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Abstract

In this paper we study the discrete time algebraic Riccati equation and its connection
to the discrete time linear matrix inequality. We show that in general only a subset of
the set of rank-minimizing solutions of the linear matrix inequality correspond to the
solutions of the associated algebraic Riccati equation, and study under what conditions
these sets are equal. In this process we also derive very weak assumptions under which a
Riccati equation has a solution.
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1 Introduction

The algebraic Riccati equation and linear matrix inequality are important tools in linear

systems and control theory. Since their introduction in control theory in the early sixties,

they have appeared in an impressive range of problems in control theory including H 2 and

H oo optimal control theory.

In this paper, we first establish some properties of the general discrete algebraic Riccati equa

tion. Then we concentrate on the Riccati equation appearing in H 2 and linear quadratic con

trol. Establishing a connection between the solutions of a linear matrix inequality and its as

sociated algebraic Riccati equation has been a longstanding research problem. In continuous

time setting it is shown (see [2,8,23]) that the set of "boundary" solutions of the continuous

linear matrix inequality coincides with the set of real symmetric solutions of an appropriately

defined continuous algebraic Riccati equation. The "boundary" solutions of the continuous

linear matrix inequality are those solutions which minimize the rank of the given matrix in the

continuous linear matrix inequality and hence are known as rank-minimizing solutions. The

rank-minimizing solutions of the continuous linear matrix inequality playa prominent role

in H 2 optimal control theory, and their characterization in terms of an appropriately defined

continuous algebraic Riccati equation is of significant interest.

"The research of dr. A.A. Stoorvogel has been made possible by a fellowship of the Royal Netherlands

Academy of Sciences and Arts.
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In this paper we would like to examine the connections between rank-minimizing solutions of 

the linear matrix inequality and solutions of the algebraic Riccati equation in a discrete time 

setting. Our first surprising observation is that, unlike the continuous-time case, in general 

the rank-minimizing solutions of the discrete linear matrix inequality cannot be obtained from 

solutions of an appropriately defined discrete algebraic Riccati equation. However, we show 

that a subset of rank-minimizing solutions of the discrete linear matrix inequality which we 

refer to as strong rank-minimizing solutions, coincides with the set of real symmetric solutions 

of the associated discrete algebraic Riccati equation. An algebraic Riccati equation can be 

associated to a matrix pencil and we will show that the rank-minimizing solutions of the 

linear matrix inequality have a one to one relationship with invariant subspaces of the matrix 

penciL Moreover, the strongly rank-minimizing solutions are precisely those that are related 

to the invariant subspaces of this matrix pencil having only finite eigenvalues. We will also 

discuss results like the existence of solutions to an algebraic Riccati equation and in so doing 

we improve the existing results in the literature. 

We will use a reduction technique to derive our results for the general case. This technique 

is presented in the appendix. Also some properties of matrix pencils, which we will need in 

our derivations, are presented in the appendix. 

2 Discrete algebraic Riccati equation 

In this section we will derive properties of the general discrete algebraic Riccati equation: 

Definition 2.1 : Let A E lRnxn , B E lRnxm , Q E JRnxn , R E IRmxm and S E JRmxn with 

Q and R being symmetric be given. Then 

x = ATXA- (ATXB+ ST)(BTXB+R)t(BTXA+ S)+ Q 

[(er (BTXB + R) ~ [(el' (ATXB + S) 

(2.1a) 

(2.1b) 

where A{+ denotes the Moore-Penrose generalized inverse of the matrix M is called the general 

discrete algebraic Riccati equation. 

Definition 2.2: X is called a stabilizing solution of the algebraic Riccati equation if X 

satisfies (2.1) and is such that the rank of 

(2.2) 

is equal to its normal rank for all z outside or on the unit circle. We will call X a semi

stabilizing solution of the algebraic Riccati equation if X satisfies (2.1) and the rank of (2.2) 

is equal to its normal rank for all z outside the unit circle. 
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The following matrix plays an important role in the study of this equation: 

(2.3) 

Moreover, the following rational matrix will be important to us: 

(2.4) 

In the classical situation, which we will sometimes refer to as the positive semi-definite case, 
we have 

(
Q ST) (CT

) 
S R = DT (C D), (2.5) 

and in that case we have H 
G"'(z) = GT(z-l). 

G""G where G is the transfer matrix of (A, B, C, D) and 

Lemma 2.3 : For any symmetric matrix X we have: 

Proof: The identity can be verified by writing down a realization in descriptor form for H 

and H(·, X) and is a generalization of a fact already noted in continuous time by [18]. • 

Next we would like to see under what conditions a solution of the algebraic Riccati equation 

will be such tbat R + BT X B is invertible. In the semi-definite case where we have (2.5) it 

was already well-known (see e.g. [19]) that a solution of the Riccati equation will be such that 

R + BT X B is invertible if and only if (A, B, C, D) is left-invertible or, in other words, H has 

full rank. The amazing fact for this special case is that either all or none of the solutions 

will satisfy this extra invertibility assumption. We will see that this latter property holds in 

general. Just as a reminder, the inertia of a matrix are defined as the triple of the number of 

eigenvalues in the open left half plane, the number of eigenvalues on the imaginary axis and 

the number of eigenvalues in the open right half plane, 

Theorem 2.4 : Assume that a symmetric matrix X satisfying (2.1) exists. Then 

• H has full normal rank if and only if BT X B + R is invertible. 

• The inertia of BT X B + R are equal to the inertia of H (z) for all but finitely many z 

on the unit circle. 

• BT X B + R 2: 0 if and only if H (z) 2: 0 for any point z on the unit circle. 

3 



Proof : Assume that a symmetric matrix X satisfies the algebraic Riccati equation. Then 

it can be checked straightforwardly that 

(2.6) 

where V is given by 

V(z) =: ( (z1 -I A)-l B I ) 
_(BT XB + R)t(BTX A + S) 

Note that V is square and invertible for almost all z. Hence, (2.6) implies that the rank of 

L(X) equals the normal rank of H. This guarantees in particular that H has full normal rank 

if and only if BT X B + R is invertible. Moreover, for all but finitely many points on the unit 

circle, the inertia of L(X) is equal to the inertia of H together with an appropriate number of 

zero eigenvalues. Since the Schur complement of BT X B + R in L(X) is zero we find that the 

inertia of BT X B + R equals the inertia of H ( z) for all but finitely many points on the unit 

circle. In particular, we have that H( z) 2:: 0 on the unit circle if and only if BT X B + R 2:: o . 
• 

The last point in the above lemma is basically a special case of the second point but listed 

separately since it will play an important role in the rest of this paper. Note that the 

above lemma implies that a necessary condition for the existence of a solution to the discrete 

algebraic Riccati equation is that the inertia of H(z) are independent of z except for possibly 

some singularities. A necessary condition for the existence of a solution with BT X B + R 2:: 0 

is that H (z) 2:: 0 for all z on the unit disc. This condition was already presented for the 

discrete time in [16] and in [23] for the continuous time. Finally, note that H being of full 

normal rank guarantees that the generalized inverse in (2.1a) is a normal inverse and that 

(2.1 b) is automatically satisfied. In other words, in that case we can simply focus on the 

equation: 

(2.7) 

We would like to understand the structure of the algebraic Riccati equation better and to 

this end we apply some algebraic manipulations to the algebraic Riccati equation. We assume 

that H has full rank and hence we can study equation (2.7) instead of (2.1). Obviously, we 

can find a matrix Z such that R + BT ZB is invertible. Assume that we have a solution X of 

the algebraic Riccati equation (2.7). We find: 

(
A 0) ( I ) _ ( I - LZ L) ( I ) A 

-Q I X - - AT Z AT X c/ 
(2.8) 

where 

L B(R+ BTZB)-l BT 

A ::: A - B(R + BT ZB)-l(BTZA + S) 

Q ::: Q+ATZA (ATZB+ST)(R+BTZB)-l(BTZA+S) 

Act A - B(R + BT X B)-l(BTX A + S) 
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In fact, (2.8) states that 

(2.9) 

is an invariant subspace of the regular matrix pencil: 

[( A 0) (I - LZ L)] 
-Q I ' -ATZ AT 

(2.10) 

such that the eigenvalues of the pencil restricted to V are the eigenvalues of the matrix Act 

and hence are finite. Note that this is a symplectic pencil. In the above we have obtained the 

following lemma: 

Lemma 2.5 : Assume that H, given by (2.4), has full normal rank. A subspace V of the 

form (2.9) is an invariant subspace of the matrix pencil (2.10) such that the matrix pencil 

restricted to V has only finite eigenvalues if and only if X is a solution of the algebraic Riccati 

equation {2.1}. 

The matrix Z plays an important role in the above formulation but can be chosen rather 

arbitrarily. We will transform our problem to get rid of the matrix Z. 

Choose p such that the matrix: 

(2.11) 

has full rank. The assumption that H has full normal ra.nk guarantees that this is satisfied 

for all but finitely many J.t. We define the following matrix pencil: 

(2.12) 

Note that H has full normal rank if and only if this pencil is regular. However, this pencil is 

no longer symplectic. For this pencil we will study invariant subspaces of the form 

(2.13) 

We obtain the following result: 

Theorem 2.6 : Assume that the rational matrix H has full normal rank. Choose p such 

that the matrix in {2.11} has full rank. Let the pencil (2.12) be given and define L by {2.3}. 
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(i) If a symmetric matrix X is such that the rank of L( X) is equal to m then there exists 

P such that V defined by (2.13) is an invariant subspace of (2.12). Conversely if (2.13) 

is an invariant subspace of (2.12) then X is such that the rank of L(X) is equal to m. 

(ii) A matrix X satisfies the Riccati equation (2.1) if and only if there exists P such that 

V defined by (2.13) is an invariant subspace of (2.12) and the eigenvalues of the pencil 

restricted to V are finite. Conversely if (2.13) is an invariant subspace of (2.12) and 

the eigenvalues of the pencil restricted to V are finite then X is a solution of the Riccati 

equation (2.1). 

The paper [ll] connected solutions of the algebraic Riccati equation to invariant subspaces 

of (2.12) for JL = O. We generalize their results. 

Proof: Assume LeX) has rank m. Let LI and L2 be such that: 

(2.14) 

Note that since (2.11) has full rank we must have that Ll + JLAL1 + pBL2 is invertible. We 

choose: 

VI = ALI + BL2, VI = Ll and P = L2(L1 - JLAL1 - JLBL2)-1. 

Then it is easily checked that: 

(2.15) 

We know that VI - JLV2 = (Ll - JLAL1 - JLBL2) is invertible and hence (Vh V2) is a regular 

pencil. By definition, V defined by (2.13) is then an invariant subspace for (2.12). 

To prove the converse in part (i) we assume that U is an invariant subspace of the pencil 

(2.12). But in that case we know there exists matrices VI and V2 with (V{ Vl) surjective 

such that 

But after premultiplication with the matrix 

we obtain that 
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Moreover, it is easy to check that 

is an injective matrix. Hence the rank of L(X) is less than or equal to m. However, lemma 

2.3 together with the assumption that H is of full rank guarantees that the rank of L(X) is 

at least m. 

For part (ii) we note that X satisfies the Riccati equation if and only if the rank of L(X) 

is equal to the rank of BT X B + R which is then invertible. Moreover, this is equivalent to 

the requirement that in (2.14) we can choose L1 = I. On the other hand, V is an invariant 

subspace of the pencil (2.12) such that the eigenvalues of the pencil restricted to V are finite 

if and only if (2.15) is satisfied with V2 = I. The same steps as in the proof of part (i) but 

with V2 = Ll = I then yield a proof of part (ii). • 

We are also interested in (semi- )stabilizing solutions of the algebraic Riccati equation as 

defined in definition 2.2: 

Theorem 2.7 : Assume that R has full normal rank. A stabilizing solution, if it exists, is 

unique. Moreover, if a semi-stabilizing solution exists, it is actually a stabilizing solution if 

and only if 

(2.16) 

has full rank for all z on the unit circle. 

Proof: A stabilizing solution of the algebraic Riccati equation is clearly unique since solu

tions of the algebraic Riccati equation have a one to one relation with invariant subspaces of 

the symplectic pencil (2.10). Since the symplectic pencil has at most n stable eigenvalues, a 

stable n-dimensional subspace of the pencil is unique and hence also the associated solution 

to the algebraic Riccati equation is unique. 

A semi-stabilizing solution of the algebraic Riccati equation is necessarily stabilizing if the 

matrix pencil (2.12) has no eigenvalues on the unit circle. It is easy to see that if (2.12) has 

an eigenvalue A then (2.16) has a non-empty kernel for z = A. Hence if (2.16) has full rank 

for all z on the unit circle then the matrix pencil (2.12) has no eigenvalues on the unit circle . 

• 
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3 The linear matrix inequality and its associated algebraic 

Riccati equation 

The algebraic Riccati equation studied in section 2 is very general and includes the Riccati 

equation studied in H 00 control (see e.g. [3,10,21]) as well as the Riccati equation studied in 

linear quadratic control (see e.g. [1,12,16]). In the rest ofthe paper we will concentrate on the 

Riccati equation used in linear quadratic control and the linear matrix inequality associated 

to it. We therefore require that the solution of the Riccati equation satisfies the additional 

requirement that 

(3.1) 

We know from section 2 that either all or none of the solutions of the algebraic Riccati 

equation satisfy this additional property. Basically, we need to assume that H(z) ;::: 0 for all 

z on the unit circle, where H is defined by (2.4). Then we know all solutions of the discrete 

algebraic Riccati equation satisfy (3.1). 

Definition 3.1 : Let A E lRnxn
, B E lRnxm

, Q E ntnxn
, R E IRmxm and S E ntmxn with 

Q and R being symmetric be given. The matrix inequality for an unknown n X n matrix X 
of the form 

L(X):=(Q+ATXA-X ATXB+ST»O 
BT X A + S BT X B + R -

(3.2) 

is called the discrete linear matrix inequality. Moreover a matrix X which satisfies (3.2) is 

referred to as a solution of the discrete linear matrix inequality. 

We denote the set of real symmetric solutions of the discrete linear matrix inequality (3.2) as 

r, Le. 

r := { X E ntnxn I X = X T and L(X) ;::: 0 } (3.3) 

Next we define the notion of rank-minimizing solutions for the discrete linear matrix inequal

ity: 

Definition 3.2 : A solution X E r is said to be rank-minimizing if 

rank L(X) = p =: min rank L(Y) 
YEr 

Moreover, we denote the set of rank-minimizing solutions of the discrete linear matrix in

equality as r min' i.e. 

r min := { X E r I rank L(X) = p } (3.4) 

Finally we need the concept of strongly rank-minimizing solutions. 
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Definition 3.3 :A solution X E r is said to be a strongly rank-minimizing solution of the 

linear matrix inequality if: 

rank L(X):::; rank (BT X B + R) (3.5) 

Moreover, we denote the set of strongly rank-minimizing solutions of the linear matrix in

equality as: 

emin := { X E r I rank L(X) rank(BTXB+R) } 

The name suggests that strongly rank-minimizing solutions are also rank-minimizing. This 

property is indeed true as will be shown later. We can also define a stabilizing solution of the 

linear matrix inequality: 

Definition 3.4: A solution X E r is said to be stabilizing if the rank of 

(3.6) 

is equal to its normal rank for all z outside or on the unit circle. X E r is called a semi

stabilizing solution if the rank of the matrix (3.6) is equal to its normal rank for all z outside 

the unit circle. 

We define the discrete-time algebraic Riccati equation associated with the discrete linear 

matrix inequality (3.2) as follows: 

Definition 3.5 : The H2 algebraic Riccati equation associated with the discrete linear matrix 

inequality (3.2) is defined as (2.1) with the additional requirement {3.1}. 

The rest of this section will be devoted to the existence of solutions, rank-minimizing solu

tions, strongly rank-minimizing solutions and (semi- )stabilizing solutions of the linear matrix 

inequality. Moreover, we will derive relationships between the different kind of solutions to 

the linear matrix inequality as well as the relation with the H2 algebraic Riccati equation. 

The following lemma shows sufficient conditions for the existence of solutions to the linear 

matrix inequality, and it is a discrete time equivalent of continuous-time results in [5,23]. 

Lemma 3.6 : Assume that H{z) ~ 0 for all z on the unit circle, and (A,B) is controllable. 

Then there exists a solution to the linear matrix inequality. 
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Proof: We will study the following optimization problem: 

.J*(Xo) := inf { .J(u,xo) I x(k) ~ 0 as k ~ oo} 
u 

subject to x(k + 1) Ax(k) + Bu(k), x(O) = 0 where 

.J(u,xo):= ~ (x(kF u(kF) (~ ~) ( :~:~ ) 

We first have to prove that the infimum is finite. First we show that there exist inputs which 

make .J( u, xo) finite and which are such that x( k) -+ 0 as k ~ O. Since (A, B) is controllable 

there exists a stabilizing state feedback u = Fx and it is not hard to see that an input u 

generated in this way satisfies the requirements for any initial condition Xo. This implies the 

infimum is bounded from above. 

We still have to show that the infimum is bounded from below. For zero-initial condition 

we can apply the Laplace transform and Parseval's theorem, to get for an arbitrary input u 

which makes .J(u,xo) finite while rendering x(k) ~ 0 as k ~ 0: 

where u denotes the Laplace transform of u. Next let Xo be an arbitrary initial condition. 

Then since (A, B) is controllable there exists an input u on an interval [-T, -1] which steers 

the system from x( -T) = 0 to x(O) = Xo. Hence for an arbitrary input u on the interval 

[0,00) which makes .J( u, xo) finite and is such that x(k) -+ 0 as k -+ 0 we get: 

f: (X(k»)T (Q ST) (X(k») + f (X(k))T (Q ST) (X(k») > 0 
k=-T u(k) S RuCk) k=O u(k) S R u(k)-

since on the extended interval [-T, 00) we have zero-initial condition and we can hence use 

the previous argument. In this way we get: 

.J(u, xo) ~ f: (x(kF U(k)T) (Q ST) ( ~(k) ) 
k==-T S·R u(k) 

and we see that the infimum is indeed bounded from below. 

Using an approach from [14], it is then straightforward to check that there exists a matrix X 

such that .J*(xo) = xJXxo. We then get using a simple dynamic programming step: 

xJX Xo = 111f xJ U(O)T + [Axo + BU(O)]T X[Axo + Bu(O)] . ( ) (Q ST) ( Xo ) 
u(o) S R u(O) 

for all initial conditions. This implies in particular that: 

-x6Xxo + (xl; U(O)T) (Q ST) ( Xo ) + [Axo + BU(O)]T X[Axo + Bu(O)] > 0 
S R u(O) -

for all Xo and u(O) which is equivalent to L(X) 2 O. In other words we have constructed a 

solution of the linear matrix inequality. • 
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The controllability condition in lemma 3.6 cannot be weakened unless other assumptions are 

imposed. This can be seen by the following example: 

The linear matrix inequality has no solution. We have H(z) 2: 0 for all z on the unit circle 

but (A, B) is not controllable. On the other hand (A, B) is stabilizable and hence we cannot 

even weaken our controllability assumption in the above lemma to stabilizability. 

We will now have a doser look at rank-minimizing solutions of the linear matrix inequality. 

We obtain the following lemma: 

Lemma 3.7 : We have: 

rank L(X) ?:: p = normalrank H V X E r. (3.7) 

Proof: This follows from lemma 2.3. Obviously, since H(·,X) has normal rank p, we must 

have that the rank of L(X) is larger than p. • 

For the particular case where (A, B) is controllable and H has full rank, we can obtain a very 

explicit characterization of all rank-minimizing solutions of the linear matrix inequality. This 

is given in the following lemma which is a generalization of a result from [16]. 

Lemma 3.8 : Let (A, B) be controllable. Moreover assume that H has full normal rank and 

H(z)?:: 0 for all z on the unit circle. Choose Jt such that (2.11) has full rank. Let Ab" .,Aj 
be the eigenvalues unequal to p outside the unit circle, and Aj+}, ..• , AT be the eigenvalues 

unequal to p on the unit circle of the matrix pencil (2.12), all of them without counting 

multiplicity. Then there exists a symmetric solution to the algebraic H2 Riccati equation (2.7) 

with the additional requirement (3.1) stlch that the eigenvalues of 

(3.8) 

are Pb ... Pj, Aj+!, ... AT where for i = 1, . , . ,j we have either Pi = Ai 01' Pi = Ai l 

Proof: By lemma 3.6 we know there exists at least one solution X of the linear matrix 

inequality. Let G and D satisfy (A.5). We can try to find a solution of the algebraic Riccati 
equation: 

x = CTC + AT XA (ATXB + GT D)(BT X B + DT Drl(BT XA + DTC) (3.9) 

It is easy to check that X satisfies the Riccati equation (2.7) if and only if X = X - X satisfies 

the Riccati equation (3.9). Moreover, the eigenvalues of (3.8) are equal to the eigenvalues of 

A - B(DT D + BT ..-YB)-l(BT X A + DTC) 
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Finally the eigenvalues of the matrix pencil (2.12) are equal to the eigenvalues of the following 

pencil: 

(3.10) 

Next, we know there exists a feedback F and a suitable basis in the state space such that: 

(
All A12) ( Bl ) () A + BF = ,B = ,C + DF = 0 C2 , 

o A22 B2 

where the eigenvalues of Au are precisely the invariant zeros of.(A, B, C, D) on the unit circle. 

We will try to find a solution of the algebraic Riccati equation of the form: 

- (0 0 ) 
X = 0 X

22 

We find that X 22 should satisfy the following algebraic Riccati equation: 

X 22 = Ai2X22An - (Ai2XnB2 + Ci D)(Bi X22B2 + DT D)-l(Bi X22An + DTC2 ) + CiC2 

(3.11) 

such that the matrix 

(3.12) 

has eigenvalues PI, ... , Pj. Moreover, the matrix pencil associated to this Riccati equation is: 

(3.13) 

and it is easy to check that this matrix pencil has no eigenvalues on the unit circle. Moreover, 

the eigenvalues of the matrix pencil (3.10) are precisely the eigenvalues of the reduced matrix 

pencil (3.13) together with the eigenvalues of An. This implies in particular that the eigen

values of All are Aj+l,"" Ar . Let A22 be an nr x nr matrix and B2 be a nr x mr matrix. 
Choose a nr-dimensional invariant subspace 

of the pencil (3.13) associated with the eigenvalues Pl. ... , Pj. In other words, we have: 
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Since J-Lj # J-L for all j we have that V 2 - J-L VI is invertible. Then it is easy to check that 

(XT XnT must be injective. Moreover 

Vr = im ( Xl ) = im X 
X 2 - ZX1 

is an invariant subspace of the symplectic pencil [L1' L2] with 

( 

A22 - B2 it-1 S 0) 
-CiCz + A~2ZA22 - ST il-1s - Z I ' 

L2 = (
I B2il-l Bi ) 

o A~2 !iT il- I B2 

where S = Bi ZA22 + DT C2 , il Bi ZBz + DT D and Z is a symmetric matrix chosen such 

that il is invertible. We have L 1XV2 = L2XVI - Moreover, [L}, L 2] has no eigenvalues on the 

unit circle and hence L1 - L2 and VI - Vz are both invertible. We find: 

Using some algebraic manipulations we find that: 

with (A, R) controllable, R 2: 0 and Q symmetric. Moreover, we find: 

We can then use the argument from [6, p. 87] to show that Xl is invertible and that Xi Xl 
is symmetric. In this way, we find that 

1m (X2~11 ) 
X3X1

1 

is an invariant subspace of (3.13). This guarantees that X 22 = X 2X1
1 satisfies (3.11). More

over, since Xi Xl is symmetric we find that X 22 is symmetric. Finally, the eigenvalues of 

(3.12) are the required J-LI, • •• ,J-Lj. Then 

X=x+(O 0) 
o X 22 

satisfies the requirements of the lemma. 

The above can be used to obtain the following characterization of the set r min: 

13 
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Lemma 3.9 : Assume that H has full normal rank m and H(z) ~ 0 on the unit circle. 

Moreover, assume that the uncontrollable eigenvalues AI, A2, .•. AJ of (A, B) are such that 

AiAj ¥ 1 for any i,j. Then the H2 Riccati equation (2.7) with the additional requirement 

(3.1) has at least one symmetric solution. Moreover: 

r min = { X E r I rank L(X) = m } (3.14) 

Proof: We write A and B in Kalman canonical form: 

A = (A~l ~::), B = ( ~1 ) 

Next decompose Q, S and a potential solution of the algebraic lliccati equation X compatibly: 

S = (Sl S2), 

We first note that the 1, I-block of the equation (2.7) reduces to : 

X 11 = AilXnAll (AilXllBl + SI)(Bi XllB l + R)-l(Bf XllAu + Sd + Ql1 (3.15) 

We see that Xu must be the solution of the discrete algebraic Riccati equation associated to 

the controllable subsystem. Our assumptions with respect to the uncontrollable eigenvalues 

of (A, B) guarantees that there are no uncontrollable eigenvalues on the unit circle and if A is 

an uncontrollable eigenvalue then A-I is not an uncontrollable eigenvalue. From lemma 3.8 we 

know the existence of a solution Xu of the Riccati equation (3.15) such that the eigenvalues 

Jll, Jl2, ••. ,J.tn of 

(3.16) 

are such that J.tiAj =/:1 for i = 1, ... , nand j 1, ... , J. Note that AI, ... , AJ are precisely 

the eigenvalues of A22 . 

Next we study the 2,1 block of the Riccati equation (2.7). It can be written in the following 

form: 

Xf2 = A~2Xi2Ax + [AI2X n Ax + Q211 

Due to our condition on the relation between the eigenvalues of Ax and An we know this 

equation is uniquely solvable for X 12 (see e.g. [13]). Finally, we have the 2,2-block of the 

Riccati equation (2.7). It can be written in the following form: 

X 22 = A~2X22A22 + M 

where M depends on Xu and X 12 but is independent of X 22 . We know A22 has no two 

eigenvalues which are the inverse of each other and hence this equation has a symmetric 

solution X 22 • It is easily checked that the so-constructed X is a solution of the algebraic 

Riccati equation (2.7). 

We know that X is a solution of the discrete linear matrix inequality. Moreover, it is easy 

to check that the rank of L(X) is equal to m. Because of (3.7) we find that X is a rank

minimizing solution of the discrete linear matrix inequality. (3.14) is then an immediate 

consequence. • 
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Remark: Note that (3.14) does not hold in general. For instance if 

A=(~ ~), Q=(~ ~), 8=(01), R=l, B=G) 

then (3.14) is not true. All matrices X yield a matrix L(X) with rank larger than or equal 

to 2. On the other hand m = 1. 

We are of course also interested in an analogous result as of the above theorem for the case 

H has no longer full normal rank. We have: 

Lemma 3.10 : Assume that H(z) ~ 0 on the unit circle and that there exist at least one 

solution of the linear matrix inequality (3.2). Moreover, assume that the uncontrollable eigen

values AI, A2, ... AJ of (A, B) are such that Ai Aj ::j:. 1 for any i, j. Then the H 2 Riccati equation 

(2.1) with the additional requirement (3.1) has at least one symmetric solution. Moreover: 

rmin = { X E r I rank L(X) p} (3.17) 

Proof: Since there exists a solution to the linear matrix inequality we can use the reduction 

scheme described in the appendix. Using theorem A.6 we know that we need to find a 

strongly rank-minimizing solution of LT(X2z) ~ O. The reduced system has an associated Hr, 

defined by (A.12), which has full normal rank. Moreover, the uncontrollable eigenvalues of 

(Azz, B22 ) are a subset of the uncontrollable eigenvalues of (A, B) and, hence, also satisfy the 

above property that the product of two uncontrollable eigenvalues is always unequal to 1. By 

applying lemma 3.9, we then obtain the desired result. • 

Remark: The above result also has a direct continuous time analogue. We look at the linear 

matrix inequality: 

L eX)= (ATX+XA+CTC XB+DTC) >0 
C BTX +GTD DTD -

There exists a rank-minimizing solution X which yields a rank of Lc(X) equal to normal 

rank of (A,B,C,D) if the uncontrollable eigenvalues At,Az, ... AJ of (A,B) are such that 

Ai + Aj ::/:: 0 for any i,j. If D is injective, X satisfies the continuous algebraic Riccati 

equation: 

ATX + XA + CTC - (XB + DTG)(DTD)-l(BTX + GTD) = 0 

This is a generalization of [18] which showed that (A, B) stabilizable is sufficient to guarantee 

the above. 

We are interested in those solutions of the discrete linear matrix inequality which can be 

associated to solutions of the discrete algebraic Riccati equation. 

Note that the assumptions of lemma 3.9 guarantees that the set £min is non-empty. We show 

that the set Cmin in fact coincides with the set of real symmetric solutions of the discrete 

algebraic Riccati equation associated with the discrete linear matrix inequality. 

We have the following lemma: 
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Lemma 3.11 : The set of solutions X of the linear matrix inequality L(X) ~ 0 coincides 

with the set of real symmetric solutions of the general algebraic inequality given by: 

• Ker(R+BTXB)C;; Ker(ATXB+ST), 

• BTXB+R ~ 0, 

• ATXA-X-(ATXB+ST)(BTXB+R)t(BTXA+S)+Q 2: o. 

Proof: For any x we have 

which implies that BT X B + R = O. Moreover, since L(X) ~ 0 we have: 

(0 xT
) L(X) ( ~ ) = 0 which implies L(X) ( ~ ) = 0 

and in this way we obtain the inclusion of the two kernels in our lemma. • 
Remark: The above lemma indicates that in searching for a connection between the linear 

matrix inequality and an algebraic Riccati equation we need to look for a Hz Riccati equation 

with the additional condition (3.1) as an essential ingredient and not the general discrete time 

algebraic Riccati equation. 

Corollary 3.12 :The set of strongly rank-minimizing solutions of the linear matrix inequal

ity coincides with the set of real symmetric solutions of the Hz algebraic Riccati equation 

associated with the linear matrix inequality. 

In other words, any symmetric real matrix X satisfying the Hz algebraic Riccati equation (2.1) 

and the additional condition (3.1) belongs to the set Lmin. Conversely any X E Lmin satisfies 

the discrete algebraic Riccati equation (2.1) and the additional condition (3.1). 

Proof: According to lemma 3.11 condition (2.lb) and (3.1) are satisfied. Next we note that: 

(
10 -(ATXB+ST)(BTXB+R)t) L X ( I 0) 

I ( ) _(BT X B + R)t(BT X A + S) I 

X - ( AT X B + ST)( BT X B + R) t( BT X A + S) + Q 

o ~) 
where we used that V(I - WtW) = 0 if Ker W C;; Ker V. Hence the rank of L(X) equals the 

sum of the rank of BT X B + DT D and the rank of its Schur complement. Therefore the Schur 

complement, which is equal to the Riccati equation, must be 0 which implies (2.1a). • 

The above implies that strongly rank-minimizing solutions are indeed also rank-minimizing 

solutions: 
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Observation 3.13 : We have £min ~ r min' 

Proof: Let X be any strongly rank-minimizing solution. Then X satisfies the algebraic 

Riccati equation (2.1) and hence, according to lemma 2.4 the rank of BT X B + R equals 

the normal rank of H. On the other hand by lemma (3.7) we have rank BT X B + DT D = 

rank L(X) is larger than or equal to the normal rank of H. • 

The real symmetric solutions of the algebraic Riccati equation are a subset of all the rank

minimizing solutions of the linear matrix inequality. Within the set of rank-minimizing solu

tions they are the ones that maximize the rank of BT X B + R. 

Suppose we have the matrix pencil (2.12). We can ask ourselves whether we have a result 

equivalent to theorem 2.6 in case the rational matrix H has no longer full rank. H has full 

rank if and only if the pencil (2.12) is regular. Hence for the general case we have to work 

with singular pencils. Let p denote the normal rank of H. This time we study invariant 

subspaces of the form: 

(3.18) 

where M is a m x (m p) injective matrix. We can associate a matrix pencil (Vb V2) to the 

matrix pencil (2.12) restricted to the invariant subspace V in the sense that: 

(3.19) 

We obtain the following result: 

Theorem 3.14 : Choose JL such that the matrix in (2.11) has rank equal to 2n + p. Assume 

that a solution of the linear matrix inequality exists. Let the pencil (2.12) be given and define 

L by {2.3}. 

(i) If a symmetric matrix X is such that the rank of L(X) is equal to p then there exists 

a matrix P E mmxn and an injective matrix M E IRmx(m-p
) such that V defined by 

(3.18) is an invariant subspace of {2.12} such that we can associate to (2.12) restricted 

to V a pencil (VI, V2 ) without eigenvalue p. 

Conversely! if (3.18) is an invariant subspace of {2.12} such that we can associate to 

(2.12) restricted to V a pencil (VI, V2) without eigenvalue It. then X is such that the 

rank of L(X) is equal to p. 

(ii) A matrix X satisfies the RicCllti equation {2.1} if and only if there exists a matrix 

P E mmxn and an injective matrix]v! E mmx(m-p
) such that V defined by {3.18} is an 

invariant subspace of (2.12) such that we can associate to (2.12) restricted to V a pencil 

(VI, V2) with only finite eigenvalues which are different from JL. 
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Conversely if (3.18) is an invariant subspace of (2.12) such that we can associate to the 

pencil (2.12) restricted to V a pencil (~, V2 ) with only finite eigenvalues different from 

JL then X is a solution of the Riccati equation (2.1). 

Proof: Suppose that we have an invariant subspace of the pencil (2.12) of the form (3.18) 

such that (3.19) is satisfied for a regular pencil (Vb V2 ) with no eigenvalue in JL. After some 

algebraic manipulations we find: 

This guarantees that the rank of L(X) is equal to p as soon as we have shown that. the 

following matrix is injective: 

(3.20) 

Suppose x is in the kernel of this matrix. Then the equation (3.19) yields [1 0] V1x = 0 and 

we get: 

Since M is injective and V2 - JLV1 is invertible we get x = 0 and hence the matrix (3.20) is 

injective and therefore the rank of L(X) equals p. 

We will use lemma 2.3. Let z be on the unit circle for which H(z) has rank p. Define V by: 

v = ( (z1 - :)-1 B ) 

We have V* L(X)V = H(z) ~ 0 and the rank of V" L(X)V equals the rank of L(X). This 

implies L(X) ~ O. Therefore X is a rank-minimizing solution of the linear matrix inequality. 

On the other hand if V2 is invertible then [1 0] V2 is surjective. This implies that we have 

for some invertible matrix R. This guarantees: 

and it is easy to check that this, together with L(X) ~ 0, imply that X satisfies the algebraic 

Riccati equation. 
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Conversely assume that X is a rank-minimizing solution. We have to construct P, M, V1 and 

V2 satisfying (3.19). Since X is a solution of the linear matrix inequality, we can apply the 

reduction technique described in the appendix with X :::; X. We get 

A + BF = (All A12) ,B:::; (Bll B12) ,G + DF:::; (0 CI ) ,D:::; (0 DI ), o A22 0 B22 

using a suitable feedback F and suitable bases. Moreover, C, D are defined by (A.5). We can 

find P22, W2 and WI satisfying 

( 

A22 0 B22 ) ( I ) ( I 
-CiCI I -GiDl 0 W 2 :::; 0 

DiCI 0 Df Dl P22 0 

J.LB22 

-J.LCi Dl 

J.LDI Dl 

since X 22 :::; 0 is a rank-minimizing solution of the reduced linear matrix inequality. If X is a 

strongly rank-minimizing solution we have ltV2 invertible and otherwise "W2 is singular. 

We can now easily construct suitable P, M, VI and V2 in this basis: 

and we see that the invariant subspace indeed satisfies all the requirements of the theorem . 

• 
The main difference with theorem 2.6 is that the eigenvalues of the pencil (2.12) restricted 

to V are no longer unique. Hence we have to focus on the defining equation (3.19). One can 

determine invariant subspaces of a matrix pencil using numerical tools which are not very 

well developed for the singular case but it can still be done (see e.g. [20,22]). 

We have to work with the invariant subs paces of the form (3.18) instead of invariant subspaces 

of the form (2.13). However, if we are only interested in strongly rank-minimizing solutions 

we can dispense with the matrix M: 

Theorem 3.15 : Ghoose It such that the matrix in (2.11) has rank equal to 2n + p. Assume 

that a solution of the linear matrix inequality exists. Let the pencil (2.12) be given and define 

L by (2.3). 

A matrix X satisfies the Riccati equation (2.1) if and only if there exists a matrix P E IRmxn 

such that V defined by (2.13) is an invariant subspace of (2.12) such that we can associate to 

(2.12) restricted to V a pencil (Vh V2 ) with only finite eigenvalues which are different from J.L. 

Conversely if (2.13) is an invariant subspace of (2.12) such that we can associate to the pencil 

(2.12) restricted to V a pencil (V}, V2 ) with only finite eigenvalues different from J.L then X is 

a solution of the Riccati equation {2.1}. 

Proof: Given a solution of the Riccati equation the existence of an invariant subspace of 

the form (2.13) with the desired properties is a trivial consequence of theorem 3.14. 
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For the converse we note that 

L(X) ( Va ) = 0 
P(V2 - pVd 

with V2 invertible. This implies that 

-X+ATXA+Q+(ATXB+S)G = 0 

(BTXA+ST)+(BTXB+R)G = 0 

for G = P(V2 - pV1)V2-
1

• Hence we immediately find: 

X = ATXA+ Q - (ATXB + S)(BTXB + R)t(BT XA + ST) • 
We know that each rank minimizing solution of the linear matrix inequality is associated 

to an invariant subspace of the matrix pencil (2.12). If the pencil is regular (Le. H has 

full normal rank) then the eigenvalues of the matrix pencil restricted to that subspace are 

uniquely determined. In that case, it can be checked that). is an eigenvalue of the matrix 

pencil restricted to V if and only if the matrix (2.2) has a zero for z = ).. Moreover 00 is 

an eigenvalue of the matrix pencil restricted to V if and only if the the matrix (2.2) viewed 

as a polynomial matrix in z has an infinite zero. Note that (2.2) can be viewed as the 

Rosenbrock system matrix of some system and the invariant zeros of that system determine 

the eigenvalues of the matrix pencil restricted to V. If X is a strongly rank-minimizing solution 

then BT X B + R is invertible and the invariant zeros of (2.2) are precisely the eigenvalues of 

the matrix 

In the case where H has no longer full normal rank the eigenvalues of the regular pencil 

(VI) Va) satisfying (3.19) are no longer uniquely determined. The finite or infinite zeros of the 

matrix pencil (2.2) are eigenvalues of all regular pencils (Vb Va) satisfying (3.19). The rest 

of the eigenvalues can be chosen arbitrarily. If X is a strongly rank-minimizing solution then 

the eigenvalues of the pencil (VI, V2) are eigenvalues of the matrix 

(3.21) 

for some suitably chosen matrix F where T = BT X B + R. 

In linear quadratic control or H2 control we are particularly interested in the semi-stabilizing 

rank-minimizing solution of the discrete linear matrix inequality. This is defined (see lemma 

3.4) as the rank-minimizing solution of the linear matrix inequality for which the matrix 

(2.2) has all zeros inside or on the unit circle. In particular, this means no infinite zeros 

and hence this must necessarily be a strongly rank-minimizing solution. Hence the semi

stabilizing solution can be alternatively defined as a rank-minimizing solution of the linear 

matrix inequality for which there exists a matrix F for which (3.21) has all eigenvalues in the 

dosed unit disc. 

We will derive some additional properties of the semi-stabilizing solution. For this, we need 

a preliminary lemma: 
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Lemma 3.16 : Assume that (A, B) has no uncontrollable eigenvalues on the unit circle, 

Q ~ 0, R 2:: 0 and H has full normal rank. Let the following algebraic Riccati equation be 

given: 

If X is a symmetric semi-stabilizing solution of this algebraic Riccati equation then X ~ O. 

Proof: We can rewrite the algebraic Riccati equation in the following form: 

X = ATXA+ rrRF+Q (3.22) 

where F = (R + BT X B)-1 BT X A and A = A + BF. Since X is a semi-stabilizing solution 

we know that A has all eigenvalues inside or on the unit circle. 

Assume that (A - ).I)y E ker X n ker Q with IAI = 1. Then we get from (3.22) that 

y*Xy = y*AT X Ay + y* pT RFy + y*Qy = y*Xy + y* FT RFy + y*Qy. 

Since Q, R 2:: 0, we get Qy = 0 and RFy = O. Next we note that BT x}i = - RF. We see from 

(3.22) that for z = XAy we have AT z = Xy = A-I X Ay = A-I z. Moreover BT z = -RFy = O. 

Since (A, B) has no uncontrollable eigenvalues on the unit circle, the same holds for (A, B). 

Finally, A-I is on the unit circle. Therefore, we find that z = O. In other words, X y = O. 

Hence we see that y E ker X n ker Q. 
In conclusion the above guarantees recursively that all the eigenvectors and generalized eigen

vectors of A associated to eigenvalues on the unit circle are in the kernel of both X and Q. 
After all if ( A - AI) y = 0 E ker X n ker Q we get y E ker X n ker Q. Generalized eigenvectors 

have the property that (A - AI)ky = 0 for some k. Hence we have to use the argument in the 

previous paragraph k times to get y E ker X n ker Q. 
Since A has all eigenvalues in the closed unit disc we find that 

QAk -+ O,XAk 
-+ 0 as k -+ 00 

Moreover the convergence is exponentially fast. But it is easily seen from (3.22) that for all 
1(: 

K 

X = 2:)AT )k(Q + FT RF)}ik + (A.T)K+I X }iK+I 

k:::O 

When we take the limit as J( -+ 00, we get: 

00 

X = I)ATlCQ + FT RF)Ak 
k:::o 

and we trivially see that X ~ o. • 
The following theorem which is for a large part an extension of theorem 2.7 discusses the 

uniqueness of the semi-stabilizing solution: 
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Theorem 3.17: The semi-stabilizing, rank-minimizing solution of the linear matrix in

equality, if it exists, is the largest solution of the linear matrix inequality, i.e. if X is a 

semi-stabilizing, rank-minimizing solution of the linear matrix inequality and X is an arbi

trary solution of the linear matrix inequality then we have X 2:: X. In particular this implies 

that the semi-stabilizing, rank-minimizing solution of the linear matrix inequality is unique. 

If a semi-stabilizing solution exists, it is actually a stabilizing solution if and only if (2.16) 

does not lose rank for any z on the unit circle. 

Proof: Assume that X is a semi-stabilizing rank-minimizing solution of the algebraic Riccati 

equation and X is an arbitrary solution of the linear matrix inequality. We need to show that 

X 2:: X. We will apply the reduction scheme presented in the appendix. We use as an 

initial solution of the linear matrix inequality X = X. We factorize L(X) as in (A.5). We 

obtain a new linear matrix inequality 1 given in (A.6) and we note that X X - X is a 

semi-stabilizing solution of this linear matrix inequality. There exists a matrix F such that 

R*(E) is then the largest A + BF-invariant subspace containing B ker D and contained in 

the kernel of C + DF. Using the basis as in (A.9) we get that 

x-X 

and X 22 is such that 

X 22 = AI2X 22 A22 - A~2X22B22(DrDl + Bi2X 2ZB22)-lBi2X 22A22 

and 

has all eigenvalues inside or on the unit circle. Lemma 3.16 then implies that X22 2:: 0 and 
hence X;::: x. 
A proof that a semi-stabilizing solution is actually a stabilizing solution if (2.16) has no zeros 

on the unit circle can be given by first applying the reduction scheme and then applying 

theorem (2.7). It then only needs some algebraic manipulations to translate conditions for 

the matrix pencil associated to the reduced problem into the matrix pencil of the original 
system. • 

Note that the above theorem only states uniqueness of semi-stabilizing and rank-minimizing 

solutions of the algebraic Riccati equation. In general there can be more semi-stabilizing 

solutions but only one rank-minimizing and semi-stabilizing solution. 

The next lemma establishes necessary and sufficient conditions under which the set of rank

minimizing solutions of the discrete linear matrix inequality, coincides with the set of real 

symmetric solutions of the discrete algebraic Riccati equation associated with the discrete 

linear matrix inequality. 

22 



Lemma 3.18 : The set of rank-minimizing solutions of the linear matrix inequality r min equals 

the set of strongly rank-minimizing solutions of the linear matrix inequality £min if the matrix 

pencil: 

( 

Q 
ST 

zI-A 

S 

R 

-B 

has no infinite zeros. 

(3.23) 

Proof: According to theorem 3.14, any rank minimizing solution is connected to an invariant 

subspace V of the matrix pencil 2.12 and if there exists a pencil (VI, V2 ) with only finite 

eigenvalues for the pencil (2.12) restricted to V then it is a strongly rank-minimizing solution. 

The eigenvalues of the matrix pencil (VI, V2) are partially fixed and partially freely assignable 

(the latter case occurs if the pencil is singular): Hence V is associated to a strongly rank

minimizing solution if among these fixed eigenvalues there are no infinite eigenvalues. It 

is easy to check that these fixed eigenvalues must be zeros of the pencil (3.23). Hence a 

sufficient condition to guarantee that all rank-minimizing solutions are actually strongly rank

minimizing is that (3.23) has no infinite zeros. • 

A particular case is the question when X = 0 is the unique semi-stabilizing solution of the 

linear matrix inequality: 

Lemma 3.19 : X 0 is a semi-stabilizing solution of the linear matrix inequality if and 

only if 

(~ ~) ~ 0 (3.24) 

and all zeros of(A,B,C,D) are inside the closed unit disc where 

In particular (A, B, C, D) should not have infinite zeros. Moreover, X = 0 is the unique rank

minimizing, semi-stabilizing solution of the linear matrix inequality if and only if additionally 

(A, B, C, D) is right-invertible. 

Proof: This can be checked straightforwardly. • 
This lemma basically solves the discrete-time perfect regulation problem. For the positive 

semi-definite case, where (3.24) is satisfied, we know that a solution X = 0 of the linear 

matrix inequality exists and we can use the reduction scheme described in the previous section 
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to reduce the problem of finding solutions of the general algebraic Riccati equation and 

linear matrix inequality to a reduced algebraic Riccati equation and a reduced linear matrix 

inequality both of which satisfy the assumption that the associated rational matrix H has 

full rank and we can solve these equations using classical techniques. The latter approach is 

numerically much better than determining invariant subspaces of singular pencils. 

In the general case where (3.24) is not satisfied we can also apply the reduction scheme. But to 

use this as a numerical tool we have to find an initial solution X of the linear matrix inequality. 

This could be done using convex optimization using e.g. numerically reliable interior point 

methods (see [15]). But this extra complication leads us to believe that in this case working 

with invariant subspaces of singular pencils has its advantages. 
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4 Conclusion 

In this paper we showed that in general not all rank-minimizing solutions of the discrete 

linear matrix inequality satisfy the associated algebraic Riccati equation. We identified that 

this problem was related to infinite eigenvalues of the symplectic pencil associated with the 

algebraic Riccati equations. Only invariant subspaces for which the pencil restricted to that 

subspace has finite eigenvalues can be associated to solutions of the Riccati equation. Oth

erwise, they will yield rank-minimizing solutions of the linear matrix inequality but they do 

not satisfy the Riccati equation. 

A Reduction to the case that H has full rank 

The algebraic Riccati equation studied in section 2 is very general and includes the Riccati 

equation studied in Hoo control (see e.g. [3,10,21]) as well as the Riccati equation studied 

in linear quadratic control (see e.g. [1,12,16]). In this paper we mostly concentrate on the 

Riccati equation used in linear quadratic control and the linear matrix inequality associated 

to it. In this appendix we will present a technique to reduce problems where H, as defined 

in (2.4) does not have full rank to the case where H has full rank. 

As it will become more clear in the next section, the key is to study solutions of the following 

inequality: 

(A. 1) 

Moreover, for solutions X of the above inequality, we are interested in the zeros of the matrix 

pencil (2.2). We will need the following technical lemma: 
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Lemma A.l : Let (A, B) be controllable. Then X = 0 is the unique symmetric solution of 

the following linear matrix inequality: 

(A.2) 

Proof: Let X be an arbitrary solution of (A.2). For any matrix F we find: 

( 
(A+BF)TX(A+BF)-X (A+BF)TXB) = 

BTX(A+ BF) BTXB 

(A.3) 

Since (A, B) is controllable there exists a matrix F such that A + BF is stable in which case 

(A.3) tells us that: 

(A + BF)T X(A + BF) - X ~ 0 (A.4) 

Standard theory for the discrete time Lyapunov equation (see e.g [9]) then tells us that X ~ O. 

Conversely, if we choose F such that A + BF is antistable then we again obtain (A.4) but 

standard theory for the discrete time Lyapunov equation then tells us that X :$ O. We have 

that X must be positive and negative semidefinite which clearly implies that X must be O . 

Next we need the controlla.bility subspace (see e.g. [4)) of a linea.r system (A, B, e, D): 

Definition A.2 : A subspace n is called a controllability subspace for the system 

2;: { x = Ax + Bu 

y = ex + Du 

• 

if for any initial condition x(O) = Xo E R there exists an input u which steers the state x to 

o in finite time while keeping the output y identically O. Equivalently R is a controllability 

subspace if there exists a matrix F such that R is the smallest A + BF invariant subspace 

containing 1m B n R and contained in f(er (e + D F). 

R*(2;) is defined as the largest controllability subspace of the system 2;. 

An important property of the largest controllability subspace is expressed in the following 

lemma (see e.g. [17]): 

Lemma A.3 : A system 2; with realization (A, B, e, D) is left invertible if and only if 

R*(2;) = {O} and (BT DTy is injective. 
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Without loss of generality we assume that there exists one solution X, i.e. X E r. We factorize 

L(X) as 

L( X) = ( ~: ) (c D) (A.5) 

We define a new discrete linear matrix inequality: 

L(x):= (CTC+ATXA-X ATXB+CTD) >0 

BT XA+ DTC BTXB+ DTD -
(A.6) 

and we have that 

L(X) ~ 0 if and only if L(X - .. Y) ~ 0 

We define R*(E) according to definition A.2. Hence there exists a matrix F such that R*(E) 

is (A + BF)-invariant and contained in Ker (C + DF). We define the shifted linear matrix 

inequality as follows: 

Definition A.4: The shifted discrete linear matrix inequality associated with the discrete 

linear matrix inequality (3.2) is defined as: 

(A.7) 

where 

and A = A + B F and (; = C + D F. 

Observation A.5 :Let X be a solution of the linear matrix inequality (A.1) and let F be 

such that R*(E) is (A + BF)-invariant and contained in Ker (C + DF) where E is the system 

with realization (A,B,C,D) with C,D defined by (A.S). 

(i) X is a solution of the discrete linear matrix inequality (A.l) if and only if X - X is a 

solution of the associated shifted discrete linear matrix inequality (A. 7). 

(ii) Let X be a solution of the linear matrix inequality. Then the rank of L(X) equals the 

rank of LB(X X). In particular X is a rank-minimizing solution of the linear matrix 

inequality (A.1) if and only if X X is a rank-minimizing solution of the associated 

shifted discrete linear matrix inequality (A. 7). 
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• 

(iii) Let X be a solution of the linear matrix inequality. The zeros of the matrix pencil (2.2) 

are equal to the zeros of the following matrix pencil: 

where X = X - X. 

The above observation shows that without loss of generality we can focus on the shifted 

discrete linear matrix inequality which has more structure and is hopefully easier to handle. 

In particular if we choose a basis in the state space Xl ffi X2 such that Xl = n."'(E) and a 

basis in the input space UI ffiU2 such that U1 = B-IR*(E). In that basis we get that A,B,C 

and D have a special form: 

A (Au AI2), B = (Bn BI2), G (0 G1 ), D = (0 D1 ), (A.9) 
o A22 0 B22 

such that (All, Bll ) is controllable, GT Dl = 0 and (A22, B22 , G}, D 1 ) left-invertible. We can 

then look at the linear matrix inequality restricted to Xl ffi U1 to obtain: 

( 
AllXnAn - Xn AllXnBn) > 0 

BIIXnAn BIIXnBn-

which according to lemma A.I implies that Xu = O. Denote by V the projection onto Xl $U1 • 

Then we find that VT L(X)V=O and L(X) ~ O. Hence L(X)V = O. When we write this out 

in terms of our decomposition and using that Xu = 0 we get: 

( 
AJ2X21Au - X 21 AI2X21Bll) = 0 

Bi2X 21 A l1 Bi2X 21 Bn 
(A.lO) 

Let F be such that An + BllF has no eigenvalues in common with A22 , which is possible 

since (Au, Bn) is controllable. It is easy to see that (A.I0) implies that 

AI2X 21(All + BllF) - X 21 = 0 

and the standard theory guarantees that this Sylvester equation has a unique solution X 21 = O. 

In other words, we only have to compute X 22 • It is easy to see that the linear matrix inequality 
reduces to: 

LT(X ) = (AJ2X22A22 X22 + GiGI AI2X 22B22 + Ci DI ) > O. 

22 B:f2X 22 A22 + DICI B'f2X 22B22 + Dr Dl -
(A.ll) 

However, since (A22' B22 , G1 , D 1) is left-invertible, this is a linear matrix inequality such that 

the associated rational matrix HT has full rank where 

(A.I2) 
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where G is the transfer matrix of (A22' B22, C}, D t ). This enables us to first derive results 

for the case that H has full rank and then use the above reduction step to derive results for 

the general case. The results of the above reduction scheme are put together in the following 

theorem: 

Theorem A.6 : Let X be a solution of the linear matrix inequality (A.I) and let F be such 

that 'R.*(:E) is (A + BF)-invariant and contained in Ker (C + DF) where :E is the system 

with realization (A, B, C, D) with C, D defined by (A. 5) . Moreover, we assume that we have 

chosen the appropriate bases as described above. 

(i) X is a solution of the discrete linear matrix inequality {A.I} if and only if 

X_x=(O 0) 
o Xn 

and X 22 is a solution of reduced linear matrix inequality (A.II). 

(ii) Let X be a solution of the linear matrix inequality. Then the rank of L(X) equals 

the rank of F(Xn). In particular X is a rank-minimizing solution of the linear matrix 

inequality (A. I} if and only if X 22 is a rank-minimizing solution of the associated reduced 

linear matrix inequality (A.11). 

(iii) Let X be a solution of the linear matrix inequality. The zeros of the matrix pencil (2.2) 

are equal to the zeros of the following matrix pencil: 

It is in general computationally not very attractive to use this method to determine solu

tions of the linear matrix inequality and Riccati equation since we first have to find an initial 

solution X of the linear matrix inequality. But it does yield a straightforward method to 

derive properties of the linear matrix inequality and the algebraic Riccati equations since all 

important features of solutions of the linear matrix inequality are preserved in the reduction 

scheme. If an initial solution of the linear matrix inequality is available (e.g. in the posi- ~ 

tive semi-definite case) then the above does yield a computationally attractive method to 

determine solutions of the Riccati equation. 

B Matrix pencils and generalized eigenvalue problems 

Matrix pencils and its properties presented in this appendix can be found in more detail 

in [7,20}. 

Consider a pair (H t, H 2) of two square matrices. We will associate to this pair a matrix pencil 

J,tHl - AH2 • We call the matrix pencil regular if the pencil is invertible for almost all A and 

J,t. We call A an eigenvalue of the matrix pencil if Hl - AHz is not injective. We call 00 an 
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eigenvalue if H2 is not injective. The (algebraic) multiplicity of an eigenvalue A is equal to 

the dimension of the kernel of (HI - AH2r where m is the dimension of the matrix penciL 

The multiplicity of an eigenvalue 00 is equal to the dimension of the kernel of Hr. A regular 

m-dimensional matrix pencil has m eigenvalues. A singular pencil can have infinitely many 

eigenvalues. A regular 2n-dimensional matrix pencil which satisfies the property that: 

H ( 0 
1 -In 

In ) HT = H ( 0 
o I 2 -In 

where In denotes the n X n-identity matrix is called a symplectic pencil. It is easy to see that 

this implies that A is an eigenvalue if and only if A-I is an eigenvalue. 

A subspace V is called invariant or deflating with respect to the matrix pencil (HI, H2 ) if 

(R.1) 

For regular pencils we have an equality in (B.1). 

V is an invariant subspace if and only if there exists a regular matrix pencil (Lb L2) such that 

where V is an injective matrix such that 1m V = V. If (H},H2) is a regular pencil then the 

pencil (Lb L2 ) is unique up to pre- and post-multiplication by invertible matrices. For regular 

pencils the eigenvalues of the symplectic pencil (L1' L 2 ) are eigenvalues of the symplectic 

pencil (H1 ,H2 ) and are called the eigenvalues of (H1 ,H2 ) restricted to V. For singular pencils 

the eigenvalues of (Ll' L 2 ) are eigenvalues of (Hl' H 2 ) but are no longer uniquely determined 

by V and (Ht,H2 ). 
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