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Abstract The adjoint method is an elegant approach for the computation of the gradient of a

cost function to identify a set of parameters. An additional set of differential equations has to

be solved to compute the adjoint variables, which are further used for the gradient computa-

tion. However, the accuracy of the numerical solution of the adjoint differential equation has

a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method,

where the adjoint differential equations are replaced by algebraic equations. Therefore, a fi-

nite difference scheme is constructed for the adjoint system directly from the numerical time

integration method. The method provides the exact gradient of the discretized cost function

subjected to the discretized equations of motion.

Keywords Adjoint method · Discrete adjoint method · Parameter identification

1 Introduction

In the last few years the complexity of the multibody systems has grown tremendously. In

particular, industrial simulations of large systems include a high number of bodies, resulting

in a vast number of degrees of freedom. In general, the bodies are linked to the ground or to

other bodies by formulating algebraic constraint equations.

In most cases, multibody systems are described in descriptor form, given by a system of

differential algebraic equations (DAE)

M(q,u)q̈ + CT

q(q)λ = Q(q, q̇,u, t),

C(q, t) = 0,
(1)

in which q denotes the generalized coordinates, and q̇ and q̈ its time derivatives, M is the

symmetric system mass matrix, and Q represents the vector of generalized and gyroscopic
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forces. Due to the algebraic constraints C(q, t) = 0, the equations of motion have to be

extended by constraint forces of the form CT

qλ, where Cq represents the constraint Jaco-

bian matrix, and the vector λ includes the Lagrange multipliers. Moreover, u is a vector of

parameters influencing the system behavior. We consider an optimization problem for the

multibody system, which can be described in the general form as follows: Find the vector of

unknown parameters u such that the cost function given by

J (u) =

∫ tf

0

1

2

(

s(q, q̇, q̈,λ) − s̄(t)
)2

dt (2)

is minimized, where tf is the final end time. The integrand represents the mean deviation

between a system output s(q, q̇, q̈,λ) and a given measured signal s̄(t).

Various authors formulate the parameter identification problem as an optimization task.

Vyasarayani et al. [21] solve the underlying optimization problem using a combination of

the Gauss–Newton and single shooting methods. Therein, homotopy continuation is used to

find a global minimum of the cost function. The gradient is computed by the sensitivities,

and the Hessian is only of first-order accuracy since second-order terms are neglected.

Serban et al. [19] also realized the parameter identification in multibody systems by

minimizing a cost function by the Levenberg–Marquardt method. The derivatives that are

required for the optimization are computed through sensitivity analysis. In addition, a local

identifiability test is developed in this contribution.

Oberpeilsteiner et al. [15] designed an optimal input by maximizing the information con-

tent of the parameters to identify. The required Jacobian matrix are computed with the ad-

joint method, and the optimization is done with the gradient method. Finally, the optimal

input is used for a parameter identification.

Apart from the previous described methods, the adjoint method is already used in a wide

range of parameter identification problems in engineering sciences. Especially, in the field

of multibody systems, the computation of the gradient of the cost function, as, for example,

in (2), is often the bottleneck for computational efficiency, and the adjoint method serves

as the most efficient strategy in this case. The basic idea of the adjoint method is the intro-

duction of additional adjoint variables determined by a set of adjoint differential equations

from which the gradient can be computed straightforwardly. This main idea directly corre-

sponds to the gradient technique for trajectory optimization pioneered by Bryson and Ho [3].

There are two strategies for this purpose: the equations of motion of the multibody sys-

tem and adjoint equations may either be separately discretized from their representations as

differential-algebraic equations, or, alternatively, the equations of motion of the multibody

system may be discretized first, whereas the discrete adjoint equations are derived directly

from the discrete multibody system equations; for more details, see [3].

The piecewise adjoint method presented in [18] formulates the coordinate partitioning

underlying ordinary differential equations as a boundary value problem, which is solved

by multiple shooting methods. The sensitivity analysis for differential-algebraic and partial

differential equations using adjoint methods has also been in the focus of the group around

Petzold, Cao, Li, and Serban [16]. The adjoint method has been used for sensitivity analysis

in multibody systems as well by Eberhard [4], presenting a continuous, hybrid form of au-

tomatic differentiation. In [20], the use of the adjoint method for solving dynamical inverse

problems is described, but rather academic examples are discussed. A recent paper [11]

shows how the adjoint method can be applied efficiently to a multibody system described

by differential-algebraic equations of index three. It also presents the structure of the adjoint

equations depending on the Jacobian matrices of the system equations. However, the nu-
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merical solution of the adjoint system presented in [11] raises several questions concerning

stability and accuracy with respect to time discretization.

An alternative and more natural approach is the discrete adjoint method (DAM), which

constructs a finite difference scheme for the adjoint system directly from the numerical pro-

cedure used to solve the equations of motion. The method delivers the exact gradient of the

discretized cost function subjected to the discretized equations of motion. Instead of using

automatic differentiation techniques [1], the Jacobian matrices can be determined analyti-

cally for multibody systems in a very simple structure if redundant generalized coordinates

are used to describe the motion of the bodies. In [7] the discrete adjoint method is derived

and applied for optimal control problems only, focusing especially on the description of the

adjoint method for explicit and implicit solvers for optimal control applications, as well as

the interpolation of the gradients and the Hessian (BFGS).

The current paper focuses on parameter identification of multibody systems. The discrete

adjoint equations are derived for the computation of the gradient of the cost function using

the HHT-solver [6, 13] for the solution of the system equations.

The advantage of the presented method is that the cost function may also depend on the

accelerations if the discrete adjoint method is used. The reason is that the accelerations are

included in the state vector of the HHT-solver. In contrast to the discrete adjoint method, in

the continuous approach, the accelerations have to be expressed by the equations of motion,

leading to a complex Jacobian matrix [12]. Practically speaking, the new approach allows us

to use measured data from acceleration sensors in a straightforward manner as a reference

trajectory in the cost function for the parameter identification.

2 Discrete adjoint method for implicit time integration methods

The discrete adjoint method is an elegant and efficient way to compute the gradient of a cost

function. Following [7], the discretized multibody system equations can be rewritten in the

form

f(xi+1,xi, ti+1, ti,u) = 0, x0 given, i = 0, . . . ,N − 1, (3)

in which u ∈ R
m denotes the vector of parameters to identify. The sequence of state vectors

x0, . . . ,xN ∈ R
n are given at times t0, . . . , tN ∈ R. A discretized version of the cost function

in (2) is given by

J (u) =
1

2

N−1
∑

i=0

ηi

(

s(xi) − s̄(ti)
)2

, (4)

where ηi is a weighting factor. Hence, the goal is to find a set of parameters u such that

the scalar cost function (4) is minimized. To introduce the adjoint gradient computation, the

cost function J is extended by zero terms, representing the system equation (3), and reads

J̄ =

N−1
∑

i=0

{

1

2
ηi

(

s(xi) − s̄(ti)
)2

+ pT

i+1f(xi+1,xi, ti+1, ti,u)

}

, (5)

where p1, . . . ,pN denote the adjoint variables. Due to (3), J̄ and J are equal for any choice

of the adjoints, and so the corresponding gradients with respect to the parameters to identify
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are also equal. We will further choose pi such that the gradient computation becomes as

easy as possible. Hence, the variation of the cost function is given by

δJ̄ =

N−1
∑

i=0

{

ηi

[

si − s̄(ti)
]T ∂si

∂xi

δxi

+ pT

i+1

(

∂fi+1

∂xi+1

δxi+1 +
∂fi+1

∂xi

δxi +
∂fi+1

∂u
δu

)}

(6)

with the abbreviations fi+1 = f(xi+1,xi, ti+1, ti,u) and si = s(xi) and the corresponding Ja-

cobian matrix ∂si/∂xi , which is the partial derivative of the system output with respect to

the states x evaluated at xi . Following the trivial index shift

N−1
∑

i=0

pT

i+1

∂fi+1

∂xi+1

δxi+1 =

N
∑

i=1

pT

i

∂fi

∂xi

δxi, (7)

the variation of the cost function J̄ can be reformulated in terms of δxi and δu as

δJ̄ =

(

pT

1

∂f1

∂x0

+ η0

[

s0 − s̄(t0)
]T ∂s0

∂x0

)

δx0 + pT

1

∂f1

∂u
δu

+

N−1
∑

i=1

[(

ηi

[

si − s̄(ti)
]T ∂si

∂xi

+ pT

i

∂fi

∂xi

+ pT

i+1

∂fi+1

∂xi

)

δxi

+ pT

i+1

∂fi+1

∂u
δu

]

+ pT

N

∂fN

∂xN

δxN . (8)

The adjoint state variables should be defined in such a way that the expressions in the brack-

ets corresponding to the variation of the states vanish, and hence the complicated relations

between δxi and δu need not be computed. Note that δx0 vanishes. If we define the adjoint

variables pi by the equations

(

∂fN

∂xN

)T

pN = 0,

(

∂fi

∂xi

)T

pi = −ηi

(

∂si

∂xi

)T
[

si − s̄(ti)
]

−

(

∂fi+1

∂xi

)T

pi+1,

(9)

which can be solved successively for pi , starting with the boundary condition for pN and

proceeding with i = (N − 1), . . . ,1, then the variation of the cost function is reduced to

δJ̄ =

N−1
∑

i=0

(

pT

i+1

∂fi+1

∂u

)

δu =

(

∂J

∂u

)T

δu. (10)

Hence, the gradient is given by

∂J

∂u
=

N−1
∑

i=0

(

∂fi+1

∂u

)T

pi+1. (11)
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In summary, to find the gradient of the cost function, we can proceed as follows. First,

the difference equations (3) have to be solved forward in time with an initial guess for the

actual values of the parameters u. Furthermore, the adjoint equations (9) have to be solved

backward in time starting from the boundary conditions for pN . In combination with the

adjoint variables, the gradient of the cost function with respect to the parameters u can be

evaluated from (11).

The gradient information can be used in various ways to find a set of parameters that

minimizes the cost function. In the simplest form, the parameters are updated by walking in

the direction of the negative gradient −∂J/∂u, that is, by setting unew = u − κ(∂J/∂u). If

the number κ > 0 is sufficiently small, then the updated set of parameters always reduces

the cost function J (steepest-descent method).

It should be noted that the convergence of a quasi-Newton method is much better than

the convergence of the steepest-descent method, especially near the optimum. Hence, it

is recommended to use a quasi-Newton method where the Hessian is approximated from

the gradient information, for example, with the BFGS formula. The Hessian could also be

estimated from the first-order sensitivity matrix [19], but as the adjoint method circumvents

its computation, this approach seems not appropriate in this context.

3 Application to the HHT solver

In this section the implicit iteration scheme (3) is specified for the HHT-solver, which is a

widely used time integration method in multibody system dynamics. The Jacobian matrices

required for the computation of the discrete adjoint variables, and further for the gradient

computation, are derived in this section.

A precursor of the HHT-method is the Newmark method [14], which approximates the

positions and velocities of a second-order system by the formulas

qi = qi−1 + hq̇i−1 +
h2

2

[

(1 − 2β)q̈i−1 + 2βq̈i

]

,

q̇i = q̇i−1 + h
[

(1 − γ )q̈i−1 + γ q̈i

]

,

(12)

with parameters β and γ . Herein, qi , q̇i , and q̈i denote positions, velocities, and accelera-

tions at t = ti . The formulas (12) are used to discretize the motion equations (1) using the

integration step size h = ti − ti−1. Choosing γ = 1
2

and β = 1
4
, the method is equivalent to the

trapezoidal rule, which is implicit and A-stable and leads to a second-order integration for-

mula. The disadvantage of the trapezoidal rule is that no numerical damping is introduced,

and so this method is impractical for stiff problems. Hence, the HHT-method was developed

as an improvement, which includes numerical damping and preserves its A-stability while

achieving second-order accuracy.

The method considers the second-order term in the motion equations (1) at t = ti whereas

all other terms are weighted between ti−1 and ti by using the weighting factor α, resulting in

1

1 + α
(Mq̈)i +

(

CT

qλ − Q
)

i
−

α

1 + α

(

CT

qλ − Q
)

i−1
= 0. (13)

As indicated in [13], the parameter α has to be chosen in the interval α ∈ [− 1
3
,0] to possess

the advertised stability. The parameter β and γ of (12) are expressed by α by setting β =

(1 − α)2/4 and γ = (1 − 2α)/2.
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Finally, for constrained systems, the constraint equation satisfied at t = ti is

C(qi, ti) = 0. (14)

By introducing the state vector xT

i = [qT

i q̇T

i q̈T

i λ
T

i ] = [qT

i vT

i aT

i λ
T

i ], Eqs. (12), (13), and (14)

have the form (3) and may be solved for xi if xi−1 is known. Rewriting (12), (13), and (14)

yields

f1,i = −qi−1 + qi − hvi−1 −
h2

2

[

(1 − 2β)ai−1 + 2βai

]

= 0,

f2,i = −vi−1 + vi − h
[

(1 − γ )ai−1 + γ ai

]

= 0,

f3,i =
1

1 + α
(Ma)i +

(

CT

qλ − Q
)

i
−

α

1 + α

(

CT

qλ − Q
)

i−1
= 0,

f4,i =
1

βh2
C(qi) = 0,

(15)

where the equations are summarized in fT

i = [fT

1,i fT

2,i fT

3,i fT

4,i], which equals the right-hand

side of the implicit recursive scheme (3). The Jacobian matrices
∂fi
∂xi

and
∂fi+1

∂xi
, which are

required for the computation of the adjoint variables according to (9), are given further.

Note that qi+1 = qi+1(qi,vi,ai,ai+1) due to the Newmark integration formulas (12). First,

the partial derivative of the implicit iteration scheme fi with respect to the actual states xi at

time ti is calculated and given by

∂fi

∂xi

=

⎛

⎜

⎜

⎝

I 0 −h2βI 0

0 I −hγ I 0

0 0 1
1+α

M + ( 1
1+α

JM + JC − JQ)βh2 − JVhγ CT

q

0 0 Cq 0

⎞

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

t=ti

(16)

with abbreviations

JM(ti) =
∂

∂q
(Mq̈)

∣

∣

∣

∣

t=ti

, JC(ti) =
∂

∂q

(

CT

qλ
)

∣

∣

∣

∣

t=ti

,

JQ(ti) =
∂Q

∂q

∣

∣

∣

∣

t=ti

, JV(ti) =
∂Q

∂q̇

∣

∣

∣

∣

t=ti

.

It is worth noting here that the lower right block of Jacobian matrix (16) corresponds to the

Jacobian matrix (12) in Negrut et al. [13]. In this paper the constraints are scaled by a factor

of 1

βh2 to improve the condition number of the Jacobian matrix. In [5] a formal proof is given,

which discusses the nonsingular character of the block Jacobian matrix (16). Furthermore,

for the computation of the discrete adjoint variables, the inverse of the transposed matrix

(16) is required. Due to the special structure of the Jacobian matrix, the adjoint variables

based on the generalized coordinates and on the generalized velocities can be calculated

directly by separating the matrix. The discrete adjoint variables based on the generalized

acceleration and on the Lagrange multiplier can be calculated by inverting only the right

lower part of the matrix (16). Hence, only the condition number of this submatrix is of

interest.
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In addition, the partial derivatives of the implicit iteration scheme (3) with respect to the

states xi are required, which reads

∂fi+1

∂xi

=

⎛

⎜

⎜

⎜

⎝

−I −hI − 1
2
h2(1 − 2β)I 0

0 −I −h(1 − γ )I 0
∂f3,i+1

∂qi

∂f3,i+1

∂vi

∂f3,i+1

∂ai

∂f3,i+1

∂λi
∂f4,i+1

∂qi

∂f4,i+1

∂vi

∂f4,i+1

∂ai
0

⎞

⎟

⎟

⎟

⎠

(17)

with the following partial derivatives of f3,i+1 with respect to xi :

∂f3,i+1

∂qi

=
1

1 + α
JM(ti+1) + JC(ti+1) − JQ(ti+1) −

α

1 + α

[

JC(ti) − JQ(ti)
]

,

∂f3,i+1

∂vi

=
h

1 + α
JM(ti+1) + hJC(ti+1) − hJQ(ti+1) − JV(ti+1) +

α

1 + α
JV(ti),

∂f3,i+1

∂ai

=
h2

2
(1 − 2β)

[

1

1 + α
JM(ti+1) + JC(ti+1) − JQ(ti+1)

]

− h(1 − γ )JV(ti+1),

∂f3,i+1

∂λi

= −
α

1 + α
CT

q

∣

∣

∣

∣

t=ti

.

(18)

The partial derivatives of f4,i+1 with respect to xi are

∂f4,i+1

∂qi

=
1

βh2
Cq

∣

∣

∣

∣

t=ti

,

∂f4,i+1

∂vi

=
1

βh
Cq

∣

∣

∣

∣

t=ti

,

∂f4,i+1

∂ai

=
1 − 2β

2β
Cq

∣

∣

∣

∣

t=ti

.

(19)

In (18) and (19), h = ti+1 − ti is the integration step size.

The gradient computation according to (11) requires the following Jacobian matrix:

∂fi+1

∂u
=

⎛

⎜

⎜

⎝

0

0
1

1+α

∂(Mq̈)

∂u
|t=ti+1

− ∂Q

∂u
|t=ti+1

+ α
1+α

∂Q

∂u
|t=ti

0

⎞

⎟

⎟

⎠

. (20)

4 The discrete adjoints for a simple harmonic oscillator

In this section the discrete adjoint gradient computation is shown on a simple academic ex-

ample. The reader should get a feel for the proposed method. Let us consider a harmonic

one mass oscillator with a linear damping parameter d and a linear stiffness parameter c as

a simple example. The goal is to compute the gradient of a cost function of the form (4)

with respect to the parameters c and d with the proposed discrete adjoint method. The state

vector xi = (qi, vi, ai)
T consists of the position, velocity, and acceleration of the mass. The

systems mass matrix is M = m, the force vector is Qi = −c qi − d vi , and the system out-

put is s(xi) = ai . For this simple example, the constraint equation (15)4 is not required,
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and therefore the dimension of the Jacobian is reduced. Moreover, all terms related to the

constraints equation C(qi) = 0 are zero. Hence, the Jacobian matrices (16) and (17) can be

simply rewritten as

∂fi

∂xi

=

⎛

⎝

1 0 −h2 β

0 1 −hγ

0 0 m
1+α

+ c β h2 + d γ h

⎞

⎠ =: A,

∂fi+1

∂xi

=

⎛

⎝

−1 −h − 1
2
h2(1 − 2β)

0 −1 −h(1 − γ )
c

1+α
hc + d

1+α
ch2

2
(1 − 2β) + d h(1 − γ )

⎞

⎠ =: B,

which are constant for linear examples as it is the case here. Inserting both matrices into (9)

results in an algebraic system of equations, which must solved successively for i = N −

1, . . . ,1. Starting from pN = 0 and proceeding with

ATpi = −ηi

⎛

⎝

0

0

1

⎞

⎠

(

ai − ā(ti)
)

− BTpi+1,

the discrete adjoint variables pi can be computed. Here, ā(ti) denotes the measured acceler-

ations at time ti . For simplicity, we set α = 0 and use an equidistant step size ηi = h, which

results in the explicit iteration scheme

pi = −

⎛

⎝

0

0
h
m̃
(ai − ā(ti))

⎞

⎠ −

⎛

⎝

−1 0 c

−h −1 (d + c h)

− h2

m̃
− h

m̃

h(d+c h)

m̃

⎞

⎠ pi+1

with m̃ = m + c h2

4
+ d h

2
. Finally, the gradient can be computed as

∇J =

(

∂J

∂u

)T

=

N−1
∑

i=1

(

0 0 qi

0 0 vi

)

pi .

The state variables qi , vi , and ai that are required for the gradient computation must be

obtained from a forward simulation of the system in advance. The respective finite difference

scheme is not shown here, but can easily derived by specializing (15).

5 Example: engine mount

As an illustrative example, we consider an engine mount, which is installed in every com-

mercial car. The main purpose of this component is, on the one hand, the damping of low-

frequency oscillations and, on the other hand, the isolation of high-frequency vibrations

from the chassis produced by the engine. Hence, the frequency selective damping is essen-

tial for this component. Further information on hydro-mounts can be found in the work by

Amelunxen [2], and its functional principle is shown in Fig. 1.

In the development of combustion engines the behavior of the engine mount is of partic-

ular interest. Hence, a sufficient accurate mathematical model is important for valid simula-

tion results. In this contribution an analogous model, shown in Fig. 2, is used. Note that in

the literature other mathematical formulations can be found (see [2, 9, 17]).
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Fig. 1 Functional principle of an

engine mount as depicted in [2]

Fig. 2 Model of the engine

mount [10]

The goal of the present example is to identify a set of parameters such that a measurable

output matches a desired trajectory. First of all, we introduce the vector of degrees of free-

dom q = (x1, x2, x3, x4)
T and a vector of parameters to identify u = (cE1, cE2, dE, dH2)

T. In

Table 1 the parameters of the model (see Fig. 2) are summarized, and optimal and initial

values for the four parameters to identify are given.

The system equations can be formulated in the form (1). The mass matrix is a constant

diagonal matrix given by M = diag(mL,0,mM ,mH ) with a zero mass corresponding to the

second degree of freedom x2. The external force vector results in

Q =

⎛

⎜

⎜

⎝

F(t) + mL g − FE(x1, ẋ1) − cH (x1 − x2)

cH (x1 − x2)

−FM(x3, ẋ3)

−FH (ẋ4)

⎞

⎟

⎟

⎠

(21)

with the given time-dependent force

F(t) = A sin
[

ω0 C t t
]

,

which is shown in Fig. 3. The function represents an exponential frequency sweep with

parameters ω0 = 4π and C = 25 and the amplitude A = 100 N. The elastomer force
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Table 1 Parameters for

numerical simulation Parameter Value

mL 20 kg

mH 0.0019 kg

mM 0.002 kg

cH 375 N/mm

dH1 0.8 · 10−4 Ns/mm

cM 9 N/mm

dM 0.01 Ns/mm

a 95 mm

b 3.6 mm

g 9.81 m/s2

Par. to identify Optimal value Initial value

dH2 2 · 10−9 N3 s3/mm3 1.2 · 10−9 N3 s3/mm3

cE1 123 N/mm 73.8 N/mm

cE2 2.5 N/mm 4 N3/mm3

dE 5 · 10−3 Ns/mm 5 · 10−4 Ns/mm

Fig. 3 Time-dependent input

force F(t)

FE(x1, ẋ1) = cE1x1 + cE2x
3
1 + dE ẋ1 consists of a nonlinear spring and a linear damper,

whereas the membrane force FM(x3, ẋ3) = cMx3 + dM ẋ3 is described by a linear spring

and a linear damper. Finally, the hydro-damper force is given by FH (ẋ4) = dH1ẋ4 + dH2ẋ
3
4 .

The algebraic constraint equation

c(q) = x2 (a + b) − x3 b − x4 a

links the redundant generalized coordinates.

The cost function to be minimized is the quadratic deviation of the system output and

a measured trajectory s̄(t), which is often called an RMS-error (root-mean-square error).

The desired trajectory s̄(t) originates from a simulation of the system equations with the

final (optimal) set of parameter uopt. Instead of using virtual test data, a measured trajec-

tory from a test-bench can be used here. In the present example the system output s(q̈)

is the acceleration ẍ1. On the one hand, acceleration sensors are cheaper than other mea-

sure equipments, and, on the other hand, the discrete adjoint method in combination with

the HHT-solver makes a straightforward implementation possible. In Fig. 5 the comparison

between the desired trajectory s̄(t) and the system output s(q̈) is plotted over the time, in
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Fig. 4 Convergence of the cost

function

Fig. 5 Comparison of the

system outputs

Fig. 6 Error plots during

parameter identification

which s(q̈) results from a simulation with the initial parameter. The large deviation between

the initial and the optimal solution results from the incorrect values of the parameters to

identify. The reduction of the cost function during the optimization is shown in Fig. 4. After

approximately 60 iterations, the value of the cost function is about 10−18, which means that
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Fig. 7 Convergence of the parameter to identify

the deviation of the system output and the desired trajectory is almost zero. In Fig. 6 the

RMS-error e(t) = s(q̈) − s̄(t) is shown during the optimization. It can be seen that the error

is reduced significantly with increasing number of iterations.

The convergence of the four parameters over the iterations is shown in Fig. 7. It can be

seen that the linear stiffness parameter cE1 converges very fast, whereas the cubic damping

parameter dH2 converges slower.

6 Conclusion

In this paper, we show a new approach for the computation of the gradient of a cost func-

tion associated with a dynamical system for a parameter identification problem. We present

the discrete adjoint method for an implicit discretization scheme and the required Jacobian

matrices in detail for the HHT-solver as a representative of a widely used implicit solver

in multibody dynamics. Note that the discrete adjoint system depends on the integration

scheme of the system equations.

The presented method has two main advantages in comparison with the traditional ad-

joint method in the continuous case (see, e.g., [11, 20]): First, no separate solver is required

to solve the adjoint differential algebraic system backward in time. The computation of the

adjoint variables depends only on the recursive iteration scheme used to solve the system

equations. Hence, only a system of algebraic equations has to be solved successively. The

second advantage is that in combination with the HHT-solver, the cost function may also
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depend on the accelerations, if the discrete adjoint method is used. The reason is that the

accelerations are included in the state vector of the solver method. Hence, the Jacobian ma-

trices that are necessary for the discrete adjoint computations remain similar to the Jacobian

matrices that are required for the HHT-solver. Otherwise, in the continuous case, the acceler-

ations are not included in the state vector, but have to be expressed by the motion equations

in the cost function, which lead to complex Jacobian matrices [12]. The straightforward and

efficient considerations of the acceleration in the cost function have the advantage that the

measured signals from acceleration sensors can be used directly for parameter identification

in practice. Due to the simple use and low price of acceleration sensors, this strategy is a

promising approach in the field of parameter identification.

The theory described in this paper is a powerful tool for parameter identification in time

domain. In most cases the results lead to a best-fit solution, which means that high-frequency

components with low amplitudes are not considered. However, the discrete adjoint method

can also be used to identify parameters influencing the system at special frequencies. Hence,

the basic idea is to compute the Fourier coefficients for the relevant oscillations and include

the amplitude spectrum in the cost function. In [8] the parameters of a torsional vibration

damper of a four-cylinder combustion engine are identified in combination with adjoint

Fourier coefficient and the discrete adjoint method.

Acknowledgement Open access funding provided by University of Applied Sciences Upper Austria.

K. Nachbagauer acknowledges support from the Austrian Science Fund (FWF): T733-N30.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alexe, M., Sandu, A.: On the discrete adjoints of adaptive time stepping algorithms. J. Comput. Appl.

Math. 233(4), 1005–1020 (2009)
2. Amelunxen, H.: Fahrdynamikmodelle für Echtzeitsimulationen im komfortrelevanten Frequenzbereich.

Ph.D. thesis, Universität Paderborn, Paderborn (2013)
3. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Hemisphere, Washington, DC (1975)
4. Eberhard, P.: Adjoint variable method for sensitivity analysis of multibody systems interpreted as a con-

tinuous, hybrid form of automatic differentiation. In: Proc. of the 2nd Int. Workshop on Computational

Differentiation, Santa Fe, pp. 319–328. SIAM, Philadelphia (1996)
5. Gavrea, B., Negrut, D., Potra, F.A.: The Newmark integration method for simulation of multibody sys-

tems: analytical considerations. In: Design Engineering, Parts A and B, ASME International (2005)
6. Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in

structural dynamics. Earthq. Eng. Struct. Dyn. 5(3), 283–292 (1977)
7. Lauß, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K.: The discrete adjoint gradient computation

for optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 12(3), 031016 (2016)
8. Lauß, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K., Reichl, S.: Parameter identification of a

torsional vibration damper in frequency domain using adjoint Fourier coefficients. In: Proceedings of

the ECCOMAS Thematic Conference Multibody Dynamics 2017, Prague, Czech Republic, 19–22 June

2017 (2017)
9. Mitschke, M., Wallentowitz, H.: Dynamik der Kraftfahrzeuge. Springer, Berlin (2014)

10. Mrazek, T.: Modellierung nichtlinearer Elemente zur Schwingungsdämpfung in Mehrkörpersystmen.

Ph.D. thesis, Johannes Kepler Universität, Linz (2005)
11. Nachbagauer, K., Oberpeilsteiner, S., Sherif, K., Steiner, W.: The use of the adjoint method for solving

typical optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 10(6), 061011 (2015)
12. Nachbagauer, K., Oberpeilsteiner, S., Steiner, S.: Enhancement of the adjoint method by error control of

accelerations for parameter identification in multibody dynamics. Univ. J. Control Autom. 3(3), 47–52

(2015)



410 T. Lauß et al.

13. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber–Hughes–Taylor

method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-

85096). J. Comput. Nonlinear Dyn. 2(1), 73–85 (2007)

14. Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

15. Oberpeilsteiner, S., Lauß, T., Nachbagauer, K., Steiner, W.: Optimal input design for multibody systems

by using an extended adjoint approach. Multibody Syst. Dyn., 1–12 (2016)

16. Petzold, L., Li, S., Cao, Y., Serban, R.: Sensitivity analysis for differential-algebraic equations and partial

differential equations. Comput. Chem. Eng. 30, 1553–1559 (2006)

17. Pfeffer, P., Hofer, K.: Einfaches nichtlineares Modell für Elastomer und Hydrolager zur Optimierung der

Gesamtfahrzeug-Simulation. ATZ, Automobiltech. Z. 104(5), 442–451 (2002)

18. Schaffer, A.: On the adjoint formulation of design sensitivity analysis of multibody dynamics. Ph.D.

thesis, University of Iowa (2005)

19. Serban, R., Freeman, J.: Identification and identifiability of unknown parameters in multibody dynamic

systems. Multibody Syst. Dyn. 5(4), 335–350 (2001)

20. Steiner, W., Reichl, S.: The optimal control approach to dynamical inverse problems. J. Dyn. Syst. Meas.

Control 134(2), 021010 (2012)

21. Vyasarayani, C., Uchida, T., McPhee, J.: Nonlinear parameter identification in multibody systems using

homotopy continuation. J. Comput. Nonlinear Dyn. 7(1), 011012 (2012)


	The discrete adjoint method for parameter identiﬁcation in multibody system dynamics
	Abstract
	Introduction
	Discrete adjoint method for implicit time integration methods
	Application to the HHT solver
	The discrete adjoints for a simple harmonic oscillator
	Example: engine mount
	Conclusion
	Acknowledgement
	References


