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Abstract: In paper two types of the discrete cosine (and sine) transforms (DCT/DST) are analyzed on the 
base of the linear representations of finite groups and geometrical approach. This transforms are 
useful for multirate systems, adaptive filtering and compression of speech signals and images. It is 
shown that if an operator, connected with the Discrete Fourier Transform (DFT), is referred to an 
appropriate basis it takes bloc-diagonal form. These blocks coincide with DCT-4/DST-4 for even 
dimensions of the signals’ space and with DCT-8/DST-8 for odd ones. The results allow the full 
structure of the DCT/DST to be investigated and fast realizations to be construct. 
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INTRODUCTION 
 
The discrete cosine transform (DCT) uses n real basis vectors { mc

r
} with cosine 

coordinates. These basis vectors are orthogonal. For example the k-component of mc
r

 in 

DCT-4 is ))
2
1()

2
1(2cos(2 ++

π mk
nn

. There are eight different types of DCT.  

Ahmed, Natarajan, and Rao found the first cosine transform in 1974. This is the so-called 
DCT-2 [1][3]. There are four basic types - from DCT-1 to DCT-4. This basic set was 
expanded in 1985 with new four transforms – from DCT-IO to DCT-IVO by Wang and Hunt 
[2 ][3]. 
All DCTs are orthogonal transforms and a usual proof is the direct calculation of inner 
products of their basis vectors, applying   trigonometric identities [3]. The proof of 
orthogonality is obtained in the Strang’s paper [3] by second indirect but neat way. The 
basis vectors are actually eigenvectors of symmetric second-difference matrices by 
different boundary conditions. Orthogonality is proofed automatically (matrices are 
symmetric) and all DCTs are connected in fixed structure.  

Does more direct way exist to obtain these transforms, connecting them in joint 
structure, proofing orthogonality and giving fast realizations? 
The objective of this paper is to get the answers of some of these questions, describing 
the connections of DCT-4 with DCT-8. 
 
CONVOLUTION AND THE DIHEDRAL GROUP 
 
The input and output signals of a linear time-invariant system are connected by the 
convolution operation [4]: 

y = x*h  .                                                        (1) 
Here h is the impulse response of the system. The sets of the real numbers R, integer 
numbers Z and the integer numbers – multiple of some integer number n (т.е. nZ), with 
addition as a binary operation, are groups [5]. The signals are functions usually defined 
on the R, Z, the torus group T = R/Z, the residue system (mod n) Z/nZ, or their Cartesian 
products. As such they are elements of some functional space, most often a Hilbert space 
H, which is supplied with the form y)|(x  that takes values in the field of the complex 
numbers C. This form, called an inner or scalar product, is Hermitian and positive definite 
[7].  
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 If L2(a, b) denotes the space of square summable functions on the interval (a, b), and    
L2(Z/nZ) denotes n-dimensional complex vector space of functions (vectors), that we have 
a Hilbert spaces with inner products [4][7] 

,tdy(t)(t)*xy)|(x
b

a
∫=      ∑

∈

=
Z/nZk

k
*
k .yx)y|x(

rr
 .                              (2) 

The convolution (1) could be written as an inner product if the right shift operator ρ and 
the sign operator σ are used: .t)x(x(t):σ1),x(tx(t):ρ −→−→  If x, h ∈ L2(-∞,∞), then 

.hxdττ)h(t x(t)h)σρ|(x t ∫
∞

∞−

∗=−=  

 In the canonical basis of L2(Z/nZ), formed by vectors, 



= δ},{ kl,kk ee

rr , l, k = 0,1,...,(n-1) 

(mod n), (δ kl,  is the Kronecker's symbol), the two endomorphisms have the following 
(orthogonal) matrices [9]: 
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In this case the k-th coordinate of the output vector ry  in (1) has the form 
 

),σρ|(y k
k hx

rr
=                                             (4) 

 
and the convolution is cyclic. In (4) ρ and σ define a linear representation of the dihedral 
group Dn [5][7]: 

.1 =ρ(σ =ρσ | ρσ = D  2 n2
n 〉) = ,〈                                          (5) 

 
One verifies from (3) that the matrices of two endomorphisms satisfy the defining relations 
of Dn. The group Dn has a second presentation, which is isomorphic to (5) 
( σρσ̂σ,σ →→ ):  

. 1 =)σ̂(σ =σ̂σ | σ̂σ = D  n 22
n 〉 = ,〈                                     (5b) 

 
In this case nnn ρσσ̂ =  and if n = 4 
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It follows from  (5) that not only the obvious symmetry σ (which reflects functions in 
ordinate axis) is involution i.e. 1σ2 = . Involutions are the elements of dihedral group σρк  

in (4), that reflects in the vertical lines 
2
kt = . These “parallel lines” coincide in discrete 

case with diameters of the unit circle. If we apply the Strang’s terminology [4], for even k 
this symmetry realizes “meshpoint (or whole-sample) symmetry”, and for odd k  - “midpoint 
(or half-sample) symmetry”. The most simple representatives of these two classes are σ 
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(reflects in the ordinate) and σ.ρ ~ σ̂  (reflects in the vertical line t = - ½) i.e. the two 
generators of the dihedral group into the second presentation of this group (5d). 
 
DISCRETE COSINE/SINE TRANSFORM  - (DCT- 4/DST- 4) AND (DCT- 8/DST- 8) 
 
It’s easy to be shown that σ and the identity 1 have two presentations: 
 

 
.ρρρρ1

,ρρρρσ

nk0

kTk

nk0

kTk
nk0

kTk

nk0

kTk

∑∑

∑∑

<≤

−

<≤

−
<≤

−−

<≤

==

==

δδδδ

δδδδ
rrrr

rrrr

                                (6) 

 
 Here T]0,...,0,0,1[=δ

r
 is the n-dimensional vector of Dirac. Let’s introduce two operators  

- µ and A (here F = C – j S is Discrete Fourier Transform’s Operator – DFT) [3][9]: 
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Obviously A is a unitary operator [8], i.e. 1== AAAA **  and   
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But it’s easy to be obtained, that 
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From here one can get some important conclusions. As (-σ ρ) is an involution, the two 
projectors onto the invariant subspaces [7][9] of this operator are respectively: 
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Dimensions of the spaces onto which they are projecting coincide with the traces of these 
projectors and are respectively (n/2, n/2), if n is even and ((n-1)/2, (n+1)/2), when n is odd. 
These two projectors have one more property  – the first (n/2, n/2) - if n is even, and the 
first ((n-1)/2, (n+1)/2) - if n is odd, columns are orthogonal. About p and q if n = 4 we have 
respectively: 
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If one constructs a bases from these orthogonal vectors, the projectors will get diagonal 
form (with n/2 x n/2 ones-zeros on the diagonal for the even case and (n-1)/2 x (n+1)/2 – 
for the odd case; (-σ ρ) will get diagonal form with –1 on the place of the zeros of the 
projectors), and A – block-diagonal form.  
The endomorphism of the transition to this basis α for n – even will get the form (after 
normalizing the basis vectors):   
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When n is odd the projectors and α have the form: 
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From (9) and (11) we have: 
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From (12) it’s follows that the two anti-diagonal blocks (with respective dimensions) are 
zero: 
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i.e. A takes the block-diagonal form indeed. More over from the fact that A is unitary matrix 
follows that 11А  is a real matrix and 22А  is clear imaginary one. For n = 4 and n = 5, 
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It could be obtained that for even n: 
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We received simultaneously the two transforms DCT-4 and DST-4. Wickerhauser gets this 
result by factorization of 2n X 2n matrix too [3][10]. 
The same form can be obtained for n - odd: 
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Here the two blocks coincide with DCT-8 and DST-8. From here could be seen the 
common genesis of these transforms. The form of the operator А – presence of the DFT-
operator in it, allows fast realizations to be obtained. 
 
CONCLUSIONS 
  
In this paper two types of cosine/sine transforms DCT-4/DST-4 and DCT-8/DST-8 was 
analyzed. On the base of the theory of groups approach [9] and the invariant spaces of the 
operator А its block-diagonal form was obtained. The two blocks of A coincide with the 
well-known cosine/sine transforms. This result demonstrates the common geneses of all 
cosine/sine transforms and allow fast realizations to be received. On the base of proposed 
approach could be accomplish full analysis of all types of cosine/sine transforms. This will 
be object of another work. 
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