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The Discrete Fractional Cosine and Sine Transforms

Soo0-Chang Pefrellow, IEEE,and Min-Hung Yeh

Abstract—This paper is concerned with the definitions of the documents, such as the discrete fractional Hartley transform
discrete fractional cosine transform (DFRCT) and the discrete [13] and the discrete fractional Hadamard transform [15].
fractional sine transform (DFRST). The definitions of DFRCT  ypfortunately, the fractional versions of the discrete cosine

and DFRST are based on the eigen decomposition of DCT and . ) .
DST kernels. This is the same idea as that of the discrete fractional transform (DCT) and the discrete sine transform (DST) are still

Fourier transform (DFRFT); the eigenvalue and eigenvector absent. The purpose of this paper is to develop the generalized
relationships between the DFRCT, DFRST, and DFRFT can be versions of the DCT, DST, DFRCT and DFRST. This paper
established. The computations of DFRFT for even or odd signals js organized as follows. In Section II, preliminaries about the
can be_planted into the haIf-S|z_e DFRCT and DFRST calculations. DCT, DST, and DFRFT are given. Then, the eigenvectors and
This will reduce the computational load of the DFRFT by about . . .
one half. eigenvalues of the DCT and DST are studied in Section Ill. In
Section IV, we develop the DFRCT and DFRST. Moreover, the
steps for computing the DFRCT and DFRST kernel matrices
are also summarized. The properties of DFRCT and DFRST
are discussed in Section V, and the final conclusions are made
I. INTRODUCTION in Section VI.

HE FRACTIONAL Fourier transform (FRFT) is a gener-
alized Fourier transform [1]-[5]; in addition, the FRFT is Il PRELIMINARY
a special case of the more general linear canonical transfoam Four Types of DCT Kernel Matrices

[6], and it provides a too! to computg the mixeq time and fre- The definitions of DCT and DST kernel matrices have been
iqsuznr%);act?ornp;nseigtr?a?sf isrllgtnh&:alst.ir-lr—lze f'rrggng;;‘tslg:; tgig;%{ell reviewed in [16]. We will quote them here for our further

) e g -di ion. In [16], four f DCT kernel matri re pre-
of the importance of the FRFT, the discrete fractional FourngrSCUSS ° [16], four types of DCT kernel matrices are pre

: : nted, and they are shown as follows.
transform (DFRFT) has also become an important issue recent?y ’ y

Index Terms—Discrete fractional cosine transform, discrete
fractional Fourier transform, discrete fractional sine transform.

[7]-[11]. In the development of the DFRFT, it has been consid- * DCT-

ered to be a linear weighted summation of the signal and spec- B -

trum [7]. Unfortunately, such a method cannot have the outputs Chy1 =1/~ |:krnkn cos (—)} 1)
I . : N N

that are similar to the continuous case [8]. It will work very

similarly to the original transform or the identity operation and  form,n =0, 1, ..., N.

lose the important characteristics of fractionalization. We have « DCT-II

found that the DFRFT with discrete Hermite eigenvectors and

an appropriate eigenvalue assignment rule satisfy all the desir- cll _ \/Z [k cos <m (n + %) w)] @
able properties and can have similar results as those of contin- NTVN|™ N

uous FRFT [9]. The authors further improved this type of dis-

crete fractional Fourier transform (DFRFT) by modifying their form,n=0,1,..., N -1

eigenvectors more closely to the continuous Hermite eigenvec-+ DCT-III

tors [10]. This eigendecomposition method for the DFRFT has .

been consolidated in [11]. Moreover, the eigendecomposition clt _ \/z [k cos <(m + 5) ”Wﬂ ©)
methods for the DFRFT have been used as a tool in many appli- N N | N

cations [12], [13].

Orthogonal transforms are widely used in signal analysis form,n =0,1,..., N —1.
and image compression [14]. Besides the DFRFT, several * DCT-IV
fractional signal transforms have also been developed in recent L L
cLv — 2 lCOS<(m+§) (”"‘5)”)] 4)
N N
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B. Four Types of DST Kernel Matrices and inverse transform pair of each other and are nonperiodic.
Similar to the DCT case, the DST also has four definitions {{€€: PCT-I and DST-I will be chosen and used in developing
[16]. The four types of DST kernel are shown as follows. ~ DFRCT and DFRST, as shown in (10) and (11) at the bottom of
the page.
o DST-I
2 mna C. Discrete Fractional Fourier Transform
ST I B —
e continuous FRFT performs a rotation of signal in the
form.n—=1.2 .  N—1 time—frequency plane, and the conventional Fourier transformis
. DST-EI Ty a /2 rotation of signal [1]. Similar to the continuous notation,
the DFT can be regarded asr@2 rotation for discrete signals
o /2 _[(m(n—3%)n [10]. The DFT kernel is defined in the following way for energy
SN=0 |Fmsin| —x (M preservation.

form,n=1, 2

= ..., N. 1
3 3 3 F — _
DST-III NTVN
11 .. 1 1
2 (m—l)mr
1 _ : 2 . .
S —\/N[’Wm(T)] ®) 1 WL W w1

form,n=1,2,..., N. : " :
. - I— N-2)2 N—-1)(N-2
DST-IV 1w o wdh Y WD)
IV _ 2 <in (m - %) (n — %) a0 ©) 1 W]Qr_l . WJ(\fV_l)(A —-2) WJ(\fv_l) |
N N 12)
form,n=1,2,..., N. whereWy = ¢=77/N) The DFRFT performs any angle ro-

k.. andk, in the above four definitions are the same as thosation for discrete signals [9], [10]. Several DFRFTs have been
in (5). The DCT-l and DST-I kernels have symmetric structureteveloped [7], [9], [10]. It has been proved that the DFRFT in

and are periodic with period 2. The periodicity means that rf#] cannot have similar results [8]. The DFRFT concerned in this
peated application of DCT-1 and DST-I would give the origpaper is the eigendecomposition-based method in [9] and [10].
inal sequence. DCT-IV is the same as DCT-I for symmetry afithe methods in [9] and [10] use the DFT Hermite eigenvectors
periodicity, but DCT-1l and DCT-Ill operators are the forwardo construct the DFRFT kernel matrix. It has been shown that

-1 1 1 1 7
2 V2 V2 2
1 s T cos Y =27 P Gl Vs
V2 N-1 N-1 V2 N-1
2
Ch =4/ . . : : 10
1 (N —2)7 (N —2)%r 1 (N—-2)(N—-1)m
—— COS —————— COS —————— —= COS
V2 N-1 N-1 V2 N-1
1 1 (N -1D)n 1 (N-2)(N-1= 1 (N-1)2rn
- —FCOS ————— —= COS —COS ————
L 2 V2 N-1 V2 N-1 2 N-1 _
ro. v . 27 . (N=Dm . N=w T
SlnN+1 SlnN+1 Sln N+1 SlnN+1
. 27 . 4r . 2AN—=Dm . 2N=w
SlnN+1 SlnN+1 SlIl—]V_"_1 SlnN+1
2
sl —/——— 11
N N+1 (11)
W=D 2AN = Dr -1 Ly NV =D
1n N+1 1n N+1 111 N+1 1n N+1
. Nr . 2Nn~m N(N—l) N2g
11 11 . 1n 11
L N1 N T TN N1
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TABLE | TABLE I
EIGENVALUE MULTIPLICITIES OF THE DFT KERNEL MATRICES EIGENVALUE MULTIPLICITIES OF THE DCT-I KERNEL MATRICES
N Multiplicity | Multiplicity | Multiplicity | Multiplicity N | Multiplicity | Multiplicity
of 1 of —j of -1 of j of 1 of -1

4m m+1 m m m-1 odd a4l Al
Idm+1 m+1 m m m even % %
am+ 2 m+1 m m+1 m

The above proposition is very important for the development
of DFRCT and DFRST; therefore, we review it here. In the fol-
the methods in [9] and [10] can have similar outputs as the caBwing discussion, we will study the eigenvalues and eigenvec-
tinuous results. In [9] and [10], th&-point DFRFT kernel is tors for the DCT and the DST and establish the relationships
computed as with the conventional DFT.
Proposition 3: The DCT-I and DST-I eigenvectors can be
attained from the DFT eigenvectors.

FN. o = VNDE/™VEL (13) 1) If v =[vg, v1, -+, UN—2, UN—1, UN—2, ---, v1]" IS @n
1 0 even eigenvector of th@N — 2)-point DFT kernel ma-
) trix. Fon_2v = Av ()\ =1, —1). Then
eI
=Vn Vi (14)
o T
0 eI (N =D V= [Um \/§U17 cee \/EUN—% UN—1:| (15)

whereVy = [vo|vi]---|vn_1], v is thekth order DFT Her-
mite eigenvector, and indicates the rotation angle of transform
in the time—frequency plane. When= 0, F .. is an identity
operator. If = 7 /2, the DFRFT becomes the conventional
DFT. Several methods for finding thgh-order DFT Hermite
eigenvectors have been proposed in [9] and [10]. CLv =\,

will be an eigenvector of thé/-point DCT-I kernel ma-
trix, where\ is the corresponding eigenvalue

(16)

2) If v = [07 V1, V2y..., UN, 03 —UN, —UN—-1, -+, _UI]T
is an odd eigenvector of tH# N + 1)-point DFT kernel
matriX. Fani2v = Av (A = 4, —j). Then

Ill. EIGENVECTORS ANDEIGENVALUES OF DCT AND DST
KERNEL MATRICES

The eigenvectors and eigenvalues of the DFT kernel matrix
are well studied in [17]-[19], and it is very helpful to develop the
DFRFT. However, the eigenvectors and eigenvalues of DCT and
DST kernel matrices are still absent in the current documents.
In this section, we will study the eigenvectors and eigenvalues
of DCT and DST kernel matrices. This will help us to develop
the DFRCT and DFRST.

Proposition 1: The DFT kernel matrix has only four distinct
eigenvalues—{1, —j, —1, j}—and its multiplicities are sum-

= \/5[1}1, V2, o, UN]T (17)

<)

will be an eigenvector of thé/-point DST-I kernel ma-
trix, wherej A is the corresponding value

marized in Table I. SKV = jAV. (18)
Proof: See [17]. O
Because the DFT has only four distinct eigenvalues, the DFT Proof: See the Appendix. O

eigenvectors will constitute four eigenspaces. Itis trivial to find For the odd DFT eigenvectors, because equal to—; or

that any vector spanned by the DFT eigenvectors correspondjnghe DST-I eigenvalug will be equal to 1 or—1. From the

to the same eigenvalue is still a DFT eigenvector. Therefoyove proposition, we know that the DCT-I and DST-I kernel

there exist infinite eigenvectors for the DFT kernel matrix. Theatrices have the eigenvalues 1 anil. Do there exist other

multiplicities of DFT eigenvalues are just the dimensions aigenvalues for DCT-I and DST-I besides 1 anti? We will

eigenspaces. show that the DCT-I and DST-I kernel matrices are with only
Proposition 2: All the DFT eigenvectors are even or oddthese two eigenvalues in the following proposition.

The even eigenvectors are with the eigenvalues-1Torin ad- Proposition 4: The eigenvalues of DCT-I and DST-I kernel

dition, the odd eigenvectors correspond to the eigenvglues matrices are only 1 and 1. Their multiplicities are shown in

—7. Tables Il and lll, respectively.
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TABLE Il IV. DEVELOPMENT OF THEDISCRETE FRACTIONAL COSINE
EIGENVALUE MULTIPLICITIES OF THE DST-I KERNEL MATRICES AND SINE TRANSFORMS
N | Multiplicity | Multiplicity From the previous discussions, we know that all the DFT,

DCT, and DST transform kernels have infinite eigenvectors. In
[9], [10], and [18], a novel matriXS is introduced to compute
odd i N the real-value and complete set of DFT eigenvectors very el-
y egantly. This particular set of eigenvectors constitutes the dis-
crete analogs of the continuous Hermite—Gaussian functions.
We call it the DFT Hermite eigenvectors [9], [10], [18]. Because
Proof: For the DCT-I case, the following results can béhe DFRFT defined with these DFT Hermite eigenvectors can

of 1 of -1

|2 n‘

even

derived by Proposition 3: have similar output as continuous FRFT and will have the prop-
] erties of unitarity, additivity, and reversibility, the DFT Hermite
the N-point _ eigenvectors will be used in developing DFRCT and DFRST as
DCT-I eigenvectors —>  the(2/V — 2)-point reasonable choices. The eigenvestpwill have the eigenvalue
DFT even eigenvectors eIk (L is even) for the DFRCT kernel matrix. Such an assign-
it N is even . oN_2- <E 3 1) ment rule will result in a DCT kernel far = 7 /2. Similar to
the DFRFT, theV-point DFRCT kernel can be defined as
+2 = 2(1110(1 4) CN,a :VNﬁ?/thN (19)
N N
= ) =7.1-D=5 1 0
. . N-—-1 R C—Qja R
if N is odd = 2N -2= <T> =VnN . V& (20)
= O(mod 4) 0 e_jQ(]\r_l)a
oo NVl
= )= 2 whereVy = [Vo|Va|- - |Van—_2]. Vi is the DCT-I eigenvector
N-1 obtained from thé:th-order DFT Hermite eigenvector by (15).
(=1 = T While o = 7/2, the DFRCT will become the conventional

DCT-I. Whena = 0, Cy . is an identity matrix. The steps

wheret(-) indicates the multiplicity of an eigenvalue. Regardg, constructing theV-point DFRCT kernel with angular pa-
less of V is even or odd, the sum ¢f1) and§(—1) are both . -0 simmarized as follows

equal toN. Thus, the DCT-I eigenvectors obtained from the
DFT even eigenvectors can result in a full-rank DCT-I kernel
matrix. All the DCT-I eigenvectors can be obtained from the
DFT even eigenvectors. Therefore, Table Il is attained.

The results in the DST-I case can be proved in the same way
so that Table Ill can be obtained.

Proposition 5: The orthogonality in DCT-l and DST-I eigen-

e Step 1) Compute th&/.-point DFT Hermite even eigen-
vectors.M, = 2(N — 1).

e Step 2) Use (15) to compute the DCT-I eigenvectors from
the DFT Hermite even eigenvectors.

« Step 3) Determine the DFRCT transform kernel by the
following equation:

vectors can be inherited from that in DFT eigenvectors. Cn.o = VN]ADIQ\?/WVIE 1)
1) If v,, andv,, (m # n) are both the even and orthogonal

DFT eigenvectors, the DCT-I eigenvectors, and v, whereVi = [¥[Va| - - - [Var._2]. V1 is the DCT-I eigen-

will also be orthogonal. vector obtained from théth-order DFT Hermite eigen-

2) If v, andv,, (m # n) are both the odd and orthogonal vector by (15).
DFT eigenvectors, the DST-I eigenvectars, andv,  Similar to the DFRCT case, the development of DFRST is also
will also be orthogonal. based on the DFRFT. The eigenvectqr(k is odd) is assigned
Proof: We can compute the inner productof, andv,, to the eigenvalue—7*~1e Thus, theN-point DFRST kernel
to check the orthogonality. Using the definitionsiof andv,,, is defined as
the following equations could be obtained:

SN, = VNDR/"VE (22)
T T
Vrn,vn - Vrn,vn ]_ 0
=0 R e—2]a R
= Vn _ VL (23)

The orthogonality betweeft,, andv,,, can be proved in the
same way. O 0 e—I2(N=Da

Proposition 5 tells us that the DFT orthogonal eigenvectors
can be used to generate the DCT-I and DST-I orthogonal eigemereVN = [V1|V3| - |Van—1]. Vi IS the DST-I eigenvector
vectors. obtained from théith-order DFT Hermite eigenvector by (17).
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The above DFRST kernel matrix will be reduced to a DST-I * Symmetric:
kernel matrix fore = 7 /2, and it will become an identity matrix Both the DFRCT and DFRST kernel matrices are sym-
for &« = 0. The steps for computing th€-point DFRST kernel metric
with parametery are summarized as follows:
» Step 1) Compute théZ,-point DFT Hermite odd eigen- Cn,ala, 0) =Cx,alb, @) (31)
vectors.M, = 2(N + 1). Sn.ala, b) =8N, (b, a). (32)
e Step 2) Use (17) to compute the DST-I eigenvectors from

the DFT Hermite odd eigenvectors. B. Relationship Between the DFRCT, DFRST, and DFRFT

« Step 3) Determine the DFRST transform kernel
In this section, we will establish the relationship between the
SN, o = VND?/’T{@ (24) outputs of the DFRCT, the DFRST, and the DFRFT. Moreover,
we will show that the DFRFT can be computed by a smaller
whereVy = [V1|Vs]- - [Var,—1]- Vi is the DST-I eigen- transform kernel with the help of the DFRCT or the DFRST for
vector obtained from thé&th-order DFT Hermite eigen- the even or odd signal.
vector by (17). Proposition 6: For an even signal of lengthN, [z, x1,
Since no fast algorithm has been developed for exactly-, Zn—1, N, N—1, ---, 2, 21]*, where the DFRFT
computing the DFRFT, DFRCT, and DFRST transform ma&utput is [Xo, X1, ..., Xy_1, Xn, Xn_1, ..., X2, X1]7,
trix products, their computation would take ordé(nN?) the DFRCT of signal of length(N + 1), [0, 21,
complexity by an ordinary matrix multiplication [10]. An..., Tn—2, zn—1]" will be equal to

approximateO(N log N) fast algorithm has been described in b 17
[8] for fast DFRFT computation. 200Xy, X, 22 33
\/5 1 N—-1 \/§ ( )
V. PROPERTIES ODFRCTAND DFRST For an odd signal of lengtl2N, [0,z1, ..., zn—2,Zn_1,

- 0,—xN_1,...,—m2,z1]%, if its DFRFT output is[0, X1, ...,
A. Properties of DFRCT and DFRST P TEN—L P AL L
P o Xn—s, Xn—1, 0, —Xn_1, ... —X1]7, the DFRST of signal
The DFRCT and DFRST developed in this paper are not tB?Iength (N = 1) [z1, 2, ..., Tx_2, 2x—1]T, will be equal

same as the conventional DCT and DST with real values in the

kernel matrices. Recently, some types of fractional cosine and

sine transforms have been derived by taking the real part and [X1, Xo, ..., Xn_o, XN_l]T. (34)

imaginary part of the DFRFT kernel [20], although these frac- ) ] o

tional transforms are real and can be implemented with inco- Proof: The proof can be directly attained from the defini-

herent light [21]-[23]. However, the angle additivity will nottions of the DFRCT and the DFRST. -

exist for these transforms, and more importantly, they do notProposition 6 tells us that the DFRFT of an even or odd

have simple inverse transforms. signal can be computed by a smaller-size transform kerr_1e! of
Because the DFRCT and DFRST are developed with a simif#¢ DFRCT and the DFRST. In [13], the DFT kernel matrix is

method as the DFRFT, the properties of the DFRCT and tHecomposed into its real and imaginary parts as below. Here,

DFERST are inherited from the DFRFT. we will apply the notation for dealing with the input signal with
even lengtle NV

* Unitarity:

Similar to the DFRFT, the DFRCT and DFRST are both Fon = Fron — jFian (35)

unitary
where
Mo TN T R (29 Fron === |cos "0 0<m,n<2N (36)
SN, =SN,a = SN, —a- (26) V2N
7 . 1 . mamw
- Angle additivity: Finn = [in "5 0<mon<2N. (D)

Both the DFRCT and DFRST can preserve the ang

additive property as the DFRFT Ikﬁoreover, the DFRFT can be proved and computed through the

fractional power offron andFion in [13]
CN’ aCN, 8= CN’ a+g (27) FQN, a = :FrQN, o+ C_jaFiQN, - (38)

SN, oSN, g = SN, a+4- (28) From [13], we know that th&ron is for the DFRFT compu-
tation of an even signal, arilio is for the DFRST computation
of an odd signal. The construction of matlix.n,  is from the
DFT Hermite even vectors, arffis, , is from the other odd
vectors [13]. However, the DFRCT and the DFRST are from

* Periodicity:
The DFRFT is periodic with periogr, but the DFRCT
and the DFRST are periodic with periad

_ the truncated and scaled DFT eigenvectors by (15) and (17). Be-
CN, atm — CN, @ (29) : H
cause a general signal can be decomposed into an even and an
SN, atr =8N, a- (30) odd signals, the DFRFT for a discrete signal with even length

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 02:54 from IEEE Xplore. Restrictions apply.
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Xoven Even ) prRCT Even In Fig. 1, the phase factar-/* in mergin_g the_ odd extensio_n
truncation | | extension x,, comes from (38). The upper part of Fig. 1 is for computing
()| " Fron o, the lower part is foFioN o. If @ = 7/2, the phase
e factor ¢~ becomes—j, and theFr,x and Fion compute
0Odd __| DFRST 0Odd ) the real and imaginary parts of the conventional DFT, respec-
Xoud | truncation | - X(» Srenen tively. Thus, the computation of the DFRFT can be computed
Fig. 1. Block diagram for the DFRFT computation by DFRGT and DFRST.by smaller size of the DFRCT and DFRST transform kernels be-

cause the computational loads of the DFRFT, the DFRCT, and
. . . the DFRST are alO(N?). It is reasonable to assume that the
2Ntcan be lcoThputed ?Frm';]z‘\} .angFIQN"" IndF_lgt. 1, a dis- -point transform computations of the DFRFT, the DFRCT and
crete signal with even leng IS decomposed Into even andy,, prpgT needV?) operations, whereindicates a constant

odd parts. The even part of signal is computed by the DFR the DERCT and DERST com : -
putations. The scheme in Fig. 1
and the odd part by the DFRST. Then, the outputs of DFR il need2c x (N/2)2 = k(IN?/2) operations. This can reduce

and DFRST are merged to get the desired DFRFT. No mat[% computational load of DERFT about one half.
whether it is the the even or the odd part, a preprocessing (trun'ExampIe 1: In this example, we deal with the DFRCT and
cation) and postprocessing (extension) are required in order, PRET results for an impulse’ signal with length 72. Fig. 2(a)

get the desired Iength._ The even an.d odd parts of signal CanBBws the original impulse signal, whose DFRFT with angular
obtained by the following equations: parametebr /12 is shown in Fig. 2(b). The even half trunca-
tion of the impulse signal is drawn in Fig. 2(c). Fig. 2(d) is the
Xepen(n) = x(n) +x(2N —n) (39) DFRCT output of the truncated signal. We can observe that the
2 DFRCT result is equal to the positive part of the DFRFT result,
but the first and last entries of the DFRCT are scaled by2.

x(n) — x(2N —n) '

Xoaa(n) = (40) Example 2: In this example, we further consider the DFRCT
2 and DFRFT results for a triangular signal
Itis easy to check that the entriesdpyq(n) are zeros for the two 20— |n|, |n| <20
cases{n = 0) and(n = N). Before the DFRCT and DFRST z(n) = {0 %6 >_| > 20 (45)
s n .

computation, a preprocessing (the even and half truncation) is

chl]fu tlrrsgctgtiz?\zritﬁnF;[hellz?gtge?i]cnt:(je as;gnal. The even and O‘FHe triangular signat(») with length 72 is plotted in Fig. 3(a).
9: We then compute the DFRFT efn) and draw the output [see

Fig. 3(b)]. Fig. 3(c) shows the even truncation¢f,). We com-

Even truncation pute the DFRCT for the truncated triangular signal and show
X(n) =Xepen(n) forn=0,...N (41) the output in Fig. 3(d). Comparing the results in Fig. 3(b) and
. (d), we can observe that the first and last entries of DFRCT are

Odd truncation scaled byl /v/2.

x(n) =Xoqa(n + 1) forn=0,..., N -2 (42)
VI. CONCLUSIONS

After the truncation, the length of the even par.tZ}%{.L 1),.and In this paper, the definitions of discrete fractional cosine and
the odd part becomes\(— 1). The odd truncatiox is with &  gjne transforms (DFRCT and DFRST) have been presented.
unit shift of x,qq. After the DFRCT and DFRST computationsgist the eigenvalues and eigenvectors of the DCT and DST
the even and odd extensions are required to resultin the DFREL i estigated. The eigenvalue and eigenvector relationships
with length2.V between the DFRCT, DFRST, and DFRFT are established.
Then, the eigendecompositions of the transform matrices are

Even Extension used to define the DFRCT and DFRST kernel matrices. The
\/EXC(O), n=20 computations of the DFRFT for even or odd signals can be

planted into the DFRCT and DFRST calculations. Moreover,

- X.(n), 1<n<N . : . .
Xeven(n) = a signal can be decomposed into even and odd signals. With

V2X(N), n=N the help of the DFRCT and DFRST, a smaller size of kernel

X.(2N —n), (N+1)<n<(2N-1) matrix is used for DFRFT computation. This can reduce the

(43) computational load of the DFRFT.

Odd Extension APPENDIX
0, n =
To begin with, we will prove the DCT-I case. It is assumed

— X,(n—1), l=n<N thatv is the @V —2)-point even DFT eigenvector corresponding
Xoaa(n) = 40, n=N (44)  to the eigenvalue. A = 1, or —1
-X:;2N-1-n), (N+1)<n
< (2N -1). Faon_2v = Av.
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Original impulse signal DFRFT, o = 57/12

08

061
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Fig. 2. Impulse signal and its transform results in Example 1.

Using the definition of the DFT in (12), the following equa-whereW = ¢—7(27/N) We can check the entries on both sides

tion can be obtained. of (A.1)
1
—1 )\Urn =
2N -2 2N —2
1 1 1 T . N-2 el
WQJLN_2 see e WQQJJ\\__Q?’ Yo - vo + Z WQkJGl—QUk + WQTXS_Q )UN—l
U1 k=1
: : : : : . N—-2
T 7 — 7 — . N-2—-k)m
1 w2 o W2(12\£\_23)(1\ 2) : + Z WQ(JQ\_; ™k
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L WonZy oo o WQ(N—Q )¢ ) UN_1
N-2 (2N—=3)(N-2) B
I Wono oo o0 Wono, UN—2 - #
2N — 2
. aN—3 ' 2IN—3) '
L1 W2N_2 oot W2(N—2 ) 4L v m(N—1)
_ - vo + WQJ\T,Q UN—-1
vo N—2
m 0 (Wi + W T )
. k=1
=X|vN-2 (A1)
UN_— =——— [vo+ (=1)"un_
e v —3 |0 D v
VN -2
Pl mk
. + Z 2cos <271' m) Uk
L 1 k=1
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Original Triangular signal
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-20 0 20
(a)
Half truncation of the original signal
20

10
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{c)

1205

DFRFT, o = 7/3

30

-20 0 20
(b)
DFRCT, o = #/3
30

10 20 30
d)

Fig. 3. Triangular signal(n) and its transform results in Example 2.

form=0,1, ..., N — 1. Therefore

Thefollowing equationcanbe easilyattainedasin (A.3), shown

\ 2 at the bottom of the page. Equation (A.3) can be written as
Um = N 4
N-1 Ao = CLv. (A.4)
N-2
11}0—1—— (—D)Mun_1+ Z v}, COS <7r mk ) Therefore A is also the eigenvalue of the DCT-I kernel matrix,
2 2 P N-1 andv = [vo, V2v1, ..., V2un_o, unx_1]' is the eigenvector
(A.2) of DCT-I.
1 1 € 1 ]
2 NG NG 2
o] 2 o8 — cos 7(N —2m 2 cos —(N = U
V2 V2 N-1 N-1 V2 N-1
2
)\ = _— . . .
. N -1 : : : , :
r 1 N -2 N -2 1 N-2)(N-1
V2uyn_a —  cos W =2 cos W —2)"n —— cos ( )( i
ony | 2 N-—1 N-1 V2 N-1
1 1 7r 1 (N-2)(N-1= 1 (N-1)2rn
L2 2N /2" N -1 2P TN 1 |
Cow T
V21
: (A.3)
\/QUN—Q
L Un—-1

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 02:54 from IEEE Xplore. Restrictions apply.



1206 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 6, JUNE 2001

\/501
\/51/2
JA
V2uy
[ sin il sin 2m SinM sin N |
N+1 N+1 N+1 N+1
2 4 2(N -1 2N
sinN_T_1 sinN_T_ 1 <+« sin 7(N+ 1)7r sinN_:r1 ﬁvl
—2 2 A7
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Now, we will prove the DST-I case. It is assumed thais left side of (A.5).
the QN + 2)-point odd DFT eigenvector corresponding to the

i — 4 N N
eigenvaluex. A = —j or j oy, = 1 Z WA o — Z W(er\f+2—k)m,vk
/72]\7 T2 — 2N42 P 2N+2

F2N+2V = AV.

N
1 ( i m(2N+2—k)
= Z WoN'e — Waon ) Uk
. o 7+2
Using the DFT definition in (12) can lead to the V2N +2 =
N
1 mk
1 :——ZZjSin <27r7> Vg
—— v - 2N +2
2N +2 2N +2,3 T
1 1 1 T 0] form=1,2,..., N. Therefore
1 2N+1
1 W2N+2 I W2N+2 v N
[ 2 : mk
FAUm = 4] —— v sin | 7 . A.6
- (2]\-’-1—1)]\’ ’ / N+1 kz:l * < N+1> ( )
N / / =
1 W2N+2 AR W2N+2 UN
1w @NEDIN+D 0 The following equation can be easily obtained as in (A.7),
2N+2 2N+2 shown at the top of the page. Equation (A.7) can be written as
1 o whN+2 L weNADINED) |
2N+2 2N+2
JAV = SLv. (A.8)
. r 2 — - . .
1 WA L wiEy b Therefore, = v2[u1, v, ..., ux]’ is @ DST-I eigenvector,
© 0 and j A is its corresponding eigenvalue. ¥ is a normalized
DFT eigenvectory = v/2[vy, va, ..., vn|t will also be a nor-
u1 malized DST-I eigenvector. The proof of Proposition 3 is com-
pleted.
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