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Abstract The discrete cosine transform (DCT) is described and then tested to see
whether it is a suitable Fourier-related method for morphometric analysis of open
outlines. While most Fourier methods are mainly effective with closed outlines, the
DCT can handle open curves too, making it useful for quantitative descriptions of a
broad range of natural objects. Like other Fourier-type methods, the DCT yields in-
formative numerical signatures; the shape serves as input for subsequent multivariate
analysis, with, for example, principal component analysis (PCA). To test the DCT as
a morphometric tool, a set of 32 ammonite ribs was analyzed. The ammonites, repre-
senting 16 different species belonging to nine genera, were from the Hildoceratidae,
a major Lower Jurassic family with essentially falcoid s.l. ribs, whose taxonomy is
based largely on their ornamentation. Species were selected to illustrate the broad
spectrum of ribbing patterns from almost straight to falcate via sigmoidal or falcoid,
exhibited by the NW European Hildoceratidae. The first six harmonic amplitudes
computed by the DCT were processed by PCA. The first three factorial axes of the
PCA accounted for 87.2% of the total variance. Projections of the specimens on the
first two factorial planes provide a well structured plot of the entire morphospace,
demonstrating that the DCT is a promising and effective tool for morphometry.
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Introduction

A wide range of morphometric methods is available for analyzing and quantify-
ing two-dimensional curves representing cross-sections or projections of natural ob-
jects (Verrecchia 2003). Most of the corresponding mathematical approaches handle
closed and open curves alike, but unfortunately the spectral Fourier methods usually
employed often prove most effective with closed outlines. All these approaches can
be classified according to the type of morphological information targeted.

Elementary Euclidean geometrical measurements and their combinations are suit-
able for any outlines (Schmit-Kittler 1986; Coster and Chermant 1989; Viriot et al.
1990). Fractal dimension measurements are a universal solution for characterizing
the complexity of dendritic and/or frilled objects such as stromatolite surfaces or
ammonite sutures (Pérez-Claros et al. 2002; Schaaf and Vansteelant 1988). Paramet-
ric curve fitting methods are versatile enough to handle open and/or closed outlines
captured from biological structures (Rohlf 1990). Superimposition techniques using
homologous landmarks, in terms of comparative anatomy, are applicable regardless
of outline type (Bookstein 1991; Wahba 1990). When landmarks are unavailable or
difficult to locate, potential alternative methods such as semi-landmarks can be used
(Bookstein 1997; Zelditch et al. 2004). Linear transformations within a functional
space handle outline signals as functions, for example principal component analysis
(PCA), effectively translates and rotates the coordinate system of the morphological
space. Some such transformations are optimized for various ordering purposes, and so
yield suitable plots of the morphological space. These analyses are time-consuming
to compute and are input-demanding, and it may be preferable to pre-process the
raw morphological data using a “suboptimal” transform such as the discrete Fourier
transform (DFT), the direct cosine transformation (DCT), or wavelets, to reduce the
dimensionality of the original morphological space. Prior compression is especially
helpful for maintaining a concise dataset where different outlines are captured from
a single specimen (three perpendicular cross-sections of a 3D specimen) and where
such signals need to be concatenated before any global analysis is made.

PCA, also known as the Karhunen–Loève transform (KLT) when used for signal
compression, can be applied directly both to reduce dimensionality and to provide
an effective plot of the morphometric space. In this application, shape must be coded
independently of translation, rotation and scaling. Such coding is the “tangent-angle
shape function” used, for example, in eigenshape analysis (MacLeod 1999). As de-
scribed below, another approach makes use of certain mathematical properties of the
Fourier-type transformations to obtain a signal that is both compact and independent
of the shape-preserving planar transformations.

Fourier analysis is commonly used for studying closed outlines. Various solutions
are available depending on curve complexity. For example, centroid-based meth-
ods (Verrecchia et al. 1996) are restricted to star convex contours—sensu Weisstein
(2005). Other approaches, such as dual axis Fourier analysis (Moellering and Rayner

2



1981), complex Fourier analysis (Moellering and Rayner 1982), and elliptic Fourier
analysis (Kuhl and Giardina 1982; Rohlf and Archie 1984), are not subject to this
constraint.

Wavelet analysis (Toubin et al. 1999) and a few Fourier-based methods can be
used for open outlines. Indeed, the Fourier transform fails to converge normally (s.s.)
at signal discontinuities. Moreover, a suitable transform such as the discrete Fourier
transform implicitly treats any signal of finite duration as an infinite periodic signal
by circular symmetry. Consequently, when the input signal corresponds to an open
curve, periodic discontinuities are generated. Using a windowed Fourier transform
(Allen 2005) or a wavelet transform, these will reduce disturbances and confine them
around the discontinuities. Another approach is to replace the signal with a periodic
one, by applying an apodization function (Allen 2005) or by building a symmetrical
signal (Canfield and Anstey 1981). This symmetric construction is technically an
empirical way to perform a cosine transform.

The discrete cosine transform is a DFT-related transform that is widely used in im-
age, video, and audio signal compression. Many international standards such as JPEG
(Joint Photographic Experts Group), MPEG-2 (Motion Pictures Experts Group), and
MP3 (MPEG-1 Audio Layer 3) are based on variants of the DCT (Rao and Yip 1990).
Reasons for this choice are: (1) it is closely related to the DFT and benefits from the
same algorithmic optimization, the Fast Fourier Transform (FFT); (2) it has better
frequency resolution than the DFT; (3) it has very useful information-packing prop-
erties; (4) it can be applied to aperiodic signals; and (5) it transforms real-valued
signals into real-valued spectra.

Methods

The discrete Fourier transform has essential mathematical properties for digital sig-
nal processing and finds applications in various domains. For example, a stan-
dard method of object recognition involves approximating any complicated two-
dimensional closed boundary using just a few Fourier descriptors (Gonzalez and
Woods 2002, p. 655). A two-dimensional closed curve can be represented by an
analog signal s(t) defined by parametric and complex (in the sense of imaginary
numbers) formalism,

s(t) = x(t) + iy(t), 0 ≤ t < T , (1)

where variable t is arc length from any boundary point selected as the curve origin,
constant T is the period equal to the perimeter length, and parametric functions x and
y are Cartesian coordinates along the curve. To be processed by the DFT, this peri-
odic and complex-valued signal is uniformly sampled. The number of samples, N ,
must be large enough to record the shape’s full complexity. By the Nyquist-Shannon
sampling theorem, the sampled signal s[n] is an unambiguous representation of the
analog signal s(t) only if the sampling rate, 1/�T , is greater than twice the highest
frequency component present in s(t)

s[n] = s(n�T ), T = N�T, n = 0,1, . . . ,N − 1. (2)
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The forward normalized DFT of s[n] is given by

S[k] = 1√
N

N−1∑

n=0

s[n]e−i(2π/N)kn, k ∈ Z, (3)

and the corresponding inverse DFT is given by

s[n] = 1√
N

N−1∑

k=0

S[k]ei(2π/N)kn, n ∈ Z. (4)

Both the signal s[n] and its spectrum S[k] are N -periodic. Equation (4) exhibits the
harmonic decomposition of s[n], which is the sum of N sampled complex sinusoids
characterized by their amplitudes S[k] and their angular frequencies ωk = (2π/N)k.
The complex-valued spectrum S[k] can be expressed in polar form to provide two
real-valued spectra: the amplitude spectrum and the phase angles one. The angular
frequencies are integer multiples of the fundamental angular frequency ω1 = 2π/N .
They range from ω0 = 0 to ωN−1 = −2π/N via ωN/2 = π . The positive and negative
angular frequency pairs (e.g. ω1 versus ωN−1) correspond to counterclockwise and
clockwise movements on the unit circle. The lowest frequency harmonic H0 is a con-
stant related to the mean point of the sampled boundary, while the highest frequency
harmonic HN/2 oscillates at the Nyquist frequency, one-half the sampling rate. This
frequency-based structure explains the good information-packing capability of the
DFT when applied to many natural signals. Inputs from middle- and high-frequency
harmonics may be ignored because they convey minor details and noise. By reducing
their amplitudes to zero, the signal is low-pass filtered, so the inverse DFT recon-
structs a smoothed boundary. The accuracy of this approximation can be measured
both in the spatial domain and in the frequency domain by measuring the mean-
square error (MSE), or by calculating the percentage of remaining signal energy (the
sum-square of the amplitudes).

Statistically, the optimal linear transform for packing a set of normally distrib-
uted signals is not the DFT, but the KLT. Both the KLT and the normalized version
of the DFT rotate the coordinate system in the vector space C

N . Because rotations
and translations preserve angles and lengths, either transform can be used for lin-
ear ordering. The KLT basis functions, which are the eigenvectors of the covariance
matrix between the signals, are obviously data dependent. Accordingly, the KLT is
rarely used for data compression. It is a computationally expensive transform (Rao
and Yip 1990). Conversely the DFT basis functions are data independent since the
harmonic frequencies are analytically predetermined by the choice of N . Moreover,
although suboptimal, the DFT is nevertheless particularly effective at compressing
most naturally-occurring closed shapes.

Except for the translation-dependent harmonic H0, another important quality of
the normalized DFT is that the size-normalized amplitudes are invariant to shape-
preserving planar transformations: translation, rotation, scaling, and reflection (Gon-
zalez and Woods 2002, p. 658). Any pertinent measurement of object size can be used
for normalization. Reflection invariance may prove a valuable property for quantify-
ing bilateral asymmetry. Conversely, it may be misleading if one blindly separates
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Fig. 1 Comparison of periodic extensions used during the DFT (a) and the DCT (b). The 32 black dots
represent a real-valued aperiodic signal. The DFT introduces periodic discontinuities generating the Gibbs’
effect. The DCT is equivalent to construct a new periodic signal using translation and reflection before
performing the DFT. Such construction solves the boundary discontinuities problem

Fig. 2 Gibbs’ effect on an
ammonite rib. The bold gray
line is the original 256 point
outline. The fine black line is the
inverse DFT reconstruction with
33 remaining harmonics, H0 to
H16 and H240 to H255. Gibbs’
oscillations obviously make the
DFT less effective at describing
natural objects with open
boundaries

different but symmetrical shapes. Amplitudes are also invariant regarding the choice
of starting point, but a reversal of the sampling direction will swap the positive and
negative harmonics.

Open boundaries whose extremities are anatomically homologous can also be
processed by the DFT. To keep a single sampling direction, the same homologous
extremity must be selected as the starting point for all boundaries. Even so, disconti-
nuity of the periodic extension of the signal poses a serious problem (Fig. 1A). After
low-pass filtering, any discontinuous signal will be disturbed by oscillations centered
on the discontinuities (Fig. 2), and those amplitudes are constant independently of
the number of harmonics used for reconstruction. This artefact seriously reduces the
convergence speed of the DFT and produces poor MSE performances. This is known
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Fig. 3 Comparison between DFT (A, B) and DCT (C, D) convergence speeds. The A and C reconstruc-
tions are based on three harmonics, H0,H1, and H31 for the DFT and H0,H1, and H2 for the DCT. The
B and D reconstructions are based on nine harmonics, H0, to H4, and H28 to H31 for the DFT and H0 to
H8, for the DCT. The bold gray dotted lines represent 32 points uniformly distributed along an ammonite
rib. The fine black lines represent the reconstructions. The DCT has excellent reconstruction capabilities
and converges quickly. Conversely, the DFT construction is inaccurate and converges very slowly

Fig. 4 Comparison of amplitude spectra produced by the DFT (A) and the DCT (B). The black dots
correspond to the nine low frequency harmonics used by the B and D reconstructions in Fig. 3

as the Gibbs’ effect. In fact, the discrete cosine transform is a much more appropriate
method for analyzing periodic signals, because it resolves the problem of the Gibbs’
effect only at the signal extremities (Fig. 3).

The type-II DCT, the most common of eight variants, is usually called “the DCT”.
The DCT-II of a sampled signal s[n] can be implemented by the DFT of a 2N -
periodic and even symmetric signal built from s[n] by the following rule, translation
and reflection of s[n] (Fig. 1B)

r[m + 1/2] =
{

s[m], 0 ≤ m ≤ N − 1,
s[−m − 1], −N ≤ m < 0.

(5)

Because of the even symmetry, the sine terms in the DFT are canceled and the re-
maining cosine terms are the same as for the DCT. In practice, the normalized DCT
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Fig. 5 Morphological features
of the ammonite shell related to
the ribbing pattern. Where
present, the “mid-lateral”
inflexion point (C) separates the
latero-umbilical segment (LUS,
between points A and C) from
the latero-ventral segment (LVS,
between points C and B)

pair is given by

S[k] =
N−1∑

n=0

c[k]s[n] cos

(
(2n + 1)kπ

2N

)
, k ∈ Z,

s[n] =
N−1∑

k=0

c[k]S[k] cos

(
(2n + 1)kπ

2N

)
, n ∈ Z,

where c[k] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
N

, k = 0,

√
2

N
, otherwise.

(6)

As with the DFT, the DCT basis functions are also data independent. The DCT
spectrum is simpler than the DFT’s because the negative frequencies have vanished
(Fig. 4). The amplitudes inherit all the invariance properties from the DFT but invari-
ance to sampling direction is added.

The DCT is particularly effective with natural open shapes such as ammonite ribs.
These produce low frequency signals with a high correlation between points and their
nearest neighbors (Fig. 5). In fact, when applied to first order Gauss-Markov signals,
the DCT asymptotically approaches the KLT as the adjacent correlation coefficient
approaches 1 (Ahmed et al. 1974).
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Example of DCT Use

Ammonite Ribs, a Simple Morphometric Example

Ammonite shell ornamentation may be spiral or radial. Ribs, like all radial features,
are recurrent structures that are usually periodically distributed and depend on the
processes of shell accretion at the aperture. The ribbing pattern is a complex set of
features including rib density, rib orientation, rib branching, rib strength, rib profile,
and rib contour. The contour is the line along the rib crest. It is the only feature of the
ribbing pattern considered, as it is a good example of an open contour.

Ornamental features, and notably ribbing, are often complex and subtle features
of major importance for phylogeny and taxonomy. Unfortunately, they are usually
much more difficult to quantify than other more geometrically-constrained traits,
such as those related to shell-coiling parameters (Raup 1961, 1966). Ornamental
features, especially rib contours, are usually studied using subjective qualitative ap-
proaches, and so they are difficult to describe precisely and unambiguously. Until
now, the best approaches have used charts of standardized plots defining different
kinds of contours. Even so, category discrimination remains difficult (Spath 1913;
Caloo 1971; Dommergues et al. 1990). Few studies that do deal with true quantita-
tive analysis of rib contours (Neige and Dommergues 1995; El Hariri et al. 1996;
El Hariri 2001) use a superimposition technique (baseline procedure sensu Book-
stein et al. 1985). Unfortunately this superimposition technique is based on a small
set of just four landmarks, which is too few to depict the contour in any detail. Dif-
ficulty in identifying enough homologous points on a rib contour restricts the use
of superimposition techniques such as Procrustes-type methods s.l. (Bookstein 1991;
Bookstein et al. 1985). However, using harmonic-decomposition methods such as
Fourier-type methods for other objects with a similarly obvious scarcity of landmarks,
have proved effective (Anstey and Delmet 1973; Christopher and Waters 1974;
Gevirtz 1976; Younger and Ehrlich 1977; Renaud et al. 1996; Verrecchia et al. 1996;
Lestrel 1997; Dommergues et al. 2003; Schmidttbulh et al. 2003).

Materials and Method

The ammonites studied belong to the Lower Jurassic Hildoceratidae family. Their
rib contours range from almost straight to falcate via sigmoidal or falcoid. Despite
their impressive variety, all these patterns may have been derived from a relatively
primitive falcoid archetype. Furthermore, almost all the morphological transitions
can be observed in the fossil record. Ribbing patterns, and rib contour especially,
possibly in conjunction with coiling parameters, whorl section morphology, ventral
ornamentation, and various umbilical traits are of major importance for Hildocerati-
dae phylogeny and taxonomy. The family is comprised of approximately 250 valid
species found in the Tethyan and/or Boreal realms. This huge paraphyletic family
first appeared in the Tethys in the Carixian, spread northwards from Domerian times,
and became almost extinct at the Toarcian-Aalenian boundary. Nevertheless, many
Middle-Upper Jurassic and Cretaceous ammonites derived from it. The DCT was

8



evaluated using a sample of 16 species distributed across nine genera belonging to
the NW European Domerian and Toarcian faunas. In this test, two separate speci-
mens represent each species. They were chosen from the rich iconography of a recent
revision of the British Hildoceratidae (Howarth 1992). They were selected so as to
depict, as much as possible, the entire range of rib shapes exhibited by the family.
Each specimen was drawn to illustrate the pattern of the ribs located as close as pos-
sible to the end of the phragmocone of an adult macroconch shell. The ribs were
examined from their intersection with the umbilical edge (A in Fig. 5) to their ter-
minations close to the keel (B in Fig. 5). Because the Hildoceratidae under study are
planispiral with rather flat sides, the problem of their three-dimensionality could be
ignored, and the whorl side considered as a two-dimensional object. Conversely, the
innermost segment of the rib, between the umbilical seam and the umbilical edge
(Fig. 5), was excluded since it is sometimes missing or difficult to observe because
the umbilical wall is oblique (Fig. 5).

Although based on a limited assemblage of taxa, this type of sampling should meet
the following requirements for a morphometric tool. The DCT must allow strictly
quantitative characterization and differentiation of the taxa (e.g. species, genus). This
implies that the taxonomy of the group under study is based largely on the features
analysed, as is the case for the ribbing pattern of the Hildoceratidae. The DCT must
be of significant help in understanding the morphological structure of the variety of
shapes observed. The quantitative output of the analysis should be readily transpos-
able into intelligible descriptive terms.

These objectives are easily achieved with the DCT. After digitizing, the rib
contours were computed with a prototype version of the MATLAB toolkit CDFT
(Dommergues 2001; Navarro et al. 2004). Each rib contour was sampled with 200
uniformly spaced points. The amplitudes of the resulting harmonics were size-
normalized with the chord lengths of the corresponding ribs (Fig. 5). This choice is
justified because the chord length is a pure size descriptor depending on whorl height
alone. In comparison, curve length is relevant to shape and size alike. At this point,
it is important to emphasize that the shape description is incomplete because phase
information was omitted from the analysis. Finally, principal component analysis (R-
mode PCA based on the correlation matrix) was performed to test the morphological
significance of decomposition by the DCT. This procedure was relevant to the test
because the variables used to describe the rib contours were purely shape descriptors,
independent of the taxonomic and/or phylogenetic categories.

Results

The PCA was computed with the first six harmonics, which represent more than 99%
of the total signal energy. At this threshold, the visual quality of the contour recon-
struction performed using inverse DCT is ideally suited to morphometric analysis.
However, the fact that the 99% level is easily reached with just the first six harmonics
emphasizes the effectiveness of decomposition by the DCT. The first three axes of
the PCA account for 87.2% of the variance (50.3%, 18.8%, and 18.1%, respectively).

9



Table 1 Eigenvector values for
the three factorial axes of the
PCA. Bold values indicate
significant eigenvectors

Variable Axis 1 Axis 2 Axis 3

AH1 −.229 .840 .460

AH2 .575 −.144 .725

AH3 .598 .453 −.541

AH4 .900 −.011 .180

AH5 −.908 .287 .033

AH6 .800 .356 −.150

The relatively high contribution of these first axes suggests a well structured varia-
tion. Table 1 shows that the more significant contributions (eigenvectors) of the vari-
ous harmonics are distributed on separate axes and that only two harmonics (H1 and
H3) are significant for more than one axis (F2 and F3). Projections of the specimens
in the two factorial planes F1–F2 and F1–F3 (Figs. 6 and 7) indicate the taxonomic
and morphological meanings of the variation, respectively.

In Fig. 6, each of the 16 species analysed is shown by a distinctive symbol. The
figure indicates the following. The morphospace is heterogeneous with gaps, clus-
ters, and some remote isolated species, at least on one of the factorial planes. The
two specimens given for each species always occupy neighboring positions in the
morphospace in planes F1–F2 and F1–F3. The species belonging to the same genus
(Cleviceras (Cl), Harpoceras (Ha), Hildaites (Hi), Matteiceras (Ma), Protogrammo-
ceras (Pr)) are clustered in small and/or peripheral sectors of the morphospace. Most
species (e.g. HA fa) or at least genera (e.g. Cl) can be clearly identified on at least
one factorial plane. These results confirm the ability of the DCT to yield a result that
is consistent with taxonomy.

In Fig. 7, all the specimens are plotted with black dots and small drawings of
the ribs are given as close as possible to the corresponding dots. The outlines are
conventionally drawn with the chord oriented vertically. Obviously the analysis does
not depend on rib orientation. This representation aims to decipher the relationships
between the harmonic-decomposition process and shape. The axis F1 chiefly dis-
criminates sigmoid (towards the negative values) from falcoid (towards the positive
values) rib contours. For instance, specimens with the most positive values (e.g. >1)
display true falcate contours. These have a latero-umbilical segment (LUS, Fig. 5)
that is rather straight and roughly parallel to the chord, followed by a sickle blade-like
latero-ventral segment (LVS, Fig. 5). The “mid-lateral” inflexion point (C in Fig. 5) of
the falcoid rib contours is located on or close to the chord, and the LVS is situated en-
tirely or mainly to the right (abaperturally) of the chord. Conversely, the “mid-lateral”
inflexion points of the sigmoid rib contours are located to the left (abapically) of the
chord and, consequently, the LVS is obviously crossed by the chord. The axis F2 con-
siders the rib contours from a distinct point of view, which is probably hardly or even
not at all affected by the position of the “mid-lateral” inflexion point. Indeed, this fac-
torial axis is mainly effective at separating the rib contours according to the virtual
acute angle defined by the chord, and the ventral termination of the LVS. Negative
values of F2 correspond to the most closed angle; at the limit, the termination of the
LVS is just about parallel to the chord. Conversely, positive values are characterized
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Fig. 6 Plot of the two first factorial planes (F1 vs. F2 and F1 vs. F3) computed for the amplitudes of the
first six DCT harmonics. Each dot corresponds to a separate specimen. Symbols indicate the 16 different
species belonging to the nine genera analysed: Cl el = Cleviceras elegans, Cl ex = C. exaratum, Ha fa =
Harpoceras falcifer, Ha se = H. serpentinum, Ha so = H. soloniacense, Ha Su = H. subplanatum, Hi fo
= Hildaites forte, Hi mu = H. murleyi, Ma ge = Matteiceras geometricum, Ma ni = M. nitescens, Ov ov
= Ovaticeras ovatum, Po di = Polyplectus discoides, Pr ku = Protogrammoceras kurrianum, Pr pa = P.
paltus, Ps ly = Pseudolioceras lythense, Ti an = Tiltoniceras antiquum

by more open angles; at the limit, the very last termination of the LVS is almost per-
pendicular to the chord. The discrimination induced by the F3 axis is more subtle. As
with the first factorial axis, the third one depends on the “mid-lateral” inflection. The
degree of curvature and not its location is the significant feature. While the negative
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Fig. 7 Plot of the first two factorial planes for the amplitudes of the first six DCT harmonics. Each dot
indicates a separate specimen and its corresponding rib outline

values of F3 are characterized by rib contours with strong and sometimes almost an-
gular “mid-lateral” inflections (true falcate ribs), the positive values set apart the ribs
with faint “mid-lateral” curvatures. The “mid-lateral” inflection point may be absent.
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To summarize, the discrimination induced by the first three factorial axes is based
upon a meaningful combination of features allowing a fine description of the rib con-
tour patterns. For example, a falcate rib corresponding to a very positive F1 value is
characterized by a strongly curved sub-angular “mid-lateral” inflection located on or
very close to the chord. A moderately positive F2 value is characterized by a straight
LUS almost superimposed on the chord, and a very negative F3 value is character-
ized by a strongly arched LVS completely or almost entirely situated to the right of
the chord.

Conclusions

In theoretical and practical terms, the DCT has all the requisite qualities of a mor-
phometric tool for analyzing open outlines. The application test based on the analysis
of a selected set of ammonite-rib contours has confirmed the ability of the DCT to
discriminate effectively and purely quantitatively among taxa for which the diagnos-
tic traits are broadly based on open contours such as ammonite ribs, and to provide a
strictly objective framework for morphological description. Indeed, unequivocal and
at least indirectly via a multivariate analysis, intelligible relationships exist between
DCT outputs and contour morphologies. Its intrinsic potential and its convenience
make the DCT a promising and powerful morphometric tool for use with natural
open contours.
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