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Abstract

A viscous discrete adjoint approach to automatic aerodynamic shape optimization is

developed, and the merits of the viscous discrete and continuous adjoint approaches

are discussed. The viscous discrete and continuous adjoint gradients for inverse de-

sign and drag minimization cost functions are compared with finite-difference and

complex-step gradients. The optimization of airfoils in two-dimensional flow for in-

verse design and drag minimization is illustrated. Both the discrete and continuous

adjoint methods are used to formulate two new design problems. First, the time-

dependent optimal design problem is established, and both the time accurate discrete

and continuous adjoint equations are derived. An application to the reduction of the

time-averaged drag coefficient while maintaining time-averaged lift and thickness dis-

tribution of a pitching airfoil in transonic flow is demonstrated. Second, the remote

inverse design problem is formulated. The optimization of a three-dimensional bicon-

vex wing in supersonic flow verifies the feasibility to reduce the near field pressure

peak. Coupled drag minimization and remote inverse design cases produce wings

with a lower drag and a reduced near field peak pressure signature.
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0.202, ᾱ = 0o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.26 Convergence of the Maximum and Time-Averaged Drag Coefficients

for the VR-7 a M∞ = 0.75, ωr = 0.202, ᾱ = 0o . . . . . . . . . . . . . 191
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Chapter 1

Introduction

Engineers continually strive to improve their designs, both to increase their opera-

tional effectiveness and their market appeal. While some qualities such as aesthetics

are hard to measure, the factors contributing to operational performance and cost

are generally amenable to quantitative analysis. In the absence of an optimization

approach, crucial decisions during a design process that could ultimately affect the

efficiency of a system are often left to the judgment of experienced personnel, re-

searchers, and engineers. Since these decisions ultimately determine whether a com-

pany fails or prospers, the introduction of quantitative optimization methods can be

crucial to improving its competitive strength. In the design of a complex engineering

system, relatively small design changes can sometimes lead to significant benefits. For

example, small changes in wing section shapes can lead to large reductions in shock

strength in transonic flow. Changes of this type are unlikely to be discovered by trial

and error methods, and it is in this situation that optimization methods can play a

particularly important role.

Beightler, in Foundations of Optimization, [6] lists three important steps on how

to optimize a system: first, understand the system and the various variables that

influence it; second, decide on a measure of effectiveness that depends on the system

variables that have a great influence on the efficiency of the system; third, choose

those values of system variables that produce the optimum system.

In the first step, the knowledge of the inner workings of the system provides the

1
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engineer with the fundamentals of how various variables interact with each other to

influence the system. In an aircraft design group that consists of a wide variety of sub-

groups such as computational fluid dynamics, stability and control, aeroelastic and

flutter analysis, engineers working in a particular group should ideally have a general

overview of the research and development conducted in other groups. Knowledge of

the various design parameters from the numerous sub-groups and its influence on the

performance of the aircraft would help them to formulate a better design problem.

The second step requires the designer to define a measure of the system effec-

tiveness. In aircraft design, there are many figures of merit that measure the overall

performance of the aircraft. The cruise lift-to-drag ratio, L
D

, is particularly important,

since it provides an indication of the efficiency of the aircraft. An aircraft with high
L
D

either produces a large lift load or low drag. High lift capability allows an aircraft

in cruise to carry a larger payload. Low drag translates to low fuel consumption and

ultimately maximizes the aircraft range. The choice for a figure of merit depends on

the mission of the aircraft.

In the last step, the designer proceeds to apply an optimization algorithm to pro-

duce an optimum result that satisfies the constraints of the problem. There are various

optimization algorithms that one can choose from. The choice is highly dependent

on the type of problem: linear or nonlinear, number of design variables, number of

figures of merit, and whether the problem is unconstrained or constrained. A desire

to increase L
D

without constraints can lead to an increase in the aspect ratio and thus

produce an aircraft with a very large span for a given wing area, which would in turn

increase the wing weight. Therefore constraints can be as important as the figure of

merit in optimization.

In the last hundred years, aircraft designers have employed various methods to

arrive at their final designs. The current design process in a typical aircraft design

company follows three steps. First, the conceptual design group proposes new configu-

rations in anticipation of new market requirements. The group generally is composed

of twenty to thirty people and works on an ongoing basis to create new concepts and

configurations. Radical new designs are predominantly presented to the market at

this stage. However, most current designs are based on past designs that have been
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successful in the market. Second, the preliminary design stage requires designers

to meet aeroelastic, flutter, stability and control, and other performance criteria us-

ing basic empirical methods and low-fidelity simulation codes. Approximately three

hundred people require two to three years and consume an estimated $200− 300 mil-

lion. This estimate is based on the design of a medium commercial jet transport. A

complete external configuration and major load and stresses are determined at the

end of this stage. The aircraft performance is also frozen at this stage and orders

from airline companies follow thereafter. Third, the detailed design stage involves the

many different sub-groups manufacturing and testing the various components of the

aircraft. Information is transfered between the groups to satisfy the overall system

requirements. Approximately three to five thousand personnel work on arriving at

the design goals guaranteed to airline companies during the preliminary design stage.

This stage normally requires around $5 − 12 billion and spans between three to four

years.

During the preliminary and detailed design stages, large amounts of wind tun-

nel data are collected to improve the existing design until a satisfactory design is

obtained within the scheduled time. Such a design process does not allow for vast

numbers of design iterations or variables to be considered. With the introduction of

computational methods, researchers in the last thirty years have used these powerful

tools to provide a greater understanding of the problem and their ability to provide

analysis for a greater number of designs. The ultimate aim of both the traditional

and computational approaches was to improve the design within a predetermined

schedule but it was still left to the design group to make the important decisions that

would ultimately optimize their design.

This raises the need to introduce optimization theory into aircraft design. His-

torically, optimization theory has its roots in the Renaissance period. During this

era the solution to the Brachistochrone problem attracted many great philosophers

and thinkers. Galileo guessed that the circular arc would provide the shortest time

for an object to travel from an elevated point A to the ground at point B. Then, in

1694, Johann Bernoulli proved mathematically that the optimum shape was in fact

a cycloid.
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In the past, aircraft design techniques have depended on analytical solutions to

arrive at optimum shapes. Examples include the optimum lift distribution of mono-

plane wings, and the Sears-Haack solution for the minimum wave drag of a body

of revolution in supersonic flow. In 1945 Lighthill [50] first employed the method

of conformal mapping to design two-dimensional airfoils to achieve a desired target

pressure distribution. These methods were restricted to incompressible flow, but later

McFadden [56] extended the method to the compressible flow regime. Bauer et al. [5]

and Garabedian et al. [21] established an alternate method based on complex char-

acteristics to solve the potential equations in the hodograph plane. This method

successfully produced shock-free transonic flows.

Constrained optimization for aerodynamic design was initially explored by Hicks

et al. [27]. They used the finite-difference method to evaluate sensitivities. Since

then optimization techniques for the design of aerospace vehicles have generally used

gradient-based methods. Through the mathematical theory for control systems gov-

erned by partial differential equations established by Lions et al. [51], Pironneau et

al. [68] created a framework for the formulation of elliptic design problems. The

approach significantly lowers the computational cost and is clearly an improvement

over classical finite-difference methods. Using control theory the gradient is calcu-

lated indirectly by solving an adjoint equation. Although there is the additional

overhead of solving the adjoint equation, once it has been solved the cost of obtaining

the derivatives of the cost function with respect to each design variable is negligible.

Consequently, the total cost to obtain these gradients is independent of the number

of design variables and amounts to the cost of one flow solution and one adjoint solu-

tion. The adjoint problem is a linear partial differential equation of lower complexity

than the flow solver. Jameson was the first to apply control theory for transonic

design problems [33, 34, 35]. Subsequently, Jameson et al. [37, 41, 42] pioneered the

shape optimization method for Euler and Navier-Stokes problems. Automatic aero-

dynamic design of aircraft configurations has yielded optimized solutions of wing and

wing-body configurations by Reuther et al. [69, 71] and Burgreen et al. [10].

The injection of optimization theory into the design process and innovations in

computer technology have allowed researchers to attempt more complex problems.
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This launched a snow-ball effect, where bigger and faster computers have allowed

engineers to tackle more sophisticated systems, which then ultimately required even

faster computers. Future optimization techniques will allow designers to reinvent the

design process. The traditional approach discussed earlier will be replaced with a

multidisciplinary approach, where the various disciplines of the design process will be

coupled to allow changes in the configuration during the design process, a feature not

allowed in the current approach. Low-fidelity flow models coupled with optimization

techniques that may be able to identify global minimum such as genetic algorithms

will be used during the conceptual and preliminary design stages. Higher fidelity and

gradient-based methods with multidisciplinary capabilities will be used during the

detailed design stage. This will allow the designer to determine accurately the optimal

values of parameters such as the wing thickness that affect both the aerodynamics

and structural performance of the aircraft. Designers will be able to examine a larger

number of design cycles and this will allow them to tackle more multidisciplinary

problems and perhaps arrive at radically new designs.

Optimization will enhance the designers’ ability to produce a better system instead

of reducing their role in the design process. Moreover, the designers’ productivity

will increase with the means to explore new approaches and designs. Often the

sensitivity of the figure of merit with respect to the system variables is as important

as the optimum result itself. Knowledge of the sensitivities provides the designer with

new insights on how various system variables affect the performance of the system.

This allows the designer to understand the system better and devise better problem

statements to tackle the issues at hand.

The potential benefit of using optimization theory has only been realized recently

with the advent of faster methods to obtain the gradient. The control theory approach

to shape optimization has revolutionized the concept of utilizing computational fluid

dynamics as a design tool. The ability to obtain gradients cheaply has allowed re-

searchers to attempt new problems in aircraft design.

This thesis contributes to the development of the discrete and continuous adjoint

approaches, examining three distinctively separate problems of current interest.

Continuous Versus Discrete Adjoint. The motivation for the development



6 CHAPTER 1. INTRODUCTION

of the discrete viscous adjoint equations is to study the trade-offs between the

complexity of formulating the discrete adjoint equation and the accuracy of

the resulting estimate of the gradient when compared to the continuous adjoint

approach. The goal of this research is to evaluate both approaches for inverse

design and drag minimization problems. The gradients from each approach

are compared to gradients acquired using the finite-difference and complex-step

methods.

Optimum Shape Design for Unsteady Flows. Helicopter rotors and tur-

bomachinery blades operate in unsteady flow. The forward flight speed of a

helicopter is restricted by the retreating blade stall limit and the advancing

blade compressibility limit. In turbomachinery the flutter and stall boundaries

limit the operational efficiency. It is apparent that the development of optimum

design methods for unsteady flows is fundamental to improving the performance

of a variety of aerospace systems. The unsteady adjoint equations are developed

in this work. They are applied to the design of airfoils undergoing a pitching

oscillation to reduce the time-averaged drag coefficient while maintaining the

time-averaged lift coefficient.

Remote Inverse Design. A major barrier to the development of supersonic

business jets is the sonic boom. A new approach to tailor the aircraft shape to

minimize the sonic boom signature is developed in this research. The application

of the method is aimed at modifications of the near field pressure signature of

two-dimensional airfoils and wings in three-dimensional flow. A coupled remote

inverse design and drag minimization objective function is also used to tailor

the near field signature and control the wave drag of three-dimensional wings.

The following sub-sections develop the motivation in greater depth for each of

the research goals. A description of the problem statement and the challenges faced

in each area of study are discussed. In the chapters to follow a detailed study of

the formulation of the equations and the results of the test cases are described and

illustrated. The conclusions discuss the potential role of these methods in the future

design of complex systems.
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1.1 The Discrete and Continuous Adjoint Approaches

There are two approaches to develop the adjoint equations: continuous or discrete.

In the continuous adjoint approach the control theory is applied to the differential

equations governing the flow. The variation of the cost function and field equations

with respect to the flow field variables and design variables are combined through the

use of Lagrange multipliers, also called costate or adjoint variables. Collecting the

terms associated with the variation of the flow field variables produces the adjoint

equation and its boundary condition. The terms associated with the variation of the

design variables produce the gradient. The field equations and the adjoint equation

with its boundary conditions must finally be discretized to obtain numerical solutions.

In the discrete adjoint approach, control theory is applied directly to the set

of discrete field equations. The discrete adjoint equation is derived by collecting

together all the terms multiplied by the variation δwi,j of the discrete flow variables.

If the discrete adjoint equation is solved exactly, then the resulting solution for the

Lagrange multipliers produces an exact gradient of the discrete cost function, and the

derivatives should be exactly consistent with gradients obtained by the complex-step

method.

The discrete and continuous approaches have been pursued by a number of re-

searchers using a wide variety of schemes and methods. Shubin and Frank [77]

presented a comparison between the continuous and discrete adjoint for quasi-one-

dimensional flow. A variation of the discrete field equations proves to be complex for

higher order schemes. Due to this limitation of the discrete adjoint approach, early

implementations of the discretization of the adjoint equation were consistent only

with a first order accurate solution of the flow equation.

Burgreen et al. [10] carried out a second order implementation of the discrete ad-

joint method for three-dimensional shape optimization of wings for structured grids.

Elliot and Peraire [17] used the discrete adjoint method on unstructured meshes for

the inverse design of multi-element airfoils and wing-body configurations in transonic

flow to produce specified pressure distributions. Anderson and Venkatakrishnan [3]

computed optimum shapes for inviscid and viscous flow on unstructured grids using
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both the continuous and discrete adjoint methods. Iollo et al. [29] used the continu-

ous adjoint approach to investigate shape optimization on one-and two-dimensional

flows. Ta’saan et al. [78] used a one-shot approach with the continuous adjoint formu-

lation. Kim et al. [47] conducted an extensive gradient accuracy study of the Euler

and Navier-Stokes equations, concluding that gradients from the continuous adjoint

method were in close agreement with those computed by the finite-difference method.

A comparison of both the inviscid and viscous continuous and discrete adjoint ap-

proaches was conducted by Nadarajah and Jameson [59, 60].

A subject of on-going research is the trade-off between the complexity of the

adjoint discretization, the accuracy of the resulting estimate of the gradient, and its

impact on the computational cost to approach an optimum solution. An advantage of

the continuous adjoint approach is that it provides researchers with an analytical form

of the equations which can be studied to understand the nature of the equation and its

boundary conditions. Stability analysis and analytical solutions of one-dimensional

model problems can be developed to understand the characteristics and behavior of

the equation. The scheme used to discretize and march the flow field equations to a

steady-state solution can also be employed to solve the discretized continuous adjoint

equations. This simplifies the development of codes to implement the method. A

disadvantage of the discrete adjoint method is the complexity of applying control

theory to the discrete field equations. The complexity of the discretization depends

on the sophistication of the flow solver. Reuther [72] stated that for methods that use

GMRES (Generalized Minimum Residual) to solve very large linear algebra problems,

the task of developing the discrete adjoint equation is as easy as transposing the flux

Jacobian matrix. For explicit schemes, such as those used in Jameson’s codes, the

development of the discrete adjoint equation proves to be a tedious task as shown in

Chapter 4. The complete discretization of all the terms in the flow solver requires an

extensive amount of algebraic manipulation. The addition of the viscous flux further

increases the complexity of deriving its adjoint counterpart. The continuous adjoint

method is much simpler to implement for explicit schemes.

Another important issue of interest is the relative accuracy of the gradients de-

rived by the two methods. The continuous adjoint approach provides the inexact
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gradient to the exact cost function. On the other hand, the discrete adjoint approach

provides the exact gradient to the inexact cost function. Here, the exact cost function

is defined as the continuous form of the cost function, and the inexact cost function

as the value computed from the discrete field equations and boundary conditions.

The continuous gradient is calculated from the discretized continuous adjoint equa-

tion, derived from the continuous field equations and cost function. Therefore, the

continuous gradient is not necessarily exactly consistent with the cost function which

is evaluated numerically. The advantage of the discrete adjoint method is that the

resulting discrete gradient is exactly consistent with the discrete cost function. If

the discrete gradient is driven to zero, then a local optimum of the discrete cost is

attained. However, in the case of the continuous adjoint method, even if its gradient

is driven to zero, the discrete objective function may not have converged to the exact

discrete minimum. If line searches are used in the optimization algorithm, there may

be a conflict, where the discrete minimum in the search direction is inconsistent with

the discretized continuous gradient. The discrete adjoint approach does not suffer

from this inconsistency. In the limit as the mesh size is reduced, the continuous and

discrete adjoint methods should both yield the exact gradient of the continuous cost

function.

These questions provide the motivation for a comparison between the continu-

ous and discrete adjoint approaches and methods using gradients obtained by finite-

differences or complex-steps. The specific objectives of this work are: first, to re-

view the formulation and development of the viscous adjoint equations for both the

continuous and discrete approach; second, to investigate the differences in the imple-

mentation of boundary conditions for each method for various cost functions; third,

to compare the gradients of the two methods to complex-step gradients for inverse

pressure design and drag minimization. Test cases are calculated for various problems

and grid sizes.
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1.2 Optimum Shape Design for Unsteady Flows

The majority of work in aerodynamic shape optimization has been focused on the

design of aerospace vehicles in a steady flow environment. Investigators have applied

these advanced design algorithms, particularly the adjoint method, to numerous prob-

lems, ranging from the design of two-dimensional airfoils to full aircraft configurations

to decrease drag, increase range, and reduce sonic boom as shown in Chapters 4 and 6.

These problems have been tackled using many different numerical schemes on both

structured and unstructured grids.

Unlike fixed wing aircraft, helicopter rotors and turbomachinery blades operate

in unsteady flow and are constantly subjected to unsteady loads. Therefore, opti-

mal control techniques for unsteady flows are needed to improve the performance

of helicopter rotors and turbomachinery, and to alleviate the unsteady effects that

contribute to flutter, buffeting, poor gust and acoustic response, and dynamic stall.

Helicopter Rotors. The flight envelope of a helicopter rotor is set by the com-

pressibility effects experienced by the advancing rotor blade and the retreating blade

dynamic stall. As the helicopter forward flight speed is increased, the freestream ve-

locity observed in the reference frame of the advancing blade is that of the sum of the

helicopter forward flight speed and the speed of the advancing blade. At high cruise

speeds, the freestream Mach number observed by the advancing blade reaches levels

where local supersonic zones on the surface of the rotor blade are present. These

regions usually terminate with a shock wave which causes a sudden increase in wave

drag. During the retreating phase, the blade incidence approaches the stall angle,

causing separation to occur on the upper surface of the blade, which leads to a loss

of lift.

At the 38th Cierva Memorial Lecture, Wilby [81] indicated that during the re-

treating blade stall it is the dramatic change in pitching moment more than the

loss of lift that imposes a greater constraint on the design of the rotor blades. The

change in pitching moment causes a large oscillatory load on the blade pitch control

mechanism which shortens its fatigue life and thus increases the operating cost of the

helicopter. Over the years, researchers in the field of rotorcraft aerodynamics have
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developed ingenious methods to solve these problems. Their efforts have developed

blade profiles that have a high maximum lift coefficient which allows the retreating

blade to avoid stall incidence, low wave drag during the advancing phase, and low

pitching moment to reduce blade twist and control loads. The introduction of the

swept tip to reduce the wave drag and reflex camber towards the rear portion of the

upper surface to increase negative loading thus reducing the pitching moment are

just some of the technologies introduced over the last twenty years. Unfortunately

these improvements only consider the performance of the blade profile for a selected

number of flight conditions.

Turbomachinery. The flow through a turbomachine is highly three-dimensional

and unsteady due to variation of the hub-to-tip distance along the blade row, blade-

to-blade interference, and interactions between the rotors and stators. The nonlinear

effects within the turbomachine generally have an unfavorable effect on the flutter

characteristics of the blades. Kielb [45] recommended five important questions that

must be considered by a designer before venturing into aeroelastic analysis of turbo-

machineries: first, two-dimensional or three-dimensional flow analysis; second, linear

or nonlinear unsteady analysis; third, inviscid or viscous solutions; fourth, single or

multi-row setups; and lastly, the type of aero/structural model. He proposes that, for

flutter and forced response problems the non-linear unsteady approach is necessary,

since linear analysis methods have resulted in significant errors. Apart from aerome-

chanical issues, turbomachines generate secondary flows, which reduce the efficiency

of the system. Vortex shedding and wake-rotor interactions contribute to these losses.

These challenges substantiates the need for unsteady design optimization techniques.

A multipoint design approach is one possible technique for the optimization of

blade profiles in an unsteady flow environment. This approach only requires a small

extension of a steady flow design code in order to redesign a blade or airfoil profile for

multiple flow conditions. A typical multipoint design method requires the following

three steps: first, steady flow solutions are computed for a number of cases by varying

freestream conditions; second, the gradients for each case are computed using either

a classical finite-difference method or using an adjoint approach; third, the gradients

are weighted and the blade profile is redesigned to satisfy the design objective. Since
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the steady flow equations are used to design the blades, uncertainties surrounding the

performance of these blades in an unsteady flow environment still prevail.

Recently, the design of blade profiles using unsteady techniques have been at-

tempted. Diverse methods have been employed in the design of rotorcraft and tur-

bomachinery blades. The following are a selected number of papers on this topic.

Ghayour and Baysal [23] solved the unsteady transonic small disturbance equation

and its continuous adjoint equation to perform an inverse design at Mach 0.6. Aerody-

namic shape optimization of rotor airfoils in an unsteady viscous flow was attempted

by Yee et al. [82] using a response surface methodology. Here the authors used an

upwind-biased-factorized implicit numerical scheme to solve the RANS equations with

a Baldwin-Lomax turbulence model. A response surface methodology was then em-

ployed to optimize the rotor blade. The objective function was a sum of the L/D at

three different azimuth angles and was later redefined to include unsteady aerody-

namic effects. Florea and Hall [20] modeled a cascade of turbomachinery blades using

the steady and time-linearized Euler equations. Gradients for aeroelastic and aeroa-

coustic objective functions were then computed using the discrete adjoint approach.

Both the flow and adjoint equations were solved using a finite-volume Lax-Wendroff

scheme. The gradients were then used to improve the aeroelastic stability and acoustic

response of the airfoil.

In this work, a framework is developed to perform sensitivity analysis for unsteady

transonic flow, and to use this information to modify the shape of the profile in a favor-

able manner. Optimal control of time dependent trajectories is generally complicated

by the need to solve the adjoint equation in reverse time from a final boundary con-

dition. This requires information from the trajectory solution, which in turn depends

on the control derived from the adjoint solution. The method presented in this dis-

sertation is restricted to periodic unsteady transonic flows. The time accurate adjoint

equations are based on Jameson’s cell-centered multigrid-driven fully-implicit scheme

with upwind-biased blended first and third order artificial dissipation fluxes [36].

In this dissertation both the time accurate continuous and discrete adjoint equa-

tions are derived, and then used in the redesign of the RAE 2822 and VR-7 rotor

airfoils undergoing a pitching oscillation to achieve lower time-averaged drag, while
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keeping the time-averaged lift constant [61]. The fully unsteady design technique is

compared to multipoint and steady adjoint approaches to gauge its effectiveness.

1.3 The Remote Inverse Design Problem

A 2001 National Research Council study [67] concluded that, “. . . the sonic boom

is the major barrier to the development of the supersonic business jet and a major,

but not the only, barrier to the development of supersonic transports with overland

capability.” The committee also determined that there is a potential market for at

least 200 supersonic business jets over a ten year period. The 8-15 passenger jets will

probably fly at approximately Mach 1.8 with a range of 3000 − 4000 nautical miles.

Currently, the only commercial supersonic aircraft in operation is the Concorde,

built jointly by France and Britain. Twenty aircraft have been built since 1973 and

currently only twelve are in operation. The aircraft was built to cruise at Mach

2.0 with a total range of 4090 nautical miles at 60,000 feet. Designs of supersonic

transports of the future will benefit from multidisciplinary optimization techniques

that were not available during the design and construction of the Concorde. Apart

from low sonic boom capability, the new breed of supersonic transports must also

possess superior performance characteristics compared to its predecessors to compete

in the modern commercial jet industry. These include improvements in structures,

aerodynamics, and propulsion. In particular, the experience of NASA’s HSR program

suggests that it should be possible to improve the lift-to-drag ratio from the value of

7.5 attained by the Concorde to around 9 [12].

Before the sonic boom reduction problem can be attempted, it is important to

have the capability to calculate the sonic boom or ground pressure signature accu-

rately. For typical cruise altitudes required for aircraft efficiency, the distance from

the source of the acoustic disturbance to the ground is typically greater than 50,000

ft. A reasonably accurate propagation of the pressure signature can only be obtained

with small computational mesh spacings that would render the analysis of the prob-

lem intractable for even the largest parallel computers. An approach that has been
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used successfully in the past is the use of near to far field extrapolation of pressure sig-

natures based on principles of geometrical acoustics and non-linear wave propagation.

These methods are based on the solutions of simple ordinary differential equations

for the propagation of the near field pressure signature to the ground. The Whitham

F-function [80] and Thomas equivalent waveform parameter method [79] are common

methods of choice.

Ground Plane

Mid Field

CFD Far Field

Near Field

Figure 1.1: Schematic of the Propagation of the Aircraft Pressure Signature

Figure 1.1 is a schematic of the propagation of the aircraft pressure signature.

‘CFD Far Field’ indicates the far field boundary of the mesh. At a pre-specified

distance below the aircraft and still within the CFD mesh, the location of a near field

plane can be seen. This plane is the effective interface between the CFD solution

and the wave propagation program. At the near field plane, the flow solution wo is

represented using a number of parameters, M , which can be taken as the number

of mesh points on which the pressure waveform has a value significantly different

from the free stream. The lower portion of the domain between the CFD near field



1.3. THE REMOTE INVERSE DESIGN PROBLEM 15

and the ground plane is where the pressure signature propagation method will be

active. Given the conditions, wo, the propagation altitude, and the altitude dependent

atmospheric properties ρ(z), p(z), T (z), the propagation method produces a pressure

signature at the ground plane we are interested in, which can be used to determine

any of a variety of measures of sonic boom impact such as overpressures, rise time,

impulse, etc.

Traditional methods to reduce the sonic boom signature were targeted towards

reducing aircraft weight, increasing lift-to-drag ratio, improving the specific fuel con-

sumption, etc. Seebass and Argrow [76] revisited sonic boom minimization and pro-

vided a detailed study of sonic boom theory and figures of merit for the level of sonic

booms. Through the support of the DARPA QSP Program, advanced algorithms

for the design and optimization of quiet supersonic platforms have been developed

at Stanford during the last two years. DARPA’s vision for the project is to develop

conceptual aircraft designs that produce initial overpressures of 0.3psf, while cruising

at Mach 2.5 with a range of 6000 nautical miles and with a weight of 100,000lbs.

This is an ambitious reduction in the initial overpressure compared to the Concorde’s

1.5 − 2.0psf. Our experience has indicated that large reductions in the ground peak

pressure cannot be achieved with minor shape modifications of the baseline config-

uration. Alternative design methods such as genetic algorithms have been used in

a multi-level design environment to get in the neighborhood of the optimum design

before switching over to a gradient-based method to refine the design. Promising

results have been achieved by using genetic algorithms in a linear method environ-

ment. Nonlinear methods are needed in order to meet several goals: first, to verify if

not improve the results of the linear based method; second, to improve the design by

exploring the techniques of optimal control; lastly, to allow the introduction of more

objective functions to improve the final design.

The concept presented in this work proposes the idea that the ground pressure

signature could be adjusted by modifying the aircraft surface geometry to control the

near field pressure distribution. It is not at all clear what type of changes to the

surface geometry would produce near field pressure distributions whose propagation

to the ground would generate sonic booms with lower peaks. It appears, however, that
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the problem might be separated into two parts: first, the identification of near field

pressure distributions that are both feasible and lead to acceptable ground signatures;

and second, the design of the surface geometry such that it will produce the desired

near field pressure distribution.

Traditional adjoint implementations were aimed at reducing a cost function com-

puted from the pressure distribution on the surface that is being modified. In this

case, however, we would like to obtain the sensitivity of pressure distributions at

points remotely located from the surface where the geometry is being modified. This

type of sensitivity calculation has not been attempted before in aerodynamic shape

design, but is closely related to inverse scattering problems in acoustics and elec-

tromagnetics. In such an approach, a target near field pressure distribution must

be specified. The cost function may then be chosen as the integral of the square of

the difference between the current and target near field pressure distribution. The

gradient of the cost function with respect to the design variables such as the sur-

face mesh points is calculated, and a direction of improvement is obtained from an

optimization algorithm. The procedure is repeated until a new aircraft surface ge-

ometry is produced that provides a near field pressure signature that approaches the

specified target near field pressure distribution, provided that it is actually realizable.

The design procedure should also include other objective functions and constraints to

maintain or improve other aircraft performance parameters such as lift-to-drag ratio.

The possibility that the adjoint method could be adapted to solve the remote inverse

problem was demonstrated by Nadarajah and Jameson [62] for a two-dimensional

internal flow problem. The method was then extended for three-dimensional wing

and wing-body configurations in supersonic flow by Nadarajah et al. [63, 64, 65].

The issue of choosing a near field signature to produce a desired ground signature

was addressed by Alonso et al. [2]. The work accomplished in this research focuses on

controlling the near field signature, and not the ground signature. A future extension

of the method would be to include the wave propagation program into the design

procedure, such that the ground pressure signature is considered as the target pressure

distribution instead of the near field pressure distribution.



Chapter 2

The Euler and Navier-Stokes

Equations

This chapter presents the mathematical models used in this work. Section 2.1 de-

scribes the integral and conservative forms of the field equations and its boundary

conditions. Section 2.2 presents the numerical discretization of the mathematical

models, artificial dissipation schemes, and lastly convergence acceleration procedures

such as local time stepping, residual averaging, and multigrid.

2.1 Mathematical Model

The following sub-sections describe the development of the integral and conservative

forms of the field equations and their boundary conditions.

2.1.1 Conservation of Mass

Let V (t) be a control volume with a moving surface S(t) and an outward pointing

normal vector ~n. The statement “conservation of mass” implies that mass is neither

created nor destroyed in the control volume. For the case of no production or an-

nihilation in V , then the time rate of change of mass in V must equal zero and the

17
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statement can be expressed mathematically as

d

dt

∫

V (t)

ρ dV = 0.

By the Reynolds’ Transport theorem the above equation can be rewritten as

d

dt

∫

V (t)

ρ dV =

∫

V (t)

[
∂ρ

∂t
+ F · (ρ~u)

]
dV = 0. (2.1)

The divergence of ρu can be expanded to ~u · Fρ + ρF · ~u. Using the definition of a

material derivative, the material derivative of ρ can be defined as

Dρ

Dt
=

∂ρ

∂t
+ ~u · Fρ.

The statement for conservation of mass from equation (2.1) can be written in material

derivative form as

d

dt

∫

V (t)

ρ dV =

∫

V (t)

[
Dρ

Dt
+ ρF · ~u

]
dV = 0.

2.1.2 Conservation of Momentum

Let Fi be the total force acting on all fluid particles in the volume V (t) along the

xi direction. Then by Newton’s second law, the time rate of change of momentum

is equal to the sum of the surface and body forces acting on all fluid particles. The

time rate of change of momentum in the xi direction can be expressed as

Fi =
d

dt

∫

V (t)

ρui dV.

Define ~Gi to be the body force per unit volume vector applied to all fluid particles

in volume V (t) and ~Ti as the surface force per unit area stress vector acting on the

control surface S(t). Then the sum of the surface and body forces can be formulated

as

Fi =

∫

S(t)

~Ti dS +

∫

V (t)

ρ ~Gi dV.
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By the application of Reynolds’ Transport theorem, the time rate of change of mo-

mentum can be written in material derivative form and thus the integral form of the

conservation of momentum can be defined as

∫

V (t)

ρ
Dui

Dt
dV =

∫

S(t)

~Ti dS +

∫

V (t)

ρ ~Gi dV. (2.2)

Equation (2.2) consists of two volume integrals and one surface integral. The sur-

face integral can be reformulated into a volume integral and equation (2.2) can be

expressed as a single volume integral. First, define the vector ~Ti as the sum of the

hydrostatic pressure and viscous stress

~Ti = σkink, (2.3)

where σki is the sum of the viscous stress tensor and pressure as stated below:

σki = −pδki + τki,

p = Pressure.

δki = Kronecker delta function.

τki = Viscous stress tensor.

Then the integral of the surface force ~Ti over the control surface S(t) can be expressed

as

∫

S(t)

~Ti dS =

∫

S(t)

σkink dS

=

∫

S(t)

(−pδki + τki) nk dS

=

∫

S(t)

−pδkink + τkink dS.
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By application of the Gauss’ theorem, the surface integral is converted to a volume

integral and we have

∫

S(t)

~Ti dS =

∫

S(t)

−pδkink + τkink dS

=

∫

V (t)

− ∂

∂xk

(pδki) +
∂τki

∂xk

dV

=

∫

V (t)

− ∂p

∂xi

+
∂τki

∂xk

dV. (2.4)

Substitute equation (2.4) into equation (2.2) to yield the integral form of the conser-

vation of momentum

∫

V (t)

[
ρ
Dui

Dt
+

∂p

∂xi

− ∂τki

∂xk

− ρ ~Gi

]
dV = 0.

If we assume that the fluid has the property that the elements of the viscous stress

tensor are related linearly with the elements of the rate of deformation tensor (New-

tonian Fluid) and the gas is isotropic, then the viscous stress tensor can be defined

as

τki = µ

[
∂uk

∂xi

+
∂ui

∂xk

]
+ λ

[
∂uj

∂xj

]
δki. (2.5)

Based on Stokes assumption, λ = −2µ/3.

2.1.3 Conservation of Energy

The rate of change of energy in volume V (t) is affected by four factors: first, the

rate of work done by the surface force per unit area stress vector; second, the rate

of work done by the body force per unit volume vector; third, the rate of heat loss

through the control surface S(t); and last, the rate of volumetric heat addition. The

conservation of energy equation can then be defined as

d

dt

∫

V (t)

ρ

(
e +

u2

2

)
dV =

∫

S(t)

~Tkuk dS+

∫

V (t)

ρ ~Gkuk dV −
∫

S(t)

qknk dS+

∫

V (t)

Q dV.
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The left-hand side of the above equation could be transformed into a material deriva-

tive form using the Reynolds’ Transport theorem and the surface integrals could be

converted to volume integrals with the Gauss’ theorem. Substitution of equation (2.3)

into the above equation will produce

∫

V (t)

[
ρ

D

Dt

(
e +

u2

2

)
+

∂

∂xk

(−σkiui + qk) − ρ ~Gkuk − Q

]
dV = 0,

where e is the internal energy and qk is defined by the Fourier law of heat conduction:

qk = −κ
∂T

∂xk

, κ= coefficient of thermal conductivity. (2.6)

2.1.4 Conservative Form of the Field Equations

In order to allow for geometric shape changes it is convenient to use a body fitted

coordinate system, so that the computational domain is fixed. This requires the

formulation of the Navier-Stokes equations in a transformed coordinate system. The

Cartesian coordinates and velocity components are denoted by x1, x2, x3 and u1, u2,

u3. Einstein notation simplifies the presentation of the equations, where summation

over k = 1 to 3 is implied by a repeated index k. The three-dimensional Navier-Stokes

equations then take the conservative form,

∂w

∂t
+

∂fi

∂xi

=
∂fvi

∂xi

in V, (2.7)

where the state vector w, inviscid flux vector f , and viscous flux vector fv are de-

scribed respectively by

w =





ρ

ρu1

ρu2

ρu3

ρE





, fi =





ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

ρuiH





, and fvi =





0

τijδj1

τijδj2

τijδj3

ujτij + k ∂T
∂xi





. (2.8)
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In these definitions, ρ is the density, E is the total energy and δij is the Kronecker

delta function. The pressure is determined by the equation of state

p = (γ − 1) ρ

[
E − 1

2
(uiui)

]
, (2.9)

where γ is the ratio of the specific heats and the stagnation enthalpy is given by

H = E +
p

ρ
.

The viscous stresses may be written as

τij = µ

[
∂ui

∂xj

+
∂uj

∂xi

]
+ λ

[
∂uk

∂xk

]
δij, (2.10)

where µ and λ = −2µ/3 are the first and second coefficients of viscosity. The viscosity

coefficient relates the momentum flux to the velocity gradient. Assuming Newtonian

fluid, the applied shear varies linearly with the strain rate. The constant of pro-

portionality is the coefficient of viscosity, which is a thermodynamic property that

varies with pressure and temperature. A common approximation for the coefficient

of viscosity is the Sutherland equation defined as

µ = C1
T

3
2

T + C2

. (2.11)

where C1 and C2 are constants for a given gas. For air at moderate temperatures, C1 =

1.458x10−6kg/(ms
√

oK) and C2 = 110.4oK. The coefficient of thermal conductivity

relates the heat flux to the temperature gradient. The coefficient and the temperature

are computed as

k =
cpµ

Pr
, T =

p

Rρ
,

where Pr is the Prandtl number, cp is the specific heat at constant pressure, and R

is the gas constant.
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2.1.5 Boundary Conditions

We now apply boundary conditions to complete the mathematical model. At the

solid wall the boundary conditions for inviscid and viscous flows can be defined as

follows. For inviscid flow, the velocity at the wall must be tangent to the slope of the

wall. This corresponds to a zero flux through the wall and thus

(~u · ~n)wall = 0,

where ~n is the wall surface unit normal vector. For viscous problems, the no-injection

and no-slip conditions are imposed and requires an additional boundary condition to

the one above
(
~u · ~t

)
wall

= 0,

where ~t is the wall unit tangent vector. This effectively means that the velocity at the

wall is zero. The above boundary conditions satisfy the momentum equation. For the

case of the energy equation, either an adiabatic or isothermal boundary condition is

required. In this work, an adiabatic boundary condition is employed and defined as

(~q · ~n)wall = 0.

This translates to a zero heat flux through the normal of the wall.

The solution is also required to exhibit the correct asymptotic behavior in the

far-field. When a finite computational domain is used one should distinguish inflow

and outflow boundaries. At any boundary, only conditions corresponding to incoming

waves should be specified. Moreover it is beneficial to use procedures that reduce the

reflection of outgoing waves, as will be discussed in section 2.2.3.

2.1.6 Compressible Reynolds Averaged Navier-Stokes Equa-

tions

The Navier-Stokes equations are generally accepted by the scientific community to

describe the behavior of fluid flow. However, at high Reynolds numbers the onset of
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turbulence possess a challenge to accurately solve the equations. A common method

to solve the equation at such conditions is to statistically average the variables. A

generic variable m is substituted by the mean value, m, and the instantaneous value,

m
′′

. Such treatment of the variables allows local fluctuations of these variables in the

flow and this forms the basis for turbulent flows. The mean value of the variable is

the time-averaged value as described by the following equation

m =

∫ to+T

to

m dt,

where the variables to marks the start of the flow and T is the time interval. The time

interval T is assumed to be longer than the characteristic time scale of the turbulence.

This is to allow the turbulent aspect of the flow to be fully developed and thus the

mean value of the flow variable would better represent the mean behavior of the flow

over a period of time. Next, the mass weighted average of the generic variable m is

computed using the following equation

m̃ =
ρm

ρ
.

The local instantaneous fluctuation is obtained by the subtraction of the mean value

of the variable from its instantaneous value such as m
′′

= m−m̃. Next, substitute the

velocity component, pressure, and internal energy with the mean and instantaneous

values. Lastly, take the time-average of the equations to yield the Reynold Averaged

Navier-Stokes equations

∂ŵ

∂t
+

∂f̂i

∂xi

=
∂f̂vi

∂xi

in V, (2.12)
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where the state vector ŵ, inviscid flux vector f̂ , and viscous flux vector f̂v are de-

scribed respectively by

ŵ =





ρ

ρũ1

ρũ2

ρũ3

ρẼ





, fi =





ρũi

ρũiũ1 + p̃δi1

ρũiũ2 + p̃δi2

ρũiũ3 + p̃δi3

ρũiẼ + ũipδij





, and

fvi =





0(
τ ij − ρu

′′

1u
′′

i

)
δj1(

τ ij − ρu
′′

2u
′′

i

)
δj2(

τ ij − ρu
′′

3u
′′

i

)
δj3

ũj

(
τ ij − ρu

′′

i u
′′

j

)
− u

′′

i

(
−pδij + τij − 1

2
ρu

′′

i u
′′

j

)
+ qj + ρu

′′

j e
′′





. (2.13)

Note here that deletion of the instantaneous fluctuation terms marked by the (′′) sign

reduces the above equations to the original familiar Navier-Stokes form. The second

term in the energy dissipation flux term in equation (2.13) represents the mean energy

dissipation and its magnitude is generally several orders of magnitude smaller than

the other terms and thus often neglected. Now it is clearly visible that the majority

of the difference is in the addition of extra terms to the viscous stress and the heat

flux. They can be redefined as

τijtotal
= τ ij − ρu

′′

i u
′′

j

qjtotal
= qj + ρu

′′

j e
′′ .

The next procedure would be to define and calculate the additional terms. Since it is

not possible to solve for these terms directly, they are often calculated by introducing

additional equations that relate the higher order to the lower order correlation terms.
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The various ways these quantities can be represented and calculated are part of tur-

bulence modeling. This area of research is beyond the scope of the present purpose

and will not be discussed here. In 1877, Boussinesq [7] proposed a scalar that relates

the apparent turbulent shearing stress with the rate of mean strain. The result is

an additional coefficient of viscosity term deemed the eddy viscosity that is added

to the original coefficient of viscosity that represents the laminar aspects of the flow.

Additional algebraic models are than introduced to calculate the eddy viscosity. The

new total stress tensor τijtotal
can then be defined as

τij = (µlam + µturb)

{
∂ui

∂xj

+
∂uj

∂xi

− 2

3

[
∂uk

∂xk

]}
δij,

where µlam is the laminar coefficient of viscosity defined by equation (2.11) and µturb

is the eddy viscosity coefficient. The next sub-section describes a simple algebraic

model to calculate the eddy viscosity.

2.1.7 Baldwin-Lomax Turbulence Model

The Baldwin and Lomax turbulence model [4] is an algebraic model for the determi-

nation of the eddy viscosity. The dual layered eddy viscosity formulation is sufficient

to complete the Reynolds Averaged Navier-Stokes equation. The turbulent eddy

viscosity coefficient can be calculated as

µturb

µ∞
=

{
(µ∗

turb)inner , when y∗ < y∗
crossover

(µ∗
turb)outer , when y∗

crossover < y∗
, (2.14)

where y∗
crossover is the minimum value of the dimensionless normal distance to the wall,

y∗, at which the inner and outer eddy viscosity formulations produce the same result.

The inner eddy viscosity coefficient follows the formula introduced by Prandtl-Van

Driest and is defined as

(µ∗
turb)inner =

Re∞
M∞

√
γ
ρ∗l∗

2|ω∗|,
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where l∗ is the length scale of the turbulence in the inner region and ω∗ is the mag-

nitude of the dimensionless vorticity vector. The length scale can be further defined

as

l∗ = k
y

c

(
1 − e−

y+

A+

)
,

where k is a constant with a typical value of 0.4 and y+ is the dimensionless distance

from the wall and defined as

y+ =

√
ρ∗

wallτ
∗
wally

∗

µ∗
wall

√
Re∞

M∞
√

γ
.

Next we define the eddy viscosity for the outer boundary layer as

(µ∗
turb)outer =

Re∞
M∞

√
γ
KCcpρ

∗FwakeFkleb,

where K and Ccp are constants with typical values of 0.0168 and 1.6, and Fwake and

Fkleb are defined using the following formulas. First, let us define the function F as

F = y∗|ω∗|
(

1 − e−
y+∗

A∗

)
.

Then

Fwake = min
(
y∗

maxFmax, Cwk
y∗

maxU∗
2

max

Fmax

)
,

where Cwk is a constant with a typical value of 1.0, Umax is the maximum difference

of the magnitude of the velocity profile, and ymax is the location that maximizes the

function F as defined above. Then the value Fmax is the corresponding maximum

value of the function. The value for Fkleb is a correction that accounts for intermittency

effects as defined as

Fkleb =

{
1 + 5.5

(
Ckleby

ymax

)6
}−1

.

In order to monitor the transition from laminar to turbulence using the Baldwin-

Lomax algebraic turbulence model a transition coefficient is used to turn on or off

the contribution from the model. Usually the eddy viscosity is set to zero if µ∗
max <
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Ctransition. A typical value for Ctransition is usually 14.

2.2 Numerical Discretization

In order to carry out a computational simulation of a complex nonlinear partial

differential equation, a numerical discretization procedure is needed to transform it

into a set of algebraic equations. The first step is to represent the continuous domain

by a mesh of discrete points, where the dependent variables of the partial differential

equation are represented. Mesh generation has become an important field of study

to enable solutions for more complex geometries. The choice of the type of mesh is

usually based on the complexity of the geometry and the desired level of accuracy

and approximation of the continuous problem. In this work, several different types of

mesh have been used to achieve the desired results. In Chapter 4 where the Navier-

Stokes equations are used in the design of airfoil shapes in a two-dimensional viscous

flow environment, a high mesh resolution close to the surface of the airfoil is required

to resolve the boundary layer and its interaction with the shock wave. However, in

Chapters 5 and 6, where only the Euler equations are employed, large gradients close

to the surface of the airfoil except for the shock wave do not exist and more uniform

and regular meshes are sufficient to provide accurate numerical approximations.

The next task at hand is to decide on the choice of a numerical scheme between the

finite-difference, finite-volume, and finite-element methods. The ultimate question is

whether the numerical solution is a good approximation of the exact solution. The

stability and robustness of the scheme are also important factors. The next sub-

sections describe the numerical discretization used in this work. The discussion is

restricted to the case of two-dimensional flow. Similar methods have been used in

the three-dimensional calculations presented in Chapter 6. The various convergence

acceleration techniques used such as local time stepping, residual averaging, and

multigrid are presented.



2.2. NUMERICAL DISCRETIZATION 29

2.2.1 Finite-Volume Technique

A finite-volume methodology is used to discretize the integral form of the conserva-

tion laws. The method is preferred over the traditional finite-difference formulation

because it allows an arbitrary mesh. It also has the advantage that it preserves the

conservation laws at a discrete level, ensuring global conservation of mass, momen-

tum, and energy.

When using a discretization on a body conforming structured mesh, it is useful

to consider a transformation to the computational coordinates (ξ1,ξ2) defined by the

metrics

Kij =

[
∂xi

∂ξj

]
, J = det (K) , K−1

ij =

[
∂ξi

∂xj

]
.

Figure 2.1 illustrates the finite-volume mesh for cell (i, j). The values of the flow

properties are stored at the cell centers marked by the red dot. Points between cell

centers are marked as black dots and appear along cell boundaries and are identified

by the ±1
2

to either i or j. The cell boundaries will also be referred to as flux faces.

(i, j − 1

2
)

(i, j + 1

2
)

(i− 1

2
, j)

(i + 1

2
, j)

ξ2
x2

ξ1

x1

Figure 2.1: Finite-Volume Mesh for Cell (i, j)

The Navier-Stokes equations can then be written in computational space as

∂ (Jw)

∂t
+

∂ (Fi − Fvi
)

∂ξi

= 0 in D, (2.15)
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where the inviscid and viscous flux contributions are now defined with respect to the

computational cell faces by Fi = Sijfj and Fvi
= Sijfvj

, and the quantity Sij = JK−1
ij

represents the projection of the ξi cell face along the xj axis. In obtaining equation

(2.15) we have made use of the property that

∂Sij

∂ξi

= 0,

which represents the fact that the sum of the face areas over a closed volume is

zero, as can be readily verified by a direct examination of the metric terms. When

equation (2.15) is formulated for each computational cell, a system of first order

ordinary differential equations is obtained. Equation (2.15) can then be written for

each computational cell as

∂(Jw)ij

∂t
+ R(w)i,j = 0, (2.16)

where

R(w)ij =
∂F1

∂ξ1

+
∂F2

∂ξ2

− ∂Fv1

∂ξ1

− ∂Fv2

∂ξ2

. (2.17)

Then each partial derivative in equation (2.17) represents the net flux in each direction

of the computational space. Each partial derivative of the convective and viscous flux

gradients can then be represented in discrete form for each computational cell using

a central second order discretization as

∂F1

∂ξ1

= fi+ 1
2
,j − fi− 1

2
,j, (2.18)

where the ±1
2

notation indicates that the quantity is calculated at the flux faces.

Expanding each partial derivative to its discrete form in equation (2.17) using the

notation from equation (2.18) results to

R(w)ij = fi+ 1
2
,j − fi− 1

2
,j + fi,j+ 1

2
− fi,j− 1

2

− fv
i+1

2
,j

+ fv
i− 1

2
,j
− fv

i,j+1
2

+ fv
i,j− 1

2

, (2.19)
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where f and fv are the convective and viscous fluxes.

As it stands, this scheme would reduce to a second order accurate central difference

scheme if the mesh was Cartesian. Schemes of this type generate oscillations around

shock discontinuities and allow odd-even decoupling of the solution. To damp these

high frequency errors, artificial dissipation terms are added to the convective and

viscous fluxes. A detailed discussion of the need for artificial dissipation and the

scheme used in this work is presented in sub-section 2.2.2. Equation (2.19) can then

be rearranged to produce

R(w)ij = hi+ 1
2
,j − hi− 1

2
,j + hi,j+ 1

2
− hi,j− 1

2
, (2.20)

where h denotes the numerical flux across the cell interfaces,

hi+ 1
2
,j = fi+ 1

2
,j − fv

i+1
2

,j
− di+ 1

2
,j, (2.21)

and d represents the artificial dissipation term.

Discretization of the Convective Flux

In the finite-volume technique used here, the values of the flow variables are stored

at the cell centers, and can be regarded as cell averages. Accordingly the convective

flux fi+ 1
2
,j at the cell face as shown in figure 2.2, is computed by taking the average

of the flux contributions from each cell across the cell face as shown in the following

equation

fi+ 1
2
,j =

1

2

(
f+

i+1,j + f−
i,j

)
. (2.22)

On a Cartesian grid, the discretization produces a three-point second order central

difference scheme for each flux gradient. Next we define the flux velocity in each cell

as

q− =
yη

i+1
2

,j
(ρu)i,j − xη

i+1
2

,j
(ρv)i,j

ρi,j

q+ =
yη

i+1
2

,j
(ρu)i+1,j − xη

i+1
2

,j
(ρv)i+1,j

ρi+1,j

.
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Figure 2.2: Discretization of the Convective Fluxes

Then the flux vectors can be formulated as

f+
i+1,j =





ρi+1,jq
+

(ρu)i+1,j q+ + yη
i+1

2
,j
pi+1,j

(ρv)i+1,j q+ − xη
i+1

2
,j
pi+1,j

(ρE + p)i+1,j q+





,and f−
i,j =





ρi,jq
−

(ρu)i,j q− + yη
i+1

2
,j
pi,j

(ρv)i,j q− − xη
i+1

2
,j
pi,j

(ρE + p)i,j q−





.(2.23)

Discretization of the Viscous Flux

A numerical evaluation of the viscous flux requires an estimate of the partial derivative

of velocity in the viscous stress tensor from equation (2.5) and the partial derivative of

temperature from the Fourier Law of heat conduction in equation (2.6). To evaluate

the viscous flux at the cell face, we first compute the stress tensor and the heat flux

components of the viscous flux at the end points (vertex) of the edge by employing a

discrete Gauss theorem to the auxiliary control volume formed by the cell centers of

the four cells containing the vertex (i + 1
2
, j ± 1

2
) as illustrated in figure 2.3. Second,

the viscous flux across the cell face is computed by averaging the viscous fluxes at

both ends of the edge.

The viscous flux fv
i+1

2
,j

at the cell face can be computed by taking the average of
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)
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Figure 2.3: Auxiliary Control Volume for the Discretization of the Viscous Flux

the fluxes computed at the cell vertex as shown below

fv
i+1

2
,j

= yη
i+1

2
,j
f∗

v
i+1

2
,j

+ xη
i+1

2
,j
g∗

v
i+1

2
,j
, (2.24)

where f∗ and g∗ represent the fluxes at the mid-point of the cell face. The fluxes

are computed by taking the average of the flux contributions from the cell vertex at

(i + 1
2
, j ± 1

2
) as illustrated by the blue points in figure 2.3 and can be written as

f∗
v

i+1
2

,j
=

1

2

(
fv

i+1
2

,j+1
2

+ fv
i+1

2
,j− 1

2

)

g∗
v

i+1
2

,j
=

1

2

(
gv

i+1
2

,j+1
2

+ gv
i+1

2
,j− 1

2

)
.

Next we define the auxiliary control volume for the discretization of the viscous terms.

The blue rectangle in figure 2.3 is formed by joining the cell centers of the four cells
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that share the cell vertex at (i + 1
2
, j + 1

2
). From equation (2.8) the viscous fluxes at

the cell vertex can then be expanded for two-dimensional flow as follows

fv
i+1

2
,j+1

2

=





0

τxx

τxy

uτxx + vτxy + k ∂T
∂x





i+ 1
2
,j+ 1

2

gv
i+1

2
,j+1

2

=





0

τyx

τyy

uτyx + vτyy + k ∂T
∂y





i+ 1
2
,j+ 1

2

,

where the indices i and j in equation (2.8) have been replaced with x and y to

avoid confusion with the i and j index used in this sub-section of the chapter. The

(i + 1
2
, j + 1

2
) subscript is placed outside the braces to avoid repeating the subscript

for every term within the braces. The velocity components, u and v, the coefficient

of thermal conductivity, k, and temperature T are averaged between the values from

the four cells that form the auxiliary control volume. The following is an example of

how any one of these parameters are computed

ui+ 1
2
,j+ 1

2
=

1

4
(ui,j + ui+1,j + ui,j+1 + ui+1,j+1) . (2.25)

The viscous stress tensors, τxx and τyy, act in the horizontal and vertical directions,

normal to the faces of the auxiliary control volume and are appropriately termed

normal stresses. The shear stress, τxy, is exerted in the xy plane. The method by

which the viscous stress tensors and the temperature gradients are calculated require

the following procedure. The steps will only be shown for the normal stress tensor,

τxx. The calculation for all other stress tensors will follow in a similar fashion. First,

expand equation (2.10) with the appropriate, i and j subscripts

τxx
i+1

2
,j+1

2

= 2µi+ 1
2
,j+ 1

2

[
∂u

∂x

]

i+ 1
2
,j+ 1

2

+ λi+ 1
2
,j+ 1

2

{[
∂u

∂x

]
+

[
∂v

∂y

]}

i+ 1
2
,j+ 1

2

, (2.26)



2.2. NUMERICAL DISCRETIZATION 35

where the first and second coefficient of viscosities, µ and λ, are calculated by av-

eraging the values between the four cells that form the auxiliary control volume as

shown in equation (2.25). The first coefficient of viscosity, µ, is a combination of the

laminar and turbulent viscosity coefficients defined as

µi+ 1
2
,j+ 1

2
= (µlam + µturb)i+ 1

2
,j+ 1

2
.

The laminar coefficient of viscosity is calculated using the Sutherland equation defined

in equation (2.11) and the eddy viscosity coefficient is calculated using the Baldwin-

Lomax turbulence model [4] defined in equation (2.14). Then the velocity gradients

are calculated by a transformation to the computational coordinates

[
∂u

∂x

]

i+ 1
2
,j+ 1

2

=
1

Ji+ 1
2
,j+ 1

2

{[
∂u

∂ξ

]

i+ 1
2
,j+ 1

2

yη
i+1

2
,j+1

2

+

[
∂u

∂η

]

i+ 1
2
,j+ 1

2

yξ
i+1

2
,j+1

2

}
. (2.27)

Lastly, J is the volume of the auxiliary control volume and the velocity gradient in the

computational domain, for an example, ∂u
∂ξ

, can be calculated by taking an average

of the velocity differences in the x direction between the top and bottom faces of the

auxiliary control volume as shown below

[
∂u

∂ξ

]

i+ 1
2
,j+ 1

2

=
(ui+1,j+1 − ui,j+1) + (ui+1,j − ui,j)

2
. (2.28)

Note here that the metric terms in equation (2.27) differ from the metric terms used

in the calculation of the flux velocity in equation (2.23) or the calculation of the

viscous flux in equation (2.24), where in equation (2.27), the cell center coordinates

are used instead of the cell vertex coordinates. Therefore, yη
i+1

2
,j+1

2

, is calculated by

taking the average of the difference between the y coordinate in the η direction from

the front and back faces of the auxiliary control volume. The formulation described

in this sub-section to compute the viscous flux, guaranties conservation and produces

a second order accurate algorithm.
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2.2.2 Artificial Dissipation

The convective and viscous flux gradients are represented in discrete form using cen-

tral second order spacial discretizations. All second order central schemes generate os-

cillations around discontinuities and allow odd-even point decoupling of the solution.

To illustrate this point, let us consider the one-dimensional inviscid Navier-Stokes

equation
∂(Jw)i

∂t
+

∂f

∂x
= 0.

Now apply the central second order spatial discretization to the flux gradient. Then

the equation can be represented by a system of ordinary differential equations, such

as
d(Jw)i

dt
= −fi+1 − fi−1

2∆x
.

Next solve the above equation on a uniform one-dimensional Cartesian mesh. Then

a solution that takes on the value 1 on the odd cells, (. . . , i− 3, i− 1, i + 1, i + 3, . . .),

and the value −1 on the even cells, (. . . , i− 2, i, i+2, . . .) satisfies the above equation

in the steady-state limit. This is referred to odd-even point decoupling. The error

is of wavelength 2∆x and manifests itself as a high frequency error. In 1950 Von

Neumann and Richtmyer [66] introduced the concept of artificial dissipation. The

additional terms effectively coupled the terms in the equation and generate dissipation

to eliminate oscillations around discontinuities and prevent expansion shocks at sonic

transitions.

The artificial dissipation scheme used in this research is a blended first and third

order flux, first introduced by Jameson et al. [43]. The artificial dissipation scheme

can be defined as

d = ǫ(2)∆x3λ

p

∣∣∣∣
∂2p

∂x2

∣∣∣∣
∂w

∂x
− ǫ(4)∆x3λ

∂3w

∂x3
, (2.29)

where ǫ(2) and ǫ(4) are adjustable constants and λ is the spectral radius of the flux

Jacobian matrices.

The first term in equation (2.29) is a first order flux term and is proportional to

the normalized second difference of pressure. The pressure gradient term is negligible
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in smooth regions of the flow but increases in magnitude around shocks, where the

pressure field changes drastically. This has the effect of increasing the magnitude of

dissipation around discontinuities. Unlike upwind schemes such as flux vector splitting

and flux difference splitting, that consider the direction of the physical propagation of

the waves, central schemes do not distinguish between the direction of upstream and

downstream flow. But any upwind scheme can be represented as a combination of a

central scheme with dissipation terms. Correspondingly, the introduction of the first

order dissipative flux term introduces an upwind biasing to the second order central

scheme and allows clean capture of shock waves.

In discrete form, the first order dissipation term can be written for the (i + 1
2
, j)

face as

d
(2)

i+ 1
2
,j

= ν(2)Λi+ 1
2
,j(wi+1,j − wi,j),

where

Λi+ 1
2
,j =

1

2

(
λ̃ξi+1,j

+ λ̃ξi,j

)

and λ̃ξ and λ̃η are the scaled spectral radii of the flux Jacobian matrices in the

computational domain. The spectral radii are scaled to improve the convergence

properties of the algorithm on stretched meshes. The scaling can be accomplished

with the following formula

λ̃ξ =

[
1 +

(
λ̄ξ

λ̄η

)σ]
λ̄ξ, λ̃η =

[
1 +

(
λ̄η

λ̄ξ

)σ]
λ̄η,

where λ̄ξ and λ̄η are the spectral radii of the flux Jacobian matrices as defined in

section 2.2.5. In practical computations σ = 2
3

provides good results. The purpose of

multiplying the first order dissipative flux with the spectral radius is to control the

magnitude of the dissipative term. In viscous flow, the flow field velocity in the ξ

direction is approximately equal to the freestream velocity in the far-field region but

approaches zero within the boundary layer. The magnitude of the dissipative term

should be much smaller than the magnitude of the viscous flux gradient. Otherwise

it would introduce an excessive amount of dissipation into the flow field and corrupt

the quality of the solution.
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The ν(2) term also controls the amount of dissipation throughout the flow field and

is made proportional to the normalized second difference of the pressure field. The

term acts as a pressure gradient sensor and turns on at regions with large pressure

changes such as shock waves. The sensor can be defined as

ν
(2)
i,j = ǫ(2)max(σi,j, σi+1,j),

where

σi,j =
|pi+1,j − 2pi,j + pi−1,j|
pi+1,j + 2pi,j + pi−1,j

.

Unity is a typical value for ǫ(2).

The third derivative term can be expressed as

d
(4)

i+ 1
2
,j

= ν(4)Λi+ 1
2
,j (wi+2,j − 3wi+1,j + 3wi,j − wi−1,j) ,

where

ν(4) = max
[
0, (ǫ(4) − ν(2))

]
.

The ν(4) sensor is defined to turn off in regions of high pressure gradient since it has

the tendency to reintroduce oscillations around discontinuities. The ǫ(4) constant is

defined such that the magnitude of ν(2) exceeds it around discontinuities. The sensor

ν(4) then returns a value of zero around these regions and effectively turns off the

third derivative term. A typical value for ǫ(4) is 1
32

.

The complete first and third order dissipative flux can be formulated as

di+ 1
2
,j = d

(2)

i+ 1
2
,j
− d

(4)

i+ 1
2
.j

di+ 1
2
,j = ν(2)Λi+ 1

2
,j(wi+1,j − wi,j)

−ν(4)Λi+ 1
2
,j(wi+2,j − 3wi+1,j + 3wi,j − wi−1,j). (2.30)

2.2.3 Discrete Boundary Condition

In this sub-section, the boundary conditions discussed earlier for the field equations

need to be cast in a discrete form. Additional constraints to that already defined
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are sometimes required to ensure proper convergence of the numerical scheme used

in this work. The following two sub-sections discuss the wall and far-field discrete

boundary conditions.

Wall Boundary Conditions

Before we impose the inviscid and viscous wall boundary conditions, we first define

the concept of “ghost” cells. For a cell-centered scheme, the flow variables are stored

at the cell centers, thus in order to impose the boundary condition at the wall surface,

“ghost” cells are introduced below the surface. Since the fluxes through the boundary

faces must equal zero, then all convective terms are dropped and the flux F2 from

equation (2.17) can be defined as

F2 = xξp − yξp,

where p is the pressure at the wall. Thus in order to impose the Euler wall boundary

condition, only the value of pressure at the wall is needed. A simple way of calculating

the pressure at the wall is to assume zeroth order extrapolation through the wall and

thus copy the value of pressure from the cell above the wall to the ghost cell. In

this work, the effect of the curvature of the streamlines is introduced by a method

proposed by Rizzi [74]. The pressure gradient normal to the wall may be determined

from the following expression

(
x2

ξ + y2
ξ

)
pη = (xξxη + yξyη) pξ + ρ (yηu − xηv) (vxξξ − uyξξ) .

The value of pressure at the wall is then calculated from the pressure gradient.

The “ghost” values for the velocity components are not needed but are computed

in the code for completeness. The values are calculated for the “ghost” cells such

that the velocity at the wall satisfies the boundary condition. For the inviscid case,

since the normal component of the velocity vector is required to be zero, then the

horizontal velocity component for the “ghost” cell termed as ~ui,1 can be defined as

~ui,1 = ~ui,2 − 2(~u · ~n)~n.
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In the viscous case, the wall velocity must be zero, so the values of the velocity

components below the wall take on the same magnitude as the ones above the wall

but with opposite signs such as

ui,1 = −ui,2 and vi,1 = −vi,2.

Note that the “ghost” cells do not require an actual physical cell since its existence

is only needed to calculate and store the flow variables such that the values at the

wall satisfy the boundary condition. Therefore, the physical geometry and the corre-

sponding metrics and cell volume are not calculated.

Far-Field Boundary Conditions

The method outlined here is based upon the procedure described by Jameson et

al. [40]. The reader is urged to refer to this paper for a more detailed review.

At the far-field boundary, a characteristic based boundary condition using Rie-

mann invariants are imposed. The method extrapolates the outward waves based

on interior information and calculates incoming waves using the freestream condi-

tions. Based on the one-dimensional Riemann invariant method, the outward and

inward characteristics are calculated assuming that the flow is normal to the far-field

boundary. The Riemann invariants can be expressed as

R∞ = v∞ · ~n − 2c∞
γ − 1

Re = ve · ~n +
2ce

γ − 1
,

where the subscript ∞ signifies freestream values and e refers to the interior extrap-

olated values. The equations for the Riemann invariants can then be used to form

expressions for the velocity normal to the boundary and its corresponding speed of
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sound as

va · ~n =
1

2
(R∞ + Re)

ca =
γ − 1

4
(−R∞ + Re) .

The next procedure is to calculate the velocity at the outflow and inflow boundary for

the two-dimensional computational domain. Using a velocity triangle, the boundary

velocity va can be defined as

va = ve · ~nt + va · ~n,

where ve is the extrapolated value and used for the tangential component since the

Riemann invariant method is one-dimensional and only returns the velocity normal to

the boundary. A similar procedure is used for the inflow boundaries and the velocity

va can be expressed as

va = v∞ · ~nt + va · ~n,

where v∞ is the undisturbed freestream velocity. The choice of using the extrapo-

lated tangential velocity from the interior at the outflow boundary and the tangential

freestream velocity at the inflow boundary are the only natural options since its con-

sistent with the direction of flow at these boundaries.

Finally, the entropy is extrapolated at the outflow boundary and the freestream

entropy is used at the inflow boundary to calculate the values for density, pressure,

and energy.

2.2.4 Time Stepping Scheme

The discretization of the Navier-Stokes equations described in the last few sub-

sections in this chapter results in a set of coupled ordinary differential equations.

A time integration scheme must be introduced to march the solution to a steady-

state solution. In this work, we use the modified Runge-Kutta approach introduced

by Jameson et al. [43].
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The Runge-Kutta family of time integration techniques can provide a high order of

accuracy for nonlinear equations, and have proved very effective in practice. A thor-

ough examination of the classical Runge-Kutta method can be found in Hirsch [28],

Gear [22], Lambert [48], and Van der Houwen [16]. Hirsch [28] described the Runge-

Kutta method as a technique that evaluates the convective and dissipative flux gra-

dients at several values of the state vector in the interval between n∆t and (n+1)∆t

and combine them in order to obtain a high-order approximation of the state vector

at the (n + 1) iteration. The Runge-Kutta method can be written as

W (0) = W (n)

W (1) = W (0) − α1∆tR
(
W (0)

)

...

W (k) = W (0) − αk∆tR
(
W (k−1)

)
for k = 1, 2, · · · ,M

W (n+1) = W (M), (2.31)

where M is the total number of stages.

The stability of the Runge-Kutta technique has been extensively studied. For

hyperbolic problems, the maximum stability limit on the CFL number is (M−1) along

the imaginary axis for an M stage scheme. Solutions of the Navier-Stokes equations

exhibit a combination of hyperbolic behavior in the main domain of the flow with

parabolic behavior in regions close to the surface boundary where the viscous terms

are dominant. Thus in addition to stability along the imaginary axis which is needed

for an hyperbolic problem, stability along the real axis is also needed. The modified

Runge-Kutta technique extends the stability region along the real axis by treating

the convective and dissipative fluxes separately during each stage of the Runge-Kutta

scheme. The residual at each stage of the scheme can be defined as

R(k) = C(k) + D(k)

C(k) = C
(
W (k)

)

D(k) = βkD
(
W (k)

)
+ (1 − βk)D

(k−1),
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where C and D are the convective and dissipative fluxes. The coefficients αk are

chosen to maximize the stability of the scheme along the imaginary axis and the

coefficients βk are chosen to maximize the stability of the scheme along the real axis.

It turns out that the dissipative operators need not be evaluated at all stages of

the scheme without any loss of stability. This ability of the modified Runge-Kutta,

reduces the total cost of the scheme. In this work, a five stage Runge-Kutta scheme is

used with three evaluations of the dissipative fluxes. The coefficients for the scheme

are

α1 = 1
4

α2 = 1
6

α3 = 3
8

α4 = 1
2

α5 = 1
β1 = 1. β2 = 0. β3 = 0.56 β4 = 0. β5 = 0.44.

2.2.5 Convergence Acceleration

Over the years many new numerical tools have been developed to accelerate conver-

gence and reduce the required time needed to produce a solution. The invention of

faster computers has not eliminated the need for new approaches to produce faster

results, since more complex problems are continually being attempted. In this sub-

section, we discuss three different convergence acceleration techniques used in this

work.

Local Time Stepping

Increasing the time step would naturally accelerate the convergence of the time inte-

gration technique but is subject to a limit defined by the stability region. The limit

can be calculated by taking the ratio of the cell volume to the sum of the spectral radii

of the flux Jacobian matrices. For this purpose we need to determine the eigenvalues

and spectral radii of the Jacobians appearing in the Euler and Navier-Stokes equa-

tions. Expanding the partial derivatives of the convective fluxes in equation (2.16)

yields the following equation

∂(Jw)ij

∂t
+ Â(w)

∂w

∂ξ
+ B̂(w)

∂w

∂η
= 0,
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where ξ = ξ1, η = ξ2, and Â(w) and B̂(w) are the flux Jacobians

Â(w) =
∂F1

∂w
, B̂(w) =

∂F2

∂w
,

in the transformed coordinate system. Since F1 = yηf − xηg, the flux Jacobian Â(w)

can be written as

Â(w) = yηA(w) − xηB(w).

The eigenvalues of matrix Â(w) are

λ̂1 = λ̂2 = ~v · ~s,
λ̂3 = ~v · ~s + c||~s||,
λ̂4 = ~v · ~s − c||~s||,

where ~v is the velocity vector in each cell in the computational domain, c is the speed

of sound, and ~s is the directional vector. The spectral radius is the largest eigenvalue

of a given matrix and can be computed by the formula

λ̄ = max
(
λ̂
)

= |~v · ~s| + c‖~s‖.

In the ξ direction, the directional vector ~s is defined as

[
yη

−xη

]
. Then the spectral

radius in the ξ direction for each cell can be expressed as

λ̄ξij
= |yηu − xηv|ij + cij

(
y2

ηij
+ x2

ηij

)
.

And the spectral radius in the η direction for each cell is

λ̄ηij
= | − yξu + xξv|ij + cij

(
y2

ξij
+ x2

ξij

)
.
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The time step limit can now be estimated as

∆t∗ij =
CFL(

λ̄ξ + λ̄η

)
ij

, (2.32)

where λ̄ξij
and λ̄ηij

are the spectral radii of each cell, calculated using the local state

vector and CFL depends on the stability region of the modified Runge-Kutta scheme.

A conservative approach to calculating the time step limit would be to calculate

the maximum spectral radius in the entire computational domain, and use a fixed

time step throughout the domain which satisfies this limit. This would ensure that

the scheme is stable and time accurate. The maximum stable time step is actually

limited by the CFL condition, which states that the domain of dependence of the

numerical scheme must at least contain the region of dependence of the differential

equation and consequently it decreases with the local mesh interval. In a problem

where the mesh size is almost equivalent throughout the computational domain, the

use of a time step limit defined by the maximum spectral radius for the entire domain

would be reasonable. However, for viscous problems, the ratio between cells close to

the wall boundary and the far-field can amount to millions, and such an approach

would require an excessive amount of iterations. One obvious approach to accelerate

the convergence is to use a variable time step, where the state vector in each cell is

advanced using a local time step satisfying the stability limit for that cell.

Nonlinear effects may predominate in regions of high pressure gradient. These

include stagnations points, corners such as wing tips and trailing edges, and neighbor-

hoods of shockwaves. Accordingly the scheme can be made more robust by reducing

the time step in these regions. The time step used in this work can be expressed as

∆tij =
∆t∗ij

(1 + σξ + ση) ij

, (2.33)

where ∆t∗ij is from equation (2.32), and σξ and ση are the pressure sensors or normal-

ized second difference of the pressure field in each direction. In smooth regions of the

flow, where no maximum or minimum in the pressure field exists, then the pressure

sensors would return a value close to zero. Thus, the time step ∆t is almost equal
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to ∆t∗. However, in regions of the flow especially around shock waves, the pressure

sensors would return a positive value, and subsequently reduce the local time step.

For viscous problems, the time step derived in equation (2.32) needs to be aug-

mented to include the maximum eigenvalue of the diffusion operator. Equation (2.32)

can be expressed as

∆t∗ij =
CFL(

λ̄ξ + λ̄η + λ̄vξ
+ λ̄vη

)
ij

, (2.34)

where λ̄vξ
and λ̄vη

are the estimates of the spectral radii of the viscous Jacobian fluxes

and are defined as

λ̄vξ
=

√
γM∞

ReJ

[
γµ

Prρ

(
x2

ξ + y2
ξ

)
+

µ

3ρ

√(
x2

ξ + y2
ξ

) (
x2

η + y2
η

)]

λ̄vη
=

√
γM∞

ReJ

[
γµ

Prρ

(
x2

η + y2
η

)
+

µ

3ρ

√(
x2

ξ + y2
ξ

) (
x2

η + y2
η

)]
,

where Re and Pr are the Reynolds and Prandtl numbers of the flow and J is the area

of the control volume. Please refer to Martinelli [53] for a derivation of the estimates

of the eigenvalues of the viscous Jacobian matrices.

Residual Averaging

In the previous sub-section, we showed that by using the local spectral radius that

appears in the denominator of equation (2.32), the local time step can be increased

thus accelerating the convergence. In this sub-section, we explore the other alternative

to increasing the time step and that is to increase the CFL number.

In the present case, the CFL value used in this work, is dictated by the stability

analysis of the time integration scheme. One approach that provides a method to

increase the CFL limit is residual averaging [40]. Here, the residual is replaced by a

weighted average of the surrounding residuals. A simple cost effective approach is to

explicitly obtain the new residual by averaging the three cells including the current

cell in each direction with a smoothing parameter ǫ. However, this technique has one

major flaw, where at values of ǫ ≥ 1
4

the computation would return a zero value for

the new residual for high frequency modes.
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An implicit approach is not limited by this disadvantage, however, it is more

costly. In a one-dimensional problem, the implicit residual averaging can be written

as

−ǫR̂i−1 + (1 − 2ǫ)R̂i − ǫR̂i+1 = Ri.

The method produces an unconditionally stable scheme for any CFL number, if the

smoothing parameter satisfies the following rule

ǫ ≥
[(

CFL

CFL∗

)2

− 1

]
,

where CFL∗ is the maximum allowable Courant number for the scheme without im-

plicit residual averaging and CFL is the new Courant number. In two-dimensional

flows, the analysis to produce limits for the smoothing parameter is more tedious. To

implicitly average the residual at (i, j), requires information from the surrounding cells

in both directions. One approach of extending the above analysis to two-dimensions

is to factorize the formula such as

(
1 − ǫξ∂

2
ξξ

) (
1 − ǫη∂

2
ηη

)
R̂ = R.

The solution of the above expression for the new residual only requires the inversion

of tridiagonal matrices which can be performed cheaply when compared to the un-

factored form. A study of the limits of the smoothing parameter can be found in

Martinelli [53]. The study concludes that the smoothing parameters in each direction

should satisfy the following inequalities.

ǫξ = max

{
1

4

[(
CFL

CFL∗ λ̃ξ

)2

− 1

]
, 0

}

ǫη = max

{
1

4

[(
CFL

CFL∗ λ̃η

)2

− 1

]
, 0

}
,

where λ̃ξ and λ̃η are the scaled spectral radii of the flux Jacobian matrices in each

direction as defined in section 2.2.2, CFL is the new Courant number, and CFL∗ is
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the maximum allowable Courant number for the scheme without implicit residual

averaging.

Multigrid Strategy

The multigrid method has proved to be the most effective convergence acceleration

procedure of all. It was originally introduced by Fedorenko [18, 19] to accelerate the

convergence of solutions governed by elliptic equations. Research by Brandt [8, 9]

brought the multigrid concept to its full potential. Jameson [31, 32] perfected the

technique for the solution of problems governed by hyperbolic equations.

In order to comprehend why the multigrid method is so successful, it is important

to understand the properties of conventional iterative techniques. In order to reach

equilibrium, information must be exchanged between every part of the domain. In

an explicit time stepping scheme information is exchanged only between neighboring

cells during each time step, or stage in the case of a Runge-Kutta scheme, with the

consequence that high frequency errors are rapidly damped, but low frequency errors

persist for many iterations. This leads to slow asymptotic convergence. A multigrid

method achieves rapid exchange of information on the coarse grids. In the multigrid

technique, the high frequency error modes are not visible in a coarser mesh but the

low frequency error modes are well represented on the coarser meshes where they

are viewed as high frequency modes. Therefore, at each subsequent coarse mesh,

successively lower frequency modes from the finest mesh are reduced. The greater

the number of coarser meshes, the larger the range of low frequency modes from the

finest mesh that could be reduced and ultimately eliminated. In one multigrid cycle,

almost the entire error frequency range is damped in comparison to conventional time

integration techniques that damp the higher frequencies first and then progressively

reduce the other frequencies. This has the additional benefit that it results in rapid

convergence of global quantities of interest such as lift and drag.

When a structured mesh is used, successively coarser meshes can easily be gen-

erated simply by selecting every other point in each direction to obtain the next

coarse mesh. This procedure can be continued until only two to three interior points

exists in the coarsest mesh. With a cell centered scheme, this procedure results in
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the agglomeration of 4 fine mesh cells in two-dimensions or 8 in three-dimensions to

form each coarse mesh cell. For unstructured meshes, the procedure to obtain coarser

meshes is not as obvious. This is still an open research topic.

The scheme used in this work is Jameson’s multigrid time stepping scheme [31].

This was the first to use agglomerated cells for the coarse meshes. The general idea is

to: first, perform one iteration of the time integration scheme on the Euler or Navier-

Stokes equation on the finest mesh; second, transfer the solution and residual to the

coarser mesh to obtain an approximation to the correction ∆W ; third, transfer the

corrections from the coarser mesh to the finer mesh to obtain a new approximation

to the solution.

Alternative strategies for traversing the meshes can be derived. The simplest is

a V-cycle, where the procedure traverses the multiple grids by descending through

the levels to the coarsest mesh and then ascends the cycle until the finest mesh. The

first step of the procedure is to apply the time integration method to obtain the first

approximate solution for the finest mesh. Define the solution vector on the fine mesh

as w
(0)
h .

Next, transfer the solution vector to the coarser mesh using a transfer operator.

The solution vector on the coarser mesh can be defined as

w
(0)
H = TH

h w
(0)
h ,

where TH
h is the transfer operator. It is critical to the accuracy of the solution that the

transfer operator preserves the conservative properties of the scheme. The transfer

operator for a cell centered scheme used here can be defined as

w
(0)
H =

∑
Vijw

(0)
h∑

Vij

,

where Vij is the cell volume of the fine grid cells. The next crucial step is to transfer a

residual forcing function such that the solution vector on the coarse grid is primarily
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driven by the transfered residuals from the fine grid during the first modified Runge-

Kutta step. The forcing function can be defined as

PH = QH
h Rh(w

(0)
h ) − RH(w

(0)
H ),

where QH
h is the transfer operator for the fine grid residuals and can be obtained by

simply adding the residuals from the fine grid cells that form the coarse grid cell as

such

QH
h Rh(w

(0)
h ) =

∑
Rh(w

(0)
h ).

The forcing function is then added to the coarse grid residual in the modified Runge-

Kutta time stepping scheme as shown below.

w
(0)
H = w

(n)
H

w
(1)
H = w

(0)
H − α1∆tH

(
RH(w

(0)
H ) + PH

)

...

w
(k)
H = w

(0)
H − αk∆tH

(
RH(w

(k−1)
H ) + PH

)
for k = 1, 2, · · · ,M

w
(n+1)
H = w

(M)
H .

To show that the coarse grid solution vector is driven by the transfered fine grid

residuals during the first Runge-Kutta time step, substitute the definition for the

forcing function PH into the second equation in the above algorithm.

w
(1)
H = w

(0)
H − α1∆tH

(
RH(w

(0)
H ) + QH

h Rh(w
(0)
h ) − RH(w

(0)
H )

)
.

The coarse grid residuals cancel and only the transfered fine grid residuals remain.

If further multigrid levels are desired, then the solution vector w
(M)
H and its residual

R
(M)
H are transfered to the next coarse mesh. This completes the description of the

descend process for a multigrid algorithm.

During the ascending process, the procedure is very simple. The basic idea is to

update the solution vector at grid level h with the addition of the transfered difference
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between the corrected and initial solution vector at grid level H. The process can be

defined mathematically as

wnew
h = wh + Ih

H

(
wnew

H − w
(0)
H

)
.

This completes the detail description of the multigrid algorithm used in this work.

The V-cycle is the traditional procedure used to traverse the multigrid levels. The

total computational work per multigrid cycle for the V-cycle satisfies the following

bound

Workmultigrid <
4

3
Workfinemesh.

This estimate neglects the cost of computing the new grids at each level and the

transfer operators, since these are negligible compared to the cost of computing the

artificial dissipation and viscous fluxes. The W-cycle is an alternative and often the

preferred route due to its ability to produce better convergence of the coarse grids

before the solution vector is transfered to the fine grid. Since the low frequency

errors generally require a longer amount of time to be eliminated, then the repeated

transfer between the various coarse grids allows a greater reduction of the magnitude

of the low frequency errors. The total work increases and is bounded by the following

inequality

Workmultigrid < 2Workfinemesh.

The only disadvantage of the multigrid algorithm is the addition of high frequency

errors into the solution vector in the fine mesh. However, if a good time integration

routine is applied, then these high frequency errors would be eliminated. The αk and

βk coefficients used in this work for the modified Runge-Kutta time stepping scheme

have been optimized to provide good high frequency error damping.
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Chapter 3

Numerical Optimization

Algorithms

There are two main categories of optimization algorithms: non-gradient and gradient-

based. In the first approach, only objective function evaluations are used to find

the optimum point in the design space, and the gradient and the Hessian of the

objective function are not needed. Hence the alternate name for this class of schemes

“zeroth order methods”. Some non-gradient methods have the advantage that they

may be able to identify the global minimum. Unfortunately, however, they need large

numbers of design cycles to obtain an optimum solution. Current algorithms of choice

that belong to the non-gradient family of methods include: genetic algorithms, grid

searches, stochastic, nonlinear simplex, etc. In genetic algorithms, evaluations of the

figure of merit of an initial set of solutions starts the design process. This initial

set is often very large: a typical characteristic of non-gradient-based methods. These

algorithms handle both integer and continuous variables, in contrast to gradient-based

methods that only work with the latter. During the conceptual design stage, the

capability of optimization algorithms to handle integer variables allows the designer

to choose, for example, the number of vertical tails, the number of engines, number

of spars and other integer parameters. Another advantage of non-gradient-based

methods is their ability to cope with objective functions that do not have smooth

first or second derivatives.

53



54 CHAPTER 3. NUMERICAL OPTIMIZATION ALGORITHMS

The gradient-based approach has been widely used, and its application to aerody-

namic design has a longer history than its counterpart. Gradient-based solvers such

as SNOPT [24] and NPSOL [25] for non-linear programming have been extensively

used. Gradient-based methods depend on the smoothness of the variation of the cost

function with the design variables. This requires the existence of continuous first

derivatives of the cost function; namely the gradient, and possibly higher derivatives.

Simple gradient-based methods only require the gradient of the objective function

with respect to the design variables. A prototype is the steepest descent method,

which has a very low implementation cost, but usually requires a large number of

iterations to converge to a local minimum, of the order of N2 or more, where N is the

number of design variables. More efficient methods such as Quasi-Newton methods,

generate an approximation to the Hessian and generally only require N iterations

before a rapid convergence to the local minimum is realized, since N iterations are

needed to obtain a complete estimate of the Hessian. Line searches are usually in-

troduced to find the minimum in the search direction at each step. Gradient-based

methods generally require a much smaller number of iterations to converge to an

optimum than non-gradient based methods. However, only convergence to a local

minimum is guaranteed.

Both non-gradient and gradient-based methods have contrasting advantages and

disadvantages. The key is to use a method that is appropriate for the mathemati-

cal model. In the conceptual design stage, where aircraft designers must decide on

the number of engines, wing-tail instead of wing-canard combinations, various wing

parameters, range, and payload, low-fidelity methods are often used to assess the

designs. It is at this stage of an aircraft design process, where non-gradient-based

methods can play a very important role. The use of low-fidelity methods, can drasti-

cally reduce the cost of each function evaluation and lower the turn-around time for

new designs. These methods can be used to search for the global optimum, and they

also allow integer parameters, features that are very beneficial to conceptual aircraft

designers. Once the basic configuration is laid out, a gradient-based method can be

used together with higher-fidelity flow solvers to refine the design. The appropriate

optimization method also depends in the way in which the geometry is defined, as
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will be discussed in section 4.7.

In this work, a smoothed steepest descent approach is applied, using gradient

information provided by the adjoint method. In order to motivate this we begin with

a brief discussion of the calculus of variations.

3.1 Calculus of Variations

In this section, the gradient and Hessian operators are discussed in relation to the

calculus of variations. A detailed analysis is presented by Jameson and Vassberg [44].

First, we consider a class of optimization problems for which a curve y(x) is to be

chosen to minimize a cost function described by

I =

∫ x1

x0

F (x, y, y′) dx,

where F is an arbitrary function that is continuous and twice-differentiable. The

function F is dependent on x, y, and y′, where y(x) is the trajectory to be optimized

and it is a continuous function and differentiable, and y′ represents the derivative of

y. Under a variation δy, the first variation of the cost function can be expressed as

δI =

∫ x1

x0

(
∂F

∂y
δy +

∂F

∂y′
δy′

)
dx,

Expand the equation by integrating the second term by parts

δI =

∫ x1

x0

∂F

∂y
δy dx +

[
∂F

∂y′
δy

]x1

x0

−
∫ x1

x0

d

dx

∂F

∂y′
δy dx.

Assuming fixed end points, then the variations of y at x0 and x1 are zero, δy(x0) =

δy(x1) = 0, so that

δI =

∫ x1

x0

(
∂F

∂y
− d

dx

∂F

∂y′

)
δy dx =

∫ x1

x0

Gδy dx,
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where G may be recognized as the gradient of the cost function and is expressed as

G =
∂F

∂y
− d

dx

∂F

∂y′
.

A further variation of the gradient, then results to the following expression

δG =
∂G
∂y

δy +
∂G
∂y′

δy′ +
∂G
∂y′′

δy′′

or

δG = A δy,

where A is the Hessian operator. Thus the expression for the Hessian can be expressed

as the differential operator

A =
∂G
∂y

+
∂G
∂y′

d

dx
+

∂G
∂y′′

d2

dx2
. (3.1)

In the next sub-section, we explore this concept by deriving the gradient and

Hessian operator for linearized supersonic flow [30].

3.1.1 Linearized Supersonic Flow

Consider a linearized supersonic flow over a profile with a height y(x), where y is

continuous and twice-differentiable. The surface pressure can be defined as

p − p∞ = − ρq2

√
M2

∞ − 1

dy

dx
,

where ρq2√
M2

∞
−1

is a constant and p∞ is the freestream pressure [49]. Next consider an

inverse problem with cost function

I =
1

2

∫

B

(p − pt)
2 dx,
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where pt is the target surface pressure. The variation of the equation for the surface

pressure and cost function under a profile variation δy is

δp = − ρq2

√
M2

∞ − 1

d

dx
δy and δI =

∫

B

(p − pt) δp dx.

Substitute the variation of the pressure into the equation for the variation of the cost

function and integrate by parts to obtain

δI = −
∫

B

(p − pt)
ρq2

√
M2

∞ − 1

d

dx
δy dx

=

∫

B

(
ρq2

√
M2

∞ − 1

)
d

dx
(p − pt)δy dx.

The gradient can then be defined as

g =
ρq2

√
M2

∞ − 1

d

dx
(p − pt).

To form the Hessian, take a variation of the gradient and substitute the expression

for δp

δg =
ρq2

√
M2

∞ − 1

d

dx
δp

= − ρ2q4

M2
∞ − 1

d2

dx2
δy.

Thus the Hessian for the inverse design of the linearized supersonic flow problem can

be expressed as the differential operator

A = − ρ2q4

M2
∞ − 1

d2

dx2
. (3.2)
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3.2 Optimization Algorithms

This section addresses the steepest descent and the smoothed steepest descent opti-

mization algorithms.

3.2.1 Steepest Descent

Line search methods require the algorithm to choose a direction p and search along this

direction from the current iterate to obtain a new iterate for the function value. Once

the direction is chosen, then a step length α is multiplied to the search direction to

advance the optimization to the next iterate. In order to obtain the search direction,

p, and the step length, α, we may employ Taylor’s theorem. First, let us define the

objective function as f(x), then the optimization problem can be stated as

min
x

f(x),

where x ∈ R
n is a real vector with n ≥ 1 components and f : R

n → R is a smooth

function. Let, p be defined as the search direction. Then by Taylor’s theorem

f(x + αp) = f(x) + αpT∇f +
1

2
α2pT∇2f(x + tp)p + . . . .

Here, the second term pT∇f is the rate of change of f along the search direction p.

The last term contains the expression ∇2f(x + αp) which corresponds to the Hessian

matrix. The value p that would provide the most rapid decrease in the objective

function f(x), is the solution of the following optimization problem:

min
p

pT∇f, subject to ‖p‖ = 1.

With ‖p‖ = 1, the expression pT∇f can be simplified to

pT∇f = ‖p‖‖∇f‖ cos θ

= ‖∇f‖ cos θ,
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where θ is the angle between the search direction p and the gradient ∇f . The above

expression would attain its minimum value, when cos θ takes on the value −1. There-

fore, the equation can be further simplified to yield an expression for the search

direction p of steepest descent

pT∇f = −‖∇f‖

p = − ∇f

‖∇f‖ .

Accordingly a simple optimization algorithm can then be defined by setting the search

direction, p, to the negative of the gradient at every iteration. Therefore:

p = −∇f.

With a line search method the step size α is chosen such that the maximum reduction

of the objective function f(x) is attained. The vector x is then updated by the

following expression:

xn+1 = xn − α∇f.

An alternative approach is to try to follow the continuous path of steepest descent

in a sequence of many small steps. The equation above can be rearranged as such

xn+1 − xn

α
= −∇f.

In the limit as α → 0, this reduces to

∂x

∂t
= − ~∇f, (3.3)

where α is the time step in a forward Euler discretization. For the brachistochrone

problem, Jameson and Vassberg [44] provide a stability limit, where the time step is

dominated by the parabolic term in the continuous gradient formula. This leads to

an estimate that the number of steps required to reach convergence is O (N2).
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3.2.2 Smoothed Steepest Descent

The search procedure used in this work is a descent method in which small steps are

taken in a direction defined by the smoothed gradient. Let x represent the design

variable, and ∇f the gradient. Instead of making the step

δx = αp = −α∇f,

we replace the gradient ∇f by a smoothed value ∇f . To apply smoothing in the x

direction, the smoothed gradient ∇f may be calculated from a discrete approximation

to

∇f − ∂

∂x
ǫ

∂

∂x
∇f = ∇f, (3.4)

where ǫ is the smoothing parameter. Then the first order change in the cost function

is

δf = −
∫∫

∇fδxdx

= −α

∫∫ (
∇f − ∂

∂x
ǫ

∂

∂x
∇f

)
∇fdx

= −α

∫∫
∇f

2
dx + α

∫∫ (
∂

∂x
ǫ

∂

∂x
∇f

)
∇fdx.

Now, integrating the second integral by parts,

δf = −α

∫∫
∇f

2
dx +

[
α∇fǫ

∂∇f

∂x

]
− α

∫∫
ǫ

(
∂∇f

∂x

)2

dx

= −α

∫∫ (
∇f

2
+ ǫ

(
∂∇f

∂x

)2
)

dx

< 0,

where the second term in the first line of the equation is zero if the end points of the

new gradient vector are assigned zero values. If the design variables are points on the

surface of an airfoil and the objective function is some measure of the performance

of the airfoil, then assigning zero values to the end points is analogous to fixing the
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trailing edge points of the airfoil. If ǫ is positive, the variation of the objective function

is less than zero and this assures an improvement if α is positive unless ∇f and hence

∇f are zero. The smoothing ensures that each new shape in the optimization sequence

remains smooth. It also acts as a preconditioner, which allows the use of much larger

steps, and leads to a large reduction in the number of design iterations needed for

convergence. A larger smoothing parameter allows a larger time step to be used

and thus accelerates the convergence. Too large a smoothing parameter degrades the

gradient information and can result in negligible modifications to the design variable

and renders the implicit smoothing technique ineffective.

Jameson and Vassberg [44] show that the implicit smoothing technique corre-

sponds to an implicit time stepping scheme for the descent equation (3.3) if the

smoothing parameter ǫ is chosen appropriately. Consider a parabolic equation of the

form
∂x

∂t
= π

∂2x

∂y2
.

A second order implicit discretization is

−φδxk−1 + (1 + 2φ)δxk − φδxk+1 = −φ
(
xn

k−1 − 2xn
k + xn

k+1

)
.

where φ = π∆t
∆y2 . This corresponds exactly to smoothing the correction with the

formula ǫ = π. Their results show that the number of iterations required by the

smoothing technique is similar to that of the implicit time stepping scheme, and

both approaches perform better than the simple steepest descent and Quasi-Newton

methods by a large amount.

For some problems, such as the calculus of variations, the implicit smoothing

technique can be used to implement the Newton method. In a Newton method, the

gradient is driven to zero based on the linearization

g(y + δy) = g(y) + Aδy,

where A is the Hessian. In the case of the calculus of variations a Newton step can
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Steepest Descent N2 steps
Quasi-Newton N steps

Smoothed Gradient Steepest Descent M steps (independent of N)

Table 3.1: Computational Cost of Gradient-Based Algorithms as a Function of the
Number of Design Variables for the Brachistochrone Problem

be achieved by solving

Aδy =

(
∂G
∂y

+
∂G
∂y′

d

dx
+

∂G
∂y′′

d2

dx2

)
δy = −g,

since the Hessian can be represented by the differential operator. Thus the correct

choice of smoothing from equation (3.4) approximates the Newton step, resulting in

quadratic convergence, independent of the number of mesh intervals.

In practice, this behavior has also been seen for aerodynamic shape optimization

problems using the Euler and Navier-Stokes equations. Table 3.1 lists the compu-

tational cost of several gradient-based algorithms as a function of the number of

design variables for the brachistochrone problem. Application of the Quasi-Newton

method using softwares such as SNOPT [24] and NPSOL [25] for aerodynamic shape

optimization has frequently produced converged solutions with far fewer iterations.

Reuther et al. [70, 73] have shown drag minimization results which converge within

10-20 design cycles for three-dimensional applications.



Chapter 4

The Discrete and Continuous

Adjoint Approaches

This chapter compares the continuous and discrete formulations of the adjoint method.

The objective is to study the complexity of the discretization of the adjoint equation

for both the continuous and discrete formulations, the accuracy of the resulting esti-

mates of the gradient, and the impact on the computational cost to realize an optimum

solution. First, the complete formulations and discretizations of the continuous and

discrete viscous adjoint equations are presented. In particular, the differences between

the continuous and discrete boundary conditions are explored. Second, the sensitivi-

ties obtained from continuous and discrete adjoint-based equations are compared to

gradients derived by the finite-difference and complex-step methods. Finally, appli-

cations are presented for inverse, pressure and total drag minimization problems.

4.1 Formulation of the Optimal Design Problem

It is the intent of this work to investigate fully the derivation of both the continuous

and discrete viscous adjoint methods. These results were first presented at the 29th

AIAA Fluid Dynamics Conference, Albuquerque [39].

Aerodynamic optimization is based on the determination of the effect of shape

63
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modifications on some performance measure that depends on the flow. These mod-

ifications alter the domain of the flow, which in this work is mapped to a fixed

computational domain. For convenience, the coordinates ξi describing the fixed com-

putational domain are chosen so that each boundary conforms to a constant value

of one of these coordinates. Variations in the shape then result in corresponding

variations in the mapping derivatives defined by Kij.

Suppose that the performance is measured by a cost function

I =

∫

B

M (w, S) dBξ +

∫

D

P (w, S) dDξ (4.1)

containing both boundary and field contributions, where dBξ and dDξ are the surface

and volume elements in the computational domain. In general, M and P will depend

on both the flow variables w and the metrics S defining the computational space. In

the case of a multipoint design the flow variables may be separately calculated for

several different conditions of interest.

The design problem is now treated as a control problem where the boundary

shape represents the control function, which is chosen to minimize I subject to the

constraints defined by the flow equations (2.15). A shape change produces a variation

in the flow solution δw and the metrics δS, which in turn produce a variation in the

cost function

δI =

∫

B

δM(w, S) dBξ +

∫

D

δP(w, S) dDξ, (4.2)

with

δM = [Mw]I δw + δMII ,

δP = [Pw]I δw + δPII ,

where subscripts I and II distinguish between the contributions associated with the

variation of the flow solution δw and those associated with the metric variations δS.

Thus [Mw]I and [Pw]I represent ∂M
∂w

and ∂P
∂w

with the metrics fixed, while δMII and

δPII represent the contribution of the metric variations δS to δM and δP . In the

steady-state, the constraint equation (2.15) specifies the variation of the state vector
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δw by
∂

∂ξi

δ (Fi − Fvi
) = 0. (4.3)

Here δFi and δFvi
can also be split into contributions associated with δw and δS

using the notation

δFi = [Fiw]I δw + δFiII , δFvi
= [Fviw]

I
δw + δFviII .

The inviscid contributions are easily evaluated as

[Fiw]I = Sij

∂fj

∂w
, δFiII = δSijfj.

The details of the viscous contributions are complicated by the additional level of

derivatives in the stress and heat flux terms and are derived in Appendix A. Multi-

plying by a co-state vector ψ, also known as a Lagrange Multiplier, and integrating

over the domain produces

∫

D

ψT ∂

∂ξi

δ (Fi − Fvi
) = 0.

If ψ is differentiable this may be integrated by parts to give

∫

B

niψ
T δ (Fi − Fvi

) dBξ −
∫

D

∂ψT

∂ξi

δ (Fi − Fvi
) dDξ = 0.

Since the left-hand expression equals zero, it may be subtracted from the variation

of the cost function (4.2) to give

δI =

∫

B

[
δM− niψ

T δ (Fi − Fvi
)
]
dBξ +

∫

D

[
δP +

∂ψT

∂ξi

δ (Fi − Fvi
)

]
dDξ. (4.4)

Now, since ψ is an arbitrary differentiable function, it may be chosen in such a way

that δI no longer depends explicitly on the variation of the state vector δw. The

gradient of the cost function can then be evaluated directly from the metric variations

without having to re-compute the variation δw resulting from the perturbation of each

design variable.



66CHAPTER 4. THE DISCRETE AND CONTINUOUS ADJOINT APPROACHES

The variation δw may be eliminated from (4.4) by equating all field terms with

subscript “I” to produce a differential adjoint system governing ψ:

∂ψT

∂ξi

[Fiw − Fviw]
I

+ Pw = 0 in D. (4.5)

The corresponding adjoint boundary condition is produced by equating the subscript

“I” boundary terms in equation (4.4) to produce

niψ
T [Fiw − Fviw]

I
= Mw on B. (4.6)

The remaining terms from equation (4.4) then yield a simplified expression for the

variation of the cost function that defines the gradient

δI =

∫

B

{
δMII − niψ

T [δFi − δFvi
] II

}
dBξ

+

∫

D

{
δPII +

∂ψT

∂ξi

[δFi − δFvi
] II

}
dDξ.

The details of the formula for the gradient depend on the way in which the boundary

shape is parameterized as a function of the design variables, and the way in which

the mesh is deformed as the boundary is modified. Using the relationship between

the mesh deformation and the surface modification, the field integral is reduced to a

surface integral by integrating along the coordinate lines emanating from the surface.

Thus the expression for δI is finally reduced to

δI =

∫

B

GδF dBξ,

where F represents the design variables and G is the gradient, which is a function

defined over the boundary surface.

The boundary conditions satisfied by the flow equations restrict the form of the

left-hand side of the adjoint boundary condition (4.6). Consequently, the boundary

contribution to the cost function M cannot be specified arbitrarily. Instead, it must

be chosen from the class of functions that allow cancellation of all terms containing
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δw in the boundary integral of equation (4.4). On the other hand, there is no such

restriction on the specification of the field contribution to the cost function P, since

these terms can always be absorbed into the adjoint field equation (4.5) as source

terms.

In the next two sections, a complete derivation of the continuous and discrete ad-

joint equations and boundary conditions are discussed for the case of two-dimensional

flow. As in the case of the flow equations, the corresponding three-dimensional formu-

las can be derived in a similar manner. For simplicity, it is assumed that the portion

of the boundary that undergoes shape modifications is restricted to the coordinate

surface ξ2 = 0. Then equations (4.4) and (4.6) may be simplified by incorporating

the conditions

n1 = 0, n2 = 1, dBξ = dξ1,

so that only the variations δF2 and δFv2
need be considered at the wall boundary.

4.2 Derivation of the Continuous Adjoint Terms

This section develops the continuous adjoint approach. Only the inviscid continuous

adjoint terms are discussed. A detailed derivation of the viscous continuous adjoint

equation and its corresponding boundary conditions for both the inverse design and

drag minimization problems can be found in Appendix A.

The weak form of the Euler equations for steady flow is

∫

D

∂φT

∂ξk

FkdD =

∫

B

nkφ
T FkdB, (4.7)

where the test vector φ is an arbitrary differentiable function and nk is the outward

normal at the boundary. If a differentiable solution w is obtained to this equation,

then it can be integrated by parts to give

∫

D

φT ∂Fk

∂ξk

dD = 0.

Since this is true for any φ, the differential form can be recovered. If the solution is
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discontinuous, then equation (4.7) may be integrated by parts separately on either

side of the discontinuity to recover the shock jump conditions.

Suppose now that we wish to control the surface pressure by varying the airfoil

shape. For this purpose, it is convenient to retain a fixed computational domain. Vari-

ations in the shape then result in corresponding variations in the mapping derivatives

defined by K. Introduce the cost function

I =
1

2

∫

BW

(p − pd)
2 ds,

where pd is the desired pressure. The design problem is now treated as a control

problem where the control function is the airfoil shape, which is chosen to minimize

I subject to the constrains defined by the flow equations (2.7). A variation in the

shape causes a variation δp in the pressure and consequently a variation in the cost

function

δI =

∫

BW

(p − pd) δp ds +
1

2

∫

BW

(p − pd)
2 δds.

Since p depends on w through the equation of state (2.9), the variation δp is deter-

mined from the variation δw. Define the Jacobian matrices as

Ak =
∂fk

∂w
, Ck = SklAl. (4.8)

The weak form of the equation for δw in the steady state becomes

∫

D

∂φT

∂ξk

δFkdD =

∫

B

(nkφ
T δFk)dB,

where

δFk = Ckδw + δSklfl,

which should hold for any differentiable test function φ.
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This equation may be added to the variation in the cost function, which may now be

written as

δI =

∫

BW

(p − pd) δp ds +
1

2

∫

BW

(p − pd)
2 δds

−
∫

D

∂ψT

∂ξk

δFkdD +

∫

B

(nkψ
T δFk)dB.

On the airfoil surface BW , n1 = 0. Thus, it follows from equation (4.2) that

δF2 =




0

S21δp

S22δp

0




+




0

δS21p

δS22p

0




.

Since the weak equation for δw should hold for an arbitrary choice of the test vector

φ, we are free to choose φ to simplify the resulting expressions. Therefore we set

φ = ψ, where the costate vector ψ is the solution of the adjoint equation

∂ψ

∂t
− CT

k

∂ψ

∂ξk

= 0 in D. (4.9)

At the outer boundary, incoming characteristics for ψ correspond to outgoing char-

acteristics for δw. Consequently we can choose boundary conditions for ψ such that

nkψ
T Ckδw = 0.

If the coordinate transformation is such that δS is negligible in the far-field, then the

only remaining boundary term is

−
∫

BW

ψT δF2 dξ1.

Thus, by letting ψ satisfy the boundary condition,

ψjnj = p − pd on BW , (4.10)
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where nj are the components of the surface normal,

nj =
S2j√
S2jS2j

,

we find finally that

δI =
1

2

∫

BW

(p − pd)
2 δds −

∫

D

∂ψT

∂ξk

δSklfldD −
∫

BW

(δS21ψ2 + δS22ψ3) p dξ1.

4.2.1 Numerical Discretization

The convective adjoint flux is discretized using a second order central spatial dis-

cretization. The first step is to expand equation (4.9) for a two-dimensional problem

∂ψ

∂t
− CT

1

∂ψ

∂ξ1

− CT
2

∂ψ

∂ξ2

= 0.

Define ξ = ξ1 and η = ξ2. Then the continuous adjoint fluxes can be discretized as

V
∂ψi,j

∂t
=

1

2

[
CT

1i,j
(ψi+1,j − ψi−1,j) + CT

2i,j
(ψi,j+1 − ψi,j−1)

]

+di+ 1
2
,j − di− 1

2
,j + di,j+ 1

2
− di,j− 1

2
,

where V is the cell area and di+ 1
2
,j has the same form as equation (2.30). From

equation (4.8), the Jacobian fluxes can be expanded as

CT
1i,j

= yηi,j
AT

1i,j
− xηi,j

AT
2i,j

CT
2i,j

= −yξi,j
AT

1i,j
+ xξi,j

AT
2i,j

,

where

yηi,j
=

1

2

(
yη

i+1
2

,j
+ yη

i− 1
2

,j

)
, xηi,j

=
1

2

(
xη

i+1
2

,j
+ xη

i− 1
2

,j

)
,

AT
1i,j

=

[
∂f

∂w

]T

, AT
2i,j

=

[
∂g

∂w

]T

.
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In order to reduce the number of subscripts and simplify the notation, the Euler

Jacobian matrices are defined as follows

ÂT
i,j = CT

1i,j
, B̂T

i,j = CT
2i,j

, AT
i,j = AT

1i,j
, BT

i,j = AT
2i,j

. (4.11)

Finally, the convective continuous adjoint flux can be written as

R(ψ) =
1

2

[
ÂT

i,j (ψi+1,j − ψi−1,j) + B̂T
i,j (ψi,j+1 − ψi,j−1)

]
. (4.12)

4.2.2 Continuous Adjoint Boundary Conditions

In this sub-section the inviscid continuous adjoint boundary conditions are presented

for the inverse and drag minimization problems.

Inverse Design

In the case of the continuous adjoint boundary condition, equation (4.10) constrains

the values of the normal adjoint velocities. The tangential adjoint velocity, ψ1, and

ψ4 do not appear; therefore, assigning a zero value for these variables does not violate

equation (4.10). This results, however, in poor convergence for the adjoint equation

because it is an over-specification of the adjoint boundary condition. A satisfactory

boundary condition may be formulated as follows:

ψ1i,1
= ψ1i,2

ψ2i,1
= ψ2i,2

+ 2n2

(
(p − pd) − n2ψ2i,2

+ n1ψ3i,2

)

ψ3i,1
= ψ3i,2

− 2n1

(
(p − pd) − n2ψ2i,2

+ n1ψ3i,2

)

ψ4i,1
= ψ4i,2

, (4.13)

where ni = S2i√
S2jS2j

. The subscripts (i, 1) and (i, 2) in the above equations denote

cells below and above the wall. Here, the first and fourth costate variables below

the wall are set equal to the corresponding values above the wall and the tangential

adjoint velocities above and below the wall are equated.
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Drag Minimization

If the drag is to be minimized, then the cost function is the drag coefficient,

I = Cd =

(
1

c

∫

BW

Cp

∂y

∂ξ
dξ

)
cos α +

(
1

c

∫

BW

−Cp

∂x

∂ξ
dξ

)
sin α.

A variation in the shape causes a variation δp in the pressure and consequently a

variation in the cost function,

δI =
1

c

∫

BW

Cp

(
∂y

∂ξ
cos α − ∂x

∂ξ
sin α

)
δpdξ

+
1

c

∫

BW

Cp

(
δ

(
∂y

∂ξ

)
cos α − δ

(
∂x

∂ξ

)
sin α

)
dξ.

As in the inverse design case, the first term is a function of the state vector, and

therefore is incorporated into the boundary condition, where the integrand replaces

the pressure difference term in equation (4.13). The second term is added to the

gradient term.

4.3 Derivation of the Discrete Adjoint Terms

In the continuous adjoint approach, the primary steps that are required to formulate

the continuous adjoint equation are: first, derive the first variation of the flux gradi-

ent as shown in equation (4.3); second, multiply it by the Lagrange Multiplier and

integrate over the domain; third, subtract the integral obtained from the second step

from the variation of the cost function; fourth, perform integration by parts to isolate

the variation of the state vector terms, δw, from the variation of the shape function,

δf , to produce the continuous adjoint equations. The discrete adjoint equation is

obtained by applying control theory directly to the set of discrete field equations,

following the same sequence of steps. The resulting equations depend on the details

of the scheme used to solve the flow equations.

To formulate the discrete adjoint equation, we first take a variation of the residual
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term. From equation (2.20), the first variation can be written as

δR(w)ij = δhi+ 1
2
,j − δhi− 1

2
,j + δhi,j+ 1

2
− δhi,j− 1

2
, (4.14)

with

δhi+ 1
2
,j = δfi+ 1

2
,j − δfv

i+1
2

,j
− δdi+ 1

2
,j

δhi,j+ 1
2

= δgi,j+ 1
2
− δgv

i,j+1
2

− δdi,j+ 1
2
, (4.15)

where f and g are the convective flux gradients, fv and gv are the viscous flux gra-

dients, and d is the artificial dissipation term. Next, we pre-multiply the variation

of the discrete residual by the Lagrange Multiplier and sum the product over the

computational domain to produce the following

nx∑

i=2

ny∑

j=2

ψT
i,jδR(w)i,j. (4.16)

Thirdly, similarly to the the primary steps taken to produce the continuous adjoint

equation, equation (4.16) is added to the variation of the discrete cost function,

δI = δIc +
nx∑

i=2

ny∑

j=2

ψT
i,jδR(w)i,j,

where δIc is the discrete cost function, and R(w)i,j is the residual term.

In the continuous adjoint approach, integration by parts is employed to formulate

the continuous adjoint partial differential system of equations. However, to develop

the discrete adjoint equations, the discrete counterpart to the integration by parts,

summation by parts is required. To produce the final set of discrete adjoint equations,

expand the δR(w) term for cell (i, j) and the adjacent four cells. Then multiply the

variation of the residual by the Lagrange multiplier, ψi,j. Lastly, collect any term that

is multiplied by δwi,j. A full discretization of the equation would involve discretizing

every term that is a function of the state vector. The above steps prove to be a

daunting task, due to the need to keep track of the contribution from various terms
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and cells. The development cost of the method grows rapidly with the order and size

of the stencil of the discretization scheme.

In this work, the values of the flow variables are stored at the cell centers. The

fluxes vary linearly between adjacent cells. The convective flux fi+ 1
2
,j at the cell

face can be computed by taking the average of the flux contributions from each cell

across the cell face. The total flux balance for each cell requires information from the

four adjacent cells. In the case of the artificial dissipative flux, a blended first and

third order flux term is used. The third order term requires information from two

cells in each direction, therefore requiring information from a total of nine cells. A

numerical evaluation of the viscous flux requires an estimate of the partial derivative

of velocity in the viscous stress tensor and the partial derivative of temperature from

the Fourier Law of heat conduction. To evaluate the viscous flux at the cell face, we

first compute the stress tensor and the heat flux components of the viscous flux at

the end points (vertex) of the edge by employing a discrete Gauss theorem to the

auxiliary control volume formed by the centers of the four cells enclosing the vertex.

Second, the viscous flux across the cell face is computed by averaging the viscous

fluxes at both ends of the edge. Thus to develop the discrete viscous adjoint flux

requires information from the eight surrounding cells.

As can be seen from the above example, the development cost of the discrete

adjoint equation increases rapidly with the order of the numerical scheme. The de-

velopment of the discrete adjoint for higher order schemes with large stencils, typically

used for DNS and LES simulations or aeroacoustic calculations, would require a large

amount of time and be more susceptible to errors during the formulation phase. The

continuous adjoint approach might then be preferred, since its formulation is com-

pletely independent of the numerical scheme used to solve the flow field equations. If

desired, a simpler numerical scheme that requires a smaller stencil could be used to

compute the continuous adjoint equation, while a higher order scheme is used for the

flow field equations. The next three sub-sections illustrate the development of the

contributions from the convective, dissipative, and viscous flux terms to the discrete

adjoint equation.
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4.3.1 Contributions from the Convective Flux

In this sub-section we will concentrate our efforts on the contribution from the con-

vective flux of the field equations. The numerical scheme we employ to solve the flow

field equations utilize a central second order spatial discretization to evaluate the flux

gradients in each direction. The fluxes are averaged at the flux faces before the flux

gradients are computed. This is equivalent to a three-point stencil to evaluate the

flux gradient in each direction.

First, we will only consider the contribution from δfi+ 1
2
,j to equation (4.15) and ul-

timately to equation (4.14). From equation (2.22), the first variation of the convective

flux computed at the flux face can be written as

δfi+ 1
2
,j =

1

2

(
δf+

i+1,j + δf−
i,j

)
. (4.17)

Now expand δf−
i,j,

δf−
i,j = δ

[
yη

i+1
2

,j
fi,j − xη

i+1
2

,j
gi,j

]

= yη
i+1

2
,j
δfi,j + δyη

i+1
2

,j
fi,j − xη

i+1
2

,j
δgi,j − δxη

i+1
2

,j
gi,j

= yη
i+1

2
,j

(
∂f

∂w
δw

)

i,j

+ δyη
i+1

2
,j
fi,j − xη

i+1
2

,j

(
∂g

∂w
δw

)

i,j

− δxη
i+1

2
,j
gi,j

=
(
yη

i+1
2

,j
Ai,j − xη

i+1
2

,j
Bi,j

)
δwi,j + δyη

i+1
2

,j
fi,j − δxη

i+1
2

,j
gi,j, (4.18)

where A and B are the convective flux Jacobians ∂f

∂w
and ∂g

∂w
. Similarly, the δf+

i+1,j

term can be expanded to produce the following

δf+
i+1,j =

(
yη

i+1
2

,j
Ai+1,j − xη

i+1
2

,j
Bi+1,j

)
δwi+1,j + δyη

i+1
2

,j
fi+1,j − δxη

i+1
2

,j
gi+1,j. (4.19)

Note here that the metric terms in equation (4.18) and (4.19) are identical since the

plus and minus fluxes are evaluated along the (i + 1
2
, j) edge. The only difference

between the two equations are the state vector terms. Substituting of equations

(4.18) and (4.19) into equation (4.17), keeping only terms that are multiplied to the

variation of the state vector and neglecting the variation of the dissipative and viscous
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fluxes for now, equation (4.15) can be expanded to

δhi+ 1
2
,j =

1

2

[(
yη

i+1
2

,j
Ai+1,j − xη

i+1
2

,j
Bi+1,j

)
δwi+1,j

+
(
yη

i+1
2

,j
Ai,j − xη

i+1
2

,j
Bi,j

)
δwi,j

]
. (4.20)

In the η direction, δgi,j+ 1
2

can be written as

δgi,j+ 1
2

=
1

2

(
δg+

i,j+1 + δg−
i,j

)
,

where

δg−
i,j = δ

[
−yξ

i,j+1
2

fi,j + xξ
i,j+1

2

gi,j

]

=
(
−yξ

i,j+1
2

Ai,j + xξ
i,j+1

2

Bi,j

)
δwi,j − δyξ

i,j+1
2

fi,j + δxξ
i,j+1

2

gi,j,

δg+
i,j+ 1

2

=
(
−yξ

i,j+1
2

Ai,j+1 + xξ
i,j+1

2

Bi,j+1

)
δwi,j+1 − δyξ

i,j+1
2

fi,j+1 + δxξ
i,j+1

2

gi,j+1.

Then δhi,j+ 1
2

can be expressed as

δhi,j+ 1
2

=
1

2

[(
−yξ

i,j+1
2

Ai,j+1 + xξ
i,j+1

2

Bi,j+1

)
δwi,j+1

+
(
−yξ

i,j+1
2

Ai,j + xξ
i,j+1

2

Bi,j

)
δwi,j

]
. (4.21)

We now have all the necessary terms to formulate the variation of the convective flux

δR(w)i,j. Substitution of equation (4.20) and (4.21) into equation (4.14) will produce

δR(w)i,j = δhi+ 1
2
,j − δhi− 1

2
,j + δhi,j+ 1

2
− δhi,j− 1

2
(4.22)
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δR(w)i,j =

1

2

[(
yη

i+1
2

,j
Ai+1,j − xη

i+1
2

,j
Bi+1,j

)
δwi+1,j +

(
yη

i+1
2

,j
Ai,j − xη

i+1
2

,j
Bi,j

)
δwi,j

]

− 1

2

[(
yη

i− 1
2

,j
Ai−1,j − xη

i− 1
2

,j
Bi−1,j

)
δwi−1,j +

(
yη

i− 1
2

,j
Ai,j − xη

i− 1
2

,j
Bi,j

)
δwi,j

]

+
1

2

[(
−yξ

i,j+1
2

Ai,j+1 + xξ
i,j+1

2

Bi,j+1

)
δwi,j+1 +

(
−yξ

i,j+1
2

Ai,j + xξ
i,j+1

2

Bi,j

)
δwi,j

]

− 1

2

[(
−yξ

i,j− 1
2

Ai,j + xξ
i,j− 1

2

Bi,j

)
δwi,j +

(
−yξ

i,j− 1
2

Ai,j−1 + xξ
i,j− 1

2

Bi,j−1

)
δwi,j−1

]
.

Simplify equation (4.22) and reorder the terms to produce an equation for the contri-

bution of the convective flux from the field equations to the variation of the residual

in cell (i, j),

δR(w)i,j =
1

2

[(
yη

i+1
2

,j
Ai+1,j − xη

i+1
2

,j
Bi+1,j

)
δwi+1,j

−
(
yη

i− 1
2

,j
Ai−1,j − xη

i− 1
2

,j
Bi−1,j

)
δwi−1,j

+
((

yη
i+1

2
,j
− yη

i− 1
2

,j
− yξ

i,j+1
2

+ yξi,j−
1
2

)
Ai,j

−
(
xη

i+1
2

,j
− xη

i− 1
2

,j
− xξ

i,j+1
2

+ xξi,j−
1
2

)
Bi,j

)
δwi,j

+
(
−yξ

i,j+1
2

Ai,j+1 + xξ
i,j+1

2

Bi,j+1

)
δwi,j+1

−
(
−yξ

i,j− 1
2

Ai,j−1 + xξ
i,j− 1

2

Bi,j−1

)
δwi,j−1

]
. (4.23)

Note that the equation above has contributions from all four adjacent cells. In order

to simplify the notation, δR(w)i,j will be represented by δRi,j.

The variation of the residual vector from the adjacent cells such as δRi+1,j, δRi−1,j,

etc., have contributions from the (i, j) cell. For example, if equation (4.23) is written

for cell (i+1, j) and only the δwi,j terms are shown, then the variation of the residual

vector for cell (i + 1, j) can be written as

δR(w)i+1,j = · · · + 1

2

[
−

(
yη

i+1
2

,j
Ai,j − xη

i+1
2

,j
Bi,j

)
δwi,j

]
+ · · ·

The next step is to pre-multiply the variation of the residual vector by the transpose

of the Lagrange multiplier vector and sum the product over the entire domain. This
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step leads to the following equation

nx∑

i=2

ny∑

j=2

ψT
i,jδRi,j = · · · + ψT

i−1,jδRi−1,j + ψT
i+1,jδRi+1,j + ψT

i,jδRi,j

+ψT
i,j−1δRi,j−1 + ψT

i,j+1δRi,j+1 + · · · . (4.24)

The discrete domain spans from i = 2 → nx and j = 2 → ny, where nx and ny are

the maximum cell points. Next we substitute the expansions for the variation of the

residual terms from equation (4.23) for each term in equation (4.24) and collect the

δwi,j terms to produce

nx∑

i=2

ny∑

j=2

ψT
i,jδRi,j = · · · + 1

2

[
ψT

i−1,j

[
yη

i− 1
2

,j
Ai,j − xη

i− 1
2

,j
Bi,j

]

−ψT
i+1,j

[
yη

i+1
2

,j
Ai,j − xη

i+1
2

,j
Bi,j

]

+ψT
i,j

[(
yη

i+1
2

,j
− yη

i− 1
2

,j
− yξ

i,j+1
2

+ yξi,j−
1
2

)
Ai,j

−
(
xη

i+1
2

,j
− xη

i− 1
2

,j
− xξ

i,j+1
2

+ xξi,j−
1
2

)
Bi,j

]

+ψT
i,j−1

[
−yξ

i,j− 1
2

Ai,j + xξ
i,j− 1

2

Bi,j

]

−ψT
i,j+1

[
−yξ

i,j+1
2

Ai,j + xξ
i,j+1

2

Bi,j

]]
δwi,j + · · · (4.25)

Reordering the terms in equation (4.25) leads to the following equation

nx∑

i=2

ny∑

j=2

ψT
i,jδRi,j = · · · − 1

2

[(
ψT

i,j − ψT
i−1,j

) (
yη

i− 1
2

,j
Ai,j − xη

i− 1
2

,j
Bi,j

)

+
(
ψT

i+1,j − ψT
i,j

) (
yη

i+1
2

,j
Ai,j − xη

i+1
2

,j
Bi,j

)

+
(
ψT

i,j+1 − ψT
i,j

) (
−yξ

i,j+1
2

Ai,j + xξ
i,j+1

2

Bi,j

)

+
(
ψT

i,j − ψT
i,j−1

) (
−yξ

i,j− 1
2

Ai,j + xξ
i,j− 1

2

Bi,j

)]
δwi,j

+ · · ·

Take a transpose of the equation and the adjoint convective flux can then be written
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as

R (ψ) =
1

2

[(
yη

i− 1
2

,j
AT

i,j − xη
i− 1

2
,j
BT

i,j

)
(ψi,j − ψi−1,j)

+
(
yη

i+1
2

,j
AT

i,j − xη
i+1

2
,j
BT

i,j

)
(ψi+1,j − ψi,j)

+
(
−yξ

i,j+1
2

AT
i,j + xξ

i,j+1
2

BT
i,j

)
(ψi,j+1 − ψi,j)

+
(
−yξ

i,j− 1
2

AT
i,j + xξ

i,j− 1
2

BT
i,j

)
(ψi,j − ψi,j−1)

]
. (4.26)

Next, define the flux Jacobian matrices for the total flux across the cell face in the

computational domain as

ÂT
i+ 1

2
,j = yη

i+1
2

,j
AT

i,j − xη
i+1

2
,j
BT

i,j and B̂T
i,j+ 1

2
= −yξ

i+1
2

,j
AT

i,j + xξ
i+1

2
,j
BT

i,j.

Finally, the discrete convective flux can be represented by the following expression

R (ψ) =
1

2

[
ÂT

i− 1
2
,j (ψi,j − ψi−1,j) + ÂT

i+ 1
2
,j (ψi+1,j − ψi,j)

+B̂T
i,j+ 1

2
(ψi,j+1 − ψi,j) + B̂T

i,j− 1
2
(ψi,j − ψi,j−1)

]
. (4.27)

Note here that if an average of the metrics evaluated at either flux faces were used

in the definition of the flux Jacobian matrices for the total flux across the wall in the

computational domain, then ÂT
i+ 1

2
,j would reduce to ÂT

i,j. Equation (4.27) would

reduce to the following

R (ψ) =
1

2

[
ÂT

i,j (ψi+1,j − ψi−1,j) + B̂T
i,j (ψi,j+1 − ψi,j−1)

]
. (4.28)

Equation (4.28) is identical to the discretization of the continuous convective flux

gradient defined in equation (4.12). This illustrates that the discretization of the

continuous and discrete convective fluxes are similar and only differ in the manner

the metrics are calculated in each cell. In summary, the metrics across the cell faces

are averaged for each cell in each direction in calculating the continuous adjoint flux,

but not in calculating the discrete adjoint flux.

From equation (4.28), in the limit that the mesh width reduces to zero, the discrete
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adjoint convective flux can be written as

lim
∆ξ→0,∆η→0

R (ψ) =
1

2

[
ÂT

i,j (ψi+1,j − ψi−1,j) + B̂T
i,j (ψi,j+1 − ψi,j−1)

]
.

The second order central difference of the Lagrange Multipliers can then be reduced

as

lim
∆ξ→0

[
ψi+1,j − ψi−1,j

2

]
=

∂ψ

∂ξ
.

Finally, the discrete adjoint convective flux term can be written in continuous form

as

lim
∆ξ→0,∆η→0

R (ψ) = ÂT
∂ψ

∂ξ
+ B̂T

∂ψ

∂η
.

With a change in notation based on the form used in equation (4.11), the continuous

form of the discrete adjoint convective flux can be expressed as

R (ψ) = ÂT
∂ψ

∂ξ
+ B̂T

∂ψ

∂η

= CT
1

∂ψ

∂ξ1

+ CT
2

∂ψ

∂ξ2

= CT
k

∂ψ

∂ξk

The expression above is identical to the continuous adjoint equation defined in

equation (4.9).
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4.3.2 Contributions from the Viscous Flux

In this sub-section, we derive the discrete viscous adjoint fluxes. The procedure

is similar to the derivation of the discrete convective adjoint fluxes illustrated in

the previous sub-section; however, the task of producing the viscous counterpart is

challenging due to the additional terms in the Navier-Stokes equations.

Since only the viscous fluxes will be considered in this section, the first variation

of the total residual for the control volume (i, j) can be simplified to the following

equation

δR(w)ij = −δfv
i+1

2
,j

+ δfv
i− 1

2
,j
− δfv

i,j+1
2

+ δfv
i,j− 1

2

,

where the total flux through the (i + 1
2
, j) flux face can be defined as

δhi+ 1
2
,j = −δfv

i+1
2

,j
.

Next the variation of the viscous flux at the cell face can be computed by taking an

average of the fluxes at the cell vertex as explained in section 2.2.1 and shown below

δfv
i+1

2
,j

= δ

(
yη

i+1
2

,j
f ∗

v
i+1

2
,j

)
− δ

(
xη

i+1
2

,j
g∗

v
i+1

2
,j

)
, (4.29)

where

f∗
v

i+1
2

,j
=

1

2

(
fv

i+1
2

,j+1
2

+ fv
i+1

2
,j− 1

2

)

g∗
v

i+1
2

,j
=

1

2

(
gv

i+1
2

,j+1
2

+ gv
i+1

2
,j− 1

2

)
.

By the chain rule, equation (4.29) can be expanded to produce terms that are mul-

tiplied to the variation of the state vector and shape function. Such an expansion

would produce the following equation

δfv
i+1

2
,j

= δyη
i+1

2
,j
f ∗

v
i+1

2
,j

+ yη
i+1

2
,j
δf∗

v
i+1

2
,j
− δxη

i+1
2

,j
g∗

v
i+1

2
,j
− xη

i+1
2

,j
δg∗

v
i+1

2
,j
. (4.30)

We will choose to ignore the metric variations for the rest of the section and con-

centrate only on expressions that produce terms that are multiplied by the variation
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of the state vector. From section 2.2.1 the variation of the viscous flux contribution

from the cell vertex (i + 1
2
, j + 1

2
) can be defined as

δfv
i+1

2
,j+1

2

=





0

δτxx

δτxy

δuτxx + uδτxx + δvτxy + vδτxy + δk ∂T
∂x

+ kδ ∂T
∂x





i+ 1
2
,j+ 1

2

. (4.31)

The variation of the viscous fluxes at the other cell vertexes are defined in a similar

fashion. Due to the large number of terms that needs to be considered in the derivation

of the discrete viscous adjoint fluxes, the contributions from the momentum and

energy equations will be considered in separate sub-sections.

Contributions from the Momentum Equation

In this sub-section, we will concentrate our efforts on the contributions from the

momentum equation. First, rewrite equation (4.30) without the variation due to

metric terms and substitute f ∗
v and g∗

v terms with the average of the viscous fluxes at

the cell vertexes,

δfv
i+1

2
,j

=
1

2
yη

i+1
2

,j
δ
(
fv

i+1
2

,j+1
2

+ fv
i+1

2
,j− 1

2

)
− 1

2
xη

i+1
2

,j
δ
(
gv

i+1
2

,j+1
2

+ gv
i+1

2
,j− 1

2

)
.

Next rearrange the terms to produce the following equation

δfv
i+1

2
,j

=
1

2

[
yη

i+1
2

,j
δfv

i+1
2

,j+1
2

− xη
i+1

2
,j
δgv

i+1
2

,j+1
2

+ yη
i+1

2
,j
δfv

i+1
2

,j− 1
2

− xη
i+1

2
,j
δgv

i+1
2

,j− 1
2

]

=
1

2

[
δFi+ 1

2
,j+ 1

2
+ δFi+ 1

2
,j− 1

2

]
.
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We now concentrate on the momentum equation in the ξ direction. Then δF can be

expressed as

δFi+ 1
2
,j+ 1

2
= yη

i+1
2

,j
δfv

i+1
2

,j+1
2

− xη
i+1

2
,j
δgv

i+1
2

,j+1
2

= yη
i+1

2
,j
δτxx

i+1
2

,j+1
2

− xη
i+1

2
,j
δτyx

i+1
2

,j+1
2

. (4.32)

The next step is the variation of the stress tensor terms. The purpose of this exercise is

to illustrate the procedure and not to show the full derivation; therefore, the expansion

will only be carried out for the τxx term. The viscosity coefficients will be treated as

constants in the derivation and therefore its variations are zero and will be neglected

in the following derivation,

δτxx
i+1

2
,j+1

2

= 2µi+ 1
2
,j+ 1

2
δ

(
∂u

∂x

)

i+ 1
2
,j+ 1

2

+λi+ 1
2
,j+ 1

2

[
δ

(
∂u

∂x

)

i+ 1
2
,j+ 1

2

+ δ

(
∂v

∂y

)

i+ 1
2
,j+ 1

2

]
.

Note here that the stress tensor terms are functions of the primitive variables, ρ, u, v, T ,

and not the state vector, w, which is comprised of ρ, ρu, ρv, ρE. In the expansion of

the variation of the stress tensor terms, we seek ultimately to produce an equation

that is a function of the variation of the primitive variables, δu, δv, . . .. It will be

shown that once the discrete viscous adjoint fluxes are formed, it will be transformed

back to a form that is multiplied not by the variation of the primitive variables but

by the variation of the state vector. This will allow us to sum the discrete viscous ad-

joint fluxes to the discrete convective and artificial dissipation fluxes. To simplify the

procedure we will attempt to complete the derivation by only collecting terms that

are multiplied by the variation of the velocity in the x direction, δu. From section

2.2.1, substitute the velocity gradient terms from equations (2.27) and (2.28) into the

above expression for the variation of the stress tensor to produce

δτxx
i+1

2
,j+1

2

=

(
2µ + λ

2J

)

i+ 1
2
,j+ 1

2

[
(yη − yξ)i+ 1

2
,j+ 1

2

δui+1,j+1 − (yη + yξ)i+ 1
2
,j+ 1

2

δui,j+1

+ (yη + yξ)i+ 1
2
,j+ 1

2

δui+1,j + (−yη + yξ)i+ 1
2
,j+ 1

2

δui,j

]
,
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where J is the cell volume. The variation of the shear stress term, δτxy can be derived

in a similar manner. The variation of the flux at the cell vertex (i + 1
2
, j + 1

2
) from

equation (4.32) can be expressed as

δFi+ 1
2
,j+ 1

2
= yη

i+1
2

,j

(
2µ + λ

2J

)

i+ 1
2
,j+ 1

2

[(yη − yξ) δui+1,j+1 − (yη + yξ) δui,j+1

+ (yη + yξ) δui+1,j + (−yη + yξ) δui,j]

−xη
i+1

2
,j

( µ

2J

)

i+ 1
2
,j+ 1

2

[(xξ − xη) δui+1,j+1 + (xξ + xη) δui,j+1

− (xξ + xη) δui+1,j + (−xξ + xη) δui,j] . (4.33)

All metrics terms are evaluated at the (i + 1
2
, j + 1

2
) vertex. In equation (4.33), the

first two lines are contributions from the variation of the normal stress term, δτxx,

and the third and fourth lines are contributions from the variation of the shear stress

term, δτyx. The expression for δFi+ 1
2
,j− 1

2
can be produced by subtracting one from

the j subscript from equation (4.33). Thus, the total flux across the (i + 1
2
, j) flux

face can be formulated using the following expression

δhi+ 1
2
,j = −δfv

i+1
2

,j
= −1

2

[
δFi+ 1

2
,j+ 1

2
+ δFi+ 1

2
,j− 1

2

]
.

Finally, the variation of the total residual in cell (i, j) can be expressed as

δR(w)i,j = −δfv
i+1

2
,j

+ δfv
i− 1

2
,j
− δfv

i,j+1
2

+ δfv
i,j− 1

2

= −1

2

[
δFi+ 1

2
,j+ 1

2
+ δFi+ 1

2
,j− 1

2

]
+

1

2

[
δFi− 1

2
,j+ 1

2
+ δFi− 1

2
,j− 1

2

]

+
1

2

[
δGi+ 1

2
,j+ 1

2
+ δGi− 1

2
,j+ 1

2

]
− 1

2

[
δGi+ 1

2
,j− 1

2
+ δGi− 1

2
,j− 1

2

]

where

δGi+ 1
2
,j+ 1

2
= −yξ

i,j+1
2

δfv
i+1

2
,j+1

2

+ xξ
i,j+1

2

δgv
i+1

2
,j+1

2

= −yξ
i,j+1

2

δτxx
i+1

2
,j+1

2

+ xξ
i,j+1

2

δτyx
i+1

2
,j+1

2

.
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The next step is to pre-multiply the variation of the residual by the transpose of the

Lagrange Multiplier, ψT , and sum the product over the computational domain to

produce

nx∑

i=2

ny∑

j=2

ψT
i,jδRi,j = · · · + ψT

i−1,j−1δRi−1,j−1 + ψT
i−1,jδRi−1,j + ψT

i−1,j+1δRi−1,j+1

+ψT
i+1,j−1δRi+1,j−1 + ψT

i+1,jδRi+1,j + ψT
i+1,j+1δRi+1,j+1

+ψT
i,j−1δRi,j−1 + ψT

i,jδRi,j + ψT
i,j+1δRi,j+1 + · · · . (4.34)

The total contribution towards the residual from the viscous fluxes requires informa-

tion from all eight cells that surrounds cell (i, j). To collect the total contribution

towards all the terms that are multiplied by the variation of the u-velocity in the (i, j)

cell, δui,j, requires the total residual from the surrounding eight cells. Terms that are

multiplied by δui,j are collected to produce the total discrete viscous adjoint residual

for the second adjoint equation. This is due to the fact that only the δui,j terms are

being considered and not the complete viscous flux. After some lengthy algebra the

discrete adjoint stress tensor can be expressed as

̟xx
i+1

2
,j+1

2

= 2µi+ 1
2
,j+ 1

2

[
∂ψ2

∂x

]

i+ 1
2
,j+ 1

2

+ λi+ 1
2
,j+ 1

2

{[
∂ψ2

∂x

]
+

[
∂ψ3

∂y

]}

i+ 1
2
,j+ 1

2

. (4.35)

Note here the remarkable similarity between the Navier-Stokes equation viscous stress

tensor expressed in equation (2.26) and discrete viscous adjoint stress tensor shown

above. The velocities, u and v, are simply replaced by the second and third adjoint

variables. The adjoint variable gradients are expressed as

[
∂ψ2

∂x

]

i+ 1
2
,j+ 1

2

=
1

2Ji+ 1
2
,j+ 1

2

{
yη

i+1
2

,j+1

[
∂ψ2

∂ξ

]

i+ 1
2
,j+1

+ yη
i+1

2
,j

[
∂ψ2

∂ξ

]

i+ 1
2
,j

−yξ
i+1,j+1

2

[
∂ψ2

∂η

]

i+1,j+ 1
2

− yξ
i,j+1

2

[
∂ψ2

∂η

]

i,j+ 1
2

}
. (4.36)
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Contributions from the Energy Equation

We now focus on the contributions from the energy equation. From equation (4.31)

the contribution from the energy equation can be expressed as

δfv
i+1

2
,j+1

2

=

(
δuτxx + uδτxx + δvτxy + vδτxy + δk

∂T

∂x
+ kδ

∂T

∂x

)

i+ 1
2
,j+ 1

2

. (4.37)

The contribution can be divided into three parts: variation of the stress tensors,

variation of the velocities, and contribution from the heat addition terms,

δfv
i+1

2
,j+1

2

= (uδτxx + vδτxy)i+ 1
2
,j+ 1

2

+(δuτxx + δvτxy)i+ 1
2
,j+ 1

2

+

(
δk

∂T

∂x
+ kδ

∂T

∂x

)

i+ 1
2
,j+ 1

2

.

First, we consider the contribution of the variation of the stress tensor terms from

the energy equation. The variation of the flux at the cell vertex can be written as

δFi+ 1
2
,j+ 1

2
= yη

i+1
2

,j
δfv

i+1
2

,j+1
2

− xη
i+1

2
,j
δgv

i+1
2

,j+1
2

= yη
i+1

2
,j

(
uδτxx

i+1
2

,j+1
2

+ vδτxy
i+1

2
,j+1

2

)

−xη
i+1

2
,j

(
uδτyx

i+1
2

,j+1
2

+ vδτyy
i+1

2
,j+1

2

)
. (4.38)

Equation (4.38) is similar to equation (4.32) of the previous section. The main differ-

ence between the two equations is the fact that the variation of the stress tensor terms

are multiplied by the velocity, u and v. Thus the derivation of the contribution of

these terms to the discrete viscous adjoint fluxes follows the derivation of the discrete

adjoint stress tensor from the previous section. The contribution of these terms to

the discrete viscous adjoint flux can be expressed as

ϑxx
i+1

2
,j+1

2

= 2 (uµ)i+ 1
2
,j+ 1

2

[
∂ψ4

∂x

]

i+ 1
2
,j+ 1

2

+λi+ 1
2
,j+ 1

2

{[
u
∂ψ4

∂x

]
+

[
v
∂ψ4

∂y

]}

i+ 1
2
,j+ 1

2

. (4.39)

Second, consider the contribution of the variation of the velocity components to
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the discrete viscous adjoint fluxes. The first step is to express the variation of the

flux at the cell vertex with only contributions from terms multiplied by the variation

of the velocity components. From equation (4.37), the variation of the flux at the cell

vertex can be expressed as

δFi+ 1
2
,j+ 1

2
= yη

i+1
2

,j
δfv

i+1
2

,j+1
2

− xη
i+1

2
,j
δgv

i+1
2

,j+1
2

= yη
i+1

2
,j

(
δui+ 1

2
,j+ 1

2
τxx

i+1
2

,j+1
2

+ δvi+ 1
2
,j+ 1

2
τxy

i+1
2

,j+1
2

)

−xη
i+1

2
,j

(
δui+ 1

2
,j+ 1

2
τyx

i+1
2

,j+1
2

+ δvi+ 1
2
,j+ 1

2
τyy

i+1
2

,j+1
2

)
. (4.40)

The flow field velocities are calculated at the cell vertex by averaging the values of the

velocities from the four cells that share the same vertex. Concentrating our efforts on

the variation of the u velocity component and replacing the equation for the velocity

at the cell vertex, equation (4.40) can be simplified to

δFi+ 1
2
,j+ 1

2
= yη

i+1
2

,j
δui+ 1

2
,j+ 1

2
τxx

i+1
2

,j+1
2

− xη
i+1

2
,j
δui+ 1

2
,j+ 1

2
τyx

i+1
2

,j+1
2

=
1

4

(
yη

i+1
2

,j
τxx

i+1
2

,j+1
2

− xη
i+1

2
,j
τyx

i+1
2

,j+1
2

)
[δui+1,j+1 + δui+1,j + δui,j+1 + δui,j] .

Since these terms are contributions from the energy equation, they would only be

multiplied by the last component of the vector representing the transpose of the

Lagrange Multiplier in equation (4.34). After a series of algebraic manipulations,

similar to the procedure used from the previous section, the second contribution from

the energy equation to the discrete viscous adjoint equation can be written as

̺x
i+1

2
,j+1

2

=
1

4

[
τxx

i+1
2

,j+1
2

[
∂ψ4

∂x

]

i+ 1
2
,j+ 1

2

+ τyx
i+1

2
,j+1

2

[
∂ψ4

∂y

]

i+ 1
2
,j+ 1

2

]
. (4.41)

The Lagrange Multiplier gradients are defined by equation (4.36). The last contribu-

tion from the energy equation to the discrete viscous adjoint flux is from the variation

of the heat addition term. From equation (4.37) the variation of the viscous flux can

be expressed as

δfv
i+1

2
,j+1

2

=

[
δk

∂T

∂x
+ kδ

∂T

∂x

]

i+ 1
2
,j+ 1

2

.
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If the coefficient of thermal conductivity is treated as a constant, then the only remain-

ing term is the variation of the temperature gradient. The next step is to represent

temperature as one of the primitive variables, (ρ, u, v, p). Thus the above expression

can be expressed as a function of density and pressure to produce

δfv
i+1

2
,j+1

2

=

[
kδ

∂T

∂x

]

i+ 1
2
,j+ 1

2

=
1

γ − 1

[
kδ

∂

∂x

(
p

ρ

)]

i+ 1
2
,j+ 1

2

=
1

γ − 1

[
k

∂

∂x

{
1

ρ
δp − p

ρ2
δρ

}]

i+ 1
2
,j+ 1

2

.

After similar algebraic manipulations, the third contribution from the energy equation

to the discrete viscous adjoint equation can be written as

εx
i+1

2
,j+1

2

= ki+ 1
2
,j+ 1

2

[
∂ψ4

∂x

]

i+ 1
2
,j+ 1

2

. (4.42)

Viscous Discrete Adjoint Field Operator

Collecting together the contributions from the momentum and energy equations, the

viscous discrete adjoint operator in primitive variables for two-dimensional flow can

be expressed as

(L̃ψ)1 = −
[

p

ρ2
(yη − xη) εx

]

i+ 1
2
,j+ 1

2

+

[
p

ρ2
(yη − xη) εy

]

i+ 1
2
,j− 1

2

−
[

p

ρ2
(xξ − yξ) εy

]

i+ 1
2
,j+ 1

2

+

[
p

ρ2
(xξ − yξ) εx

]

i− 1
2
,j+ 1

2

(L̃ψ)2 = [yη (̟xx + ϑxx) − xη (̟xy + ϑxy)]i+ 1
2
,j+ 1

2

+ [yη (̟xx + ϑxx) − xη (̟xy + ϑxy)]i+ 1
2
,j− 1

2

+ [xξ (̟xy + ϑxy) − yξ (̟xx + ϑxx)]i+ 1
2
,j+ 1

2

+ [xξ (̟xy + ϑxy) − yξ (̟xx + ϑxx)]i− 1
2
,j+ 1

2

−̺x
i+1

2
,j+1

2

− ̺x
i+1

2
,j− 1

2

− ̺y
i+1

2
,j+1

2

− ̺y
i− 1

2
,j+1

2
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(L̃ψ)3 = [yη (̟yx + ϑyx) − xη (̟yy + ϑyy)]i+ 1
2
,j+ 1

2

+ [yη (̟yx + ϑyx) − xη (̟yy + ϑyy)]i+ 1
2
,j− 1

2

+ [xξ (̟yy + ϑyy) − yξ (̟yx + ϑyx)]i+ 1
2
,j+ 1

2

+ [xξ (̟yy + ϑyy) − yξ (̟yx + ϑyx)]i− 1
2
,j+ 1

2

−̺y
i+1

2
,j+1

2

− ̺y
i+1

2
,j− 1

2

− ̺x
i+1

2
,j+1

2

− ̺x
i− 1

2
,j+1

2

(L̃ψ)4 =

[
1

ρ
(yη − xη) εx

]

i+ 1
2
,j+ 1

2

−
[
1

ρ
(yη − xη) εy

]

i+ 1
2
,j− 1

2

+

[
1

ρ
(xξ − yξ) εy

]

i+ 1
2
,j+ 1

2

−
[
1

ρ
(xξ − yξ) εx

]

i− 1
2
,j+ 1

2

The conservative viscous adjoint operator may now be obtained by the transformation

L = M−1T

L̃.

The transformation matrices M and M−1 are provided in appendix A.1.

4.3.3 Contributions from the Artificial Dissipation Flux

In this sub-section we derive the discrete artificial dissipation terms for the adjoint

equation. First, let us revisit equation (4.14) that defines the first variation of the

total residual for the control volume (i, j)

δR(w)ij = δhi+ 1
2
,j − δhi− 1

2
,j + δhi,j+ 1

2
− δhi,j− 1

2
.

If only the artificial dissipation terms are considered, then the total flux at the (i+ 1
2
, j)

flux face can be defined as

δhi+ 1
2
,j = −δdi+ 1

2
,j.
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From equation (2.30), the artificial dissipation scheme used in this work can be written

as

di+ 1
2
,j = ν(2)Λi+ 1

2
,j(wi+1,j − wi,j) − ν(4)Λi+ 1

2
,j(wi+2,j − 3wi+1,j + 3wi,j − wi−1,j),

where ν(2) and ν(4) are sensors whose magnitude is scaled proportional to the nor-

malized second difference of the pressure field, Λ is the average spectral radius of

the flux Jacobian matrix across the cell face, and w is the state vector. A complete

variation of the fluxes would require a variation of every term that is a function of the

state vector. Thus a variation of the sensor terms, ν(2) and ν(4), requires a variation

of the second difference of the pressure field and a variation of the spectral radius

would then require a variation of the velocity and the speed of sound term which in

itself is a function of the pressure and density fields. This would require an extensive

amount of work, and since the magnitude of the dissipative terms is lower than the

convective and viscous fluxes, the sensor terms and the spectral radii will be treated

as constants in this work and their variation ignored. Accordingly a variation of the

artificial dissipation term would result in the following equation,

δhi+ 1
2
,j = −δdi+ 1

2
,j

δhi+ 1
2
,j = −ν(2)Λi+ 1

2
,j(δwi+1,j − δwi,j)

+ν(4)Λi+ 1
2
,j(δwi+2,j − 3δwi+1,j + 3δwi,j − δwi−1,j).

Next, we examine the variation of the total residual in the control volume. Since we

desire only to formulate the dissipation in the ξ direction, then the variation of the

total residual in the control volume can be represented as

δR(w)ij = δhi+ 1
2
,j − δhi− 1

2
,j

= −ν(2)Λi+ 1
2
,j(δwi+1,j − δwi,j)

+ν(4)Λi+ 1
2
,j(δwi+2,j − 3δwi+1,j + 3δwi,j − δwi−1,j)

+ν(2)Λi− 1
2
,j(δwi,j − δwi−1,j)

−ν(4)Λi− 1
2
,j(δwi+1,j − 3δwi,j + 3δwi−1,j − δwi−2,j). (4.43)
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We must then pre-multiply the variation of the residual by the transpose of the

Lagrange Multiplier, sum the product over the computational domain, and isolate

terms that are multiplied by the variation of state vector, δwi,j, in the (i, j) control

volume. Since the blended first and third order dissipation scheme used in this work

requires a five point stencil, then it is necessary to include the variation of the residual

from these five cells. Thus the equation can be represented as

nx∑

i=2

ny∑

j=2

ψT
i,jδRi,j = · · · + ψT

i−2,jδRi−2,j + ψT
i−1,jδRi−1,j + ψT

i,jδRi,j

+ψT
i+1,jδRi+1,j + ψT

i+2,jδRi+2,j + · · · . (4.44)

Now substitute the variation of the residual terms from equation (4.43) into equation

(4.44). Only terms that are multiplied by the variation of the state vector in the (i, j)

cell, δwi,j, are shown.

nx∑

i=2

ny∑

j=2

ψT
i,jδRi,j = · · · + ψT

i−2,jν
(4)

i− 3
2
.j
Λi− 3

2
,j

−ψT
i−1,j

[
ν

(2)

i− 1
2
.j
Λi− 1

2
,j + 3ν

(4)

i− 1
2
.j
Λi− 1

2
,j + ν

(4)

i− 3
2
.j
Λi− 3

2
,j

]

+ψT
i,j

[
ν

(2)

i+ 1
2
.j
Λi+ 1

2
,j + 3ν

(4)

i+ 1
2
.j
Λi+ 1

2
,j + ν

(2)

i− 1
2
.j
Λi− 1

2
,j + 3ν

(4)

i− 1
2
.j
Λi− 1

2
,j

]

−ψT
i+1,j

[
ν

(4)

i+ 3
2
.j
Λi+ 3

2
,j + ν

(2)

i+ 1
2
.j
Λi+ 1

2
,j + 3ν

(4)

i+ 1
2
.j
Λi+ 1

2
,j

]

+ψT
i+2,jν

(4)

i+ 3
2
.j
Λi+ 3

2
,j + · · · .
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Then two sets of terms, one for each flux face of the control volume can be formed as

follows

nx∑

i=2

ny∑

j=2

ψT
i,jδRi,j = · · · +

−
[
ν

(2)

i+ 1
2
.j
Λi+ 1

2
,j

(
ψT

i+1,j − ψT
i,j

)
+ ν

(4)

i+ 3
2
.j
Λi+ 3

2
,j

(
ψT

i+2,j − ψT
i+1,j

)

−2ν
(4)

i+ 1
2
.j
Λi+ 1

2
,j

(
ψT

i+1,j − ψT
i,j

)
+ ν

(4)

i− 1
2
.j
Λi− 1

2
,j

(
ψT

i,j − ψT
i−1,j

)]

+
[
ν

(2)

i− 1
2
.j
Λi− 1

2
,j

(
ψT

i,j − ψT
i−1,j

)
− ν

(4)

i+ 1
2
.j
Λi+ 1

2
,j

(
ψT

i+1,j − ψT
i,j

)

+2ν
(4)

i− 1
2
.j
Λi− 1

2
,j

(
ψT

i,j − ψT
i−1,j

)
− ν

(4)

i− 3
2
.j
Λi− 3

2
,j

(
ψT

i−1,j − ψT
i−2,j

)]

+ · · · .

We can now define the discrete adjoint blended first and third order artificial dissi-

pation scheme as

Di+ 1
2
,j = ν

(2)

i+ 1
2
.j
Λi+ 1

2
,j

(
ψT

i+1,j − ψT
i,j

)
− ν

(4)

i+ 3
2
.j
Λi+ 3

2
,j

(
ψT

i+2,j − ψT
i+1,j

)

+2ν
(4)

i+ 1
2
.j
Λi+ 1

2
,j

(
ψT

i+1,j − ψT
i,j

)
− ν

(4)

i− 1
2
.j
Λi− 1

2
,j

(
ψT

i,j − ψT
i−1,j

)
. (4.45)

If a first order artificial dissipation equation is used, then equation (4.45) would reduce

to the term associated with ν(2). In such a case, the discrete adjoint equations are

completely independent of the costate variables in the cells below the wall. However,

if we use the blended first and third order equation, these values are required. As

shown later, a simple zeroth order extrapolation across the wall produces good results.

On further investigation, the discrete adjoint dissipation flux term can be reduced

to continuous form using the following steps. First, represent the sensor and spectral

radii as

τ
(2)

i+ 1
2
,j

= ν
(2)

i+ 1
2
,j
Λi+ 1

2
,j

τ
(4)

i+ 1
2
,j

= ν
(4)

i+ 1
2
,j
Λi+ 1

2
,j.

As the mesh width is reduced, in the limit that ∆ξ → 0, the first order difference of
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the Lagrange Multiplier can be written as

lim
∆ξ→0

[
ψT

i+1,j − ψT
i,j

]
=

(
∂ψT

∂ξ

)

i+ 1
2
,j

.

The subscript (i + 1
2
, j) in the above equation is not needed in a continuous domain

but it is added in to avoid confusion between the different partial derivatives in the

next equation. Then equation (4.45) can be rewritten as

Di+ 1
2
,j = τ

(2)

i+ 1
2
,j

(
∂ψT

∂ξ

)

i+ 1
2
,j

−
[
τ

(4)

i+ 3
2
,j

(
∂ψT

∂ξ

)

i+ 3
2
,j

−2τ
(4)

i+ 1
2
,j

(
∂ψT

∂ξ

)

i+ 1
2
,j

+ τ
(4)

i− 1
2
,j

(
∂ψT

∂ξ

)

i− 1
2
,j

]
. (4.46)

The first term represents a first order artificial dissipation term. The coefficient τ (2)

acts as a sensor to provide an upwind bias to the second order central adjoint Euler

flux to resolve discontinuities without oscillations. The second term, is clearly a

third difference term to eliminate the possibility of odd-even point decoupling in the

adjoint solution field. In the limit as the mesh width is reduced, equation (4.46) can

be further simplified to continuous form to produce

D = τ (2)∂ψT

∂ξ
− ∂2

∂ξ2

[
τ (4)∂ψT

∂ξ

]
. (4.47)

In order to verify that equation (4.47) is of the correct form, let us reproduce it

by including the artificial dissipation scheme in the derivation of the continuous ad-

joint equation. The variation of the sum of the Euler convective flux (4.3) and the

dissipative flux (2.29) in the steady-state limit can be represented as

∂

∂ξ
δF − ǫ(2)λ

p

∣∣∣∣
∂2p

∂ξ2

∣∣∣∣
∂

∂ξ
δw + ǫ(4)λ

∂3

∂ξ3
δw = 0. (4.48)

Since the dissipation coefficients, spectral radii, and the normalized second difference

of the pressure are treated as constants during the derivation of the discrete adjoint
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artificial dissipation term, the above equation can be simplified by representing these

terms in the following form

τ (2) = ǫ(2)λ

p

∣∣∣∣
∂2p

∂ξ2

∣∣∣∣

τ (4) = ǫ(4)λ.

Next we pre-multiply equation (4.48) by the Lagrange Multiplier and integrate over

the domain to produce

0 =

∫

D

ψT ∂

∂ξ

[
δF − τ (2) ∂

∂ξ
δw + τ (4) ∂3

∂ξ3
δw

]
.

If ψ is differentiable this may be integrated by parts to give

0 =

∫

B

nψT

[
δF − τ (2)δw + τ (4) ∂2

∂ξ2
δw

]
dBξ−

∫

D

∂ψT

∂ξ

[
δF − τ (2)δw + τ (4) ∂2

∂ξ2
δw

]
dDξ.

Redistribute terms and integrate the third difference artificial dissipation scheme a

second time to produce

0 =

∫

B

nψT

[
δF − τ (2)δw + τ (4) ∂2

∂ξ2
δw

]
dBξ −

∫

D

∂ψT

∂ξ
δFdDξ +

∫

D

∂ψT

∂ξ
τ (2)δwdDξ

−
∫

B

n
∂ψT

∂ξ
τ (4) ∂2

∂ξ2
δwdBξ +

∫

D

∂

∂ξ

[
τ (4) ∂ψT

∂ξ

]
∂

∂ξ
δwdDξ.

A third integration by parts of the last domain integral will produce the final form as

0 =

∫

B

nψT

[
δF − τ (2)δw + τ (4) ∂2

∂ξ2
δw

]
dBξ −

∫

D

∂ψT

∂ξ
δFdDξ +

∫

D

∂ψT

∂ξ
τ (2)δwdDξ

−
∫

B

n
∂ψT

∂ξ
τ (4) ∂2

∂ξ2
δwdBξ +

∫

B

n
∂

∂ξ

[
τ (4)∂ψT

∂ξ

]
∂

∂ξ
δwdBξ

−
∫

D

∂2

∂ξ2

[
τ (4)∂ψT

∂ξ

]
δwdDξ.

Since there is no change in the variation of the state vector across the wall, the second

and third boundary integrals can be dropped, and the equation can be simplified to
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its final form as

0 =

∫

B

nψT
[
δF − τ (2)δw

]
dBξ −

∫

D

∂ψT

∂ξ
δF +

(
τ (2)∂ψT

∂ξ
− ∂2

∂ξ2

[
τ (4)∂ψT

∂ξ

])
δwdDξ.

The expression in the second term of the domain integral is identical to the continuous

form of the discrete adjoint artificial dissipation scheme. Therefore the continuous

adjoint artificial dissipation flux can be recovered from the discrete adjoint artificial

dissipation flux.

4.4 Discrete Adjoint Boundary Conditions

In this section, the viscous adjoint boundary contributions for inverse design and drag

minimization are discussed.

4.4.1 Inverse Design

In the case of an inverse design, δIc is the discrete form of equation (A.15). The

δwi,2 term is added to the corresponding term from equation (4.25), and the metric

variation term is added to the gradient term. In contrast with the continuous adjoint,

where the boundary condition appears as an update to the Lagrange multipliers in

the cell below the wall, the discrete boundary condition appears as a source term in

the adjoint fluxes. At cell (i, 2) the adjoint equation is as follows,

V
∂ψi,2

∂t
=

1

2

[
−AT

i− 1
2
,2

(ψi,2 − ψi−1,2) − AT
i+ 1

2
,2

(ψi+1,2 − ψi,2) − BT
i, 5

2

(ψi,3 − ψi,2)
]

+D(ψ) + V(ψ) + Φinv (4.49)

where Φinv is the source term for inverse design,

Φinv =
(
−∆yξψ2i,2

+ ∆xξψ3i,2
− (p − pT )∆si

)
δpi,2
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and,

AT
i+ 1

2
,2

= ∆yη
i+1

2
,2

[
∂f

∂w

]T

i,2

− ∆xη
i+1

2
,2

[
∂g

∂w

]T

i,2

.

All the terms in equation (4.49) except for the source term are scaled as the square of

∆x. As the mesh width is reduced, the terms within parenthesis in the source term

which are divided by ∆si must approach zero as the solution reaches a steady-state.

One then recovers the continuous adjoint boundary condition as stated in equation

(A.17).

4.4.2 Drag Minimization

The total drag is a sum of the drag due to pressure and skin friction. In this sub-

section, the two contributions will be derived separately to form two boundary con-

dition source terms.

Contribution from Pressure Drag

The discrete viscous adjoint boundary condition for pressure drag minimization can

be easily obtained by replacing the (p − pT )∆si term in the source term of equation

(4.49) by the discrete form of equation (A.19). The contribution of the pressure drag

cost function to the source term can be expressed as

Φpressure drag =

(
−∆yξψ2i,2

+ ∆xξψ3i,2
− 2

γM2
∞P∞c̄

(∆yξ sin α − ∆xξ cos α)∆si

)
δpi,2

Contribution from Skin Friction Drag

Similar to the discrete viscous adjoint boundary conditions for the inverse design case

and pressure drag minimization, the discrete viscous adjoint boundary condition for

skin friction drag minimization appears as a source term in the adjoint fluxes. At cell
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(i, 2) the adjoint source term Φv in the direction normal to the surface is as follows,

Φv = µi+ 1
2
,j+ 1

2

{
2
[

∂ψ3

∂y

]
i+ 1

2
,j+ 1

2

+ vi+ 1
2
,j+ 1

2

[
∂ψ4

∂y

]
i+ 1

2
,j+ 1

2

− 2 2
γM2

∞
P∞

∆xξ sin α

}

− λi+ 1
2
,j+ 1

2

{[
∂ψ2

∂x

]
i+ 1

2
,j+ 1

2

+
[

∂ψ3

∂y

]
i+ 1

2
,j+ 1

2

+ ui+ 1
2
,j+ 1

2

[
∂ψ4

∂x

]
i+ 1

2
,j+ 1

2

+ vi+ 1
2
,j+ 1

2

[
∂ψ4

∂y

]
i+ 1

2
,j+ 1

2

− 2
γM2

∞
P∞

(∆yξ cos α + ∆xξ sin α)
}

.

Unlike its counterpart the viscous continuous adjoint boundary condition, the viscous

discrete adjoint provides boundary conditions for all four Lagrange multipliers.

The pressure and viscous drag source terms are added separately to the adjoint

residual in the cells directly above the wall to satisfy the discrete adjoint boundary

condition. In contrast the continuous adjoint formulation does not allow the separa-

tion of the pressure and skin friction drag, because the form of the boundary integral

in the cost function must be such that it can be canceled by the boundary integral

which results from integrating by parts to give equation (4.6).

4.5 Time Integration and Convergence Accelera-

tion

The continuous and discrete adjoint equations are both linear, and consequently they

could be solved in one step by direct numerical inversion. The cost of the associated

matrix inversion can become prohibitive as the number of mesh cells is increased.

Instead, since the equations are similar to the Euler equations, the same iterative

method is used to solve both the flow and adjoint equations.

The five stage modified Runge-Kutta time stepping scheme used for the Euler and

Navier-Stokes equations described in Chapter 2 is used to march the adjoint equa-

tions to the steady-state limit. This greatly simplified the procedure to implement

the adjoint module, since both the flow and adjoint solver modules shared the same

routines. The local time stepping, implicit residual averaging, and multigrid conver-

gence acceleration procedures used for the flow solver are also applied to the adjoint
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module. The smoothing coefficient for the implicit residual averaging are the same

as the flow solver. The multigrid implementation is identical to the implementation

for the flow solver. Both modules share a large portion of the multigrid subroutines.

4.6 Grid Perturbation

Before we discuss the grid perturbation method used in this work, it is useful to

restate the design problem. From equation (4.1), the variation of the cost function

written as a function of the variation of the state vector δw, grid point location δX ,

and surface δF can be expressed as

δI =
∂IT

∂w
δw +

∂IT

∂X δX +
∂IT

∂F δF .

The solution of the adjoint equation removes the dependence of the gradient on the

flow solution, so that only the variations of the grid point locations and the variation

of the surface shape remain.

The variation of the surface shape δF only introduces surface integrals into the

equation that computes the gradient. Therefore, the computational cost is negligible

even for complex three-dimensional geometries. However, the variations of the grid

point locations δX introduce volume integrals into the gradient computation. In order

to compute this contribution, regeneration of the grid is required based on perturba-

tions on the surface. The grid regeneration is needed for every surface perturbation.

This procedure can be costly if the geometry is three-dimensional and complex, and

would have to be repeated a number of times proportional to the number of design

variables.

Jameson [35, 38] introduced a grid perturbation method that modifies the current

location of the grid points based on perturbations at the geometry surface. The

approach is not dependent on the type of structured grid generation used. The

method was also successfully used by Burgreen et al. [10]. The method modifies, the

grid points along each grid index line projecting from the surface. The arc length

between the surface point and the far-field point along the grid line is first computed.
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Then the grid points at each location along the grid line is attenuated proportional

to its arc length distance from the surface point and the total arc length between the

surface and the far-field. The algorithm can be described as

xnew
i,j = xold

i,j + Cj

(
xnew

i,1 − xold
i,1

)

ynew
i,j = yold

i,j + Cj

(
ynew

i,1 − yold
i,1

)
}

for i = I, j = 2, . . . , jmax, (4.50)

where I is the current grid index. The vector Cj can be defined as follows

Cj = 1 − (3 − 2Nj)N 2
j ,

where N is the ratio of the arc length from the surface to the current grid point and

the total arc length from the surface to the far-field along the grid line as

Nj =

∑j

l=2

√
(xi,l − xi,l−1)

2 + (yi,l − yi,l−1)
2

∑jmax

l=2

√
(xi,l − xi,l−1)

2 + (yi,l − yi,l−1)
2
.

From equation (4.50) the variation of the grid point location can be expressed as a

function of the variation of the surface points as

δX = CjδF .

This allows the variation of the grid point location in the equation for gradient evalu-

ation, to be substituted with the variation of the surface points. The variations of δX
and δF are both absorbed into the metric variations δSij in the derivations of sections

4.2 and 4.3. Reuther [72] provides a complete derivation of the reduction to surface

integrals for the Euler equations. This simple grid perturbation scheme has been

found to be very robust. Kim [46] verified the robustness of the method by modify-

ing two-dimensional viscous meshes. The grid perturbation method was successful in

producing smooth meshes without grid point cross-overs, even in regions of high non-

linearity with large surface perturbations. The grid perturbation method described

in this sub-section is ideal for structured meshes, however, the complexity increases
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with unstructured meshes. The simplicity in the method is in the effortlessness in

producing new grid point locations along the grid line. In the unstructured case, the

lack of a continuous grid line extending from the surface to the far-field, removes the

efficient property of the grid perturbation method. An alternative, would be not to

dampen the grid modification along the grid line but to dampen the changes within

a specified bubble around the surface node. The nodes in the unstructured mesh can

be shifted based upon their distance from the surface point. Possible alternatives to

the grid perturbation scheme have yet to be researched and would be an ideal future

work topic.

4.7 Design Variables

The choice of design variables is one of the most crucial steps in any optimization

procedure. The success of the optimization of the model problem depends on both

the choice of design variables and the cost function. The lift and drag coefficients

are common measures of effectiveness of an aerospace vehicle. The system variables

that have greatest influence on these parameters are the angle of attack, aircraft

configuration, aircraft geometry, etc. In most design processes, the aircraft configu-

ration is generally defined at the end of the conceptual design stage, thus the aircraft

configuration can be easily removed as a possible system or design variable, unless

the optimal design problem is defined for the conceptual design stage. In this work,

the aircraft geometry itself is chosen to be the design variable. In a computational

domain, this translates to the surface mesh points. There are several other ways to

modify the shape during a design process: such as surface perturbations using the

Hicks-Henne “bump” functions [26], B-spline control points, etc. The following two

sub-sections describe the implementation used in this work.

4.7.1 Mesh Points

The use of the surface mesh points as design variables ensures that there is no re-

striction on the attainable geometry. Jameson [35, 38] introduced this concept in his
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early work on automatic aerodynamic optimization. If every surface mesh point is

used, then the complete design space containing the solution that achieves the global

minimum is attainable. In three-dimensional design, this leads to a very large num-

ber of design variables. Since the cost of the adjoint approach is independent of the

number of design variables, it is feasible to use the surface mesh points as design

variables, whereas the cost would be prohibitive if the gradients were computed by

the traditional finite-difference method.

Using mesh points as design variables does pose some problems. First, the in-

dependent displacement of a single point violates the assumption that the geometry

surface is continuous. This would present a difficulty if the flow equation had to be

re-evaluated. But since the adjoint approach does not require re-evaluation of the

flow, this difficulty is avoided. However, the point-wise gradients may contain high

frequency modes, ultimately leading to unsmooth geometry profiles. It is for this rea-

son that Jameson introduced the use of smoothed gradients in the descent procedure,

as discussed in section 3.2.2. The smoothed gradient actually corresponds to the use

of a weighted Sobolev inner product. Comparison of gradients between the adjoint

approach and the finite-difference method are not be possible due to the need for

smooth geometry profiles to recompute the flow solutions to obtain finite-difference

gradients.

4.7.2 Hicks-Henne Functions

Hicks and Henne [26] parameterized the design space by formulating a set of smooth

functions that perturb the geometry surface. The advantage compared to the mesh

point approach described in the previous sub-section is the fact that the computed

gradient remain smooth and thus no smoothing of the gradient is required. This also

ensures that the successive surface geometries in the design process remains smooth.

Another advantage is that fewer design variables are required to provide an acceptable

span of the design space. Hicks introduced this approach since, the finite-difference

method was used to obtain the gradient vector. The Hicks and Henne [26] “sine
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bump” functions can be described as

b(x) = a
[
sin

(
πx

log 5

log t1

)]t2

, for 0 ≤ x ≤ 1,

where a is the maximum bump magnitude, t1 locates the maximum point of the

bump, and t2 controls the width of the bump. This flexibility allows one to place the

bump at strategic points where a redesign is preferred while leaving other parts of

the airfoil intact.

In the main body of this work the mesh points have been used as design variables.

However, the Hicks and Henne “sine bump” functions have been used instead of the

mesh points when a comparison between the adjoint and finite-difference gradients

were desired because it is not feasible to obtain point-wise gradients by the finite-

difference method.

4.8 Finite-Difference and Complex-Step Gradients

In order to verify the accuracy of the gradients provided by the adjoint approach,

they are compared in section 4.10 to gradients obtained using the finite-difference

and complex-step methods. This also provides a confirmation that some of the terms

which were dropped in the derivation of the discrete adjoint equations are not impor-

tant.

Traditionally finite-difference methods have been used to calculate sensitivities of

aerodynamic cost functions. The computational cost of the finite-difference method

for problems involving large numbers of design variables is both unaffordable and

prone to subtractive cancellation error. In order to produce an accurate finite-

difference gradient, a range of step sizes must be used, and thus the ultimate cost

of producing N gradient evaluations with the finite-difference method is the product

mN , where m is the number of different step sizes used to obtain a converged finite-

difference gradient. An estimate of the first derivative of a cost function I using a
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first order forward difference approximation is as follows:

I
′

(x) =
I(x + h) − I(x)

h
+ O(h), (4.51)

where h is the step size. A small step size is desired to reduce the truncation error

O(h) but a very small step size would also increase subtractive cancellation errors.

Lyness and Moler [52] introduced the use of the complex-step in calculating the

derivative of an analytical function. Here, instead of using a real step h, the step size

h is added to the imaginary part of the cost function. A Taylor series expansion of

the cost function I yields

I(x + ih) = I (x ) + ihI
′

(x ) − h2
I

′′

(x )

2 !
− ih3

I
′′′

(x )

3 !
+ · · · .

Take the imaginary parts of the above equation and divide by the step size h to

produce a second order complex-step approximation to the first derivative:

I
′

(x) =
Im[I(x + ih)]

h
+ h2 I

′′′

(x)

3!
+ · · · . (4.52)

The complex step formula does not require any subtraction to yield the approximate

derivative.

Figure 4.1 illustrates the complex-step versus the finite-difference gradient errors

for the inverse design case for decreasing step sizes. At a step size of 10−4 the finite-

difference and complex-step approximations to the first derivative of the cost function

are very similar. As the step size is reduced, the finite-difference gradient error starts

to increase because of subtractive cancellation errors; however, the complex-step con-

tinues to produce more accurate results. Therefore, the complex-step is more robust

and does not require repeated calculations in order to produce an accurate gradient.

If a very small step size is chosen, the gradient is calculated only once per design vari-

able. Due to the use of double precision complex numbers, the code requires three

times the wall clock time when compared to the finite-difference method. But the

benefits of using the complex-step to acquire accurate gradients out-weighs its disad-

vantages. The code used for this work was modified to handle complex calculations
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using an automated method developed by Martins et al. [54, 55].
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4.9 Outline of the Design Process

The design algorithm can be described as follows:

while ||gradient|| ≤ tolerance

Flow Solver.

Compute Variation of Cost Function.

Adjoint Solver.

Compute Gradient.

for i = 1, · · · , N

Perturb design variable.

Modify interior grid points.

Calculate gradient contribution from each integral.

Form the gradient vector.

Implicitly smooth the gradient vector.

end

Optimization Algorithm.

Grid Modification.

Update surface point based on direction of improvement.

Impose the thickness constraint.

Update the interior points.

end while loop

The design procedure listed above is applicable to either the continuous or discrete

adjoint approach. The only difference between the two approaches is in the manner

the adjoint equation is discretized and the application of the boundary conditions.

The boundary conditions are modified based upon the type of cost function. The flow

solver module is generally run until at least 5 orders of magnitude drop in the residual

is achieved. In the adjoint solver module, the multigrid cycles are repeated until at

least 3 orders of magnitude drop in the residual. During the first traverse of the

flow and adjoint solvers, approximately two hundred multigrid cycles are employed.

During successive design iterations, since the surface modifications are generally small,
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only twenty five multigrid cycles are used for the flow and adjoint solvers. The entire

process is repeated until the conditions for optimality are satisfied. Figure 4.2 is a

graphical representation of the design procedure.

FLO103 Flow Solver

Adjoint Solver

Update Airfoil Geometry

Modify Grid

Calculate Gradient Convergence

Design Cycle
Repeated Until

Figure 4.2: Design Procedure

4.10 Results

This section presents the results of the inviscid inverse and drag minimization design,

and viscous inverse design and drag minimization cases. For each case, we compare

the continuous and discrete adjoint gradients to the finite-difference and complex-step

gradients.

4.10.1 Inviscid: Inverse Design

The target pressure is first obtained using the FLO83 flow solver for the NACA

64A410 airfoil at a flight condition of M∞ = 0.74 and a lift coefficient of Cl = 0.63 on

a 192 x 32 C-grid. At such a condition the NACA 64A410 produces a strong shock
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on the upper surface of the airfoil, thus making it an ideal test case for the adjoint

versus finite-difference comparison.

The gradient for the continuous and discrete adjoint methods is obtained by per-

turbing each point on the airfoil. We apply an implicit smoothing technique to the

gradient before it is used to obtain a direction of descent for each point on the surface

of the airfoil. Figures 4.3 and 4.4 illustrate an inverse design case of a Korn to NACA

64A410 airfoil at fixed lift coefficient. Figure 4.3(a) shows the solution for the Korn

airfoil at M∞ = 0.74 and Cl = 0.63. After five design cycles we achieve a general

shape of the target airfoil as shown in figure 4.3(b). After twenty-five design cycles

the upper surface shape is obtained, and nearly eighty percent of the lower surface

is achieved. Following a few more iterations, we obtain the desired target pressure

except for a few points at the trailing edge. Observe the point-to-point match-up at

the shock.

Figures 4.5, 4.6, and 4.7 exhibit the values of the gradients obtained from the

adjoint methods and finite-difference for various grid sizes. The circles denote values

that we obtain by using the finite difference method. The square represents the

discrete adjoint gradient. The asterisk represents the continuous adjoint gradient.

The gradient is obtained with respect to variations in Hicks-Henne sine “bump” [26]

functions placed along the upper and lower surface of the airfoil. The figures only

illustrate the values obtained from the upper surface starting from the leading edge

on the left and ending at the trailing edge on the right. In order to reach an accurate

finite-difference gradient, we obtain gradients for various step sizes until the finite-

difference gradient for each point converges. The discrete adjoint equation is obtained

from the discrete flow equations but without taking into account the dependence of

the dissipation coefficients on the flow variables. Therefore, in order to eliminate the

effect of this on comparisons with the finite-difference gradient we compute the flow

solution until attaining a decrease of seven orders of magnitude in the residue. We

then freeze the dissipative coefficients and calculate the finite-difference value for each

design point. The figures show that the only discrepancies exist in the trailing edge

area.

Table 4.1 contains values of the L2 norm of the difference between the adjoint and
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Grid Size Continuous Discrete Cont-Disc

96 x 16 3.106e − 3 2.397e − 3 9.585e − 4
192 x 32 1.730e − 3 1.724e − 3 2.130e − 4
256 x 64 1.424e − 3 1.419e − 3 4.749e − 5

Table 4.1: L2 norm of the Difference Between Adjoint and Finite-Difference Gradients

finite-difference gradients. The table illustrates three important facts: the difference

between the continuous adjoint and finite-difference gradient is slightly greater than

that between the discrete adjoint and finite-difference gradient; the norm decreases

as the mesh size is increased; and the difference between continuous and discrete

adjoint gradients decreases as the mesh size is reduced. The second column depicts

the difference between the continuous adjoint and finite-difference gradient. The

third column depicts the difference between the discrete adjoint and finite difference

gradients. The last column depicts the difference between the discrete adjoint and

continuous adjoint. As the mesh size increases the norms decrease as expected. This

is due to the fact that the spatial discretization error reduces as the mesh is refined,

thus producing a more accurate solution. Since we derive the discrete adjoint by

taking a variation of the discrete flow equations, we expect it to be consistent with

the finite-difference gradients and thus to be closer than the continuous adjoint to the

finite-difference gradient. This is confirmed by numerical results, but the difference

is very small. As the mesh size increases, the difference between the continuous and

discrete gradients should decrease, and this is reflected in the last column of table

4.1.

Figure 4.8 presents the effect of the partial discretization of the flow solver to

obtain the discrete adjoint equation. Here we obtain the finite-difference gradients in

the figure without freezing the dissipative coefficients. A small discrepancy exists in

regions closer to the leading edge and around the shock. From equation (2.30), the

magnitude of the artificial dissipation coefficients for the first and third order blended

scheme are proportional to the spectral radii and the normalized second difference of

the pressure field. In regions close to high pressure gradients such as the stagnation

point which is within the region of the leading edge of the airfoil and discontinuities
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such as shock waves, the magnitude of the normalized pressure gradient increases and

thus one can no longer assume that the coefficients are constants. The increase in

the magnitude of the dissipative terms causes the discrepancies seen in the vicinity of

the leading edge and the shock wave of the gradient comparison charts. This study

illustrates the importance of a full discretization of the discrete field equations to

obtain a complete set of discrete adjoint equations.

Kim et al. [47] have verified that accurate finite-difference gradients require a con-

vergence of four to five orders of magnitude in the flow solver. However, both the

continuous and discrete adjoint gradients only require a convergence of two orders

of magnitude in the flow solver. Figures 4.9 and 4.10 illustrate the continuous and

discrete gradients for various flow solver convergence. In figure 4.11 and 4.12 contin-

uous and discrete adjoint gradients are plotted for various adjoint solver convergence.

The gradients only require two orders of magnitude convergence in the adjoint solver.

This conclusion illustrates the importance of the control theory approach to auto-

matic aerodynamic optimization. Not only do we save on the cost of computing the

gradients, but we also reduce the computational cost, since it is no longer required

to converge the flow solution by four or five orders of magnitude to obtain solutions

that will provide accurate finite-difference gradients. An automatic design process

that computes a large number of initial design options using only flow solutions with

two or three orders of magnitude decrease in its residual would allow researchers

more time to compute solutions for larger and more complex grids for the final design

configurations.

Figure 4.13 shows a comparison of the profiles of the second and third costate

values between the continuous and discrete adjoint method in a direction normal to

the boundary. The solutions agree in the interior points, differing only at the cell

below the boundary due to the different treatment of the boundary condition. In the

continuous case the value at cell one is updated by the boundary condition. This is in

contrast to the discrete case where the boundary condition appears as a source term

when the fluxes are accumulated in cell two and the boundary condition does not

depend on the value of the costate in cell one. In figure 4.14 both methods produce

similar convergence histories. This result is expected since both the continuous and
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discrete adjoint equations use central second order spatial discretizations. In the case

of the continuous adjoint approach a central second order spatial discretization was

chosen for the convective adjoint flux in order to be consistent with the flow solver

which also uses the same spatial discretization. However, for the discrete adjoint

equation, the central second order scheme was an outcome of applying control theory

to the discrete flow equations. The artificial dissipations schemes are also first and

third order differences. Since both approaches use the same time integration method,

then the overall convergence rate should be similar.

In figure 4.15 we attempt to design a Korn airfoil based on the target pressure of

the NACA 64A410 at a Mach number of 0.78. Both the initial and target pressures

contain a very strong shock. A comparison of the finite-difference and adjoint gradi-

ents reveals an increase in the discrepancy between the two gradients in the vicinity

of the shock. In contrast to figure 4.5, where the shock location is at mesh point 75

along the surface, figure 4.16 illustrates the discrepancy around the stronger shock

around mesh point 80.

4.10.2 Inviscid: Drag Minimization

The cost function for drag minimization is the pressure drag of the airfoil. We perform

computations on a NACA 64A410 airfoil at a flight condition of M∞ = 0.75 and fixed

lift coefficient of Cl = 0.63. As before, the gradients are obtained by taking variations

respect to Hicks-Henne sine “bump” functions placed along the upper and lower

surface of the airfoil. Figure 4.18(a) illustrates the initial solution of the airfoil with

132 drag counts. After two design cycles, the drag is reduced by a third to 44 drag

counts. The strong shock in the initial solution is weakened. And after just four

design cycles, this value is further halved. In figure 4.19(d), the final design does not

contain any shock and the drag count is a mere 15.

Figures 4.20-4.22 illustrate the values of the gradients obtained from the adjoint

methods and finite-difference for various grid sizes. The finite-difference gradients

are based on the same method used for the inverse design case, where the dissipative

coefficients are frozen after a converged flow solution is obtained to simulate a full
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Grid Size Continuous Discrete Cont-Disc

96 x 16 2.920e − 2 1.275e − 2 2.009e − 2
192 x 32 1.049e − 2 7.577e − 3 5.072e − 3
256 x 64 6.241e − 3 5.542e − 3 1.315e − 3

Table 4.2: L2 norm of the Difference Between Adjoint and Finite-Difference Gradients

discretization of the discrete adjoint equation. We reduce the finite-difference step

sizes until we gain converged values for each design point. We plot gradients for

the upper surface from leading edge to trailing edge. In figure 4.20 design points

between 50 and 60 are located in the vicinity of the leading edge, where the gradient

has a positive slope. In this region the discrete adjoint gradient agrees better with

the finite-difference gradient, if compared to the continuous adjoint gradient. The

difference reduces as the grid size increases. The higher curvature in the leading

edge compared to the pressure and suction sides of the airfoil leads to larger spatial

discretization errors. Therefore an increase to the mesh size increases the number of

points that represent the high curvature region in the leading edge and thus reduces

the discretization error and this leads to better agreement between the gradients.

Apart from the region of the leading edge, the adjoint and finite-difference gradients

agree.

Table 4.2 contains values of the L2 norm of the difference between the adjoint

and finite-difference gradients. Similar to the inverse design case, the table illustrates

three important facts: the discrete adjoint gradient is closer than the continuous

adjoint gradient to the finite-difference gradient; the norms decrease as the mesh

size increases; and, finally, the difference between the continuous and discrete adjoint

gradient decreases as the mesh size increases.

We recalculate the finite-difference and adjoint gradients in figure 4.23 for the

medium size mesh of 192 x 32 cells to illustrate the effect of partial discretization of

the flow solver. The dissipative coefficients are not frozen during the finite-difference

calculations. A very small discrepancy appears in the leading edge and in the shock

wave (points: 137-140).

Figures 4.24 and 4.25 illustrate the continuous and discrete gradients for various
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flow solver convergence. Only a single order magnitude drop in the flow solver is

required for the adjoint gradients to converge. We plot continuous and discrete adjoint

gradients in figure 4.26 and 4.27 for various adjoint solver convergence. The gradients

only require one order of magnitude convergence in the adjoint solver.

Figure 4.28 shows a comparison of convergence of the objective function between

the continuous and discrete adjoint. Both methods converge to the same value for the

objective function. Figure 4.29 presents the second and third costate profiles normal

to the boundary for the continuous and discrete adjoint solutions. Both solutions

agree in the interior points but disagree at the cell below the wall. This is due to

the difference between the enforcement of the boundary condition. Figure 4.30 shows

that both adjoint methods produce the same convergence history.

4.10.3 Viscous: Inverse Design

In an inverse design case, the target pressure is generally obtained from a known solu-

tion. The target pressure is obtained using the FLO103 flow solver for the NACA0012

airfoil at M∞ = 0.75 and a lift coefficient of Cl = 0.50 on a 512x64 C-grid.

Figures 4.31 and 4.32 illustrate an inverse design case of a NACA0012 to Onera M6

airfoil at fixed lift coefficient. Figure 4.31(a) shows the solution for the NACA 0012

airfoil at M∞ = 0.75 and Cl = 0.50. After only 4 design cycles, the general shape of

the target airfoil is achieved as shown in figure 4.31(b). The circles denote the target

pressure distribution, the plus signs are the current upper surface pressure, and lastly,

the x marks denote the lower surface pressure distribution. After 100 design iterations

the desired target airfoil is obtained. Observe the point-to-point match along the

shock. The figures illustrate solutions that are obtained using the continuous adjoint

method. The discrete adjoint method produces an identical solution.

Figure 4.33 illustrates another example of an inverse design problem of a RAE to

NACA 64A410 airfoil at fixed lift coefficient. Figure 4.33(a) shows the solution for the

RAE airfoil at M∞ = 0.75 and Cl = 0.50. The final design illustrates that the target

airfoil is achieved but with a slight deviation at the shock. The purpose of this example

is to illustrate the successful application of the method to unsymmetrical airfoils with
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cusp-ed trailing edges. A very strong shock is produced on the upper surface, thus

making this an ideal test case for the adjoint versus complex-step gradient comparison.

To ensure that the gradients obtained from the adjoint method are accurate: we

first, investigate the sensitivity of the gradient to the convergence level of the flow

and adjoint solver; and second, compare them to gradients obtained from a finite-

difference or complex-step method. Figure 4.34 shows the adjoint gradient errors for

varying flow solver convergence. As seen in the figure, at least a four order magnitude

drop in the flow solver convergence is required for adjoint gradients to be accurate up

to five significant digits. Any further drop in the flow convergence has a minimal effect

on the accuracy of the adjoint gradient; therefore, adjoint gradients as expected are

sensitive to the convergence of the flow solver. Note here that an opposite conclusion

was reached for the inviscid case, where the adjoint gradients only required the flow

solver to converge to only two order magnitude drop in its residual. In the viscous

case, the presence of the boundary layer affects the accuracy of the adjoint gradients.

However, the gradients are not sensitive to the convergence of the adjoint solver. In

figure 4.35(a) one order magnitude drop in the adjoint solver produces gradients that

are accurate to four significant digits.

Figure 4.36 illustrates the values of the gradients obtained from the continuous and

discrete adjoint and complex-step methods. The asterisks represent the continuous

adjoint gradients, the squares represent the discrete adjoint gradients, and the circles

denote values that are obtained using the complex-step method. The gradient is

obtained with respect to variations in Hicks-Henne sine “bump”[26] functions placed

along the upper and lower surfaces of the airfoil. The figure only illustrates the values

obtained with modifications to the upper surface starting from the leading edge on

the left and ending at the trailing edge on the right. The discrete adjoint equation

is obtained from the discrete flow equations but without taking into account the

dependence of the dissipation coefficients on the flow variables. Therefore, in order to

eliminate the effect of this on comparisons with the complex-step gradient we compute

the flow solution until attaining a decrease of five orders of magnitude in the residual.

We then freeze the dissipative coefficients and calculate the complex-step value for

each design variable.
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Grid Size Continuous Discrete Cont-Disc

384 x 64 1.382e − 3 1.331e − 3 8.888e − 5
512 x 64 1.008e − 3 9.943e − 4 4.610e − 5
1024 x 64 7.809e − 4 7.795e − 4 1.425e − 5

Table 4.3: L2 norm of the Difference Between Adjoint and Complex-Step Gradients

Table 4.3 contains values of the L2 norm of the difference between the adjoint and

complex-step gradients. The table illustrates three important facts: the difference

between the discrete adjoint and the complex-step gradient is slightly smaller than

that between the continuous adjoint and complex-step gradient; the norm decreases

as the mesh size is increased; and the difference between continuous and discrete

adjoint gradients decreases as the mesh size is increased. The second column depicts

the difference between the continuous adjoint and complex-step gradient, the third

column depicts the difference between the discrete adjoint and complex-step gradients,

and lastly the last column depicts the difference between the discrete and continuous

adjoint. As the mesh size increases, the norm of the difference between adjoint and

complex-step decreases as expected. Since we derive the discrete adjoint by taking

a variation of the discrete flow equations, we expect it to be consistent with the

complex-step gradients and thus to be closer to the complex-step gradient than the

continuous adjoint. This is confirmed by numerical results, but the difference is very

small. As the mesh size increases, the difference between the continuous and discrete

gradients should decrease, and this is reflected in the last column of table 4.3.

4.10.4 Viscous: Drag Minimization

The drag minimization problem is broken up into two different subsections: pressure

drag and total drag minimization. Figures 4.39-4.40 illustrate the drag minimization

of RAE 2822 airfoil using the continuous adjoint formulation at a M∞ = 0.75 and

a fixed lift coefficient of Cl = 0.65. Figure 4.39(a) shows the initial solution of

the RAE 2822 airfoil with 56 drag counts due to viscous forces and 92 drag counts

due to pressure drag, thus adding up to a total of 148 drag counts. In the first

case, as shown in figure 4.39(b), only the pressure drag boundary condition and its
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contribution towards the gradient are included. After 20 design iterations, a reduction

of 50 drag counts is achieved; however, the skin friction drag increased by 1 count. In

figure 4.40(d) the objective function is the total drag coefficient. The resulting airfoil

has the same characteristics as the airfoil in figure 4.39(b) that has been obtained by

just using the pressure drag.

Figures 4.41 and 4.42 illustrate the pressure and total drag minimization of the

RAE 2822 airfoil using the Discrete Adjoint Formulation. In figure 4.41(b) the airfoil

has been redesigned by using only the pressure drag boundary condition and its

contribution towards the gradient. The solution is similar to the one obtained using

the continuous adjoint boundary condition. The pressure drag is reduced by 50 drag

counts, but the skin friction drag increases by two drag counts. Thus the total drag

reduction is 49 drag counts, compared to the 50 that is obtained with continuous

adjoint method. When the total drag minimization boundary condition is used, the

discrete adjoint produces the exact same result as the continuous adjoint formulations.

When only the pressure drag boundary condition is used, both the continuous

and discrete adjoint gradients match with the complex-step gradient as shown in

figure 4.43. Figure 4.44 shows the gradient comparisons for total drag minimization.

The discrete adjoint gradient is close to the complex-step gradient, but there are

discrepancies between the continuous and complex-step gradients. Kim’s results show

similar discrepancies, though not as large [46]. The source of these discrepancies is

still unknown. This is a topic of future research.
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3a: Initial Solution of Korn Airfoil
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3b: After 5 Design Iterations

Figure 4.3: Inviscid Inverse Design of Korn to NACA 64A410 at Fixed Cl

Grid - 192 x 32, M = 0.74, Cl = 0.63, α = 0 degrees
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4a: After 25 Design Iterations
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4b: Final Design

Figure 4.4: Inviscid Inverse Design of Korn to NACA 64A410 at Fixed Cl

Grid - 192 x 32, M = 0.74, Cl = 0.63, α = 0 degrees
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Figure 4.5: Adjoint Versus Finite Difference Gradients for Inviscid Inverse Design of
Korn to NACA 64A410 at Fixed Cl. Coarse Grid - 96 x 16, M = 0.74, Cl = 0.63
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Figure 4.6: Adjoint Versus Finite Difference Gradients for Inviscid Inverse Design of
Korn to NACA 64A410 at Fixed Cl. Medium Grid - 192 x 32, M = 0.74, Cl = 0.63
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Figure 4.7: Adjoint Versus Finite Difference Gradients for Inviscid Inverse Design of
Korn to NACA 64A410 at Fixed Cl. Fine Grid - 256 x 64, M = 0.74, Cl = 0.63
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Figure 4.9: Continuous Adjoint Gradients for Varying Flow Solver Convergence for
the Inviscid Inverse Design Case
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Figure 4.10: Discrete Adjoint Gradients for Varying Flow Solver Convergence for the
Inviscid Inverse Design Case
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Figure 4.11: Continuous Adjoint Gradients for Varying Adjoint Solver Convergence
for the Inviscid Inverse Design Case
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Figure 4.12: Discrete Adjoint Gradients for Varying Adjoint Solver Convergence for
the Inviscid Inverse Design Case



122CHAPTER 4. THE DISCRETE AND CONTINUOUS ADJOINT APPROACHES

−1.5 −1 −0.5 0 0.5
0

2

4

6

8

10

12

14

16

18

20

Value of Costate

Second Costate Variable

Continuous
Discrete  

−0.4 −0.3 −0.2 −0.1 0
0

2

4

6

8

10

12

14

16

18

20

Value of Costate

Third Costate Variable

Continuous
Discrete  

Figure 4.13: Comparison of Costate Values Between the Continuous and Discrete
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15a: Initial Solution of Korn Airfoil

                       
             

 

 

0.
1E

+
01

0.
8E

+
00

0.
4E

+
00

-.
2E

-1
5

-.
4E

+
00

-.
8E

+
00

-.
1E

+
01

-.
2E

+
01

-.
2E

+
01

C
p

+
+

+++++++++++++++++++++++++++++++++++++++++++++++
+++++

+++
++

++
++
+
+

+

+

+

+

+

+
++++

+

+

+
+
+

+
+
+
+
+
+
+
+
+
++
++
++
++

++
++

++
++

++
+++++++++++++++++++++++++++++

+

+

+

+
+ +

+
+

+
o

oooooooooooooooooooooooooooooooooooooooooooooooo
ooooo

ooo
oo

oo
oo
o
o

o

o

o

o

o

o
ooo
o
o

o

o

o

o
o
o
o
o
o
o
o
o
oo
oo
oo
oo

oo
oo

oo
oo

oo
oooooooooooooooooooooooo o o o o o

o

o

o

o

o o
o

o
o

15b: Final Design

Figure 4.15: Inviscid Inverse Design of Korn to NACA 64A410 at Fixed Cl

Grid - 192 x 32, M = 0.78, Cl = 0.63, α = 0 degrees



124CHAPTER 4. THE DISCRETE AND CONTINUOUS ADJOINT APPROACHES

50 55 60 65 70 75 80 85
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Design Point

M
ag

ni
tu

de
 o

f G
ra

di
en

t

Cont Adjoint Gradient      
Disc Adjoint Gradient      
Finite Difference Gradient 
                           
||cont−fdg||

2
 = 2.031e−03 

||disc−fdg||
2
  = 1.895e−03

Figure 4.16: Adjoint Versus Finite Difference Gradients for Inviscid Inverse Design
of Korn to NACA 64A410 at Fixed Cl. Coarse Grid - 96 x 16, M = 0.78, Cl = 0.63
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Figure 4.17: Adjoint Versus Finite Difference Gradients for Inviscid Inverse Design of
Korn to NACA 64A410 at Fixed Cl. Medium Grid - 192 x 32, M = 0.78, Cl = 0.63
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18a: Initial Solution. Cd = 0.0132
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18b: After 2 Design Iterations.

Cd = 0.0044

Figure 4.18: Inviscid Drag Minimization of NACA 64A410 at Fixed Cl

Grid - 192 x 32, M = 0.75, Cl = 0.63
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19a: After 4 Design Iterations.

Cd = 0.0022
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19b: After 20 Design Iterations.

Cd = 0.0015

Figure 4.19: Inviscid Drag Minimization of NACA 64A410 at Fixed Cl

Grid - 192 x 32, M = 0.75, Cl = 0.63
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Figure 4.20: Adjoint Versus Finite Difference Gradients for Inviscid Drag Minimiza-
tion of NACA 64A410 at Fixed Cl.

Coarse Grid - 96 x 16, M = 0.75, Cl = 0.63
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Figure 4.21: Adjoint Versus Finite Difference Gradients for Inviscid Drag Minimiza-
tion of NACA 64A410 at Fixed Cl.

Medium Grid - 192 x 32, M = 0.75, Cl = 0.63
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Figure 4.22: Adjoint Versus Finite Difference Gradients for Inviscid Drag Minimiza-
tion of NACA 64A410 at Fixed Cl.

Fine Grid - 256 x 64, M = 0.75, Cl = 0.63
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Figure 4.23: Adjoint Versus Finite Difference Gradients for Inviscid Drag Minimiza-
tion of NACA 64A410 at Fixed Cl. Dissipative Coefficients Not Frozen.

Medium Grid - 192 x 32, M = 0.75, Cl = 0.63
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Figure 4.24: Continuous Adjoint Gradients for Varying Flow Solver Convergence for
the Inviscid Drag Minimization Case
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Figure 4.25: Discrete Adjoint Gradients for Varying Flow Solver Convergence for the
Inviscid Drag Minimization Case
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Figure 4.26: Continuous Adjoint Gradients for Varying Adjoint Solver Convergence
for the Inviscid Drag Minimization Case
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Figure 4.27: Discrete Adjoint Gradients for Varying Adjoint Solver Convergence for
the Inviscid Drag Minimization Case
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Figure 4.28: Comparison of Convergence of the Objective Function Between the
Continuous and Discrete Adjoint Method for Inviscid Drag Minimization.
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Figure 4.29: Comparison of Costate Values Between the Continuous and Discrete Ad-
joint Method for Inviscid Drag Minimization of NACA 64A410 at Fixed Cl. Medium
Grid - 192 x 32, M = 0.75, Cl = 0.63
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31a: Initial Solution of NACA0012
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31b: After 4 Design Iterations

Figure 4.31: Inverse Design of NACA 0012 to Onera M6 at Fixed Cl

Grid - 512 x 64, M = 0.75, Cl = 0.65, α = 1 degrees
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32a: After 50 Design Iterations
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32b: Final Design after 100

Iterations

Figure 4.32: Inverse Design of NACA 0012 to Onera M6 at Fixed Cl

Grid - 512 x 64, M = 0.75, Cl = 0.65, α = 1 degrees
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33a: Initial Solution of RAE Airfoil
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33b: After 100 Design Iterations

Figure 4.33: Inverse Design of RAE to NACA64A410 at Fixed Cl

Grid - 512 x 64, M = 0.75, Cl = 0.50, α = 1 degrees
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Figure 4.34: Adjoint Gradient Errors for Varying Flow Solver Convergence for the

Inverse Design Case; ǫ =
|g−gref |

|gref |
. Fine Grid - 512 x 64, M = 0.75, Cl = 0.65
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Figure 4.35: Adjoint Gradient Errors for Varying Adjoint Solver Convergence for the

Inverse Design Case; ǫ =
|g−gref |

|gref |
. Fine Grid - 512 x 64, M = 0.75, Cl = 0.65
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Figure 4.36: Adjoint Versus Complex-Step Gradients for Inverse Design of RAE to
NACA64A410 at Fixed Cl. Coarse Grid - 384 x 64, M = 0.75, Cl = 0.65
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Figure 4.37: Adjoint Versus Complex-Step Gradients for Inverse Design of RAE to
NACA64A410 at Fixed Cl. Medium Grid - 512 x 64, M = 0.75, Cl = 0.65
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Figure 4.38: Adjoint Versus Complex-Step Gradients for Inverse Design of RAE to
NACA64A410 at Fixed Cl. Fine Grid - 1024 x 64, M = 0.75, Cl = 0.65
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39a: Initial Solution of RAE Airfoil

            
       
            
    
 

0.
1E

+
01

0.
8E

+
00

0.
4E

+
00

-.
2E

-1
5

-.
4E

+
00

-.
8E

+
00

-.
1E

+
01

-.
2E

+
01

-.
2E

+
01

C
p

++++++++++++++++++++++++++++++++++++++++++++++
++++++++

++++++
+++++

++++
++++

+++
+++

+++
+++

++
++

+++
+++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++
++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++
++
++
++
+++
++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

39b: Final Design Based on Pressure

Drag Minimization

Figure 4.39: Drag Minimization of RAE Airfoil using the Continuous Adjoint For-
mulation. Grid - 512 x 64, M = 0.75, Fixed Cl = 0.65, α = 1 degrees
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40a: Final Design Based on Total

Drag Minimization

Figure 4.40: Drag Minimization of RAE Airfoil using the Continuous Adjoint For-
mulation. Grid - 512 x 64, M = 0.75, Fixed Cl = 0.65, α = 1 degrees
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41a: Initial Solution of RAE Airfoil
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41b: Final Design Based on Pressure

Drag Minimization

Figure 4.41: Drag Minimization of RAE Airfoil using the Discrete Adjoint Formula-
tion. Grid - 512 x 64, M = 0.75, Fixed Cl = 0.65, α = 1 degrees
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42a: Final Design Based on Total

Drag Minimization

Figure 4.42: Drag Minimization of RAE Airfoil using the Discrete Adjoint Formula-
tion. Grid - 512 x 64, M = 0.75, Fixed Cl = 0.65, α = 1 degrees
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Figure 4.43: Adjoint Versus Complex-Step Gradients for Pressure Drag Minimization
at Fixed Cl. Fine Grid - 512 x 64, M = 0.75, Cl = 0.65
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Figure 4.44: Adjoint Versus Complex-Step Gradients for Total Drag Minimization at
Fixed Cl. Fine Grid - 512 x 64, M = 0.75, Cl = 0.65



144CHAPTER 4. THE DISCRETE AND CONTINUOUS ADJOINT APPROACHES



Chapter 5

Optimum Shape Design for

Unsteady Flows

This chapter presents an adjoint method for optimum shape design for unsteady

flows. The goal is to develop a set of time accurate continuous and discrete adjoint

equations and their corresponding boundary conditions. First, the complete general

formulation of the time dependent optimal design problem is presented. Second, the

time accurate continuous and discrete adjoint equations are derived. Third, results

that demonstrate the application of the theory to two-dimensional oscillating airfoils

are presented. Although the design procedure generates a single optimum airfoil

shape, a similar method could be used to determine optimal time varying shapes if it

were feasible to manufacture continuously deformable structures.

5.1 Governing Equations

As in the case of steady flow, it is convenient to use a body fitted coordinate system

so that the computational domain is fixed. This requires the formulation of the Euler

equations in a transformed coordinate system. The Cartesian coordinates and velocity

components are denoted by x, y, and u, v. For a control volume Ω with a moving

boundary ∂Ω moving with Cartesian velocity components xt and yt, the equations of

145
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motion of the fluid can be written in integral form as

d

dt

∫ ∫

Ω

wdxdy +

∮

∂Ω

(fdy − gdx) = 0, (5.1)

where the state vector w, inviscid flux vector f and g are described respectively by

w =





ρ

ρu

ρv

ρE





, f =





ρu

ρu2 + p

ρuv

ρEu + pu





, g =





ρv

ρuv

ρv2 + p

ρEv + pv





. (5.2)

In these definitions, ρ is the density and E is the total energy. The pressure is

determined by the ideal gas equation of state

p = (γ − 1) ρ

[
E − 1

2
(uiui)

]
.

For discussion of real applications using a discretization on a body conforming struc-

tured mesh, it is also useful to consider a transformation from the physical coordi-

nates (x, y, t) to the computational coordinates (ξ1,ξ2, τ). Apply the following general

transformation given by

ξi = ξi (x1, x2, t) , for i = 1, 2

τ = t.

The metrics can then be defined as

Kij =

[
∂xi

∂ξj

]
, J = det (K) , K−1

ij =

[
∂ξi

∂xj

]
.

Using the chain rule, the Euler equations can then be written in computational space

as
∂ (Jw)

∂τ
+

∂

∂ξi

[
J

∂ξi

∂t
w + J

∂ξi

∂xj

fj

]
= 0 in D.
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The mesh velocity in the computational domain, ∂ξi

∂t
, can be written in the form of

the physical domain, by the following substitution

∂ (Jw)

∂τ
+

∂

∂ξi

[
J

∂ξi

∂xj

∂xj

∂t
w + J

∂ξi

∂xj

fj

]
= 0.

A further rearrangement of the bracketed terms produce the unsteady Euler equations

∂ (Jw)

∂τ
+

∂Fi

∂ξi

= 0, (5.3)

where the inviscid flux contributions are now defined with respect to the computa-

tional cell faces by

Fi = Sij

[
fj − xtjw

]
.

The quantity Sij = JK−1
ij represents the projection of the ξi cell face along the xj

axis and the quantity xtj represents the mesh velocity in the jth coordinate direction.

5.2 Numerical Discretization

In this section, the numerical discretization of equation (5.3) will be discussed. Since

the governing equation now models the unsteady flow field, it must be solved in a

time accurate approach. This requires both the inclusion of the time varying terms

in the fluxes and a proper discretization of the time derivative.

We will first re-examine at the spatial discretization of the total flux across the

cell face. The Euler flux vector from equation (5.2) must be redefined to include the

mesh velocity terms. The new Euler convective flux vectors can be written as

f =





ρ(u − xt)

ρu(u − xt) + p

ρv(u − xt)

ρE(u − xt) + pu





and g =





ρ(v − xt)

ρu(v − xt)

ρv(v − xt) + p

ρE(v − xt) + pv





. (5.4)

The above modifications can be incorporated into an existing steady Euler code with
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very few modifications. Let us define the new flux velocity as

q̂− = q− − qmesh and q̂+ = q+ − qmesh,

where the flux velocities, q− and q+, are the original Euler flux velocities and follow

that of section 2.2.1. The mesh flux velocities are defined in a similar fashion as

follows

qmesh = yη
i+1

2
,j
xtij − xη

i+1
2

,j
ytij ,

where xtij and ytij are the mesh velocities in the x and y directions. When equation

(5.3) is formulated for each computational cell a system of first order ordinary differ-

ential equations is obtained. To eliminate odd-even decoupling of the solution and

overshoots before and after shock waves, the conservative fluxes are augmented by

the artificial dissipation terms, as before.

5.2.1 Discretization of the Time Derivative Term

We now discuss the discretization of the time derivative term. For the solution of

the steady-state Euler equations, the equation is marched until the time derivative

vanishes. However, in an unsteady flow environment the equation must be marched

in a time accurate approach. This can be accomplished either with explicit or im-

plicit schemes. Implicit schemes generally require the inversion of a large matrix. The

computational cost of an inversion is proportional to the size of the mesh and band-

width of the matrix. Iterative methods have lower cost per iteration but generally

require more iterations to produce a converged solution. For a detailed overview of

the difference between each approach, please refer to Alonso [1]. In this research, a

combination of both an explicit and implicit approach first proposed by Jameson [36]

is employed. The time dependent flow equation is discretized with an implicit scheme,

but the resulting equations are solved at each time step using an iterative algorithm

that is generally used for explicit schemes. To obtain a fully implicit algorithm we

approximate (5.3) as
d

dτ

[
wn+1

i,j V n+1
i,j

]
+ R(wn+1

i,j ) = 0. (5.5)
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The time derivative term can be approximated by a k th-order implicit backward

difference formula (BDF ) such as,

d

dτ
=

1

∆τ

k∑

q=1

1

q

[
∆−

]q
, (5.6)

where

∆− = wn+1
i,j − wn

i,j.

Following Melson et al. [58], the physical time derivative can be expressed as

d

dτ

[
wn+1

i,j V n+1
i,j

]
=

1

∆τ

[
M∑

m=0

amw(n+1−m)V (n+1−m)

]

=
1

∆τ

[
a0w

(n+1)V (n+1)

+E
(
w(n)V (n), w(n−1)V (n−1), · · · , w(n+1−M)V (n+1−M)

)]
,

where the operator E represents the terms of the time derivative for previous time

steps. A second order accurate backward difference expansion of the above equation

produces an A-stable scheme. The stability region of an A-stable scheme covers

the entire left half of the complex plane. Consequently the time step can be chosen

arbitrarily large, subject to the requirement of sufficient accuracy. Dahlquist et al. [14]

proved that A-stable multistep schemes are no better than second order accurate. A

third order expansion of the backward difference formula generates a stiffly stable

scheme as reported by Gear [22] and Lambert [48]. In this case the stability region

covers most but not all of the left half of the complex plane. A subset of the high

frequency error modes may not be damped, but the inclusion of artificial dissipation

fluxes eliminates these error components. Alonso [1] has shown that this scheme is

robust in practice. The fourth order expansion also generates a stiffly stable scheme,

but with more undamped high frequency error modes. In practice this scheme has

proved to be robust for only a selected number of problems.
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In this work, a second order expansion of equation (5.6) is employed as shown

below

3

2∆τ

[
wn+1

i,j V n+1
i,j

]
− 2

∆τ

[
wn

i,jV
n
i,j

]
+

1

2∆τ

[
wn−1

i,j V n−1
i,j

]
+ R(wn+1

i,j ) = 0. (5.7)

Equation (5.7) represents an implicit set of coupled ordinary differential equations and

can be solved at each time step using the explicit multistage modified Runge-Kutta

scheme. We define a new modified residual R∗(wi,j) as

R∗(wi,j) =
3

2∆τ

[
wn+1

i,j V n+1
i,j

]
− 2

∆τ

[
wn

i,jV
n
i,j

]
+

1

2∆τ

[
wn−1

i,j V n−1
i,j

]
+ R(wn+1

i,j ). (5.8)

The modified residual is then marched to steady-state in a fictitious time, t∗, as follows

dwi,j

dt∗
+ R∗(wi,j) = 0.

5.3 Reduced Frequency

The unsteady optimization method in this work is applied to the reduction of the

time-averaged drag of an airfoil pitching about its quarter chord. An important

dimensionless parameter that describes the level of unsteadiness is the reduced fre-

quency, defined as

ωr =
θc

2V
,

where θ is the angular frequency of the oscillation, c is the airfoil chord, and V the flow

field freestream velocity. For ωr = 0, the flow is steady. For 0 ≤ ωr ≤ 0.05 the flow

is defined as quasi-steady. In a quasi-steady flow environment, the unsteady effects

are negligible. An example of a quasi-steady flow is an airfoil oscillating at a very

slow speed, such that the instantaneous flow solution is similar to the steady-state

solution. Flows with ωr ≥ 0.05 are defined as unsteady, while flows with ωr ≥ 0.2 is

termed highly unsteady.
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5.4 General Formulation

As in Chapter 4, the aerodynamic properties that define the cost function are func-

tions of the flow field variables, w, and the physical location of the boundary, which

may be represented by the function f . We then introduce the cost function

I =

∫ tf

0

L(w, f)dt + M(w(tf )), (5.9)

where the function L depends on the flow solution w, and the shape function f and

the function M depends on the time dependent flow solution.

A change in f results in a change

δI =

∫ tf

0

(
∂LT

∂w
δw +

∂LT

∂f
δf

)
dt +

∂MT

∂w
δw(tf ) (5.10)

in the cost function. Using control theory the governing equations of the flow field

are now introduced as a constraint in such a way that the final expression for the

gradient does not require reevaluation of the flow field. In order to achieve this, δw

must be eliminated from equation (5.10). Suppose that the following equation defines

the time dependent flow solution

∂w

∂t
+ R(w, f) = 0,

where R represents a residue containing the convective and dissipative fluxes. The

variation in the flow solution is

∂

∂t
δw +

[
∂R

∂w

]
δw +

[
∂R

∂f

]
δf = 0.

Next, introduce a Lagrange multiplier ψ to the time dependent flow equation and

integrate it over time to yield.

∫ tf

0

ψT

(
∂

∂t
δw +

[
∂R

∂w

]
δw +

[
∂R

∂f

]
δf

)
= 0. (5.11)
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Subtract equation (5.11) from the variation of the cost function to arrive at the

following equation:

δI =

∫ tf

0

(
∂LT

∂w
δw +

∂LT

∂f
δf

)
dt +

∂MT

∂w
δw(tf )

−
∫ tf

0

ψT

(
∂

∂t
δw +

[
∂R

∂w

]
δw +

[
∂R

∂f

]
δf

)
dt. (5.12)

Next separate the
∫ tf
0

ψT ∂
∂t

δwdt term from the integral over time of the product of

the Lagrange multiplier ψ and the time dependent flow equation. Then collect the

δw and δf terms and rearrange them in equation (5.12) to produce the following

expression:

δI =

∫ tf

0

(
∂LT

∂w
− ψT

[
∂R

∂w

])
δwdt +

∫ tf

0

(
∂LT

∂f
− ψT

[
∂R

∂f

])
δfdt

−
∫ tf

0

ψT ∂

∂t
δwdt +

∂MT

∂w
δw(tf ).

Lastly, integrate the term
∫ tf

0
ψT ∂

∂t
δwdt by parts, to yield

δI =

∫ tf

0

(
∂LT

∂w
+

∂ψT

∂t
− ψT

[
∂R

∂w

])
δwdt +

(
∂MT

∂w
− ψT (tf )

)
δw(tf )

+

∫ tf

0

(
∂LT

∂f
− ψT

[
∂R

∂f

])
δfdt.

Choose ψ to satisfy the adjoint equation

∂ψ

∂t
−

[
∂R

∂w

]T

ψ = −∂L
∂w

with the terminal boundary condition

ψ(tf ) =
∂M
∂w

.
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Then the variation of the cost function reduces to

δI = GT δf,

where

GT =

∫ tf

0

(
∂LT

∂f
− ψT ∂R

∂f

)
dt.

Optimal control of time dependent trajectories is generally complicated by the

need to solve the adjoint equation in reverse time from a final boundary condition

using data from the trajectory solution, which in turn depends on the control derived

from the adjoint solution. The sensitivities are determined by the solution of the

adjoint equation in reverse time from the terminal boundary condition and the time

dependent solution of the flow equation. These sensitivities are then used to get a

direction of improvement and steps are taken until convergence is achieved. Note

here that the difference between the gradient for a multipoint design approach and

the time dependent problem is minimal, where the integral over time in the time

dependent gradient can be replaced by a summation over the various design cases for a

multipoint design approach. The equations are identical if a constant time step is used

for the time dependent approach. However, the flow solution used for the calculation

of the gradient for the time dependent problem would be based on the solution of

the unsteady problem instead of the steady solution at each time instance for the

multipoint approach. The computational costs of unsteady optimization problems

are directly proportional to the desired number of time steps. The unsteady flow

calculation can be obtained either by the use of implicit time stepping schemes or a

nonlinear frequency domain approach [57].
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5.5 Time Accurate Continuous Adjoint Equations

To control the surface pressure by varying the airfoil shape, it is convenient to retain

a fixed computational domain. Variations in the shape then result in correspond-

ing variations in the mapping derivatives defined by K. The cost function for drag

minimization is

I =

∫ tf

0

Cd dt =

∫ tf

0

Ca cos α + Cn sin α dt

=
1

1
2
γP∞M2

∞c̄

∫ tf

0

∫

B

p

(
∂y

∂ξ
cos α − ∂x

∂ξ
sin α

)
dξdt,

where I is the total drag of the time accurate problem, and Ca and Cn are the axial

and normal force coefficients respectively. The design problem is now treated as a

control problem where the control function is the airfoil shape, which is chosen to

minimize I subject to the constraints defined by the flow equations. A variation in

the shape causes a variation δp in the pressure and consequently a variation in the

cost function

δI =
1

1
2
γP∞M2

∞c̄

∫ tf

0

∫

B

δp

[
∂y

∂ξ
cos α − ∂x

∂ξ
sin α

]

+p

[
δ

(
∂y

∂ξ

)
cos α − δ

(
∂x

∂ξ

)
sin α

]
dξdt. (5.13)

Since the pressure, p, depends on the state vector, w, through the equation of state,

then the variation δp is determined from the variation δw. Define the time dependent

flow equation as
∂w

∂t
+

∂Fk

∂ξk

= 0.

Define the Euler Jacobian matrices as

Ak =
∂fk

∂w
, Ck = SklAl.
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Then the variation in the flow solution can be written as

∂

∂t
δw +

∂

∂ξk

δFk = 0,

where

δFk = Ckδw + δSklfl.

Multiplying by a co-state vector ψ, also known as a Lagrange Multiplier, and inte-

grating over the space and time produces

∫ tf

0

∫

D

ψT

[
∂

∂t
δw +

∂

∂ξk

(Ckδw + δSklfl)

]
dDdt = 0.

Separate the equation into two terms and switch the order of the domain and time

integrals for the first term to yield

∫

D

∫ tf

0

ψT ∂

∂t
δwdtdD +

∫ tf

0

∫

D

ψT ∂

∂ξk

(Ckδw + δSklfl) dDdt = 0.

If ψ is differentiable, then the two terms in the above equation can be integrated by

parts to give

∫

D

([
ψT δw

]tf

0
−

∫ tf

0

∂ψT

∂t
δwdt

)
dD

+

∫ tf

0

[∫

B

nkψ
T (Ckδw + δSklfl) dB −

∫

D

∂ψT

∂ξk

(Ckδw + δSklfl) dD
]

dt = 0.

The next procedure is to rearrange the terms in the equation such that integrands

that are multiplied by the variation of the state vector, δw, are grouped together and

terms that are multiplied by the variation of the metric terms are separated into a

different integral. This procedure is crucial to isolate the integral that will produce
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the time accurate continuous adjoint equation.

∫

D

[
ψT (tf )δw(tf ) − ψT (0)δw(0)

]
dD

−
∫ tf

0

∫

D

∂ψT

∂t
δw +

∂ψT

∂ξk

CkδwdDdt +

∫ tf

0

∫

B

nkψ
T δFkdB

+

∫ tf

0

[∫

B

nkψ
T δSklfldB −

∫

D

∂ψT

∂ξk

δSklfldD
]

dt = 0.

Since the left-hand expression equals zero, it may be subtracted from the variation

of the cost function (5.13) to give

δI =
1

1
2
γP∞M2

∞c̄

∫ tf

0

∫

BW

δp

[
∂y

∂ξ
cos α − ∂x

∂ξ
sin α

]

+p

[
δ

(
∂y

∂ξ

)
cos α − δ

(
∂x

∂ξ

)
sin α

]
dξdt

−
∫

D

[
ψT (tf )δw(tf ) − ψT (0)δw(0)

]
dD +

∫ tf

0

∫

D

[
∂ψT

∂t
+

∂ψT

∂ξk

Ck

]
δwdDdt

−
∫ tf

0

∫

B

nkψ
T δFkdB −

∫ tf

0

[∫

B

nkψ
T δSklfldB −

∫

D

∂ψT

∂ξk

δSklfldD
]

dt.(5.14)

Now, since ψ is an arbitrary differentiable function, it may be chosen in such a way

that δI no longer depends explicitly on the variation of the state vector δw. The

gradient of the cost function can then be evaluated directly from the metric variations

without having to re-compute the variation δw resulting from the perturbation of each

design variable. The variation δw can then be eliminated by solving for the Lagrange

Multiplier, ψ, by setting the transpose of the integrand of the second integral in the

third line of equation (5.14) to zero to produce a differential adjoint system governing

ψ
∂ψ

∂t
+ CT

k

∂ψ

∂ξk

= 0 in D. (5.15)

At the outer boundary incoming characteristics for ψ corresponds to outgoing char-

acteristics for δw. Consequently we can choose boundary conditions for ψ such that

nkψ
T Ckδw = 0.
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If the coordinate transformation is such that δS is negligible in the far-field, then the

only remaining boundary term is

−
∫

BW

ψT δF2dξ1.

Thus, by letting ψ satisfy the boundary condition, then

ψjnj =
1

1
2
γP∞M2

∞c̄

[
∂y

∂ξ
cos α − ∂x

∂ξ
sin α

]
on BW , (5.16)

where nj are the components of the surface normal. Since the initial condition for

the Lagrange multipliers are set to zero, then

ψT (0)δw(0) = 0.

Since the problem is periodic in nature and that the cost function used for this problem

is not dependent upon tf , then

ψT (tf )δw(tf ) = 0.

Equation (5.14) finally reduces to the following

δI =
1

1
2
γP∞M2

∞c̄

∫ tf

0

∫

BW

p

[
δ

(
∂y

∂ξ

)
cos α − δ

(
∂x

∂ξ

)
sin α

]
dξdt

−
∫ tf

0

[∫

B

nkψ
T δSklfldB −

∫

D

∂ψT

∂ξk

δSklfldD
]

dt.

The above equation is then used to solve for the gradient, which can then provide a

direction of improvement to reduce the objective function.

5.6 Time Accurate Discrete Adjoint Equations

As in the case of steady flow, the time accurate discrete adjoint equation is obtained

by applying control theory directly to the set of time accurate discrete field equations.
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The resulting equation depends on the type of scheme used to solve the flow equations.

This work uses a cell-centered multigrid-driven fully implicit scheme with upwind-

biased blended first and third order fluxes as the artificial dissipation scheme.

To develop the time accurate discrete adjoint equation, the first step is to take a

variation of the modified residual represented in equation (5.8) with respect to the

state vector, w and shape function, f (only terms that are multiplied by δw are

shown) to produce

δR∗n+1

i,j (w) =
3

2∆t

[
δwn+1

i,j V n+1
i,j

]
− 2

∆t

[
δwn

i,jV
n
i,j

]

+
1

2∆t

[
δwn−1

i,j V n−1
i,j

]
+ δRn+1

i,j (w). (5.17)

Multiply the above equation by the transpose of the Lagrange Multiplier and sum

over the domain and time to yield

tf∑

t=0

∑

Ω

ψT
i,jδR

∗
i,j(w) = · · · + ψT n+1

i,j δR∗n+1

i,j (w)

+ ψT n+2

i,j δR∗n+2

i,j (w) + ψT n+3

i,j δR∗n+3

i,j (w) + · · ·

Substitute equation (5.17) into the (n+1), (n+2), and (n+3) terms of the modified

residual in the above equation to yield

tf∑

t=0

∑

Ω

ψT
i,jδR

∗
i,j(w) = · · · + ψT n+1

i,j

[
3

2∆t
V n+1δwn+1

i,j − 2

∆t
V nδwn

i,j(w)

+
1

2∆t
V n−1δwn−1

i,j + δRn+1
i,j

]

+ ψT n+2

i,j

[
3

2∆t
V n+2δwn+2

i,j − 2

∆t
V n+1δwn+1

i,j (w)

+
1

2∆t
V nδwn

i,j + δRn+2
i,j

]

+ ψT n+3

i,j

[
3

2∆t
V n+3δwn+3

i,j − 2

∆t
V n+2δwn+2

i,j (w)

+
1

2∆t
V n+1δwn+1

i,j + δRn+3
i,j

]
+ · · · .



5.6. TIME ACCURATE DISCRETE ADJOINT EQUATIONS 159

Keeping only the (n + 1) terms, rearrange the terms in the equation to produce the

time accurate discrete adjoint equation

tf∑

t=0

∑

Ω

ψT
i,jδR

∗
i,j(w) = · · · +

[
3

2∆t
ψT n+1

i,j − 2

∆t
ψT n+2

i,j +
1

2∆t
ψT n+3

i,j

]
V n+1δwn+1

i,j

+ψT n+1

i,j δRn+1
i,j + · · · . (5.18)

Next we introduce the discrete cost function for the drag minimization problem as

Ic =

tf∑

t=0

Cd ∆t =

tf∑

t=0

(Ca cos α + Cn sin α) ∆t

=
1

1
2
γP∞M2

∞c̄

tf∑

t=0

UTE∑

i=LTE

pi,W

(
∆yi

∆si

cos α − ∆xi

∆si

sin α

)
∆si∆t,

where LTE is the lower trailing edge, UTE is the upper trailing edge, ∆si is the

surface cell arc length, and ∆pi,W is the wall pressure. In this research the wall

pressure is defined as such

pi,W =
1

2
(pi,2 + pi,1) ,

where pi,2 is the value of the pressure in the cell above the wall and pi,1 is the value

of the pressure in the cell below the wall. A variation in the cost function will result

in a variation, ∆p, in the pressure and variations, ∆y and ∆x, in the geometry. The

variation of the cost function for drag minimization can be written as

δIc =
1

1
2
γP∞M2

∞c̄

tf∑

t=0

[
UTE∑

i=LTE

1

2

(
∆yi

∆si

cos α − ∆xi

∆si

sin α

)
∂p

∂w
(δwi,2 + δwi,1) ∆si

+
UTE∑

i=LTE

(
1

2
(pi,2 + pi,1) − p∞

)
[cos α δ (∆yi) − sin α δ (∆xi)]

]
∆t. (5.19)

The time dependent discrete Euler equations can now be introduced into δI as a

constraint to produce

δI = δIc −
tf∑

t=0

∑

Ω

ψT
i,jδR

∗
i,j(w).
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Substitute equation (5.18) and (5.19) into the above expression to yield

δI =
1

1
2
γP∞M2

∞c̄

tf∑

t=0

[
UTE∑

i=LTE

1

2

(
∆yi

∆si

cos α − ∆xi

∆si

sin α

)
∂p

∂w
(δwi,2 + δwi,1) ∆si

+
UTE∑

i=LTE

(
1

2
(pi,2 + pi,1) − p∞

)
[cos α δ (∆yi) − sin α δ (∆xi)]

]
∆t

−
[
· · · +

[
3

2∆t
ψT n+1

i,j − 2

∆t
ψT n+2

i,j +
1

2∆t
ψT n+3

i,j

]
V n+1δwn+1

i,j

+ψT n+1

i,j δRn+1
i,j + · · ·

]
.

The above expression can be rearranged into two main categories: first, terms that

are multiplied by the variation of the state vector, δw; and second, terms that are

multiplied by the variation of the shape function, δf . The rearranged equation can

be expressed as

δI = · · · +
1

2

(
∆yi

∆si

ω cos α − ∆xi

∆si

ω sin α

)
∂p

∂w

(
δwn+1

i,2 + δwn+1
i,1

)
∆si∆t

−
[

3

2∆t
ψT n+1

i,j − 2

∆t
ψT n+2

i,j +
1

2∆t
ψT n+3

i,j

]
V n+1δwn+1

i,j − ψT n+1

i,j δwRn+1
i,j

+

(
1

2
(pi,2 + pi,1) − p∞

)
[δ (∆yi) ω cos α − δ (∆xi) ω sin α] ∆t

− ψT n+1

i,j δfR
n+1
i,j + · · · , (5.20)

where ω = 1
1
2
γP∞M2

∞
c̄
, δwRn+1

i,j are terms that are a result of taking a variation of

the residual with respect to the state vector, w, and δfR
n+1
i,j are terms that are a

result of taking a variation of the residual with respect to the shape function, f .

Equation (5.20) can be further expanded to isolate the δwn+1
i,2 terms. This step is

needed to produce the boundary condition source term for the time accurate discrete

adjoint equation. The extraction of the δwn+1
i,2 term results in the following split in
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the equation

δI = · · · +
1

2

(
∆yi

∆si

ω cos α − ∆xi

∆si

ω sin α

)
∂p

∂w
δwn+1

i,1 ∆si∆t

+
1

2

(
∆yi

∆si

ω cos α − ∆xi

∆si

ω sin α

)
∂p

∂w
δwn+1

i,2 ∆si∆t

−
[

3

2∆t
ψT n+1

i,2 − 2

∆t
ψT n+2

i,2 +
1

2∆t
ψT n+3

i,2

]
V n+1δwn+1

i,2 − ψT n+1

i,2 δwRn+1
i,2

−
[

3

2∆t
ψT n+1

i,j − 2

∆t
ψT n+2

i,j +
1

2∆t
ψT n+3

i,j

]
V n+1δwn+1

i,j − ψT n+1

i,j δwRn+1
i,j

+

(
1

2
(pi,2 + pi,1) − p∞

)
[δ (∆yi) ω cos α − δ (∆xi) ω sin α] ∆t

− ψT n+1

i,j δfR
n+1
i,j + · · · (5.21)

A brief explanation of the steps taken in the above equation is needed here. First,

the first line in equation (5.20) is split into δwn+1
i,1 and δwn+1

i,2 resulting in the first

and second line in the above equation. Second, δwn+1
i,2 is extracted from the second

lines in equation (5.20) to produce the third and fourth lines in the above equation.

The last line in the above equation remains as is. To establish the drag minimization

boundary condition source term for the time accurate discrete adjoint equation, we

first need to expand the δwRn+1
i,2 term. From equation (4.26), the δwRn+1

i,2 term can

be written as follows

ψT n+1

i,2 δwRn+1
i,2 = − 1

2

[
AT n+1

i− 1
2
,2

(
ψn+1

i,2 − ψn+1
i−1,2

)
+ AT n+1

i+ 1
2
,2

(
ψn+1

i+1,2 − ψn+1
i,2

)

+BT n+1

i, 5
2

(
ψn+1

i,3 − ψn+1
i,2

)

−∆yξψ
n+1
2i,2

+ ∆xξψ
n+1
3i,2

]
δwn+1

i,2 .

The time accurate discrete adjoint equation can now be defined as

∂ψn+1
i,j

∂τ
−

[
3

2∆t
ψT n+1

i,j − 2

∆t
ψT n+2

i,j +
1

2∆t
ψT n+3

i,j

]
V n+1 − ψT n+1

i,j δwRn+1
i,j = 0.
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At cell (i, 2) the time accurate discrete adjoint equation is as follows,

∂ψn+1
i,2

∂τ
−

[
3

2∆t
ψT n+1

i,j − 2

∆t
ψT n+2

i,j +
1

2∆t
ψT n+3

i,j

]
V n+1 − 1

2

[
AT n+1

i− 1
2
,2

(
ψn+1

i,2 − ψn+1
i−1,2

)

+AT n+1

i+ 1
2
,2

(
ψn+1

i+1,2 − ψn+1
i,2

)
+ BT n+1

i, 5
2

(
ψn+1

i,3 − ψn+1
i,2

)
− Φ

]
, (5.22)

where Φ is the source term for drag minimization,

Φ = ∆yξψ
n+1
2i,2

− ∆xξψ
n+1
3i,2

+

(
∆yi

∆si

ω cos α − ∆xi

∆si

ω sin α

)
∂p

∂w
∆si∆t.

All the terms in equation (5.22) except for the source term scale as the square of ∆x.

Therefore, as the mesh width is reduced, the terms in the source term if divided by

∆si must approach zero as the solution reaches a steady-state. One then recovers the

continuous adjoint boundary condition as stated in equation (5.16). Thus equation

(5.21) simplifies to the following equation,

δI = · · ·+
(

1

2
(pi,2 + pi,1) − p∞

)
[δ (∆yi) ω cos α − δ (∆xi) ω sin α] ∆t−ψT n+1

i,j δfR
n+1
i,j +· · ·

The above equation represents the total gradient obtained using the time accurate

discrete adjoint approach to reduce the total drag of a pitching airfoil.

5.7 Design Process

To understand the difference between optimizing an airfoil shape using either the full

unsteady or steady approaches, four different design processes have been evaluated.

These are the full unsteady design (unsteady-flow unsteady-adjoint), partial unsteady

design (unsteady-flow steady-adjoint), time-averaged-flow steady-adjoint design, and

multipoint design.

The four design processes have been applied to the redesign of the RAE 2822 and

VR-7 airfoils. The cost function is the time-averaged drag coefficient. The design

variables are the surface mesh points. The constraints are constant thickness to

chord ratio and fixed time-averaged lift coefficient. The airfoil undergoes a forced
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pitching oscillation about the quarter-chord. The angle of incidence is given by

α(t) = αo + αm sin(ωt),

where αo = 0o, αm = 1.01o. One period of oscillation is defined from t = 0 to

t = 2π. In order to compute the entire unsteady flow solution for each period, α(t) is

divided into 24 discrete points or time instances. Past research [36] has shown that

24 time instances are sufficient to describe the unsteady flow field in an inviscid flow

environment.

Unlike traditional optimal control problems, where the control (airfoil shape) is

changed along the trajectory, our design approach focuses on creating a single shape

whose aerodynamic performance is monitored over a complete pitching cycle.

5.7.1 Full Unsteady Design (Unsteady-Flow Unsteady-Adjoint)

The full unsteady continuous and discrete adjoint based design procedures require

the following steps:

1. Unsteady Flow Calculation. All numerical simulations are computed for an

inviscid flow using a fully implicit second order backward difference formula,

a five stage modified Runge-Kutta time stepping scheme is employed at each

time instance using a blended first and third order artificial dissipation scheme.

A five-level W-cycle multigrid and residual averaging are used to accelerate

the convergence. The fully implicit scheme described in sub-section 5.2.1 is

then employed to solve for the unsteady flow solution at each time instance.

Generally, it requires five periods before a fully periodic solution is achieved.

During the last period, the flow solution at each time instance is stored in

memory. Fifteen multigrid cycles are used for each time instance. If 24 time

instances are used for each cycle and five cycles are used to achieve periodic

solution, then a total of 1800 multigrid cycles are required to obtain the unsteady

solution.
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2. Perturb αo to maintain time-averaged lift coefficient. In order to main-

tain the time-averaged lift coefficient, the mean angle of attack, αo, is perturbed.

However, αo, is only modified every three periods, since it requires at least three

periods for the global coefficients such as time-averaged lift and drag to con-

verge. A total of 15 periods are needed instead of 5 to achieve the desired

time-averaged lift coefficient. This multiplies the total cost by three.

3. Unsteady Adjoint Calculation. The unsteady adjoint equation, either the

discrete or continuous version, requires integration in reverse time. The same

numerical scheme employed to solve the unsteady flow is used here as well with

minor adjustments in the code to allow integration in reverse time. Only three

periods were needed before a periodic adjoint solution is achieved. 15 multigrid

cycles are used for each time instance, which translates to a total of 1080 cycles

to achieve a periodic adjoint solution.

4. Calculate the Gradient. The expression for the gradient is an integral over

time. During the last period of the unsteady adjoint solver, the gradient at each

time instance is computed and added to the previous one. At the end of the

last period, the complete gradient is available. The gradient is then smoothed

using an implicit smoothing technique described in section 3.2.2.

5. Modify the Airfoil Shape. The airfoil shape is then modified in the direction

of improvement using a steepest descent method.

6. Update the Grid. The internal grid is modified based on perturbations on

the surface of the airfoil. The method modifies, the grid points along each grid

index line projecting from the surface. The arc length between the surface point

and the far-field point along the grid line is first computed, then the grid point

at each location along the grid line is attenuated proportional to the ratio of its

arc length distance from the surface point and the total arc length between the

surface and the far-field.

7. Repeat the Design Process. The entire design process is repeated until

the objective function converges. The problems in this work typically required
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between nine to twenty five design cycles to reach the optimum. Each design

cycle required 1800 multigrid cycles to compute the flow solution and 1080

cycles for the adjoint solution.

5.7.2 Partial Unsteady Design (Unsteady-Flow Steady-Adjoint)

The design process for the partial unsteady design optimization problem follows that

of the full unsteady optimization except for two differences. First, in step 3, instead of

an unsteady adjoint computation using the fully implicit scheme, only a steady adjoint

computation is performed for all 24 time instances which is equivalent to one period of

the oscillation instead of three periods used in the full unsteady optimization case. At

each time instance in the computation of the adjoint solution, the respective unsteady

flow solution is used to compute the Euler Jacobian matrices. This corresponds to a

factor of three computational savings for each design cycle. Thus only 360 multigrid

cycles are required. Second, the gradient is no longer a time-averaged of the gradients

from each time instance, but rather an average of the gradients from all the time

instances.

5.7.3 Time-Averaged-Flow Steady-Adjoint Design

The design process for the time-averaged-flow steady-adjoint design follows that of the

partial unsteady design procedure, except for the following two important differences.

Here, after the flow solution is complete (periodic flow is achieved), the time-averaged

flow solution is computed. Then a single steady adjoint computation is performed

using the time-averaged flow solution at the mean angle of attack position, only

requiring 15 multigrid cycles. The magnitude of the steady adjoint residuals reduces

by 3 orders of magnitude in 15 multigrid cycles. Based on previous work by Nadarajah

et al. [60], only a reduction of three orders of magnitude in the adjoint solution is

required to obtain accurate gradient values for the Euler equations. The equation for

the gradient used in this approach is similar to that used to optimize airfoil shapes in

a steady flow environment, however, the flow solution used to calculate the gradient

is based upon the time-averaged flow.
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5.7.4 Multipoint Design

In the multipoint design approach, the unsteady flow and unsteady adjoint solutions

are replaced with steady flow and steady adjoint solutions for each time instance. The

gradient is taken as an average of the gradients from each time instance. Since only

one period is required for both the flow and adjoint solvers, the total computational

cost is 720 multigrid cycles.

Method Euler Adjoint Cost

Multipoint 360 360 1
Time-Averaged 1800 15 2.5

Partial 1800 360 3
Full 1800 1080 4

Table 5.1: Comparison of Computational Cost (Multigrid Cycles) Between Four De-
sign Approaches.

Table 5.1 illustrates a cost comparison between the various design approaches.

“Time-Averaged” refers to the time-averaged-flow steady-adjoint design approach,

“Partial” refers to the unsteady-flow steady-adjoint approach, and “Full” refers to

the unsteady-flow unsteady-adjoint method. Here the middle two columns contain

the total number of multigrid cycles used to compute the Euler and adjoint equations.

The numbers in the last column represent the ratio of cost of one method with respect

to the Multipoint approach. Using the full unsteady design approach requires four

times the computational cost of doing the multipoint approach. The difference in cost

between one steady Runge-Kutta iteration and one unsteady Runge-Kutta iteration

was not factored into the computing cost for each design approach, since the difference

is minimal requiring only the addition of the time derivatives of the flow variables for

the implicit time stepping for the unsteady algorithm.
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5.8 Results

The following sub-sections present results of the time-averaged drag minimization

problem for a two-dimensional airfoil undergoing a periodic pitching motion. The

first sub-section contains a code and grid validation study. The second sub-section

is dedicated to the redesign of the RAE 2822 airfoil to reduce the time-averaged

drag coefficient while maintaining the time-averaged lift coefficient. The third section

contains results of the time-averaged drag minimization of a VR-7 advanced rotor-

craft airfoil. A comparison of a multipoint design, time-averaged-flow steady-adjoint,

partial unsteady, and a full unsteady design is explored in the last sub-section.

5.8.1 Code and Grid Validation

Six computational grids are used in the grid validation study. Table 5.2 provides a

list of the six different grids. The lens-shape grids are generated using a hyperbolic

grid generator. Figure 5.2 illustrates the full 193x33 mesh and a close up view of the

NACA 64A010 airfoil. There are 129 points on the surface of the airfoil.

Grid Dimensions

Coarse 1 193x33
Coarse 2 193x65
Medium 1 257x33
Medium 2 257x65

Fine 1 321x33
Fine 2 321x65

Table 5.2: Euler Lens-Mesh Descriptions

Euler solutions are then computed for each grid and the lift coefficient versus angle

of attack is compared with the experimental NACA 64A010 CT6 [15] data. Here the

computations are performed at a freestream Mach 0.78, at a mean angle of attack,

αo = 0o with a maximum angle of attack αm = 1.01o, and at a reduced frequency,

ωr = 0.202. Five cycles of computation are required in order for the periodic flow to

be established, and to allow the time-averaged lift and drag coefficients to converge.

Figure 5.3 illustrates the hysteresis loop for all six grids and the CT6 experimental
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results. The results are relatively independent of the grid size and reproduce the

experimental results with sufficient accuracy. In a steady flow environment, based

on linear theory the circulation on the airfoil is constant, however, in a pitching

airfoil case, the circulation is a function of time. The wake vorticity shed during the

cycle, changes the downwash field over the airfoil. This has the effect of changing the

aerodynamic loads on the airfoil and thus the normal and axial coefficients change

with time. In figure 5.3, the lift coefficient versus angle of attack loop moves in a

counterclockwise direction. The unsteady effect causes an amplitude reduction of

the lift coefficient and a phase lag as well. In sub-section 5.8.2 we explore the effect

of changing the reduced frequency for the same flow conditions and compare the

solutions to steady-state solutions.

The computational result over-estimates the maximum lift coefficient. This is

typical of all Euler calculations for unsteady pitching airfoil problems. In viscous

flow, the presence of the boundary layer, reduces the fluid velocity in the ξ direction,

thus increasing pressure, which leads to a reduction of the pressure difference which

in turn reduces the maximum lift coefficient. In this work, the lack of viscous fluxes

produces a larger maximum lift coefficient.

Since the primary objective of this work is to formulate the unsteady discrete

and continuous inviscid adjoint equations and prove their usefulness, numerical sim-

ulations and redesign computations in the upcoming sub-sections will only use the

“Coarse 1” grid with 193x33 grid points, since its solutions are within acceptable

accuracy.

In figure 5.4 the “Coarse 1”, “Medium 1”, and “Fine 1” grids, each with 33 points

in the η direction, produce similar drag versus angle of attack curves. The drag polar

is symmetrical as expected since the airfoil is symmetric. The largest magnitude for

the drag coefficient occurs at the largest angle of attack deflection. Increasing the

number of points on the airfoil surface does not improve the solution. Increasing the

number of points in the η direction, reduces the spatial discretization error in the η

direction and improves the accuracy of the calculation. Note here that an increase in

the number of points on the surface of the airfoil does not change the solution for the

finer mesh that contains 64 points in the η direction.
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Figures 5.5 and 5.6 are lift and drag hysteresis loops for the same conditions that

are mentioned above but the computations are performed on O-meshes. Increasing

the mesh size does not make any appreciable change to the lift versus angle of attack

curve but the drag curve does improve in accuracy. As illustrated in the drag polar

curves, the 160x32 and the 320x64 mesh have almost the same solution. This is unlike

the lens-grid where increasing the number of points in the direction normal to the

airfoil surface increased the accuracy of the solution.

Figures 5.7 and 5.10 illustrate the comparison of the lift and drag coefficient versus

angle of attack for various o-mesh and lens-grid with the experimental NACA 64A010

CT6 data. The lift hysteresis loop shows no difference between the solutions from the

various meshes.

In figure 5.11 we show the convergence history for the steady adjoint, unsteady

continuous adjoint, and unsteady discrete adjoint equations. The continuous and

discrete unsteady adjoint equations have the same convergence rate. The equations

are solved for a RAE 2822 airfoil at Mach 0.78, αo = 0o, and at a reduced frequency,

ωr = 0.202 on a 193x33 lens-mesh.

5.8.2 RAE 2822: Time-Averaged Drag Minimization with

Fixed Time-Averaged Lift Coefficient

Figure 5.12 illustrates the initial and final geometry for the RAE 2822 airfoil. The

solid line represents the initial airfoil geometry and the dashed-line illustrates the

redesigned airfoil. A distinctive feature of the new airfoil is in the drastic reduction of

the upper surface curvature. A reduced curvature leads to a weaker shock and thus a

lower wave drag, however, it also leads to a reduction in airfoil camber, resulting to

a loss in lift. This effect is desirable for an advancing helicopter rotor blade since it

operates at approximately zero lift but undesirable during the retreating phase, since

the reduction in camber would reduce the clmax
and thus reduce the flight envelope,

placing a limit on the forward flight speed.

In order to maintain the time-averaged lift coefficient, TAcl, the mean angle of

attack, αo, is perturbed to a new value. This results in a need to compute more cycles
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to allow the TAcl and TAcd to converge. In this work, αo was perturbed every three

cycles. This allowed the TAcl to converge to a new value before the angle of attack

was perturbed any further. A total of 15 complete flow oscillation cycles are used

for each design cycle. Figure 5.13 illustrates the convergence rate of the objective

function: TAcd. The TAcd decreases by 55% from 132 drag counts to 59 drag counts

in 11 design cycles. The maximum drag, however, decreases by only 25% from 229

drag counts to 172 drag counts.

In figure 5.14 we show the initial and final lift coefficient hysteresis loops. The

results show that to maintain the time-averaged lift coefficient, the mean angle of

attack of the new airfoil increased by approximately 1.5 degrees. Also note that the

width of the hysteresis loop is almost the same between the two curves. The width

of the loop is an indication of the presence of unsteady effects. At very low reduced

frequencies, ωr ≈ 0, the lift curve is almost a straight line since very little unsteady

effects are present. As the reduced frequency increases, the unsteady effects increase

and introduce an amplitude change and a phase lag, thus producing a loop instead of

a straight line. Since the widths of the loops are almost identical in width, it can be

concluded that the modifications have not altered the slope and the width of the lift

curve hysteresis loop. Figure 5.15 illustrates the initial and final drag polar for the

RAE airfoil at the same flow condition. The drag polar reflects the unsymmetrical

nature of the airfoil. The maximum drag occurs at the largest positive angle of attack

and vice versa for the minimum instantaneous drag coefficient. The drag polar for

the final design shows a reduction in drag at all angles of attack. A drastic difference

between the width of the two curves is illustrated in the figure. The reduction in

the loop suggests that the modifications to the surface of the airfoil has altered the

airfoil response to the unsteady flow field in such a manner to decrease the amplitude

reduction and the phase lag seen in the figure.

Figures 5.16(a-d) illustrate the upper and lower surface instantaneous pressure

coefficients for the initial and final designs. In figure 5.16(a), a comparison of the

initial instantaneous pressure distribution versus the final at 0o phase shows an almost

complete reduction of the wave drag. The strong shock on the suction side of the

airfoil is weakened at all other phases of the oscillation. Another distinctive feature
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of the final upper surface pressure distribution at all phases of the pitching motion

is the appearance of a flat-top pressure distribution. The reduction of the upper

surface curvature is largest between the 30% and 60% chord which contributes towards

the flat-top profile. This reduction in the favorable pressure gradient leads to the

formation of a weaker shock and thus produces an airfoil with a lower time-averaged

drag coefficient. The general trend of the lower surface pressure distribution has only

changed by a very small amount at all phases of the pitching motion. This is due

mainly to the fact that the magnitude of the gradient along the upper surface is larger

especially in the region of the shock wave. The modifications on the lower surface

are due mainly to the need to satisfy the thickness constraint rather than the goal of

reducing the time-averaged drag coefficient.

Figures 5.17(a-b) show the pressure contours for the initial and final airfoils at 0o.

The sonic line represented by a dashed line is over-plotted on each figure. It is clearly

visible that the strong shock on the upper surface of the initial geometry has been

almost completely eliminated, although, a supersonic zone still exists. Here the air

velocity is accelerated to supersonic speeds and gradually recovers to the freestream

pressure at the trailing edge without the need for a discontinuity, such as a shock

wave. Another feature of the final design is the location of the sonic transition on the

airfoil surface which occurs closer to the leading edge of the airfoil. This is a result

of the increase in the airfoil angle of attack which causes the flow to accelerate faster

at the leading edge. Similar features are present in the 90o, 180o, and 270o pitching

phases as shown in figures 5.18(a-b), 5.19(a-b), and 5.20(a-b).

It is crucial that an optimization technique aimed at improving the performance of

airfoils due to an unsteady motion performs well at various different flow conditions

to prove its robustness. In this study, the method has been applied to reduce the

time-averaged drag coefficient for the following two cases: first, at various reduced

frequencies; second, at various freestream Mach numbers. The following are two

sub-sections dedicated to presenting results for the above-mentioned cases.
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Reduced Frequency Effect

The change in the lift coefficient versus angle of attack for various reduced frequencies

is illustrated in figure 5.21. The various solutions are obtained for a freestream Mach

number, M∞ = 0.78, at a mean angle of attack, αo = 0o, and fixed lift coefficient,

Cl = 0.51. As the reduced frequency is increased, the amplitude reduction continues

to decrease but the effect of the phase lag reduces. At a reduced frequency, ωr =

0.45, the hysteresis loop converges to a straight line and has no phase lag effect. In

figure 5.22 the convergence of the time-averaged drag coefficient for various reduced

frequencies for the RAE 2822 airfoil is illustrated. At a reduced frequency of 0.050,

the time-averaged drag coefficient decreased from 139 drag counts to 80. And at

ωr = 0.450 the reduction is from 132 counts to 57. As the reduced frequency increases

the convergence history as plotted in figure 5.22 converges to the same curve. Table 5.3

lists the initial and final time-averaged drag coefficient for various reduced frequencies.

Reduced Frequency IniTAcd
FinalTAcd

Reduction

ωr = 0.050 139 80 42%
ωr = 0.202 132 62 53%
ωr = 0.450 132 57 56%

Table 5.3: Initial and Final Time-Averaged Drag Coefficient for Various Reduced
Frequencies using the Full Unsteady Design Approach

Mach Number Effect

In figures 5.23(a-d) and 5.24(a-d) the same design process used for Mach 0.78, is

used to design the same RAE 2822 airfoil for two different freestream Mach numbers.

Figure 5.23(a-d) illustrates the M∞ = 0.76 flow and figure 5.24(a-d) for the M∞ =

0.80 flow. The final designs follow the same trends as the Mach 0.78 case: first, upper

surface curvature reduces, causing a reduction in the favorable pressure gradient, thus

reducing the strength of the shock; second, the reduction in the curvature causes a

reduction to the lift and thus the airfoil mean angle of attack is increased to control

the time-averaged lift coefficient.
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These examples show that the full unsteady design optimization is robust, pro-

ducing a reduction in the time-averaged drag coefficient while maintaining the time-

averaged lift coefficient for various freestream velocities and reduced frequencies.

5.8.3 VR-7: Time-Averaged Drag Minimization with Fixed

Time-Averaged Lift Coefficient

The VR-7 rotor profile is part of a family of advanced rotor airfoils designed by Leo

Dadone [13] at Boeing. The VR-7 (t/c=0.12) and the VR-8 (t/c=0.08) are designed

for the rotors on the Heavy lift Helicopter (HLH). The VR-7 profile is used up to

the 85% span location of the blade and the VR-8 is used at the tip. According to

Dadone, the blade profiles between the 85% and 99% span locations are obtained by

interpolating between the VR-7 and VR-8 airfoils [13]. The airfoils are designed to

have a very low pitching moment coefficient at zero angle of attack to maintain the

oscillatory load level of the control system and high maximum lift coefficient.

Figure 5.25 illustrates the initial and final geometry for the VR-7 airfoil. The

solid line represents the initial airfoil geometry and the dashed-line illustrates the

redesigned airfoil. Similar to the redesigned RAE 2822, the upper surface curvature

of the VR-7 advanced helicopter rotor has reduced as well. Figure 5.26 illustrates the

convergence rate of the objective function: TAcd. The TAcd reduces by 22% from

309 drag counts to 240 drag counts within 25 design cycles.

In figures 5.27 and 5.28, the initial and final lift and drag hysteresis loops are

illustrated. To maintain the time-averaged lift coefficient, the mean angle of attack

has increased to αo = 2.25o. The amplitude and phase lag of the two lift hysteresis

loops are almost identical. However, a similar effect seen for the RAE 2822, is present

here as well, where the effect of the phase lag reduces for the drag coefficient hysteresis

loop. The pressure distribution at four phases of the oscillation is shown in figure

5.29. The final pressure distribution curve shown in red illustrates the small reduction

in the strength of the shock which leads to the 22% reduction in the time-averaged

drag coefficient.
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5.8.4 Comparison of Various Design Approaches

Often a multipoint design approach has been the method of choice for optimization of

airfoils in an unsteady flow environment due to its lower computational and memory

cost. In this sub-section, we make the argument that even if a multipoint design

approach is cheaper, it cannot replace a full unsteady optimization. The following

results will show that there are benefits to unsteady optimization.

In order to compare the multipoint design approach to the full unsteady opti-

mization, several unsteady design cases are tested at various reduced frequencies. It

is expected that at very low reduced frequencies, the flow characteristics are very sim-

ilar to those of steady-state computations. Full unsteady design cases are computed

at reduced frequencies ranging from 0.050 to 0.450 at a Mach 0.78. The time-averaged

lift coefficient for all reduced frequencies are fixed to the same value of TAcl = 0.51.

Figure 5.30 illustrates a comparison of the lift coefficient hysteresis loops between

the steady and unsteady cases at various reduced frequencies. The plots illustrate

the impact of the unsteady effects on the reduction in amplitude and phase lag.

Figure 5.31 illustrates a comparison of the various airfoil geometries including the

initial airfoil, airfoils designed at various reduced frequencies, and airfoils designed

using the multipoint approach. The airfoils are designed at Mach 0.78, at a mean

angle of attack, αo = 0o, and an angle of attack deviation of αm = ±1.01o. The

difference in the final airfoil geometry between designs performed at various reduced

frequencies is very small except in areas on the upper surface where a greater reduction

in the curvature is seen for higher reduced frequencies.

In figure 5.31 the airfoil designed using the multipoint approach is almost iden-

tical to the one designed using a full unsteady optimization approach at a reduced

frequency of ωr = 0.050. Figure 5.32 further supports this fact with an identical,

to within the numerical accuracy of the code, final time-averaged drag coefficient of

80 drag counts. This result verifies the solution from the full unsteady optimization

problem, since this was an expected answer. Table 5.4 shows a comparison between

the multipoint design and a full unsteady optimization computed at a reduced fre-

quency of 0.050. The time-averaged lift coefficient is constrained at 0.51. In the

multipoint case, instead of the time-averaged lift, the average lift from the 24 time
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instances are used as a constraint. Since the lift constraint from each method is cal-

culated differently, the comparison between the two approaches is not perfect but we

believe that the difference is very small since the multipoint design is based upon all

24 time instances. Anything less would further increase the error between the two

comparisons.

Case IniTAcd
FinalTAcd

Reduction

Full Unsteady, ωr = 0.050 139 80 42%
Multipoint 146 82 43%

Table 5.4: Comparison Between the Multipoint and Full Unsteady Optimization

Next the time-averaged-flow steady-adjoint and the partial unsteady design ap-

proaches are used to optimize the RAE 2822 airfoil at the flow conditions described

above. Since the design computation calculated at a reduced frequency of 0.450 using

the full unsteady optimization approach produces the airfoil with the lowest time-

averaged drag coefficient, then this is the best case to be compared with the time-

averaged-flow steady-adjoint and partial unsteady design approaches. Figure 5.32

illustrates that the history of the time-averaged drag coefficient is almost identical

between the three design approaches. Table 5.5 contains a comparison of the initial

and final time-averaged drag coefficients for the full unsteady, partial unsteady, and

time-averaged-flow steady-adjoint approaches. The results vary by at most two drag

counts at each design cycle. This result demonstrates that the time-averaged-flow

steady-adjoint approach for the reduction of the time-averaged drag coefficient of a

pitching airfoil in transonic flow using the Euler equations is sufficient. However, this

result is only for a particular set of problems. The issue of what type of problems

will require a full unsteady optimization technique remains open.

Case IniTAcd
FinalTAcd

Reduction

Full Unsteady, ωr = 0.450 132 57 56%
Partial Unst.0.450 132 58 56%

TA-Flow Steady0.450 132 58 56%

Table 5.5: Initial and Final Time-Averaged Drag Coefficient for Various Design Ap-
proaches
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In figure 5.33 the gradients computed using the full continuous and discrete un-

steady adjoint methods are compared to gradients computed using the time-averaged-

flow steady-adjoint and partial unsteady approaches. These gradients are computed

after the first design cycle. There is an identical match between the full continuous

and discrete unsteady adjoint methods. The time-averaged-flow steady-adjoint gra-

dients agree very well with the full and partial unsteady adjoint gradients. The sharp

peak at grid point 115 illustrates the large gradient values close to the location of

the shock wave. At this grid location, the partial unsteady and time-averaged-flow

steady-adjoint gradients have better agreement.

The next set of numerical evaluations compare the final designs of the full unsteady

and the multipoint design approaches. Full unsteady simulations are computed at

three reduced frequencies with the airfoil designed using the multipoint technique.

Table 5.6 shows the time-averaged drag coefficient for various reduced frequencies

for the full unsteady and multipoint design. The information in the table provides

the following information. First, the time-averaged drag coefficient at a reduced

frequency of ωr = 0.050 for the multipoint design airfoil is very similar to the average

drag coefficient obtained as the final design point from table 5.4. This confirms

that at low reduced frequencies, a multipoint design is sufficient, and provides final

designs that are comparable to those obtained from the full unsteady design approach.

This is further confirmed in the second column of table 5.6. Second, as the reduced

frequency is increased, the time-averaged drag coefficient of the multipoint design

reduces further. However, the benefit of a full unsteady approach over the multipoint

case begins to increase. At a reduced frequency of ωr = 0.450, the gain is 9%.

Case ωr = 0.050 ωr = 0.202 ωr = 0.050

Full Unsteady 80 62 57
Multipoint 83 70 68

Benefit of Full Unsteady over
Multipoint Design Approach 2% 6% 9%

Table 5.6: Time-Averaged Drag Coefficient for Various Reduced Frequencies for the
Full Unsteady and Multipoint Design
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Figure 5.1: Lens-Mesh 192x32: NACA 64A010

Figure 5.2: Close-up View: Lens-Mesh 192x32: NACA 64A010
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Figure 5.3: Comparison of Lift Coefficient versus Angle of Attack for Various Lenz-
Mesh Grids and Experimental Results on a NACA 64A010 CT6 Case.
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Figure 5.4: Comparison of Drag Coefficient versus Angle of Attack for Various Lenz-
Mesh Grids on a NACA 64A010 CT6 Case.
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Figure 5.5: Comparison of Lift Coefficient versus Angle of Attack for Various O-Mesh
Grids and Experimental Results on a NACA 64A010 CT6 Case.
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Figure 5.6: Comparison of Drag Coefficient versus Angle of Attack for Various O-
Mesh Grids on a NACA 64A010 CT6 Case.
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Figure 5.7: Comparison of Lift Coefficient versus Angle of Attack for Various O-Mesh,
Lenz-Mesh Grids and Experimental Results on a NACA 64A010 CT6 Case.
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Figure 5.8: Comparison of Drag Coefficient versus Angle of Attack for Various O-
Mesh, Lenz-Mesh Grids and Experimental Results on a NACA 64A010 CT6 Case.



5.8. RESULTS 181

−1.5 −1 −0.5 0 0.5 1 1.5
−0.11

−0.09

−0.07

−0.05

−0.03

−0.01

0.01

0.03

0.05

0.07

0.09

0.11

Angle of Attack

Li
ft 

C
oe

ffi
ci

en
t

Experimental
O 320x32
O 320x64
L 320x32
L 320x64

Figure 5.9: Comparison of Lift Coefficient versus Angle of Attack for Various O-Mesh,
Lenz-Mesh Grids and Experimental Results on a NACA 64A010 CT6 Case.
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Figure 5.10: Comparison of Drag Coefficient versus Angle of Attack for Various O-
Mesh, Lenz-Mesh Grids and Experimental Results on a NACA 64A010 CT6 Case.
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Figure 5.12: Initial and Final Geometry for a RAE 2822 Airfoil at M∞ = 0.78,
ωr = 0.202, ᾱ = 0o
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Figure 5.13: Convergence of the Maximum and Time-Averaged Drag Coefficients for
the RAE 2822 a M∞ = 0.78, ωr = 0.202, ᾱ = 0o
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Figure 5.14: Initial and Final Lift Coefficient Versus Angle of Attack for a RAE 2822
Airfoil at M∞ = 0.78, ωr = 0.202, ᾱ = 0o
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Figure 5.15: Initial and Final Drag Coefficient Versus Angle of Attack for a RAE
2822 Airfoil at M∞ = 0.78, ωr = 0.202, ᾱ = 0o
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Figure 5.16: Initial and Final Pressure Coefficients at Various Phases for a RAE 2822
Airfoil at M∞ = 0.78, ωr = 0.202, ᾱ = 0o
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17a: Initial Airfoil 17b: Final Design

Figure 5.17: Pressure Contour Plot for RAE 2822 Airfoil at Phase = 0o

Grid - 192 x 32, M∞ = 0.78, ωr = 0.202, Fixed Cl = 0.534

18a: Initial Airfoil 18b: Final Design

Figure 5.18: Pressure Contour Plot for RAE 2822 Airfoil at Phase = 90o

Grid - 192 x 32, M∞ = 0.78, ωr = 0.202, Fixed Cl = 0.534
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19a: Initial Airfoil 19b: Final Design

Figure 5.19: Pressure Contour Plot for RAE 2822 Airfoil at Phase = 180o

Grid - 192 x 32, M∞ = 0.78, ωr = 0.202, Fixed Cl = 0.534

20a: Initial Airfoil 20b: Final Design

Figure 5.20: Pressure Contour Plot for RAE 2822 Airfoil at Phase = 270o

Grid - 192 x 32, M∞ = 0.78, ωr = 0.202, Fixed Cl = 0.534
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Figure 5.21: Lift Coefficient Versus Angle of Attack for Various Reduce Frequencies
for the RAE 2822 Airfoil at M∞ = 0.78, ᾱ = 0o, Fixed Cl = 0.51
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Figure 5.22: Convergence of the Time-Averaged Drag Coefficient for Various Reduced
Frequencies for the RAE 2822 Airfoil at M∞ = 0.78, ᾱ = 0o, Fixed Cl = 0.51
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Figure 5.23: Initial and Final Pressure Coefficients at Various Phases for a RAE 2822
Airfoil at M∞ = 0.76, ωr = 0.202, ᾱ = 0o
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Figure 5.24: Initial and Final Pressure Coefficients at Various Phases for a RAE 2822
Airfoil at M∞ = 0.80, ωr = 0.202, ᾱ = 0o
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Figure 5.25: Initial and Final Geometry for a VR-7 Airfoil at M∞ = 0.75, ωr = 0.202,
ᾱ = 0o
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Figure 5.26: Convergence of the Maximum and Time-Averaged Drag Coefficients for
the VR-7 a M∞ = 0.75, ωr = 0.202, ᾱ = 0o
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Figure 5.27: Initial and Final Lift Coefficient Versus Angle of Attack for a VR-7
Airfoil at M∞ = 0.75, ωr = 0.202, ᾱ = 0o
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Figure 5.28: Initial and Final Drag Coefficient Versus Angle of Attack for a VR-7
Airfoil at M∞ = 0.75, ωr = 0.202, ᾱ = 0o
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Figure 5.29: Initial and Final Pressure Coefficients at Various Phases for a VR-7
Airfoil at M∞ = 0.75, ωr = 0.202, ᾱ = 0o
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Figure 5.30: A Comparison of the Lift Coefficient Versus Angle of Attack for Various
Reduced Frequencies and the Multipoint Approach for the RAE 2822 Airfoil at M∞ =
0.78, ᾱ = 0o,Fixed Cl = 0.51
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Chapter 6

The Remote Inverse Design

Problem

This chapter presents an adjoint method for the calculation of remote sensitivities

in supersonic flow. The goal is to quantify the influence of geometry modifications

on the pressure distribution at an arbitrary location in the near field of the domain

of interest. First, the complete formulation and discretization of the continuous and

discrete adjoint equations are derived. The special treatment of the adjoint boundary

condition to obtain remote sensitivities is also discussed. Second, we present results

that demonstrate the application of the theory to a three-dimensional remote inverse

design problem using both a low sweep biconvex wing and a highly swept blunt leading

edge wing. Third, we demonstrate results that establish the added benefit of using an

objective function that contains the sum of the remote inverse and drag minimization

cost functions.

6.1 The Remote Inverse Design Problem

Our approach to the remote inverse design problem is similar to the formulation of

the adjoint equations discussed in Chapters 4 and 5. However, in this approach,

an arbitrary line integral is introduced into the computational domain to allow the

calculation of remote sensitivities.

197
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6.1.1 Formulation of the Continuous Adjoint Equations for

the Remote Inverse Problem

The aerodynamic properties that define the cost function are functions of the flow field

variables, w, and the physical location of the boundary, which may be represented by

the function S.

Suppose that the performance is measured by a cost function

I = ̟1

∫

BW

M (w, S) dBξ + ̟2

∫

BNF

N (w, S) dBξ, (6.1)

containing both wall boundary (BW ) and near field boundary (BNF ) contributions,

where dBξ includes the surface and near field elements in the computational domain,

while ̟1 and ̟2 are the weighting coefficients. The coordinates ξi that describe the

fixed computational domain are chosen so that each boundary conforms to a constant

value of one of these coordinates. In general, M and N will depend on both the flow

variables w and the metrics S defining the computational space.

The design problem is now treated as a control problem where the boundary

shape represents the control function, which is chosen to minimize I subject to the

constraints defined by the flow equations. A shape change produces a variation in

the flow solution, δw, and the metrics, δS, which in turn produce a variation in the

cost function

δI = ̟1

∫

BW

δM(w, S) dBξ + ̟2

∫

BNF

δN (w, S) dBξ, (6.2)

with

δM = [Mw]I δw + δMII ,

δN = [Nw]I δw + δNII , (6.3)

where we use the subscripts I and II to distinguish between the contributions associ-

ated with the variation of the flow solution δw and those associated with the metric

variations δS. Thus [Mw]I and [Nw]I represent ∂M
∂w

and ∂N
∂w

with the metrics fixed,
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while δMII and δNII represent the contribution of the metric variations δS to δM
and δN with the flow solution fixed. The weak form of the Euler equations for steady

flow is ∫

D

∂ψT

∂ξi

δFidD =

∫

B

niψ
T δFidB,

where the test vector ψ is an arbitrary differentiable function, and ni is the outward

normal at the boundary. If a differentiable solution, w, for this equation is obtained,

then it can be integrated by parts to give

∫

D

ψT ∂

∂ξi

δFidD = 0. (6.4)

Since this is true for any ψ, the differential form can be recovered. Here δFi can be

split into contributions associated with δw and δS using a similar notation

δFi = [Fiw]I δw + δFiII , where [Fiw]I = Sij

∂fj

∂w
.

The domain can then be split into two parts as shown in figure 6.1. First, the near

field domain (D1) whose boundaries are the wing surface and the near field boundary

plane. Second, the far-field domain (D2) which borders the near field domain along

the near field boundary plane and the far-field boundary. Thus equation (6.4) can be

written as

∫

D1

ψT ∂

∂ξi

δFidDξ +

∫

D2

ψT ∂

∂ξi

δFidDξ = 0.

This may be integrated by parts to give

∫

BW

niψ
T δFidBξ −

∫

D1

∂ψT

∂ξi

δFidDξ

+

∫

BNF

ni

(
ψ+ − ψ−

)T
δFidBξ −

∫

D2

∂ψT

∂ξi

δFidDξ = 0 (6.5)

where ψ+ and ψ− are the values of the Lagrange Multiplier, ψ, above and below the

boundary. Since the left-hand expression equals zero, it may be subtracted from the
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Figure 6.1: Near Field and Far-Field Domains

variation in the cost function (6.2) to give

δI =

∫

BW

[
̟1δM− niψ

T δFi

]
dBξ +

∫

BNF

[
̟2δN − ni

(
ψ+ − ψ−

)T
δFi

]
dBξ

+

∫

D1

∂ψT

∂ξi

δFidDξ +

∫

D2

∂ψT

∂ξi

δFidDξ. (6.6)

Since ψ is an arbitrary differentiable function, it may be chosen in such a way that δI

no longer depends explicitly on the variation of the state vector δw. The gradient of

the cost function can then be evaluated directly from the metric variations without

having to re-compute the variation δw resulting from the perturbation of each design

variable.

Comparing equations (6.3) and (6.5), the variation δw may be eliminated from

(6.6) by equating all field terms with subscript “I” to produce a differential adjoint

system governing ψ [
∂ψT

∂ξi

[Fiw]I

]

D1+D2

= 0 in D. (6.7)

The corresponding wall and near field adjoint boundary conditions are produced by



6.1. THE REMOTE INVERSE DESIGN PROBLEM 201

equating the subscript “I” boundary terms in equation (6.6) to produce

niψ
T [Fiw]I = ̟1Mw on BW (6.8)

ni

(
ψ+ − ψ−

)T
[Fiw]I = ̟2Nw on BNF . (6.9)

The remaining terms from equation (6.6) then yield a simplified expression for the

variation of the cost function which defines the gradient

δI =

∫

BW

{
̟1δMII − niψ

T [δFi] II

}
dBξ

+

∫

BNF

{
̟2δNII − ni

(
ψ+ − ψ−

)T
[δFi] II

}
dBξ

+

∫

D1+D2

{
∂ψT

∂ξi

[δFi] II

}
dDξ. (6.10)

The details of the formula for the gradient depend on the way in which the boundary

shape is parameterized as a function of the design variables and the way in which

the mesh is deformed as the boundary is modified. The boundary conditions satisfied

by the flow equations restrict the form of the left-hand side of the adjoint boundary

conditions (6.8) and (6.9). Consequently, the boundary contribution to the cost

functions M and N cannot be specified arbitrarily. Instead it must be chosen from the

class of functions which allow cancellation of all terms containing δw in the boundary

integral of equation (6.6). In this research the cost function is the weighted sum of

the drag coefficient and the Sobolev norm of the difference between the current and

target remote pressure distributions. From equation (6.1), M and N can be defined

as

M(w, S) =
1

c
Cp

(
∂y

∂ξ
cos α − ∂x

∂ξ
sin α

)
and N (w, S) =

1

2
(p − pT )2 .
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where,

c = Wing Chord

Cp = Pressure Coefficient

α = Angle of Attack

p = Current Pressure

pT = Target Pressure.

The cost function can then be written as

I = ̟1
1

c

∫

BW

Cp

(
∂y

∂ξ
cos α − ∂x

∂ξ
sin α

)
dBξ + ̟2

1

2

∫

BNF

(p − pT )2 dBξ,

and further simplified to

I = ̟1CD + ̟2
1

2

∫

BNF

(p − pT )2 dBξ. (6.11)

The values of the weighting coefficients are selected based on the relative magnitude

of the gradients of the drag minimization and the remote inverse cost functions.

The remote inverse gradient is typically an order of magnitude smaller than the

gradient due to drag minimization. Therefore, the weights are chosen to increase the

magnitude of the gradient from the remote inverse cost function. In practice, larger

weights are used for the remote inverse gradient, since the primary design objective

is to reduce the near field pressure signature. The disadvantage of this approach is

that the weights must be chosen at the beginning of the design process and if the user

does not have prior knowledge of the magnitude of the gradients, then generally an

initial guess is taken. The weights are altered for subsequent runs.

An alternative method for problems with more than one objective function is to

develop separate adjoint equations, one for each objective function. Both gradients

are then calculated separately, multiplied by weights, and summed. A direction of

improvement is then based on with the new gradient. This method has the advantage

that the user is better equipped with knowledge regarding the difference in magnitude
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between the two gradients. Appropriate weights are chosen to achieve the desired

compromise. A disadvantage is the need to calculate a separate adjoint solution for

each objective function.

In this work, we prefer to use a composite cost function, since we had apriori

knowledge regarding the magnitude of the gradient contribution from the remote

inverse and the drag minimization cost functions.

6.1.2 Formulation of the Discrete Adjoint Equation for the

Remote Inverse Problem

This sub-section explores the discrete adjoint approach for the remote inverse design

problem. Unlike the continuous adjoint case, the derivation of the discrete adjoint

equation for the remote inverse problem is very similar to that of the viscous inverse

and drag minimization problems in Chapter 4 and the unsteady problem formulated

in Chapter 5.

The first step is to define the discrete cost function I as,

I = ̟1CD + ̟2
1

2

∑

NF

(pi − pT )2 ∆si, (6.12)

where CD is total wing drag coefficient, p is the current near field pressure, pT is the

target near field pressure, and ̟1 and ̟2 are weighting coefficients.

The variation of the cost function, δI, can be augmented by the discrete governing

equations appropriately pre-multiplied by the adjoint variable ψT
i,j,k

δI = ̟1δCD + ̟2

∑

NF

(pi − pT ) δpi∆si

+
nx∑

i=2

ny∑

j=2

nz∑

k=2

ψT
i,j,kδ [R (w) + D (w)]i,j,k . (6.13)

Here the first term represents the discrete drag minimization cost function. The

second term represents the discrete remote inverse design cost function evaluated at a

near field location which is approximately L chord length’s away from the wing, R(w)
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is the discrete field equation, and D(w) is the discrete artificial dissipation term. In

order to eliminate δw from equation (6.13), terms multiplied by the variation δwi,j,k

of the discrete flow variables are collected and equated to zero. The procedure to

obtain the discrete adjoint is identical to that shown in section 4.3 and will not be

repeated here. The discrete adjoint equations from Chapter 4 are extended to three-

dimensions to be used in this part of the research. A three-dimensional re-derivation

of the convective and artificial dissipative discrete adjoint fluxes would be a difficult

assignment. For the convective discrete adjoint flux, a total of seven cells are required

to form the flux. In the case of the discrete artificial dissipation flux, thirteen cells are

needed. The additional complexity is added by the fact that each cell has six faces.

Instead of a re-derivation of the discrete adjoint fluxes, the three-dimensional fluxes

are obtained by a careful study of the two-dimensional discrete adjoint fluxes for the

convective and dissipative components. Since obvious patterns exists within the two-

dimensional framework, an extension to three-dimensions is easily accomplished. A

three-dimensional version of the discrete viscous adjoint flux will not be formulated

since the remote inverse problem is strictly limited to an inviscid case. If it is desired,

an extension to three-dimensions will be similar to the procedures used to obtain the

three-dimensional discrete convective and artificial dissipation adjoint fluxes.

Discrete Adjoint Boundary Condition

We now discuss the discrete adjoint boundary condition for the calculation of remote

sensitivities for supersonic flow. The δwi,NF term from the discrete cost function

is added to the corresponding term from equation (4.27). The discrete boundary

condition appears as a source term in the adjoint fluxes. For example, at cell (i, NF )

the adjoint equation in two dimensions can be discretized as follows,
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V
∂ψi,NF

∂t
= − 1

2
AT

i− 1
2
,NF

(ψi,NF − ψi−1,NF )

− 1

2
AT

i+ 1
2
,NF

(ψi+1,NF − ψi,NF )

− 1

2
BT

i,NF+ 1
2

(ψi,NF+1 − ψi,NF )

− 1

2
BT

i,NF− 1
2

(ψi,NF − ψi,NF−1) + ΦNF , (6.14)

where V is the cell area, ΦNF is the source term for inverse design,

ΦNF = −̟2(p − pT )∆siδpi,NF ,

and

AT
i+ 1

2
,NF

= ∆yη
i+1

2
,NF

[
∂f

∂w

]T

i,NF

− ∆xη
i+1

2
,NF

[
∂g

∂w

]T

i,NF

.

The boundary condition for the drag minimization cost function is identical to that

derived in Chapter 4 and will not be shown here. The only addition is the multipli-

cation of the drag source term by the weighting coefficient ̟1. Application of the

coupled drag minimization and remote inverse problem will in effect introduce two

source terms into the discrete adjoint fluxes. The first is added to the interior points

to satisfy the remote inverse problem and the second is added to the cells above the

surface to satisfy the drag minimization problem.
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6.2 Implementation of Remote Inverse Design

The remote inverse design procedure follows the outline presented in section 4.9.

The following algorithm describes the procedure to locate and calculate the discrete

adjoint boundary condition source terms.

Phase 1





for k = 2, · · · , kmaxcut

calculate cell centers

calculate target pressure.

for i = 1, · · · , numpoints

Calculate pressure at target location using a

bilinear interpolation.

Calculate the difference between the current and

target pressure.

end i−loop

find near field cell

end k−loop

Phase 2





for k = 1, · · · , kmaxcut − 1

for i = 1, · · · , numpbnd

Calculate remote inverse source term using trilinear

interpolation.

end i−loop

end k−loop

The search-locate-calculate remote inverse source term algorithm is completed in two

phases. In the first phase, the goal is to calculate the pressure at the target location

and search for the closest cell to the specified target location at each wing span

location. This cell is defined as the near field cell. The first step at phase one is to

calculate the cell centers of all cells in the current span location. These are needed

by the bilinear interpolation routine to produce weighting coefficients to calculate the

pressure at the target location. Once the current pressure is known at the target
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location, the first variation of the remote inverse cost function is calculated which

amounts to taking the difference between the current and target pressure values.

This step is repeated numpoints times, where numpoints is the total number of

target locations. The next important step in this procedure is to search for the

closest cell to the target location. This is achieved by calculating the location of the

diagonal of each cell that surrounds the target point and then performing a search

and compare routine to locate the near field cell. The entire process is repeated for

each span station from k = 2, . . . , kmaxcut, where kmaxcut is the tip span station.

The second phase of the search-locate-calculate algorithm is to compute the value

of the source term at the newly found near field cell. Since the variation of the remote

inverse cost function is calculated at the target location in phase one, a trilinear

interpolation routine is needed to transfer the value to the near field cell. The bilinear

and trilinear interpolation routines are provided by Saunders [75].

The search-locate-calculate algorithm is repeated at every design cycle, since the

possibility exists that the mesh may have been modified and thus a new location for

the source term may be required. Figure 6.2 shows the location of the near field

target pressure (+) and the adjoint remote sensitivity source terms (o).

6.3 Results

This section presents the results of an inverse Ni-bump design problem, and inverse

biconvex airfoil, inverse biconvex wing, and coupled remote inverse and drag min-

imization for three-dimensional wings in supersonic flow. The objective here is to

demonstrate the capability of the remote adjoint problem for the various geometries

and design parameters. The calculations are performed with a modified version of

Jameson’s SYN88 software, which augments the FLO88 flow solver with an adjoint

solver, and shape modification procedure.
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Figure 6.2: Location of Near Field Pressure and Adjoint Remote Sensitivity Source
Terms

6.3.1 Ni-Bump

As a first test of the new method, we constructed the following test problem, based on

the Ni-bump geometry with a longer downstream portion of the channel. A channel of

unit height and length, l = 8.0 is constructed. A 1.8% thick Ni-bump of unit chord is

centered about x = 6.0. Along the upper wall, a target pressure corresponding to the

presence of the same Ni-bump centered about x = 2.0 is specified, and the geometry

of the complete lower surface of the channel is allowed to move so that the target

pressure is obtained. Clearly, the solution of this problem is the disappearance of the

initial bump, and the formation of the exact same bump centered about x = 2.0.

Figure 6.3 illustrates the non-dimensional pressure contours of a typical Euler

solution on the final configuration. Figure 6.4 shows the initial and final (red and

blue respectively) geometries of the lower wall as explained above. Notice that the

aspect ratio of the figure on the right has been modified so that the small thickness

Ni-bumps are visible. Notice the complete disappearance of the original bump and

the formation of the new bump. Figures 6.5 and 6.6 illustrate the initial and final
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lower surface pressure distributions. The blue line in figure 6.5 is labeled “target” but

this is not to be confused with the target pressure distribution that is introduced into

the adjoint boundary condition to control the shape of the bump. The word target

here signifies the desired pressure distribution if the desired Ni-bump is created to the

expected geometry and location along the channel. Figure 6.6 illustrates the creation

of the new bump and its lower pressure distribution. Apart from a few discrepancies

at x = 3.0 and x = 5.0, there is a perfect match between the initial and final lower

surface pressure distributions.

A more remarkable set of plots are those of the pressure distributions on the upper

surface of the channel before and after the optimization process has been completed.

Figure 6.7 illustrates the initial pressure distribution corresponding to the Ni-bump

centered about x = 6.0 (in red), while the target pressure distribution along the upper

surface of the bump is in blue. After 60 design iterations, using the adjoint procedure

described above for the computation of the sensitivities, Figure 6.8 illustrates that

the target pressure distribution along the upper surface is very closely matched. The

Ni-bump centered about x = 6.0 has completely disappeared, while its twin centered

about x = 2.0 has formed.

These results verify the feasibility of the remote adjoint method. The next step

is to apply this approach to the sonic boom minimization problem by modifying the

near field pressure distribution in such a way that it achieves a pre-specified target.

6.3.2 Biconvex Wing: Verification Study

The next test is for three-dimensional flow. We specify a known near field pressure

distribution that is realizable as the target pressure by taking the result of a direct

calculation for a given shape. Then we initialize the geometry with another shape,

and try to recover the original shape from the target pressure distribution.

The test problem has been constructed based on a biconvex wing with a 3%

thickness ratio at the root and 1.5% at the tip. The leading edge sweep of the wing

is 7.125 degrees. The aspect ratio is 3.0 with a 0.218 taper ratio. To begin the

remote inverse design process, the near field pressure distribution for a biconvex wing
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with a 2% thickness ratio at the root and 1% at the tip is first calculated in order

to provide a realizable target pressure. All other wing geometry parameters remain

unchanged. The flow solution is obtained at a Mach Number of 1.5, an angle of attack

of 0 degrees, and the near field target pressure is computed at a distance of one chord

length below the surface of the wing. We then perform an inverse calculation with this

target, starting from the 3% biconvex wing. Clearly, the solution of this problem is

the reproduction of the 2% biconvex wing that initially produced the target pressure

distribution.

Figures 6.9(a-b) illustrate the target (+), initial (✷), and final (∗) near field pres-

sure distributions at the root and mid-span sections of the wing after 50 design cycles.

An almost perfect point-to-point match is achieved. The objective function is the inte-

gral of the square of the difference between the current and target near field pressure.

No lift or thickness constrains are enforced. These results clearly validate the remote

adjoint method for three-dimensional supersonic flow.

6.3.3 Biconvex Wing: Near Field Pressure Reduction, With-

out Constraints

In order to illustrate the possibility of near field pressure reduction, a target pressure

distribution is obtained by re-scaling the initial near field pressure distribution. Al-

though this near field target pressure may not be realizable, the hope is that a reduced

near field signature may result in lower ground boom signature. Ultimately, this step

will be replaced by a method that produces a target near field pressure based upon

the desired ground pressure signature.

The target pressure is obtained using the FLO88 flow solver on a biconvex wing

with a 5% thickness ratio at the root and 3.25% at the tip at a flight condition of

Mach 1.5 and a lift coefficient of CL = 0.1 on a 192x32x32 C-grid. All other wing

geometry parameters are the same as the previous section. The target pressure is

reduced by 40% of its original value.

Figures 6.10(a-b) illustrate the target (+), initial (✷), and final (∗) near field

pressure distribution. After 50 design cycles the final near field pressure almost
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matches the target near field pressure. Neither the lift nor the thickness ratio at each

span station are constrained.

6.3.4 Biconvex Wing: Near Field Pressure Reduction, With

Constraints

We now repeat the same design case but with the lift and thickness constrained. The

value of the lift coefficient is maintained by adjusting the angle of attack to attain the

desired lift coefficient. The thickness ratio at each span station is forced to remain

the same.

The resulting solution is very different from the previous case. Figures 6.11(a-b)

illustrate the baseline and optimized airfoil sections at span stations z = 0.0957 and

z = 0.571. The unexpected result in this test problem is the shape of the lower surface

of the wing. At both the root and mid-span sections, the lower leading edge slope

has slightly increased but contains a larger expansion region. It is this modification

that allows the near field wing peak pressure to be reduced. The slightly larger slope

at the leading edge increases the strength of the attached shock. But it is the larger

expansion region that weakens the strength of the attached shock in the near field

region.

Figures 6.12(a-b) show the target, initial, and final near field pressure distribu-

tions. The desired target pressure distribution is not achieved in contrast with the

unconstrained case illustrated in Figure 6.10. In this case, there is a struggle between

the near field peak pressure reduction and the achievement of constant lift. Each

design cycle, produces a shape modification that shifts the near field pressure dis-

tribution towards the target pressure. Unfortunately, this also causes a reduction in

the lift coefficient. This must be compensated by an increase in the angle of attack

to maintain the total lift coefficient, which in turn leads to an increase in the near

field peak pressure. After 50 design cycles, the solution converges to the (− ∗−) line

in Figure 6.12. The final peak pressure has been reduced to almost 23% its original

value at the root section and 18% at the mid-span section.
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6.3.5 Highly Swept Blunt LE Wing: Near Field Pressure and

Drag Reduction

Finally, we examine a highly swept wing with a blunt subsonic leading edge. Blunt

leading edge symmetric airfoils are created with a thickness ratio of 4% at each span

station. The wing has 60 degrees of leading edge sweep, and a 0.56 taper ratio.

Figures 6.13(a-b) illustrate the airfoil sections at span locations z = 0.0957 and

z = 0.571. Each figure contains three plots: Baseline Wing, Wing Optimized with

Remote Inverse Objective Function, and Wing Optimized with Remote Inverse and

Drag Minimization Objective Functions. The airfoil sections are scaled to exagger-

ate the modifications. Figures 6.14(a-b) show the corresponding near field pressure

distribution at the same span location. At the root section, a 14.2% reduction in

the peak pressure is obtained with the remote inverse as the objective function and a

slightly smaller reduction of 13.0% is achieved with the weighted sum of the remote

inverse and drag minimization cost functions. At the mid span location, a 10.4% re-

duction is achieved with the former and 9.4% reduction with the latter cost function.

For the case of joint drag minimization and remote inverse design, the weights are

̟1 = 0.005 and ̟2 = 1.0. The weighting coefficient for the drag minimization cost

function is smaller due to the larger magnitude of its gradient contribution. Since the

main objective of the design is to reduce the near field peak pressure, the weights were

adjusted to achieve the desired result. A comparison of the two final designs achieved

by the remote inverse and the simultaneous remote inverse and drag minimization

cost functions show that the two methods provide similar results, with the remote

inverse cost function providing a slightly greater reduction in the near field pressure

peak.

Design Case CD CD(%)

Baseline 0.0038
Remote Inverse 0.0040 +3.4%

Drag Minimization 0.0032 −16.2%
Remote Inverse and Drag Min. 0.0036 −5.8%

Table 6.1: Total Wing Drag Coefficient for Various Design Cases



6.3. RESULTS 213

Table 6.1 lists the total wing drag coefficient for the baseline wing and the opti-

mized wings. If only the remote inverse cost function is used, then a 3.4% increase

in total drag is seen versus the 5.8% reduction in total drag with the dual objective

function case. The reason for the difference between the two final designs can be

seen clearly in Figures 6.15 and 6.16. Figure 6.15(a) illustrates the pressure contours

on the upper surface of the wing. A strong shock is present slightly aft of the mid

chord location at the wing tip. The shock strength weakens as it moves inboard.

Figure 6.15(b) shows the pressure contours of the final design using only the remote

inverse cost function. Here we notice the presence of the shock wave at the wing

tip. In Figure 6.16(c) this shock is eliminated in the design case using only the drag

minimization objective function. However, in Figure 6.16(d) it is clearly seen that

the wing tip shock strength is reduced thus contributing to the reduction in the total

drag coefficient.

Figures 6.17(a-c) illustrate the coefficient of pressure plots for the baseline and the

two redesigned wings at three different span locations. At z = 0.85, the plots clearly

show the reduction in the strength of the shock.
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Figure 6.4: Initial and Final Lower Ni-bump Wall Geometry
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Figure 6.5: Initial Lower Surface Pressure Distributions.
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Figure 6.6: Final Lower Surface Pressure Distributions.
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Figure 6.7: Initial Upper Surface Pressure Distributions.
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Figure 6.8: Final Upper Surface Pressure Distributions.
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Figure 6.9: Verification Study: Target, Initial, and Final Near Field Pressure Distri-
bution. Mach = 1.5, α = 0 deg.
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Figure 6.10: Sonic Boom Minimization: Target, Initial, and Final Near Field Pressure
Distribution after 50 Design Cycles. Mach = 1.5, α = 1.75 deg., No Lift Coefficient
and Thickness Ratio Constraints
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Figure 6.11: Sonic Boom Minimization: Initial and Final Airfoil Shape After 50 De-
sign Cycles. Mach = 1.5, α = 1.75 deg, Fixed Lift Coefficient = 0.1, Fixed Thickness
Ratio
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Figure 6.12: Sonic Boom Minimization: Target, Initial, and Final Near Field Pressure
Distribution after 50 Design Cycles. Mach = 1.5, α = 1.75 deg., Fixed Lift Coefficient
= 0.1, Fixed Thickness Ratio
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Figure 6.13: Sonic Boom and Drag Minimization: Initial and Final Airfoil Shape
After 50 Design Cycles. Mach = 1.5, α = 0.829 deg, Fixed Lift Coefficient = 0.05,
Fixed Thickness Ratio
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Figure 6.14: Sonic Boom and Drag Minimization: Target, Initial, and Final Near
Field Pressure Distribution after 50 Design Cycles. Mach = 1.5, α = 0.829 deg.,
Fixed Lift Coefficient = 0.05, Fixed Thickness Ratio
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Figure 6.15: Sonic Boom and Drag Minimization: Pressure Contours of Final Design
of the Upper Surface of the Wing. Mach = 1.5, α = 0.829 deg, Fixed Lift Coefficient
= 0.05, Fixed Thickness Ratio
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Figure 6.16: Sonic Boom and Drag Minimization: Pressure Contours of Final Design
of the Upper Surface of the Wing. Mach = 1.5, α = 0.829 deg, Fixed Lift Coefficient
= 0.05, Fixed Thickness Ratio
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Figure 6.17: Sonic Boom and Drag Minimization: Surface Pressure Coefficient. Mach
= 1.5, α = 0.829 deg, Fixed Lift Coefficient = 0.05, Fixed Thickness Ratio
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Chapter 7

Conclusions

This chapter presents the main conclusions which may be drawn from the three focal

areas of research in this work: first, the development of the discrete viscous adjoint

equation; second, the formulation of the time accurate continuous and discrete adjoint

equations; third, the implementation of the adjoint approach for the calculation of

remote sensitivities.

7.1 Discrete Versus Continuous Adjoint Approaches

The following are the conclusions of the comparison between the discrete and contin-

uous adjoint approaches.

In the limit as the mesh width is reduced to zero, the discrete adjoint convective

and viscous fluxes both reduce to the continuous adjoint fluxes. The major difference

between the two approaches is the manner in which the adjoint boundary condition is

introduced into the system of equations. The continuous adjoint boundary condition

appears as an update to the costate values below the wall for a cell-centered scheme,

and the discrete adjoint boundary condition appears as a source term in the cell above

the wall. As the mesh width is reduced, one recovers the continuous adjoint boundary

condition from the discrete adjoint boundary condition for the inviscid and viscous

inverse design problems.

A comparison of the gradients from each approach to the finite-difference and

227
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complex-step gradients leads to the following conclusions. First, the discrete adjoint

gradients have better agreement than continuous adjoint gradients with complex-step

gradients as expected, but the difference is generally small. Figures 4.36-4.38 illustrate

this point. Second, as the mesh interval is reduced, both the continuous adjoint

gradients and the discrete adjoint gradients approach the complex-step gradients.

Third, the difference between the continuous and discrete gradients decreases as the

mesh interval is reduced. Table 4.3 verifies this outcome.

As stated in Chapter 4 only a partial discretization of the artificial dissipation

scheme was used to produce the discrete adjoint artificial dissipation flux. The results

show that the difference is negligible and does not affect the convergence of the

optimization algorithm.

Another remarkable property of the control theory approach to optimization is

the insensitivity of the accuracy of the adjoint gradient to the convergence of the flow

and adjoint solutions. This is an added benefit over the traditional finite-difference

approach, which not only requires the re-computation of the flow solution for each

design variable, but also requires at least three to four orders of convergence in the flow

solutions. In the viscous case, a greater degree of convergence of the flow and adjoint

solutions is needed to obtain accurate gradient information. This is due mainly to

the fact that the boundary layer requires a greater amount of time to develop.

The cost of deriving the discrete adjoint is greater, but it may provide a route to

improving the boundary conditions for the continuous adjoint for viscous flows. The

best compromise may be to use the continuous adjoint formulations in the interior of

the domain and the discrete adjoint boundary condition.

7.2 Optimum Shape Design for Unsteady Flows

The results presented in Chapter 5 confirm that optimum shapes for periodic unsteady

flows can be calculated by the adjoint method with quite moderate computational

costs. The time-averaged drag of the RAE 2822 was reduced by 57% at a reduced

frequency of 0.450 while maintaining the time-averaged lift coefficient. This benefit

was obtained by a drastic reduction of the upper surface curvature, an illustration of
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the capability of the method not only to improve the design, but also to provide insight

into the kind of modifications needed to improve the performance. Optimization

of the airfoil shape for various reduced frequencies and freestream Mach numbers

demonstrated the robustness of the adjoint approach. Similar results were obtained

for the VR-7 rotor airfoil. However, the improvements were not as large, perhaps

because this is already an airfoil that is well suited to rotorcraft.

The results also show that there are large benefits to modeling the unsteady

flow. A comparison between the unsteady solutions of airfoils designed using the full

unsteady optimization approach and the multipoint design approach showed a 9%

benefit of the full unsteady over the multipoint technique at a reduced frequency of

0.450. The advantage decreases at lower reduced frequencies. A comparison of the

gradients produced by the time-averaged-flow steady-adjoint, partial unsteady, and

full unsteady adjoint methods indicates that the gradients are not sensitive to the

method by which the adjoint equations are modeled for the pitching airfoil problem.

In fact modeling the unsteady flow and only using the time-averaged flow solution is

adequate for this problem.

7.3 Remote Inverse Design Problem

The results demonstrate the feasibility of remote inverse calculations using the adjoint

method, which would be impossible with other inverse methods such as CDISC[11].

When combined with a method to identify appropriate near field pressure distribu-

tions, the remote adjoint method could be a valuable tool towards the realization of

efficient supersonic transports with reduced sonic boom signatures.

7.4 Future Work

The body of work presented in this thesis has demonstrated the successful application

of the control theory approach to aerodynamic shape optimization. The formulation

of the time dependent optimal design problem and the feasibility of reducing the near

field pressure signature through the remote inverse adjoint approach are very much
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in their preliminary stages. Some directions for future research are listed below.

1. Extension of the time dependent optimal design problem to the design of multi-

stage turbomachinery blades. A substantial portion of the study would need to

be focused on developing cost functions and constraints to reduce losses incurred

in compressors, improve the aeroelastic stability, and the acoustic response of

the turbomachine.

2. Implementation of the remote inverse adjoint method for full aircraft config-

urations. The intention would be to develop a capability to design efficient

low sonic boom supersonic transports. The lift-to-drag ratio, range, and other

important performance measures would be included in the formulation of the

design problem.

3. Investigation of new convergence acceleration methods for viscous dominated

flows. Fast solvers currently available for inviscid flows approach text-book

multigrid convergence. An extension of these methods to viscous flows would

facilitate the successful design of turbomachinery and helicopter blades.

4. Implementation of the adjoint equation for the nonlinear frequency domain

technique. Current research has shown the promise of the frequency domain

method for periodic flows.

These projects could all reinforce the role of computational fluid dynamics in the

design of future aircraft and turbomachinery.



Appendix A

Viscous Continuous Adjoint

Equations

This section illustrates application of control theory to aerodynamic design problems

for the case of two-dimensional airfoil design using the Navier-Stokes equations as the

mathematical model.

In computational coordinates, the viscous terms in the Navier–Stokes equations

have the form
∂Fvi

∂ξi

=
∂

∂ξi

(
Sijfvj

)
.

Computing the variation δw resulting from a shape modification of the boundary,

introducing a Lagrange vector ψ and integrating by parts following the steps outlined

by equations (4.3) to (6.5) produces

∫

B

ψT
(
δS2jfvj + S2jδfvj

)
dBξ −

∫

D

∂ψT

∂ξi

(
δSijfvj + Sijδfvj

)
dDξ,

where the shape modification is restricted to the coordinate surface ξ2 = 0 so that

n1 = 0, and n2 = 1. Furthermore, it is assumed that the boundary contributions at

the far field may either be neglected or else eliminated by a proper choice of boundary

conditions as previously shown for the inviscid case [35].

The viscous terms will be derived under the assumption that the viscosity and
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heat conduction coefficients µ and k are essentially independent of the flow, and that

their variations may be neglected. This simplification has been successfully used for

many aerodynamic problems of interest. In the case of some turbulent flows, the

possibility exists that the flow variations could result in significant changes in the

turbulent viscosity, and it may then be necessary to account for its variation in the

calculation.

A.1 Transformation to Primitive Variables

The derivation of the viscous adjoint terms is simplified by transforming to the prim-

itive variables

w̃T = (ρ, u1, u2, p)T ,

because the viscous stresses depend on the velocity derivatives ∂ui

∂xj
, while the heat

flux can be expressed as

κ
∂

∂xi

(
p

ρ

)

where κ = k
R

= γµ

Pr(γ−1)
. The relationship between the conservative and primitive

variations is defined by the expressions

δw = Mδw̃, δw̃ = M−1δw

which make use of the transformation matrices M = ∂w
∂w̃

and M−1 = ∂w̃
∂w

. These

matrices are provided in transposed form for future convenience

MT =




1 u1 u2
uiui

2

0 ρ 0 ρu1

0 0 ρ ρu2

0 0 0 1
γ−1
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M−1T
=




1 −u1

ρ
−u2

ρ

(γ−1)uiui

2

0 1
ρ

0 −(γ − 1)u1

0 0 1
ρ

−(γ − 1)u2

0 0 0 γ − 1




.

The conservative and primitive adjoint operators L and L̃ corresponding to the vari-

ations δw and δw̃ are then related by

∫

D

δwT Lψ dDξ =

∫

D

δw̃T L̃ψ dDξ,

with

L̃ = MT L,

so that after determining the primitive adjoint operator by direct evaluation of the

viscous portion of (6.7), the conservative operator may be obtained by the transforma-

tion L = M−1T
L̃. Since the continuity equation contains no viscous terms, it makes

no contribution to the viscous adjoint system. Therefore, the derivation proceeds by

first examining the adjoint operators arising from the momentum equations.

A.2 Contributions from the Momentum Equations

In order to make use of the summation convention, it is convenient to set ψj+1 = φj

for j = 1, 2. Then the contribution from the momentum equations is

∫

B

φk (δS2jσkj + S2jδσkj) dBξ −
∫

D

∂φk

∂ξi

(δSijσkj + Sijδσkj) dDξ. (A.1)

The velocity derivatives in the viscous stresses can be expressed as

∂ui

∂xj

=
∂ui

∂ξl

∂ξl

∂xj

=
Slj

J

∂ui

∂ξl

with corresponding variations

δ
∂ui

∂xj

=

[
Slj

J

]

I

∂

∂ξl

δui +

[
∂ui

∂ξl

]

II

δ

(
Slj

J

)
.
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The variations in the stresses are then

δσkj =
{

µ
[

Slj

J
∂

∂ξl
δuk + Slk

J
∂

∂ξl
δuj

]
+ λ

[
δjk

Slm

J
∂

∂ξl
δum

]}
I

+
{

µ
[
δ
(

Slj

J

)
∂uk

∂ξl
+ δ

(
Slk

J

) ∂uj

∂ξl

]
+ λ

[
δjkδ

(
Slm

J

)
∂um

∂ξl

]}
II

.

As before, only those terms with subscript I, which contain variations of the flow

variables, need be considered further in deriving the adjoint operator. The field

contributions that contain δui in equation (A.1) appear as

−
∫

D

∂φk

∂ξi

Sij

{
µ

(
Slj

J

∂

∂ξl

δuk +
Slk

J

∂

∂ξl

δuj

)
+λδjk

Slm

J

∂

∂ξl

δum

}
dDξ.

This may be integrated by parts to yield

∫

D

δuk

∂

∂ξl

(
SljSij

µ

J

∂φk

∂ξi

)
dDξ +

∫

D

δuj

∂

∂ξl

(
SlkSij

µ

J

∂φk

∂ξi

)
dDξ

+

∫

D

δum

∂

∂ξl

(
SlmSij

λδjk

J

∂φk

∂ξi

)
dDξ,

where the boundary integral has been eliminated by noting that δui = 0 on the solid

boundary. By exchanging indices, the field integrals may be combined to produce

∫

D

δuk

∂

∂ξl

Slj

{
µ

(
Sij

J

∂φk

∂ξi

+
Sik

J

∂φj

∂ξi

)
+ λδjk

Sim

J

∂φm

∂ξi

}
dDξ,

which is further simplified by transforming the inner derivatives back to Cartesian

coordinates ∫

D

δuk

∂

∂ξl

Slj

{
µ

(
∂φk

∂xj

+
∂φj

∂xk

)
+ λδjk

∂φm

∂xm

}
dDξ. (A.2)

The boundary contributions that contain δui in equation (A.1) may be simplified

using the fact that
∂

∂ξl

δui = 0 if l = 1
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on the boundary B so that they become

∫

B

φkS2j

{
µ

(
S2j

J

∂

∂ξ2

δuk +
S2k

J

∂

∂ξ2

δuj

)
+ λδjk

S2m

J

∂

∂ξ2

δum

}
dBξ. (A.3)

Together (A.2) and (A.3) comprise the field and boundary contributions of the mo-

mentum equations to the viscous adjoint operator in primitive variables.

A.3 Contributions from the Energy Equation

In order to derive the contribution of the energy equation to the viscous adjoint terms

it is convenient to set

ψ4 = θ, Qj = uiσij + κ
∂

∂xj

(
p

ρ

)
,

where the temperature has been written in terms of pressure and density using (2.1.4).

The contribution from the energy equation can then be written as

∫

B

θ (δS2jQj + S2jδQj) dBξ −
∫

D

∂θ

∂ξi

(δSijQj + SijδQj) dDξ. (A.4)

The field contributions that contain δui,δp, and δρ in equation (A.4) appear as

−
∫

D

∂θ

∂ξi

SijδQjdDξ = −
∫

D

∂θ

∂ξi

Sij {δukσkj + ukδσkj

+ κ
Slj

J

∂

∂ξl

(
δp

ρ
− p

ρ

δρ

ρ

)}
dDξ. (A.5)

The term involving δσkj may be integrated by parts to produce

∫

D

δuk

∂

∂ξl

Slj

{
µ

(
uk

∂θ

∂xj

+ uj

∂θ

∂xk

)
+λδjkum

∂θ

∂xm

}
dDξ,

where the conditions ui = δui = 0 are used to eliminate the boundary integral on B.

Notice that the other term in (A.5) that involves δuk need not be integrated by parts
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and is merely carried on as

−
∫

D

δukσkjSij

∂θ

∂ξi

dDξ. (A.6)

The terms in expression (A.5) that involve δp and δρ may also be integrated by

parts to produce both a field and a boundary integral. The field integral becomes

∫

D

(
δp

ρ
− p

ρ

δρ

ρ

)
∂

∂ξl

(
SljSij

κ

J

∂θ

∂ξi

)
dDξ

which may be simplified by transforming the inner derivative to Cartesian coordinates

∫

D

(
δp

ρ
− p

ρ

δρ

ρ

)
∂

∂ξl

(
Sljκ

∂θ

∂xj

)
dDξ. (A.7)

The boundary integral becomes

∫

B

κ

(
δp

ρ
− p

ρ

δρ

ρ

)
S2jSij

J

∂θ

∂ξi

dBξ. (A.8)

This can be simplified by transforming the inner derivative to Cartesian coordinates

∫

B

κ

(
δp

ρ
− p

ρ

δρ

ρ

)
S2j

J

∂θ

∂xj

dBξ, (A.9)

and identifying the normal derivative at the wall

∂

∂n
= S2j

∂

∂xj

, (A.10)

and the variation in temperature

δT =
1

R

(
δp

ρ
− p

ρ

δρ

ρ

)
,

to produce the boundary contribution

∫

B

kδT
∂θ

∂n
dBξ. (A.11)
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This term vanishes if T is constant on the wall but persists if the wall is adiabatic.

There is also a boundary contribution left over from the first integration by parts

(A.4) which has the form ∫

B

θδ (S2jQj) dBξ, (A.12)

where

Qj = k
∂T

∂xj

,

since ui = 0. Notice that for future convenience in discussing the adjoint boundary

conditions resulting from the energy equation, both the δw and δS terms correspond-

ing to subscript classes I and II are considered simultaneously. If the wall is adiabatic

∂T

∂n
= 0,

so that using (A.10),

δ (S2jQj) = 0,

and both the δw and δS boundary contributions vanish.

On the other hand, if T is constant ∂T
∂ξl

= 0 for l = 1, so that

Qj = k
∂T

∂xj

= k

(
Slj

J

∂T

∂ξl

)
= k

(
S2j

J

∂T

∂ξ2

)
.

Thus, the boundary integral (A.12) becomes

∫

B

kθ

{
S2j

2

J

∂

∂ξ2

δT + δ

(
S2j

2

J

)
∂T

∂ξ2

}
dBξ . (A.13)

Therefore, for constant T , the first term corresponding to variations in the flow field

contributes to the adjoint boundary operator and the second set of terms correspond-

ing to metric variations contribute to the cost function gradient.

All together, the contributions from the energy equation to the viscous adjoint

operator are the three field terms (A.6), (A.6) and (A.7), and either of two boundary

contributions ( A.11) or ( A.13), depending on whether the wall is adiabatic or has

constant temperature.
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A.4 The Viscous Adjoint Field Operator

Collecting together the contributions from the momentum and energy equations, the

viscous adjoint operator in primitive variables can be expressed as

(L̃ψ)1 = − p

ρ2

∂

∂ξl

(
Sljκ

∂θ

∂xj

)

(L̃ψ)i+1 =
∂

∂ξl

{
Slj

[
µ

(
∂φi

∂xj

+
∂φj

∂xi

)
+ λδij

∂φk

∂xk

]}

+
∂

∂ξl

{
Slj

[
µ

(
ui

∂θ

∂xj

+ uj

∂θ

∂xi

)
+ λδijuk

∂θ

∂xk

]}

− σijSlj

∂θ

∂ξl

for i = 1, 2

(L̃ψ)4 =
1

ρ

∂

∂ξl

(
Sljκ

∂θ

∂xj

)
.

The conservative viscous adjoint operator may now be obtained by the transformation

L = M−1T
L̃.

A.5 Viscous Adjoint Boundary Conditions

In this section, the viscous adjoint boundary condition for both inverse design and

drag minimization are discussed.

A.5.1 Inverse Design

In the continuous adjoint case, the boundary term that arises from the momentum

equations including both the δw and δS components (A.1) takes the form

∫

B

φkδ (S2jσkj) dBξ.
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Replacing the metric term with the corresponding local face area S2 and unit normal

nj defined by

|S2| =
√

S2jS2j, nj =
S2j

|S2|
then leads to ∫

B

φkδ (|S2|njσkj) dBξ.

Defining the components of the surface stress as

τk = njσkj

and the physical surface element

dS = |S2| dBξ,

the integral may then be split into two components

∫

B

φkτk |δS2| dBξ +

∫

B

φkδτkdS, (A.14)

where only the second term contains variations in the flow variables and must conse-

quently cancel the δw terms arising in the cost function. The first term will appear

in the expression for the gradient.

A general expression for the cost function that allows cancellation with terms

containing δτk has the form

I =

∫

B

N (τ)dS, (A.15)

corresponding to a variation

δI =

∫

B

∂N
∂τk

δτkdS,

for which cancellation is achieved by the adjoint boundary condition

φk =
∂N
∂τk

.

Natural choices for N arise from force optimization and as measures of the deviation
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of the surface stresses from desired target values.

In the inverse design case, in order to control the surface pressure and normal

stress one can measure the difference

nj {σkj + δkj (p − pd)} ,

where pd is the desired pressure. The normal component is then

τn = nknjσkj + p − pd,

so that the measure becomes

N (τ) =
1

2
τ 2
n

=
1

2
nlnmnknj {σlm + δlm (p − pd)} · {σkj + δkj (p − pd)} .

Defining the viscous normal stress as

τvn = nknjσkj,

the measure can be expanded as

N (τ) =
1

2
nlnmnknjσlmσkj +

1

2
(nknjσkj + nlnmσlm) (p − pd) +

1

2
(p − pd)

2

=
1

2
τ 2
vn + τvn (p − pd) +

1

2
(p − pd)

2 .

For cancellation of the boundary terms

φk (njδσkj + nkδp) =
{
nlnmσlm + n2

l (p − pd)
}

nk (njδσkj + nkδp) (A.16)

leading to the boundary condition

φk = nk (τvn + p − pd) .
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In the case of high Reynolds number, this is well approximated by the equations

φk = nk (p − pd) , (A.17)

which should be compared with the single scalar equation derived for the inviscid

boundary condition. In the case of an inviscid flow, choosing

N (τ) =
1

2
(p − pd)

2

requires

φknkδp = (p − pd) n2
kδp = (p − pd) δp (A.18)

which is satisfied by equation (A.17), but which represents an over-specification of

the boundary condition since only the single condition need be specified to ensure

cancellation.

A.5.2 Drag Minimization

Pressure Drag Minimization

In the continuous adjoint case, if the drag is to be minimized, then the cost function

is the drag coefficient,

I = Cd

=

(
1

c

∫

BW

Cp

∂y

∂ξ
dξ

)
cos α +

(
1

c

∫

BW

−Cp

∂x

∂ξ
dξ

)
sin α.

A variation in the shape causes a variation ∂p in the pressure and consequently a

variation in the cost function,
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δI =
1

c

∫

BW

Cp

(
∂y

∂ξ
cos α − ∂x

∂ξ
sin α

)
∂pdξ

+
1

c

∫

BW

Cp

(
δ

(
∂y

∂ξ

)
cos α − δ

(
∂x

∂ξ

)
sin α

)
dξ.

(A.19)

As in the inverse design case, the first term is a function of the state vector, and

therefore is incorporated into the boundary condition, where the integrand replaces

the pressure difference term in equation (A.18) producing the following boundary

condition,

φknk = − 1
1
2
γP∞M2

∞

[
cos α

sin α

]
nk. (A.20)

Skin Friction Drag Minimization

For viscous force optimization, the cost function should measure skin friction drag.

The skin friction force in the xi direction is

CDfi =

∫

B

σijdSj =

∫

B

S2jσijdBξ

so that the force in a direction with cosines li has the form

Cnf =

∫

B

liS2jσijdBξ.

Expressed in terms of the surface stress τi, this corresponds to

Cnf =

∫

B

liτidS,

so that basing the cost function (A.15) on this quantity gives

N = liτi.
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Cancellation with the flow variation terms in equation (A.14) therefore mandates the

continuous viscous adjoint boundary condition

φk = lk (A.21)

where,

lk = − 1
1
2
γP∞M2

∞

[
cos α

sin α

]
.

If one would take the dot product of equation (A.21) then the resulting equation

is identical to equation (A.20). Therefore, the continuous adjoint boundary condi-

tion for skin friction drag minimization also satisfies the pressure drag minimization

cost function, and thus the two boundary conditions are inseparable. This choice of

boundary condition also eliminates the first term in equation (A.14) so that it need

not be included in the gradient calculation. Notice that the choice for the first and

fourth Lagrange multipliers can be arbitrarily set to zero or a zeroth order extrapola-

tion across the wall can be adopted since equation (A.21) provides no suggestion for

these values. The effect of this boundary condition is explored in the Results section.

Total Drag Minimization

Since the continuous adjoint boundary condition for skin friction drag minimization

also satisfies the pressure drag minimization cost function, then equation (A.21) is

used for total drag minimization.
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