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The Discrete Fractional Cosine and Sine Transforms
Soo-Chang Pei, Fellow, IEEE,and Min-Hung Yeh

Abstract—This paper is concerned with the definitions of the
discrete fractional cosine transform (DFRCT) and the discrete
fractional sine transform (DFRST). The definitions of DFRCT
and DFRST are based on the eigen decomposition of DCT and
DST kernels. This is the same idea as that of the discrete fractional
Fourier transform (DFRFT); the eigenvalue and eigenvector
relationships between the DFRCT, DFRST, and DFRFT can be
established. The computations of DFRFT for even or odd signals
can be planted into the half-size DFRCT and DFRST calculations.
This will reduce the computational load of the DFRFT by about
one half.

Index Terms—Discrete fractional cosine transform, discrete
fractional Fourier transform, discrete fractional sine transform.

I. INTRODUCTION

T HE FRACTIONAL Fourier transform (FRFT) is a gener-
alized Fourier transform [1]–[5]; in addition, the FRFT is

a special case of the more general linear canonical transform
[6], and it provides a tool to compute the mixed time and fre-
quency components of signals. The interpretation of the FRFT
is a rotation of signals in the time–frequency plane. Because
of the importance of the FRFT, the discrete fractional Fourier
transform (DFRFT) has also become an important issue recently
[7]–[11]. In the development of the DFRFT, it has been consid-
ered to be a linear weighted summation of the signal and spec-
trum [7]. Unfortunately, such a method cannot have the outputs
that are similar to the continuous case [8]. It will work very
similarly to the original transform or the identity operation and
lose the important characteristics of fractionalization. We have
found that the DFRFT with discrete Hermite eigenvectors and
an appropriate eigenvalue assignment rule satisfy all the desir-
able properties and can have similar results as those of contin-
uous FRFT [9]. The authors further improved this type of dis-
crete fractional Fourier transform (DFRFT) by modifying their
eigenvectors more closely to the continuous Hermite eigenvec-
tors [10]. This eigendecomposition method for the DFRFT has
been consolidated in [11]. Moreover, the eigendecomposition
methods for the DFRFT have been used as a tool in many appli-
cations [12], [13].

Orthogonal transforms are widely used in signal analysis
and image compression [14]. Besides the DFRFT, several
fractional signal transforms have also been developed in recent
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documents, such as the discrete fractional Hartley transform
[13] and the discrete fractional Hadamard transform [15].
Unfortunately, the fractional versions of the discrete cosine
transform (DCT) and the discrete sine transform (DST) are still
absent. The purpose of this paper is to develop the generalized
versions of the DCT, DST, DFRCT and DFRST. This paper
is organized as follows. In Section II, preliminaries about the
DCT, DST, and DFRFT are given. Then, the eigenvectors and
eigenvalues of the DCT and DST are studied in Section III. In
Section IV, we develop the DFRCT and DFRST. Moreover, the
steps for computing the DFRCT and DFRST kernel matrices
are also summarized. The properties of DFRCT and DFRST
are discussed in Section V, and the final conclusions are made
in Section VI.

II. PRELIMINARY

A. Four Types of DCT Kernel Matrices

The definitions of DCT and DST kernel matrices have been
well reviewed in [16]. We will quote them here for our further
discussion. In [16], four types of DCT kernel matrices are pre-
sented, and they are shown as follows.

• DCT-I

(1)

for .
• DCT-II

(2)

for .
• DCT-III

(3)

for .
• DCT-IV

(4)

for .
and in the above four definitions are defined as

and

others.
(5)
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B. Four Types of DST Kernel Matrices

Similar to the DCT case, the DST also has four definitions in
[16]. The four types of DST kernel are shown as follows.

• DST-I

(6)

for .
• DST-II

(7)

for .
• DST-III

(8)

for .
• DST-IV

(9)

for .
and in the above four definitions are the same as those

in (5). The DCT-I and DST-I kernels have symmetric structures
and are periodic with period 2. The periodicity means that re-
peated application of DCT-I and DST-I would give the orig-
inal sequence. DCT-IV is the same as DCT-I for symmetry and
periodicity, but DCT-II and DCT-III operators are the forward

and inverse transform pair of each other and are nonperiodic.
Here, DCT-I and DST-I will be chosen and used in developing
DFRCT and DFRST, as shown in (10) and (11) at the bottom of
the page.

C. Discrete Fractional Fourier Transform

The continuous FRFT performs a rotation of signal in the
time–frequency plane, and the conventional Fourier transform is
a rotation of signal [1]. Similar to the continuous notation,
the DFT can be regarded as a rotation for discrete signals
[10]. The DFT kernel is defined in the following way for energy
preservation.

...
...

...

(12)

where . The DFRFT performs any angle ro-
tation for discrete signals [9], [10]. Several DFRFTs have been
developed [7], [9], [10]. It has been proved that the DFRFT in
[7] cannot have similar results [8]. The DFRFT concerned in this
paper is the eigendecomposition-based method in [9] and [10].
The methods in [9] and [10] use the DFT Hermite eigenvectors
to construct the DFRFT kernel matrix. It has been shown that

...
...

.. .
...

... (10)

...
...

... (11)
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TABLE I
EIGENVALUE MULTIPLICITIES OF THE DFT KERNEL MATRICES

the methods in [9] and [10] can have similar outputs as the con-
tinuous results. In [9] and [10], the -point DFRFT kernel is
computed as

(13)

...
(14)

where , is the th order DFT Her-
mite eigenvector, and indicates the rotation angle of transform
in the time–frequency plane. When , is an identity
operator. If , the DFRFT becomes the conventional
DFT. Several methods for finding theth-order DFT Hermite
eigenvectors have been proposed in [9] and [10].

III. EIGENVECTORS ANDEIGENVALUES OF DCT AND DST
KERNEL MATRICES

The eigenvectors and eigenvalues of the DFT kernel matrix
are well studied in [17]–[19], and it is very helpful to develop the
DFRFT. However, the eigenvectors and eigenvalues of DCT and
DST kernel matrices are still absent in the current documents.
In this section, we will study the eigenvectors and eigenvalues
of DCT and DST kernel matrices. This will help us to develop
the DFRCT and DFRST.

Proposition 1: The DFT kernel matrix has only four distinct
eigenvalues— —and its multiplicities are sum-
marized in Table I.

Proof: See [17].
Because the DFT has only four distinct eigenvalues, the DFT

eigenvectors will constitute four eigenspaces. It is trivial to find
that any vector spanned by the DFT eigenvectors corresponding
to the same eigenvalue is still a DFT eigenvector. Therefore,
there exist infinite eigenvectors for the DFT kernel matrix. The
multiplicities of DFT eigenvalues are just the dimensions of
eigenspaces.

Proposition 2: All the DFT eigenvectors are even or odd.
The even eigenvectors are with the eigenvalues 1 or1; in ad-
dition, the odd eigenvectors correspond to the eigenvaluesor

.

TABLE II
EIGENVALUE MULTIPLICITIES OF THE DCT-I KERNEL MATRICES

Proof: See [17].
The above proposition is very important for the development

of DFRCT and DFRST; therefore, we review it here. In the fol-
lowing discussion, we will study the eigenvalues and eigenvec-
tors for the DCT and the DST and establish the relationships
with the conventional DFT.

Proposition 3: The DCT-I and DST-I eigenvectors can be
attained from the DFT eigenvectors.

1) If is an
even eigenvector of the -point DFT kernel ma-
trix. ( ). Then

(15)

will be an eigenvector of the -point DCT-I kernel ma-
trix, where is the corresponding eigenvalue

(16)

2) If , , ,
is an odd eigenvector of the -point DFT kernel
matrix. ( ). Then

(17)

will be an eigenvector of the -point DST-I kernel ma-
trix, where is the corresponding value

(18)

Proof: See the Appendix.
For the odd DFT eigenvectors, becauseis equal to or

, the DST-I eigenvalue will be equal to 1 or 1. From the
above proposition, we know that the DCT-I and DST-I kernel
matrices have the eigenvalues 1 and. Do there exist other
eigenvalues for DCT-I and DST-I besides 1 and? We will
show that the DCT-I and DST-I kernel matrices are with only
these two eigenvalues in the following proposition.

Proposition 4: The eigenvalues of DCT-I and DST-I kernel
matrices are only 1 and 1. Their multiplicities are shown in
Tables II and III, respectively.
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TABLE III
EIGENVALUE MULTIPLICITIES OF THE DST-I KERNEL MATRICES

Proof: For the DCT-I case, the following results can be
derived by Proposition 3:

the -point
DCT-I eigenvectors the -point

DFT even eigenvectors

if is even

if is odd

where indicates the multiplicity of an eigenvalue. Regard-
less of is even or odd, the sum of and are both
equal to . Thus, the DCT-I eigenvectors obtained from the
DFT even eigenvectors can result in a full-rank DCT-I kernel
matrix. All the DCT-I eigenvectors can be obtained from the
DFT even eigenvectors. Therefore, Table II is attained.

The results in the DST-I case can be proved in the same way
so that Table III can be obtained.

Proposition 5: The orthogonality in DCT-I and DST-I eigen-
vectors can be inherited from that in DFT eigenvectors.

1) If and ( ) are both the even and orthogonal
DFT eigenvectors, the DCT-I eigenvectors and
will also be orthogonal.

2) If and ( ) are both the odd and orthogonal
DFT eigenvectors, the DST-I eigenvectors and
will also be orthogonal.

Proof: We can compute the inner product of and
to check the orthogonality. Using the definitions of and ,
the following equations could be obtained:

The orthogonality between and can be proved in the
same way.

Proposition 5 tells us that the DFT orthogonal eigenvectors
can be used to generate the DCT-I and DST-I orthogonal eigen-
vectors.

IV. DEVELOPMENT OF THEDISCRETEFRACTIONAL COSINE

AND SINE TRANSFORMS

From the previous discussions, we know that all the DFT,
DCT, and DST transform kernels have infinite eigenvectors. In
[9], [10], and [18], a novel matrix is introduced to compute
the real-value and complete set of DFT eigenvectors very el-
egantly. This particular set of eigenvectors constitutes the dis-
crete analogs of the continuous Hermite–Gaussian functions.
We call it the DFT Hermite eigenvectors [9], [10], [18]. Because
the DFRFT defined with these DFT Hermite eigenvectors can
have similar output as continuous FRFT and will have the prop-
erties of unitarity, additivity, and reversibility, the DFT Hermite
eigenvectors will be used in developing DFRCT and DFRST as
reasonable choices. The eigenvectorwill have the eigenvalue

( is even) for the DFRCT kernel matrix. Such an assign-
ment rule will result in a DCT kernel for . Similar to
the DFRFT, the -point DFRCT kernel can be defined as

(19)

...
(20)

where . is the DCT-I eigenvector
obtained from the th-order DFT Hermite eigenvector by (15).
While , the DFRCT will become the conventional
DCT-I. When , is an identity matrix. The steps
for constructing the -point DFRCT kernel with angular pa-
rameter are summarized as follows.

• Step 1) Compute the -point DFT Hermite even eigen-
vectors. .

• Step 2) Use (15) to compute the DCT-I eigenvectors from
the DFT Hermite even eigenvectors.

• Step 3) Determine the DFRCT transform kernel by the
following equation:

(21)

where . is the DCT-I eigen-
vector obtained from theth-order DFT Hermite eigen-
vector by (15).

Similar to the DFRCT case, the development of DFRST is also
based on the DFRFT. The eigenvector( is odd) is assigned
to the eigenvalue . Thus, the -point DFRST kernel
is defined as

(22)

...
(23)

where . is the DST-I eigenvector
obtained from the th-order DFT Hermite eigenvector by (17).
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The above DFRST kernel matrix will be reduced to a DST-I
kernel matrix for , and it will become an identity matrix
for . The steps for computing the-point DFRST kernel
with parameter are summarized as follows:

• Step 1) Compute the -point DFT Hermite odd eigen-
vectors. .

• Step 2) Use (17) to compute the DST-I eigenvectors from
the DFT Hermite odd eigenvectors.

• Step 3) Determine the DFRST transform kernel

(24)

where . is the DST-I eigen-
vector obtained from theth-order DFT Hermite eigen-
vector by (17).

Since no fast algorithm has been developed for exactly
computing the DFRFT, DFRCT, and DFRST transform ma-
trix products, their computation would take order
complexity by an ordinary matrix multiplication [10]. An
approximate fast algorithm has been described in
[8] for fast DFRFT computation.

V. PROPERTIES OFDFRCTAND DFRST

A. Properties of DFRCT and DFRST

The DFRCT and DFRST developed in this paper are not the
same as the conventional DCT and DST with real values in the
kernel matrices. Recently, some types of fractional cosine and
sine transforms have been derived by taking the real part and
imaginary part of the DFRFT kernel [20], although these frac-
tional transforms are real and can be implemented with inco-
herent light [21]–[23]. However, the angle additivity will not
exist for these transforms, and more importantly, they do not
have simple inverse transforms.

Because the DFRCT and DFRST are developed with a similar
method as the DFRFT, the properties of the DFRCT and the
DFRST are inherited from the DFRFT.

• Unitarity:
Similar to the DFRFT, the DFRCT and DFRST are both

unitary

(25)

(26)

• Angle additivity:
Both the DFRCT and DFRST can preserve the angle

additive property as the DFRFT

(27)

(28)

• Periodicity:
The DFRFT is periodic with period , but the DFRCT

and the DFRST are periodic with period

(29)

(30)

• Symmetric:
Both the DFRCT and DFRST kernel matrices are sym-

metric

(31)

(32)

B. Relationship Between the DFRCT, DFRST, and DFRFT

In this section, we will establish the relationship between the
outputs of the DFRCT, the DFRST, and the DFRFT. Moreover,
we will show that the DFRFT can be computed by a smaller
transform kernel with the help of the DFRCT or the DFRST for
the even or odd signal.

Proposition 6: For an even signal of length , ,
, where the DFRFT

output is , , ,
the DFRCT of signal of length , ,

will be equal to

(33)

For an odd signal of length , ,
, , if its DFRFT output is , , ,

, , , the DFRST of signal
of length , , will be equal
to

(34)

Proof: The proof can be directly attained from the defini-
tions of the DFRCT and the DFRST.

Proposition 6 tells us that the DFRFT of an even or odd
signal can be computed by a smaller-size transform kernel of
the DFRCT and the DFRST. In [13], the DFT kernel matrix is
decomposed into its real and imaginary parts as below. Here,
we will apply the notation for dealing with the input signal with
even length

(35)

where

(36)

(37)

Moreover, the DFRFT can be proved and computed through the
fractional power of and in [13]

(38)

From [13], we know that the is for the DFRFT compu-
tation of an even signal, and is for the DFRST computation
of an odd signal. The construction of matrix is from the
DFT Hermite even vectors, and is from the other odd
vectors [13]. However, the DFRCT and the DFRST are from
the truncated and scaled DFT eigenvectors by (15) and (17). Be-
cause a general signal can be decomposed into an even and an
odd signals, the DFRFT for a discrete signal with even length
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Fig. 1. Block diagram for the DFRFT computation by DFRGT and DFRST.

can be computed by and . In Fig. 1, a dis-
crete signal with even length is decomposed into even and
odd parts. The even part of signal is computed by the DFRCT
and the odd part by the DFRST. Then, the outputs of DFRCT
and DFRST are merged to get the desired DFRFT. No matter
whether it is the the even or the odd part, a preprocessing (trun-
cation) and postprocessing (extension) are required in order to
get the desired length. The even and odd parts of signal can be
obtained by the following equations:

(39)

(40)

It is easy to check that the entries in are zeros for the two
cases: and . Before the DFRCT and DFRST
computation, a preprocessing (the even and half truncation) is
required to shorten the length of the signal. The even and odd
half truncations in Fig. 1 are defined as

Even truncation

for (41)

Odd truncation

for (42)

After the truncation, the length of the even part is ( ), and
the odd part becomes ( ). The odd truncation is with a
unit shift of . After the DFRCT and DFRST computations,
the even and odd extensions are required to result in the DFRFT
with length

Even Extension

(43)

Odd Extension

(44)

In Fig. 1, the phase factor in merging the odd extension
comes from (38). The upper part of Fig. 1 is for computing

; the lower part is for . If , the phase
factor becomes , and the and compute
the real and imaginary parts of the conventional DFT, respec-
tively. Thus, the computation of the DFRFT can be computed
by smaller size of the DFRCT and DFRST transform kernels be-
cause the computational loads of the DFRFT, the DFRCT, and
the DFRST are all . It is reasonable to assume that the

-point transform computations of the DFRFT, the DFRCT and
the DFRST need ( ) operations, whereindicates a constant
for the DFRCT and DFRST computations. The scheme in Fig. 1
will need operations. This can reduce
the computational load of DFRFT about one half.

Example 1: In this example, we deal with the DFRCT and
DFRFT results for an impulse signal with length 72. Fig. 2(a)
shows the original impulse signal, whose DFRFT with angular
parameter is shown in Fig. 2(b). The even half trunca-
tion of the impulse signal is drawn in Fig. 2(c). Fig. 2(d) is the
DFRCT output of the truncated signal. We can observe that the
DFRCT result is equal to the positive part of the DFRFT result,
but the first and last entries of the DFRCT are scaled by .

Example 2: In this example, we further consider the DFRCT
and DFRFT results for a triangular signal

.
(45)

The triangular signal with length 72 is plotted in Fig. 3(a).
We then compute the DFRFT of and draw the output [see
Fig. 3(b)]. Fig. 3(c) shows the even truncation of . We com-
pute the DFRCT for the truncated triangular signal and show
the output in Fig. 3(d). Comparing the results in Fig. 3(b) and
(d), we can observe that the first and last entries of DFRCT are
scaled by .

VI. CONCLUSIONS

In this paper, the definitions of discrete fractional cosine and
sine transforms (DFRCT and DFRST) have been presented.
First, the eigenvalues and eigenvectors of the DCT and DST
are investigated. The eigenvalue and eigenvector relationships
between the DFRCT, DFRST, and DFRFT are established.
Then, the eigendecompositions of the transform matrices are
used to define the DFRCT and DFRST kernel matrices. The
computations of the DFRFT for even or odd signals can be
planted into the DFRCT and DFRST calculations. Moreover,
a signal can be decomposed into even and odd signals. With
the help of the DFRCT and DFRST, a smaller size of kernel
matrix is used for DFRFT computation. This can reduce the
computational load of the DFRFT.

APPENDIX

To begin with, we will prove the DCT-I case. It is assumed
that is the ( )-point even DFT eigenvector corresponding
to the eigenvalue . , or
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Fig. 2. Impulse signal and its transform results in Example 1.

Using the definition of the DFT in (12), the following equa-
tion can be obtained.

...
...

...
...

...

...
...

...
...

...

...

...

...

...

(A.1)

where . We can check the entries on both sides
of (A.1)
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Fig. 3. Triangular signalx(n) and its transform results in Example 2.

for . Therefore

(A.2)

Thefollowingequationcanbeeasilyattainedasin(A.3),shown
at the bottom of the page. Equation (A.3) can be written as

(A.4)

Therefore, is also the eigenvalue of the DCT-I kernel matrix,
and , is the eigenvector
of DCT-I.

...
...

...
. . .

...
...

... (A.3)
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...

...
...

. . .
...

... ...
(A.7)

Now, we will prove the DST-I case. It is assumed thatis
the ( )-point odd DFT eigenvector corresponding to the
eigenvalue . or

Using the DFT definition in (12) can lead to the

...
...

...
...

...

...
...

...
...

...

...

...

...

...

(A.5)

where . We can check the entries on the

left side of (A.5).

for . Therefore

(A.6)

The following equation can be easily obtained as in (A.7),
shown at the top of the page. Equation (A.7) can be written as

(A.8)

Therefore, is a DST-I eigenvector,
and is its corresponding eigenvalue. If is a normalized
DFT eigenvector, will also be a nor-
malized DST-I eigenvector. The proof of Proposition 3 is com-
pleted.
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