if p
lies to the left of the leftmost (resp. right to the rightmost) poinKgf To facilitate our
solution to the fixed-size decision problem, presented in Section 4, we need the following
stronger property of th&,’s: Define

Pr = {pe P | plies aboveK,},
Ps = {p € P | plies belowKy},
P. = {p e P| pliestothe left ofK,},
Pr = {p € P | pliesto the right ofK,}.

Theorem 2.8. Let p, q be two distinct points in  Then the top boundaries of K
and Ky cross at most ongend the same holds for the bottom boundariEise same
properties hold for each of the other three sets P_, and R.

Proof. Suppose that the top boundariekqf andKy cross at two points andv. The
intersectioru must be witnessed by two disky}’ andD{" with u on the top boundaries
of these disksD{" N{p, q} = {q} andDF"’ N{p, q} = {p}. Similarly, there exist witness
disks D’ andD{”, with similar properties, for the intersectian

We first prove that two such intersections are not possilyedf € Pr.

We call the top boundary of a diskR extended by vertical rays downward at its
endpoints theéop curve of D Since we are dealing with disks of equal radius, the top
curves of D{” and D§" intersect in exactly one point (they have to intersect, since
otherwiseK, and K4 are disjoint). Sincep is aboveD{", and not aboveD{", and
vice versa forg, the x-coordinate of this unique intersection has to lie betweerxthe
coordinates op andg. So we have shown that ttxecoordinate ofu has to lie between
p andq, and the same is true far We may assume that thecoordinates ofp, u, v,
andq appear in this increasing order.

Now consider the top curves” andy " of disksDi” and D", respectively, and
refer to Fig. 4(j). The curve” lies belowp (sincep ¢ D{” and p lies aboveKp),
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(i) (ii)

Fig. 4. Impossible crossings between the top boundarieg, @ € Pr; (i) p,q € Ps.

lies aboveu or passes through (otherwiseu cannot lie on the boundary &f,), passes
throughv, and lies above (sinceq € DJ”). The curvey " lies abovep, passes through

u, continues above, and lies belowg. It follows that the two curves switch sides three
times: betweerp andu, betweeru andv, and betweem andq. (This also covers the
case where, say,"’ passes through, because the curves” andy " mustcrossat this

point, as is easily verified.) This gives three intersections of these curves, a contradiction,
which concludes the argument for the case in which € Pr.

Suppose nextthat, q € Ps. Let D", D", D}, andD{” be four respective witness
disks, defined as above. We exploit now the previously proved fadkthat D’ NDy”
andK; := D{” N D§" behave like pseudodisks and thus their boundaries do not cross
at any point other than andv. We assume that the top boundarytgf lies above the
top boundary oK/ in the range between thecoordinates ofi andv. Now recall that
p must lie inK;\Kj, and thus it lies below the top boundary i, andabovethe top
boundary ofK, in contradiction to the fact that lies belowK, which is contained in
Kp: see Fig. 4(ii).

We now switch to the case &%, wherep andq lie to the left of their region¥,
andKy. Without loss of generality, suppose thalies to the left ofg. SinceKg is to the
right of g, any intersection of the boundarieskof andKy must lie to the right of). So
we assume that two such intersectiorendv exist, both between the top boundaries of
K, andKg, and that thex-coordinates op, g, u, andv appear in this increasing order.
Let D}, D", DY, andD{" be four respective witness disks, defined as above.

First consider the top boundary of the di@lg“). It must lie abovep andu and pass
throughv. We claim that the top boundary B’ lies abovey. Suppose, on the contrary, it
lies belowg; see Fig. 5(i). The top boundary ng“) lies abovey, goes through, and lies
above (or passes through)and so it must intersect the top boundar)Dré‘f) twice, once
betweerg andu, and once betweanandv; a contradiction (as in a preceding argument,
this also covers the case whe&@é” passes through). Hence, the top boundary of
D{” must lie abovey, which implies that the whole disR{” must lie abovey, since
q ¢ DY. This implies thaD{"” must also lie above, for otherwise it must lie entirely
belowq, and so the vertical line throughis disjoint from the intersection dDg’) and
Dé“% However, this intersection contaipsto the left of this line, and the pointto the
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D((I'u,)

D 1()11 )
® (i)

Fig. 5. The proof ofp, q € P_: (i) Dé” lies belowq; (ii) the other situation.

right of this line, which is a contradiction, since this intersection has to be connected.
Hence, bottD{", D{” lie aboveq.

Now we investigate the interplay betweBj” andD{”. Their top boundaries inter-
sect between andv. Since the top boundaries of two congruent disks intersect at most
once, the top boundary @{” passes through, and the top boundary dd§" passes
abovev, we can conclude that the top boundarm) lies above the top boundary of
D" at thex-coordinate ofy. We have already noted thax;" lies aboveq. Now the
bottom boundary oD{"” must lie abovey, while the bottom boundary db{"” must
lie below (one disk must not contai the other has to). So either the boundaries of
these two disks intersect twice to the leftqgfor they do not intersect there. In the first
case there are at least three intersections between these boundaries (including the one
betweeru andv), which is impossible. In the latter cag¥)” containsD{" to the left
of the vertical line througly (see Fig. 5(ii)), butp € D", which impliesp € D{"; a
contradiction.

The cases of bottom boundaries, andgfare symmetric, which concludes the proof
of the theorem. O

Remark. Top boundaries (or two bottom boundaries) of two d€§s K, for points

p, qin, sayPr, may also interactin somewhat more involved manners. First, we can have
aweak crossindpetween two such top boundaries, in which the two boundaries have an
overlapping portion, so that the top portion@K, lies below the top portion 0§ K

to the left of the overlap, and above the top portiord &, to the right of the overlap.

See Fig. 6(i) for an illustration. Another possibility is that these top boundaries meet
twice, without crossing, and overlap between these two meeting points, as is illustrated
in Fig. 6(ii). Situations of the second type will not affect our algorithm, and we will have

to exercise some care to accommodate situations of the first type in the algorithm; see
Section 4 for details.
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< r )
9K, 0K, d

AN AN
= =

(i) (ii)

Fig. 6. Counterexamples for Theorem 2.8 if we just consider intersection points (including noncrossings).

3. Complexity of €

Let D be a set oh congruent disks and |g® be a set ofn points in the plane. Let

K andU be the same as defined in the Introduction. In this section we obtain a bound
on the combinatorial complexity df, which is defined as follows. Le¥ (D, P) be

the set of intersection points of disks Tn that lie on the boundary of some,. Set

k(D, P) = |V(D, P)| andk(n, m) = maxx (D, P), where the maximum is taken over

all sets ofn congruent disks and over all setsrafpoints in the plane. Note that if a
vertex appears on the boundaries of several sé€s e count it only once. If we count

the vertices with multiplicity, ther (n, m) > mn—taken congruent disks, all of whose
boundaries appear on their common intersection, and chogsents in their common
exterior. The main result of this section is the following theorem.

Theorem 3.1. «(n, m) = O(M?3n?3log"®n + nlogn).

The proof of the theorem is based on the random-sampling technique, and proceeds
along the same lines as the proof by Clarkson et al. [4] for the bound on the complexity
of many faces in an arrangement of lines in the plane. We first prove a technical lemma
and a weaker bound an(n, m), and then prove the theorem.

Lemma 3.2. Let Dy, Dy, ..., Dy be a set of congruent diskall of whose boundaries
appear on their common intersectidh Assume that Dy, dDy, ..., dDg appear in
this clockwise order alongZ. Then the sets OID;,1, for 1 < i < k (where we put
D1 = D3), are pairwise disjointand the same holds for the setg, P\ D;.

Proof. Suppose that there exist a pair of indices 1 < j < k so thatD;\D;,; and
D;\Dj 1 intersect. Note thajt must be at least+ 2, andi must be at least+two —k;
without loss of generality, we can assume that 1, j = 3, andk > 4. Consider the
arrangementd({ Dy, Dy, D3, D4}), and letZ’ = ﬂi“zl D;. We assume that the origin,
o, lies in the interior off’. Let v; be the (unigue) intersection point 8D; anddD;
that appears oft’, and lets; be the other intersection point of these circles.d, tesp.
«;) denote the orientation af (resp.o;). We regard D; as the graph of a univariate
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Fig. 7. Proof of Lemma 3.2.

function D; (9) in polar coordinates. We denote 4, 6-) the (open) counterclockwise
circular interval frompy to 6,.

By constructionD1(0) > D,(#) for 6 € (61, «1), and thereford;\ D, is nonempty
onlyforé € (61, a1). Similarly, D3(0) > D4(0) for6 € (63, a3) andD3\ D4 is nonempty
only for 6 € (83, a3). SincedD;, D5, D3, andd D4 appear in this counterclockwise
order along7’, it follows thatd, € (61, «1) andé, € (03, a3), and thatw; € (62, 04)
and()lg € (64, 62).

Let & be a point in(D1\ D,) N (D3\Dy), and lety be the orientation of. Then we
have mifD3(n), D1(n)} > maxD4(n), D2(n)}. Moreovery € (61, a) N (03, az). The
order relationships noted at the preceding paragraph are easily seen to imply that only
the following two cases can arise:

(i) n e (03, a1) S (B3, 0a).
(i) n e (01, a3) S (01, 62).

In case (i)0 D, appears along(D; N D, N D3) in at least two disjoint arcs—the arc with
angular rangeé6,, 6,) and another arc containing a point at orientatiofobserve that
9D, cannot appear on the boundary of this intersection in the angular (axngg)).
This however is impossible for congruent disks. Symmetrically, in casé D appears
alonga(D; N D3N Dy) in at least two disjoint arcs—the arc with angular raxgg 6,)
and another arc containing a point at orientatjorThese two contradictions complete
the proof that the regionB;\Dj, 4, for 1 < i < k, are pairwise disjoint. A symmetric
argument shows that the regiobg\ D;_; are also pairwise disjoint. This completes the
proof of the lemma. O

Lemma3.3. Form,n > 1,«(n,m) = O(my/n + n).

Proof. LetD be a set oh congruent disks and I& be a set ofn points in the plane. It
suffices to prove that(n, m) < 2m? + n. By partitioningP intot = [m/,/n] subsets,
each of size at mosyn, and observing that(D, P,) = O(n) for eachi < t, the bound
on«(n, m) can be improved t® (m./n + n); see, e.g., [4].
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We partitionD into maximal subset®;, ..., Dy, so that all disks within eact,
contain the same subset Bf Let V; be the set of vertices on the boundary[QfD;.
ObvioustZik:l Vil < > IDi| = n. We partition the vertices iV (D, P) into two
subsetsA and B, whereA consists of those verticesfor which the two disks on whose
boundaries lies belong to the sam®;, and B consists of those vertices whose two
associated disks belong to differ@nts. In the first casey is a vertex of | D;; therefore
|Al < YK [Vi| < n. We next boundB|.

For each pointp € P, let B, € B be the set of vertices iB that appear on the
boundary oK, and let(Dy, Do, .. .) be the circular sequence of disks whose boundaries
appear in this counterclockwise order al@rgy,. Suppose € By is anintersection point
of the circles bounding two consecutive disks in this sequencePsagnd D,. Since
D; and D, belong to two different subsets, the symmetric differebged D, contains
at least one poing) of P. We chargev to g. If v' is another vertex 0By, which is
an intersection point of the circles bounding two other consecutive digkand Dy,
then, by Lemma 3.2D;\ D, and D3\ D4 are disjoint, and the same holds b\ D;
and D4\ D3. Hence, each poirg € P can be charged at most twice (once for lying in
someD; \ Dj 1 and once for lying in som®;\ D;_1), thereby implying thatB,| < 2m.
Summing over all pointg € P, we obtain thatB| < 2m?, and therefore

«(D, P) < 2m? + n,

as asserted. O

Proof of Theoren3.1. Letr > 1 be a fixed parameter, to be specified later. We choose
a random subseR < D of sizer, where each subset of sizeis chosen with equal
probability, and consider theertical decompositiopd*(R) of the arrangement(R)
[2], [4]. For each cellA € A*(R), let D, < D be the set of disks whose boundaries
intersectA (including the edges oh), let Ex C D be the set of disks that are disjoint
from A, and letP, C P be the set of points that lie in (a point lying on an edge or
a vertex of 4*(R) is assigned to one of the cells adjacent to it). Put = |P,| and
na = |Da|. We denote by, the common intersection of the disksHn, .

Letv be avertex oK, forsomep € P4, notlying on avertex ofd*(R). Suppose that
v is an intersection point of the boundaries of two difkandD’. Since, by definition,
none of these disks can fully contady we can classify into three categories:

(i) Both D andD’ belong toD,,
(i) D € Dy andD’ € E, (or vice versa), or
(iii) both D, D’ € Ex.

A vertex of type (i) is also a vertex of (Da, Pa), so the number of such vertices is
at mostk (Da, Pa) < k(na, my). SinceEx € Dy for every p € Py, every vertex of
type (i) lies on the boundary &f,. The boundary of each disk iR, intersectsZ, in
at most two points, so the number of type (ii) vertices is at mogt Summing over all
cells, the number of type (i) and type (i) verticeis, . 4. (g, O(Na + k(Na, My)).

Finally, each vertex of type (iii) is a vertex @f . Hence, in order to bound the number
of (distinct) vertices of type (iii), we need an upper bound on the total number of distinct
vertices of all theZ,'s, over all cellsA € A*(R). LetG be the graph dual td*(R), that
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is, each node 0B corresponds to a cell o4*(R), and two nodes corresponding to cells
A, A’ are connected by an edge if the boundariea @nd A’ overlap along (a portion
of) an edge. We compute a pdthin G that visits each node @ at least once and at
most four times. The existence of such a path was proved in [2]. We traMeraed at
each node corresponding to a ca&llwe maintairZ,, as follows. When we move from
a node corresponding t to the next node ifil, corresponding to a cell’ € A*(R),
we delete all the disks dPA \Da from the intersection, and insert the diskgd{ \ D
into the intersection. SincE, U Exr € Da U Da/, we now have the sdf .. We thus
perform at mosh, + nu insertions and deletions as we move from one nodd ¢
the next. Summing over all nodesiaf we performO(}_ , na) insertions and deletions.
We wish to bound the number of distinct vertices that ever appear on the intersection,
we traversdl. Tamir [15] (see also [1]) has shown that the number of distinct vertices
that ever appear on the intersection of half-planes, as we perform a mixed sequence
of k insertions and deletions (starting at the empty set]) (klogk). Using the same
argument, we can show that the total number of distinct vertices that ever appear on
the intersection of a set of congruent disks, as we perform a sequekdas#rtions
and deletions (again, starting at the empty set), is@idologk). Hence, the number of
distinct type (iii) vertices iSO} _ , na logn).

Finally, each vertex oft*(R) may be avertex of (D, P). Putting everything together,
we obtain

Z K(DA,PA)-i-O( Z nAlogn>+O(r2)

k(D,P) <
AeA*(R) AeA*(R)
=0 ( Z (Ma/MNa + Np Iogn)) + 0O(r?).
AeA*(R)

SinceRis a random subset @, the random-sampling technique of Clarkson and Shor
[5] implies that there existR for which

> ny = O,

Ae A*(R)
n
Z Ma/Na = O(m /—).
AeA*(R) r

2/3n)], we obtain

Substituting these values and choosing [m%3/(n'/?log
K (n, m) = O(m?*3n?310g*3n + nlogn).

This completes the proof of the theorem. O

An immediate consequence of Theorem 3.1 and Corollary 2.7 is the following.

1/3

Corollary 3.4. The complexity of U is */2log"®n).

Unfortunately, we have not been able to exploit this bound to obtain an efficient algo-
rithm, of comparable complexity, that computé®xplicitly. The results of this section,
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although of interest in their own right, are not needed for the analysis of the algorithm
that we present in the next two sections.

4. The Decision Algorithm

Let P be a set oh points in the plane, and I& = {D(p,r) | p € P}. LetK andU be

the same as defined in the Introduction. We describ® arf’® log* n)-time algorithm

to determine whethéd N P # (. Our strategy is to construct separately each of the four
subuniondJr = Jpep, Kp, Us = Upep, Kp, UL = Upep Kp, @andUr = g, Kp,

and to test whether any of them contains any poinPolWe next describe in detail

the construction of one such subunion, &gy As already mentioned, we do not know
how to compute these unions efficiently in an explicit manner (for instance, it may be
too expensive to construtt by computing eactK, explicitly, for all p € P). We
therefore represent thé,’s and their unions implicitly; this implicit representation will

be sufficient to determine whethgs N P £ @.

4.1. Representation df and of Its Union

For a subsef C P, letU” denote the uniotJ, o Kp. For each connected component

of 3U A, we store its concave vertices (points of crossing of the boundaries of two distinct
Kp’s) and the points that are localkrextremal alongU A. If two top (or two bottom)
boundaries have a weak crossing alétdy®, as in the remark following Theorem 2.8,
we store the left endpoint of the common overlap between these boundaries, and think
of it as a “weakly concave” vertex @fU . A maximal portiony of 9U A that does not
contain any of these pointsxsmonotone and lies on the boundary of a sinigje(such
a portion,y, may overlap with the boundaries of maky’s, but there is (at least) one
point p such thaty is fully contained indK,). We refer toy as aboundary arcof U”.
We maintainy implicitly, by recording the poinjp for which y C 9K, and a bit that
indicates whethey is a portion of the top or bottom part 6K .

Next, to represent eadty, implicitly, we compute afamilyD®, ..., D} of “canon-
ical” subsets o such tha) >_, |D?| = O(n*3logn), and such that, for anp € P,
D, can be represented as the uniorOah’/3logn) canonical subsets. L&}, be the set
of indices of these canonical subsets (iR, = (;c;, DW). Katz and Sharir [9] have
shown that the construction of such a family of canonical sets, and of the corresponding
sets of indicegJ,}pep, can be accomplished in tin@(n*2logn). For each canonical
subsetD), we compute the intersecticff) = (DY in O(|DY|log|DV|) time.
We store the vertices of the top and bottom part§of in separate lists, each sorted
in increasing order of theix-coordinates. For each vertexe Z(), we also store the
disk whose boundary appears 8f) immediately to its right. Finally, we store the
vertices of all theZ"’s in a single master list\, sorted in increasing order of their
x-coordinates. The total time spent in computing this implicit representation &t jise
isY5_, O(DW|logn) = O(n*3log?n).
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4.2. Basic Operations oiC

In order to compute the implicit representation @f, we need subroutines for the
following basic operations on the boundaries of the sefs.in

(S1) Leftmost and Rightmost Points. Given a point pcompute the leftmost and the
rightmost points of K.

This requires computing the leftmost and the rightmost poirﬁsjggp 71, Reichling
[13] has shown that the leftmost (or rightmost) point of the intersectiok adnvex
polygons with a total of vertices can be computed in tin@(k log? n). In fact, his
algorithm can also be applied to a family of intersections of congruent disks. Applying
Reichling’s algorithm to the seZ! | j € J,}, we can compute the leftmost (or
rightmost) point ofK , in time O(| Jp| log? n) = O(n*2log®n).

(S2) Intersection Points with a Vertical Line. Given avertical ling and a point pe
P, determine the intersection pointsoWwith 9 K.

For eachj € Jp, we can computé N Z) in O(logn) time. Repeating this step for
all j € Jp, we obtain a collection oD (n?logn) intervals along. We can compute the
endpoints of the intersection of these intervals (or detect that the intersection is empty)
in an additionalO(n'/3logn) time. Hence, the total running time of this procedure is
O(nY3log? n). This procedure can also be used to determine whether a query point in
the plane lies above, below, or on a boundaryarc

(S3) Crossing Points of Two Top (or Two Bottom) Boundary Arcs. Given two
points p g € Py and an x-intervala, b] contained in the x-span of bothpkand Ky,
determine whether the top boundaries gf &d K, cross in[a, b]. If so, return their
crossing pointlf they weakly cross ifia, b], then return the leftmost endpoint of their
common overlap iffia, b]. A similar operation is prescribed for the bottom boundaries
of Ky and Kg.

Lety, (resp.yq) be the portion of the top boundary Kf, (resp.Kq) in thex-interval
[a, b], and let¢, : x = a and{y, : X = b. By computing the intersection points 8K,
and dKy with £, we can determine, i (n3logn) time, whethery, lies above or
belowyy atf,. Suppose, lies abovey, atl,. We repeat the same proceduréatNote
that, by Theorem 2.8y, lies belowyy at£y, too if and only ify, andyq cross (or weakly
cross). If they do cross, then, by performing a binary search over the points stored in the
master listA, we obtain two consecutive verticesg € A so that the crossing point (or,
in case of weak crossing, the leftmost point of the common overlap) ahdy, lies in
the x-interval | betweeny andg. Each step of the binary search involves determining
whethery, lies abovey, at a vertical linel : X = Xo, for somexg € A, and is performed
using subroutine (S2). Hence the total cost of the binary searétiri&log®n). The
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top boundary of eac, for j € Jp, is composed of a single circular arc in tke
interval | . We therefore collect th® (n'/3logn) corresponding disks, and compute, in
O(n*3log? n) time, the top boundary, of their intersection within . Similarly, we
computeyg, the top boundary df overl . We can now compute the crossing point (or the
leftmost point of the common overlap) §f andy, in an additionalo(n*/3logn) time,

by merging the lists of vertices gf, andygy, and by inspecting each “atomic” interval
formed by this merge. The total time spent by this procedure is@wé/3log®n). A
symmetric procedure can compute the unique crossing point (or the leftmost point of the
common overlap of a weak crossing) of the bottom boundari&s,@ndKq, within the

same time bound.

(S4) Crossing Points of a Top Boundary Arc and a Bottom Boundary Arc. Given
two points pg € Py and an x-intervalla, b] contained in the x-span of bothK
and K, determine whether the top boundary of rosses the bottom boundary of K
in the interval[a, b]. If so, return their crossing poirs).

Let y, be the portion of the top boundary K, lying in the interval f, b], and lety,
be the portion of the bottom boundary Kf, lying in the interval i, b]. Note that, by
convexity,y, andyg can cross in at most two points. By comparing yheoordinates of
the endpoints of,, y4, using an appropriate variant of subroutine (S2), we can determine
whether they cross exactly once. In this case, we can determine their unique crossing
point (or the leftmost point of overlap of a weak crossing) using an appropriate variant
of subroutine (S3). Suppose that we determine;thaindyy cross at zero or two points,
and thaty, lies abovey,, at the vertical linex = a (and also ak = b); if 4 lies belowy,,
at these points, the arcs do not intersect. If we reggrandyy as graphs of univariate,
partially defined functiong, (x), yq(X), respectively, ther y (X) = yq(X) — yp(X) is a
convex function. Therefore, by a binary search througleach step of which requires
determining the intersection points of a vertical line withandy,, we can determine,
in overall O(n*/3log® n) time, the uniquex-valuex at whichAy attains its minimum.
If Ay (Xo) > 0, theny, andyq do not intersect. [Ny (xo) = 0, then the minimum oAy
is the unique point of intersection (actually, of tangencyyptindyy. If Ay (o) <0,
theny, andy, have two crossings, one of which lies in the interalfo] and the other
lies in the interval %o, b]. Now we can compute both crossing pointsdrin®/3 log® n)
time, using an appropriate variant of subroutine (S3).

4.3. Computing 4

We now describe an algorithm for computing the implicit representatitiy afescribed
above, and for determining whethdir N P # (. We first compute, using subroutine
(S1), the leftmost and rightmost pointg, r,, of eachK,, for p € P. This, combined
with calls to subroutine (S2), allows us to compute the Bet$s, P, , andPg, in overall
O(n*3log® n) time. Next, we computér, using a divide-and-conquer algorithm. If
|Pr] = 1, thenUt = K, wherep is the only point inPy. In this case, we outpétUr as
consisting of two boundary arcs, both connectingndr,, where the top (resp. bottom)
arcis the top (resp. bottom) boundaryof. If | Pr| > 1, we partitionPr into two subsets



The Discrete 2-Center Problem 303

P} andP2, each of size at mo$tPr|/2]. We recursively compute? = UpepTl Kpand
Uf = Upepz Kp, and then computer = Ut U U, using a sweep-line algorithm. This
“merge” step computes the implicit representatiorgffrom those ofUl, U2, which
are output by the respective recursive calls.

The sweep line scans the plane from left to right, stopping at the concave vertices and
the locallyx-extremal points ob)%, UT2, andU-+. By Corollary 2.7, the number of such
“event points” is onlyO(n). The algorithm maintains those arcssf, UZ that currently
intersect the sweep line in a height-balanced Tresorted in the increasing order of the
y-coordinates of their intersection points with the line. At each event point, the algorithm
inserts a new arc, deletes an arc, or swaps two adjacent arcs in tielimegder to insert
a new arc intarl , the algorithm has to perfor®(logn) comparisons of the following
form: given a pointg and a boundary arg, determine whetheq lies above, below,
or ony. Using subroutine (S2), such a comparison can be performédnf/3 log? n)
time. The time spent in inserting an arc is thgn'/3log®n). The deletion of an arc
follows a standard deletion procedure of a height-balanced tree. After having inserted
or deleted an arc, we obtain the n&@\(1) adjacent pairs of arcs ifi, compute their
(leftmost) intersection points to the right of the current sweep line, and insert them into
the event queue. We thus need to perf@ii) calls to the subroutines (S3) and (S4), each
of which takesO (n*/?log® n) time. Omitting all the other straightforward and standard
details of the sweep-line algorithm, we conclude that the algorithm sg@2ad$® log® n)
time at each event point, therefore the total time spent by the sweep-line algorithm is
0(n*3log®n). The overall time spent in computing the implicit representatiod-ois
thusO(n*3log* n). (Note that the computation of the s&§’, 7(), andJ, is performed
only once, before starting the recursive constructiobaj

We next have to determine whethds N P # (. This can easily be done, at no
increase in the asymptotic running time, during the topmost sweep of the recursion, in
which the entirdJ is constructed. We include the points®fas additional event points
of the line sweep. Whenever we encounter a ppiat P, we find the arg’ of Ut lying
immediately abovep. If y is a portion of the top boundary of sorig,, thenp € Ur.
Moreover,D(p, r)uUD(q, r) covers all points oP, so we can returp, g as the solution
to the fixed-size problem; i is a portion of the bottom boundary of sorig, then
p ¢ Ur. The arcy can be determined by searching the tree wittwhere each step
of the search determines whethelies above, below, or on an ay¢. Since each such
step can be performed i@ (nY3log? n) time, using subroutine (S2), we can determine
in O(n¥3log® n) time whetherp € Ur. Summing this cost over all poings € P, the
total time spent by this stage ®@(n*3log® n).

We now construct and searchlily, U andUg, using the algorithm just described.

If at least one of these unions contains a poinPpthen we have found, and can output,
two pointsp,q € P such thatD(p,r) U D(q,r) coversP; otherwise, no two such
points exist. The overall running time &(n*2log* n). Hence, we obtain the following
result.

Theorem 4.1. Given a set P of n points in the plane and a real value-r0, we
can determingin O(n*2log* n) time, whether there are two points, g € P so that
P c D(p,r)uUD(q,r). If so, we can also find such a pair within the same time bound
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5. The Overall Algorithm

The overall algorithm for the discrete 2-center problem proceeds as follows. We note that
the optimum radius* is a distance between two pointsBf so we run a binary search
over thesq(}) distances, using the fixed-size decision procedure given in the preceding
section to determine whether the optimuiis larger than, smaller than, or equal to a
distance . Note thatr < r*xif U = [ ,.p Kp, as defined in the Introduction, does not
contain a point ofP, thatr > r* if the interior ofU contains a point oP, andr = r*
if the interior ofU does not contain a point but its boundary contains a poiif.of

Of course, running this binary search explicitly will require quadratic time, so we
use instead the distance-selection algorithm of [9] (see also [2]), which computes the
kth smallest distance in a set ofpoints in the plane in tim®(n*3log?n). Since we
need to invoke this procedure, and also the fixed-size decision procedur€ @ogyn)
times, the overall running time of the algorithm@(n* log® n).

Theorem 5.1. The discrete-center problem for a set of n points in the plane can be
solved in time @n*3log® n).

6. Conclusion

We have presented &(n*/ log® n)-time algorithm for the planar discrete 2-center prob-
lem. We believe the running time can be improved by a logarithmic factor by exploiting
the special structures of canonical subsets and using fractional cascading. It, however,
remains a challenging open problem whether there exists a near-linear algorithm for this
problem.

Our decision algorithm relies heavily on the properties of the combinatorial structure
of K that we have proved in Section 2. Although we have shown in Section 3 that the
complexity ofU is roughlyn*3, we do not have an algorithm with comparable running
time that computed&) explicitly. There are, in fact, a number of substructures in an
arrangement of a set of congruent disks, whose worst-case complexity has the same
asymptotic upper bound as that of the corresponding structure in an arrangement of
lines. For example, the number of incidences between points and congruent disks, the
complexity of many faces, and the complexitybfone can define a structure analogous
to U for a set of half-planes in the plane). However, unlike the case of lines, no efficient
algorithm is known for computing most of these substructures. It is an open problem
whetherm distinct faces in an arrangementmicongruent disks can be computed in
time close tom?3n?/3 + n. A solution to any of these problems will most likely offer
insights for developing a simpler algorithm (still with running time close¥8) for the
discrete 2-center problem. A more challenging open problem is whether a near-linear-
time algorithm can be developed for the discrete 2-center problem.
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