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ABSTRACT

Based on the fractional Fourier transformuation of sam-
pled periodic functions, the discrete form of the fractional
Fourier transformation is obtained. It is found that only
for a certain dense set of fractional orders such a discrete
transformation is possible to define. Also, for its efficient
computation a fast algorithm, which has the same complex-
ity as the FEFT, is given.

1. INTRODUCTION

The fractional Fourier transform [1, 2, 3, 4] has found many
applications in the solution of differential equations (2, 3],
quantum mechanics and quantum optics [5, 6], optical diffrac-
tion theory and optical beam propagation (including lasers),
and optical systems and optical signal processing [1, 8, 9,
10, 11, 12], swept-frequency filters [4], time-variant filtering
and multiplexing [1], pattern recognition and study of time-
frequency distributions [13]. The recently studied Radon
transformation of the Wigner spectrum [14] is also known to
be the magnitude square of the fractional Fourier transform
[1, 15]. The fractional Fourier transform has been related to
wavelet transforms [1, 16], neural networks [16], and is also
related to various chirp-related operations [1, 17, 18, 19].
It can be optically realized much like the usual Fourier
transform [1, &, 9, 10].Other applications which are cur-
rently under study or which have been suggested include
phase retrieval, signal detection, radar, tomography, and
data compression.

In this paper, the discrete form of the fractional Fourier
transformation is given. It is obtained as a result of the in-
vestigation on the fractional Fourier transformation of sam-
pled periodic signals..It is shown that, the obtained discrete
transformation is valid for a discrete set of transformation
orders. However, since this set is dense in the set of all pos-
sible orders, it does not impose tight restrictions. Also, an
O(Nlog N) algorithm for the computation of the N-point
discrete transformation is provided. Hence, in many of the
above mentioned applications it is now possible to use the
efficient discrete algorithm for effective use of the fractional
Fourier transformation.

’

2. THE FRACTIONAL FOURIER
TRANSFORMATION

The ath order fractional Fourier transform F°[f(z)] of the
function f(z) may be defined for 0 < |a| < 2 as

f“[f(x)]:/ Ba(ﬁ,l")f(z’) da;',

Ba(z,z")=Ag exp [jﬂ'(zz cot ¢ — 2zz’ csc ¢ + z% cot d))] ,

4, xp(=jmsgn(sin §)/4 + 74/2)
¢ | sin g1/2

(2.1)

where ¢ = 4*. The kernel approaches Bo(z,3") = 6(z —
z') and Bio(z,z') = 8(z +2') for ¢ = 0 and a = &2
respectively. The definition is easily extended outside the
interval [—2,2] by remembering that F*™ is the identity
operator for any integer m and that the fractional Fourier
transform operator is additive in index, that is, F*1F%? =
Fertez The ath fractional Fourier transform F°[f(z)] of
the function f(z) will be abbreviated by fu(z).

3. THE DISCRETE FRACTIONAL FOURIER
TRANSFORMATION

In this section, the discrete form of the fractional Fourer
transformation is obtained. For this purpose, fractional
Fourier transform of a sampled periodic signal is investi-
gated. This approach can be motivated by the similar anal-
ysis that can be carried out for the Fourier transformation
leading to the definition of discrete Fourier transformation
(DFT) [24]. Let f(z) be a sampled periodic signal with a
period Ag:

Nj2-1 oo X

HOEEDY f(k%) > §(m7(n+%)ﬁo) , (3.2)

i =—N/J2

n=-—oo

where N, number of samples in a period is taken to be even.
Its order-a fractional Fourier transform, fq, can be obtained
by using Eqn. 2.1, giving

fa(r):/ Ba(z,zl)f(a:') dz’,
N/2—1 A oo k
= D, F(57) Y Balz.(n+ 5)80) (33)

k=—N/2

n=-—o0
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For the transformed function in Eqn. 3.3 to be periodic with
a period Ag, fo(z) should be equal to fo(z + {Ag) for all
z and [. 1t can be shown with a little algebra that, this
condition of periodicity is satisfied if and only if:

Agcosd = ple (3.4)
QAgsing = q%o (3.5)

where for integer p and ¢ such that pg/N is even, which
is satisfied since N is even. The ratio of Eqn. 3.5 and
Eqn. 3.4 gives the condition on the transformation order:

g N
tan ¢ = P A2 (3.6)
which implies that the f.(z) is periodic for only a set of
orders which satisfies Eqn. 3.6 and hence have a cardinality
equal to the rational numbers. Since the set of rationals
are dense in the set of real numbers, this set of orders also
forms a dense set in the set of all possible orders. The
conditions in Eqn. 3.4 and Eqn. 3.5 can be easily inter-
preted by the identification of Aiu as the period of f(z)
in the Fourier transform domain {24]. The first condition
in Eqn. 3.4 implies that the projection of the period on
the transform domain of order-a onto the original domain
should be a multiple of the period in the original domain.
Likewise, the second condition in Eqn. 3.4 implies that the
projection of the period on the transform domain of order-a
onto the Fourier transform domain should be a multiple of
the period in the Fourier transform domain. By choosing
N = A}, the periods in the original and the Fourier trans-
form domain can be made equal to each other, resulting a
square tiling pattern in the time-frequency domain [21]. In
this case, the conditions becomes:

Agcosd = pAo (8.7)
Aasing = ¢Ao (3.8)
which are satisfied by tan¢ = ¢/p and Aq = 1/p? + ¢2Ao.
In the rest of the paper, we assume that ¢ satisfies these

conditions. By using the shift property of the fractional
Fourier transformation, Eqn. 3.3 can be written as:

NJ2-1

= > f(’»

k=—N/2

? 2sinds '“1%0))

exp(jr(sin ¢ cos ¢»(E—[AVE)

S Bulo- (%)Ao cos 6, ndko) . (3.9)

n=—00

The inner summation in Egn. 3.9 is the shifted fractional
Fourier transformation of a uniform impulse train with pe-
riod Ao, which is denoted by éa(z):

Ba(z) = /w Ba(z,2') Y 8(x' = nlo)

—00

(3.10)

n=—0o0

By using the relation between the projections of the Wigner
distribution and the magnitude square of the fractional

Fourier transformation, 1t can be shown that 6.(z) 1s also
a uniform impulse train with a quadratic phase term:

ba(r) = / 2;;/ Z exp ]7rcotq5:n )8(z — _;)

(3.11)
where r is the greatest common divisor of ¢ and N. If ¢ and
N are relatively prime, then we get the following transform
relation for fo(z) in Eqn. 3.9:

5 N/2-1 EA
falz) = pgN ¢ Z i N )
v k=—N/2
exp(jr(x” coté — 22 2% csc g + (22)? cot 4)
' _2: 5(?«'&) : (3.12)

Note that to get Eqn. 3.12 we made use of the fact that
(£)Aocos¢ = kp/Aa. In this form of the transform re-
lation, we see that the tramsform of the sampled periodic
signal is also a sampled and periodic signal with a sampling
interval of 1/A,. This is the important property that al-
lows us to claim the discrete fractional Fourier transform
as being the relation between the magnitudes of the impul-
sive sequences in respective domains. This leads us to the
following form for the discrete definition of the fractional
Fourier transformation (DFFT):

N/2-1

Y TE ()

=—N/2

falxo) = (3.13)

where we made use of N = A2 to get the above symmet-
ric form of the transform, and the discrete transformation
kernel Ty is given by:

n k 2
Tas(““Au»*A—O) = \/p—qNAds (3.14)
. n k k
exp(]7r((A )2 cot¢~2A—A—csc¢+(A0) cot ¢))

A fast algorithm for the efficient computation of the
DFFT can be obtained as in the following steps:

ha(k) = exp(~s(coté — 2— e ) (1)) F (o)

Nf2-1
ga(n)= ,/ A¢ Z exp(j Lf) csc P)ha(k)

k=—NJ2
fa(n)=exp(—jm(cot ¢ — 2—; csc d))(ALa)Q)ga(n)

where in the first step ha(k) can be obtained by computing
N multiplications, in the second step the required convolu-
tion can be performed by using FFTs with a requirement
of O(N log N) multiplications, and in the final step fa(n)
for —N/2 < n < N/2 -1 can be computed by using N
multiplications. Hence, the total number of multiplications
required by the above algorithm is O(N log N} which the
same as that of FFT.



4. CONCLUSIONS

Based on the investigation of the fractional Fourier transfor-
mation of sampled periodic signals, the discrete fractional
Fourier transformation is obtained. Similar to the gemer-
alization of the Fourier transformation by the {ractional
Tourier transformation, the discrete fractional Fourier trans-
formation generalizes the DFT. A fast algorithm, which has
the same complexity as FFT, is given for the efficient com-
putation of the discrete transformation. Hence, it is ex-
pected that in many of the applications where fractional
Fourier transformation has been found useful, the discrete
fractional Fourier transformation will be used to increase
efficiency.
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