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The Discrete Galerkin Method
for Integral Equations

By Kendall Atkinson* and Alex Bogomolny

Abstract. A general theory is given for discretized versions of the Galerkin method for solving
Fredholm integral equations of the second kind. The discretized Galerkin method is obtained
from using numerical integration to evaluate the integrals occurring in the Galerkin method.
The theoretical framework that is given parallels that of the regular Galerkin method,
including the error analysis of the superconvergence of the iterated Galerkin and discrete
Galerkin solutions. In some cases, the iterated discrete Galerkin solution is shown to coincide
with the Nystrom solution with the same numerical integration method. The paper concludes
with applications to finite element Galerkin methods.

1. Introduction. Consider the numerical solution of the Fredholm integral equation
of the second kind,

(1.1) xu)iLKQJMOﬁMO)=ﬂﬂ, seD.

In this paper we will define and analyze the discrete Galerkin method for the
numerical solution of (1.1). The Galerkin method is a well-known procedure for the
approximate solution of this equation (e.g., see [5, p. 62]); and the discrete Galerkin
method results when the integrations of the Galerkin method are evaluated numeri-
cally. Before giving a more precise definition of the discrete Galerkin method, we
review results for the Galerkin method.

In Eq. (1.1), the region D is to be a closed subset of R”, some m > 1; and the
dimension of D can be less than m, for example, if D is a surface in R®. For the
discrete Galerkin method, we will assume that K(s, ) is continuous for s, t € D,
although that is not necessary for the discussion of Galerkin’s method given below.
The equation (1.1) is written symbolically as

(1.2) (I-X)x=y,

with the integral operator assumed to be a compact operator from L*(D) to L*(D)
and from L*(D) to C(D). Further, it is assumed that (1.1) is uniquely solvable in &
for all y € &, for both = C(D) and &= L*(D). Additional assumptions on D
and K(s, t) will be given as they are needed in the applications presented later in the
paper. Generally y € C(D), and this will imply x € C(D).
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596 KENDALL ATKINSON AND ALEX BOGOMOLNY

The Galerkin method for solving (1.2) is defined as follows. Let {S,: & > 0}
denote a sequence of finite-dimensional approximating subspaces of both L?(D)
and C(D), and let P, denote the orthogonal projection of L?(D) onto S,. Then to
approximate (1.2), solve

(1.3) (I =P, X )x;, = Pyy, x, € L*(D);
or equivalently, pick x, € §, such that
(1.4) (1= )x,, )= (y.¥), allyes,,

using the inner product of L2(D). This is called the Galerkin method for (1.2),
relative to the subspace S,. In addition, define the iterated Galerkin solution by

(1.5) xF=y+Ax,.
The error analysis of x, and x} is well known, both in L?(D) and C(D). For a
simple error analysis of x, in L?(D), see [5, p. 62]; for more general error analyses
of x, and x*, in both L?(D) and C(D), see [12], [13], [15], [28], [29].

The error analysis of x, and x}, whether in L?(D) or C(D), usually depends on
showing that

(1.6) |~ P,H|—>0 ash—0
with the norm dependent on which space £ = L?(D) or C(D) is being considered. If
(1.7) Px—>x ash-0,alxeZ,

then (1.6) follows from the compactness of %" on %; and generally we will be
assuming (1.7) for both choices of Z. From (1.6) and the assumed existence of
(I —X)'on &, it follows that (I — P,¢")"! exists and is uniformly bounded for
all sufficiently small values of 4. Furthermore,

(1.8) x—x,=(1-PX)"(x = P,x),

(1.9) lx = xull <[|(1 = P,ot) " llx = Pyx]).

Together with (1.7), this shows convergence, along with the rate of convergence. The
value of ||x — P,x| will depend on both S, and the smoothness of the unknown

solution x.
For the iterated Galerkin solution x}, it is straightforward to show that
(1.10) (I -XP)x}=y
and that
(1.11) P.x} = x,.

Using an error analysis for x;f, one can also be given for x, as follows:

(1.12) x=x,=x—Pxt=[x-Px]+P,[x—xt],

Ix = x,l <lx = Ppxl + ] Pyl x — xx].
The analysis of (1.10) in L2(D) hinges on the fact that with the corresponding
operator norm,

(1.13) |o#— P, |=|x*—Px*|—>0 ash—0.

The compactness of X" implies the same for J#™*, and then the assumption (1.7)
implies || ™ — P,o"*|| — 0. Derivation of (1.13) employs the fact that P, is an
orthogonal projection in L*(D). When P, is not orthogonal, as on &= C(D), one
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DISCRETE GALERKIN METHOD FOR INTEGRAL EQUATIONS 597

uses ad hoc methods to establish superconvergence; for example, see [15]. It is the
purpose of this note to introduce a formalism that allows the derivation of similar
estimates for a wide class of discrete Galerkin methods.

Using (1.13), a straightforward stability and convergence analysis can be given for
(1.10). In fact, (1.10) is a degenerate kernel method if the application of (1.10) to
(1.1) is examined in more detail. The analysis of (1.10) generalizes to C(D). For this,
see [12], [13], [15], [28], [29].

For (1.10),

(1.14) Xx—xF=(I-XP) ' #(I-P)x.
Since I — P, is a projection, (I — P,) = (I — P,)* and
(1.15) lx =l <|(2 = op) [l (2 = BT = P)x].

Using (1.13) for the case = L*(D), (1.15) shows that x}* converges to x more
rapidly than does x,. A similar result can be shown in the space C(D); see the
papers cited above. This more rapid convergence is called ‘superconvergence’.

In practice, the integrals in (1.4) and (1.5) are not computed exactly, which leads
to the discrete and discrete iterated Galerkin methods, respectively. We shall
introduce these discrete methods in the next section, initially posing them in a matrix
algebra framework. It is shown that in many important cases, the iterated discrete
Galerkin method is exactly the same as the direct application of the numerical
integration method to (1.1), yielding a Nystrém method. Section 3 contains some
applications and implications of this result. In Sections 4, 5, and 6 we introduce a
functional analysis framework for discrete Galerkin methods, a framework that is a
‘discrete analogue’ of the analyses given above for the regular Galerkin method.
Unlike the previous analyses of the discrete Galerkin method by [12, Chapter 3],
[23], [30], our approach yields convergence results for the discrete methods directly,
without referring to the convergence of their continuous analogues. Albeit more
restrictive, our approach yields more general results where applicable. For reasons of
space, Section 6 is placed separately at the end of the issue, in photo-offset form.
Section 7 contains applications of this method to several classes of problems.

This paper is devoted to the nonhomogeneous equation (1.1), but the results
generalize to the numerical solution of the associated eigenvalue problem. The
approximating operators in Section 5 are shown to be a collectively compact family.
This means that the standard analyses of the numerical eigenvalue problem can be
used, for example, [1], [3], [4], [14, Chapiers 5-7], and [25]; and these results can be
combined with the techniques of this paper to give an analysis of the discrete
Galerkin method for solving the eigenvalue problem. Future papers will discuss the
eigenvalue problem, iterative variants to solve the associated linear systems, and
applications to Galerkin methods for nonlinear equations.

Discrete Galerkin methods for boundary value problems have also been analyzed
previously. An important early paper is [20]; and an analysis of a discrete least-
squares method is given in [2]. Although their results are related to those given here,
our schema is more general and is not as restricted in the properties of the operators,
the approximating subspaces, and the numerical integration scheme.
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598 KENDALL ATKINSON AND ALEX BOGOMOLNY

2. The Discrete Galerkin Method. The Galerkin equation (1.3)-(1.4) is solved by
reducing it to an equivalent finite linear system. To this end, let {¢,,...,py} be a
basis of S,, with N = N, the dimension of §,. Assume

(2.1) x,(s) = Z ap(s), seD.
Then (1.4) is equivalent to solving for { «;} in the linear system

(22 Z {(9,90) —(Xo0)) = (r9),  i=1,...,N

We will assume that this is easily solvable, although in practice the size of N may
necessitate an iterative method of solution. The conditioning of this linear system is
examined in [5, p. 79] and [32}. The iterated Galerkin solution x} is obtained by
substituting (2.1) into the definition (1.5).

To solve (2.2) and (1.5) in practice, usually we must numerically evaluate the
integrals that occur in these formulas. Thus, introduce the numerical integration
scheme

(2:3) [ f()do(1) Z Werd (ter)s

with all 7, € D and all w,, # 0. Here R = R, is the number of node points; and
we assume that the numerical integration scheme converges as R — oo (h — 0), for
all f € C(D). Ordinarily, the weights and nodes will be written simply as w, and 7.,
with the dependence on R (or /) understood implicitly. In all cases when using (2.3)
in this paper, we will assume that

(2.4) [H1] R,>N,, h>0.

This will be needed for reasons that will become apparent later.
Use (2.3) to approximate all of the integrals in (2.2), applying it twice to evaluate
the iterated integrals of (X¥'¢;, ;). Let

N

(2:5) z,(s) = Z.qu’j(s)’ se€ D,
j=1

with B, ..., 8, determined from the linear system

)y B{ > WP, (t)e(t) - Z_: ; wkle(tk’t[)q)j(tl)q)i(tk)}

j=1 =1

(2.6) )
Z y(t)e (1),  i=1,...,N.

Note that the coefficients (¢,, ¢;) are also being approximated, as this is necessary
for some of our later applications. In the earlier works [12], [30], these coefficients
were assumed to be evaluated exactly; and in some cases, our work will imply the
earlier results. To complete our approximation of the Galerkin method, define the
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DISCRETE GALERKIN METHOD FOR INTEGRAL EQUATIONS 599

discrete iterated Galerkin solution by

(2.7) 22 (s) =y(s) + k}; w, K(s,1,)z,(2,), s € D.

To simplify the analysis of z, and z}, introduce the following matrix notation. Let
® be the matrix of order N X R with
(2.8) o, =9/(1,), i=1,...,N, k=1,...,R.
Also, define
K=[K(t,,t))], k,0=1,... R,

W = diagonal[w,,...,wg],
y=[y(t1)""’y(tk)]r’ B=[IBI7'“’BN]T’

z,= [z,(1)... .2, ()]T. zp = [Z:(tl)""’z}f(tR)]T‘

The linear system (2.6) can be written as

(2.9)

(2.10)

(2.11) OWeTB — DWKWOTR = dWy,
and

(2.12) z, = ®7B.

The iterated solution z} satisfies

(2.13) ¥ =y+ KWz,

With this, we have

LEMMA 2.1. ®Wz, = OWz}.
Proof. Multiply (2.13) by ®W, yielding
OWz; = dWy + OWKWz,.
Combining (2.12) and (2.11),
OWz, = OWy + OWKWz,.

This shows the desired result. O
For the remainder of the paper, we will assume

(2.14) [H2] Rank(®) = N, h>0.
The lemma leads directly to our first important result.
THEOREM 2.2. Let N = R, and suppose that the system (2.11) has a solution z,.

Then the iterate z}¥ is a solution to the Nystrom method for solving (1.1), with (2.3) as
the numerical integration method:

R
(2.15) zi(s) = L wiK(s,.)28(1,) = y(s),  s€D.
k=1
Proof. From the assumption N = R, ® is a nonsingular square matrix. Then from
Lemma 2.1, z, = z}. Combine this with the definition (2.7) to obtain (2.15), as
desired. O
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600 KENDALL ATKINSON AND ALEX BOGOMOLNY

This theorem has consequences that will be explored in the following section. We
first say something further about the matrix ®. For R > N, the matrix

(2.16) G, = owo’
is the discretization of the Gram matrix of the original Galerkin system (2.2),

(2.17) T, = [(9.9)].

The discrete Gram matrix G, is not necessarily an approximation of T, as will be
shown in the next section with an example, where S, is a space of periodic
piecewise-linear functions. This means that Eq. (2.6) need not be an approximation
to (2.2) in order to assure convergence of z, (or z}¥) to x. The theory developed in
Sections 4 and 5 to explain this convergence differs from the customary approach
via perturbation theory, as given in {12], [30]. In certain cases G, = I',, and then our
discrete Galerkin method (2.6) becomes the same as that analyzed earlier. Such cases
are considered in Sections 3 and 7.

To aid in further understanding the meaning of the matrix ®, we give the
following results.

LEMMA 2.3. Let N = R. Then [H2] is true if and only if for every set of data
{by,..., by}, there exists a unique element ¢ € S, with

(2.18) o(1,)=b, i=1,...,N.

In fact, we have that the mapping f € C(D) — ¢ € S,, with @(s) interpolating f(s)
at the nodes {1,}, is a bounded linear projection operator on C(D).

Proof. This is straightforward and well known. Also, this interpolation property is
well known to be true for many pairs S, {¢,}, and thus [H2] is easily checked by
considering the equivalent interpolation problem (2.18). O

Remark. Let N = R. Then

(2.19) OW®T =1 if and only if ®'OW = I.
Proof. Again, the proof is straightforward and we omitit. O

3. Applications of the Discrete Galerkin-Nystrom Method. In this section we
consider only the case N, = R,, h > 0, with the resultant Theorem 2.2. When the
discrete Galerkin solution z, exists, the iterated discrete Galerkin solution z} is
simply a solution of the Nystrom method for solving (1.1), with (2.3) as the
integration method. Therefore, the well-developed convergence theory for the
Nystrom method can be used to show the convergence of the discrete Galerkin
method, even in the heretofore disregarded event of the Gram matrix I', not being
computed exactly.

The Nystroém approximation method is

N

(3.1) Gi(s) = LwK(s,0)8,(1) =y(s), seD.

=1
With the assumptions that (i) Eq. (1.1) is uniquely solvable on C(D), (ii)) K(s, 1) is
continuous for s, t € D, and (iii) the numerical integration method (2.3) is conver-
gent on C(D), it is well known that (3.1) is uniquely solvable in C(D) for all
sufficiently small 4, say & < h,. For a development of this theory, see [5, p. 88].
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From the error analysis of (3.1),

(3.2) x=4=(-2,)"(Hx=H,x), h<h,,

where X, denotes the numerical integral operator in (3.1). Because of Theorem 2.2,
we will henceforth identify {, with z}.

The Nystrom method also gives a justification of the discrete Galerkin method
when N = R. To show that the system in (2.11) is nonsingular, write it as

(3.3) OWeT — OWKWOT = oW [I - KW]7.
The matrix I — KW arises when solving (3.1), and it is known that
(3.4) (1= &w) Y <|(T-2)7"].  h<h,

The matrix norm on the left side is the matrix row norm; see [5, p. 105]. Since @, W,
and ®7 are also nonsingular, this shows that the system (3.1) is nonsingular; and the
condition number of the matrix on the left side of (3.3) can be found from
information on ®, G,, and 1 — KWw.

The result (3.2) says that the choice of S, is not important in the rate of
convergence of z} to x, provided that [H2] is satisfied, along with N = R. Also, the
Gram matrix I', does not have to be evaluated exactly in order to obtain conver-
gence.

Application 1. Let n >0, D =[a,b], h=(b—a)/n, s;,=a+jhfor0<j<n
Let S, = #._,, the set of functions that are polynomials of degree < r on each

subinterval [s,_y, 5}, j =1,..., n. The functions in &,_, need not be continuous at
the node points s;. The dimension of S, is
(3.5) N, =rn.

On each subinterval [s;_;, 5,], let an integration scheme be given:

(3.6) f f(2)di = Z v, f (1),
Si-1

with s, ; <7, < -+ <7,<s; Assume that (3.6) has degree of precision d on

each subinterval [s;_;,s;]. The formula (3.6) leads naturally to an integration

formula over all of [a, b], and the number of integration nodes will be R = rn.

(Note: Because of the discontinuous nature of the functions in S,, we can allow

7, = §,_, and 7,; = s, while still considering 7,; and 7, ;. , as distinct nodes.)

The space S, is not contained in C[a, b], so the analysis will be extended to allow
functions which can be considered as continuous on each subinterval [s -15 5, This
can be done in several ways, as is pointed out in [9]. We will use a formulation using
L*[a, b], with the point functional evaluations defined as in Section 2 of the cited

paper. With this, we have the following theorem.

THEOREM 3.1. Assume (1.1) is uniquely solvable on Cla, b]. Further assume that
x € C*a,b] and that K(s,t) is d + 1 times differentiable with respect to t. Then
the iterated discrete Galerkin solution z;} satisfies

(3.7) |x = zx|l.. = O(h4*1).

Ifd>=2r—2, then T, = G,. For a maximal order of convergence, choose (3.6) to be
Gauss-Legendre quadrature on {s; _\,s;], j=1,...,n. Thend = 2r — 1 and

(3.8) Ix = z#|,, = O(hz’).

License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use




602 KENDALL ATKINSON AND ALEX BOGOMOLNY

Proof. These results are a straightforward use of (3.2), together with easily derived
error bounds for the numerical integration in (3.6). The fact that G, = T, when
d > 2r — 2 follows from the fact that the integrand in

n

(ere) = X [ oo (0) dr

j=1"%-1
is a polynomial of degree < 2r — 2 on each subinterval. The result (3.8) is the same
as that given in [12, Theorem 3.6]. O
Application 2. Let D be a piecewise-smooth surface in R?, with

(3.9) D=D,U---UD,.
For each D, assume the existence of a smooth mapping
(3.10) F:D,-»D, j=1,..J,

where f)j isa polygonal region ir} the plane. For each such region i)j, let {A x; bea
triangulation of D, and let F,(4, )= A, ; define a corresponding triangulation of
D,. Collecting together all these triangulations of Dy, ..., D, one has a triangulation
{A,,...,A,} of the surface D.

To have a standard means of defining approximations and numerical integration
on {A,}, we introduce an alternative way of defining A,. For each A, let 0y 4> Dy ger
and b5, be its three vertices. Also let é be the unit simplex in the plane:

(3.11) é={(5)801-5-7>0).

Define m,: é - A, by
onto

(312) m,(5,1) = F(, , + b, , + 50 ,), (3,))eeée,u=1-5-1,
where A, c Dj. We define S, as the set of functions that are images under m, of
polynomials of degree < r on é, for kK = 1,..., n. Again the space S, will not be
contained in the continuous functions, and the analysis must be extended to L*(D)
in order to carry out an error analysis.

For numerical integration, let

F
(3.13) [f(s,f)da = Y wf(3,4).

Jj=1
Then for integrals over A, use

[ 1(0)ds(Q) = [ f(mu(s.D)|D.m, x Dymy| do
(3.14) * P

= ): wk/f(mk(fj’ fj))
j=1
with w, ; = W,|D;m, X D,m,(5,,1,)|. D, denotes the partial derivative with respect to
s, and similarly for D,. For more information on both the triangulation of D and the
numerical integration (3.14), see [7], [8].
The dimension of S, is

(3.15) N=n(r+1)(r+2)/2;
and the total number of integration nodes is
(3.16) R=njgt.
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Thus to have N = R, we must choose
+D(r+2

(3.17) F= %—)
Subject to this, we choose (3.13) to maximize the degree of precision d: For formulas
chosen from {24}, [31], we have the possibilities shown in Table 1.

Assuming (1) an integration rule of degree of precision d, (ii) sufficient smoothness
of the functions K(s, t) and x(¢) on each D;, and (iii) sufficient smoothness of each
D; (by means of the mappings F}), we obtain from (3.2) that

(3.18) Ix = z¢|., = O(r?*Y),
where # denotes the maximum of the diameters of the triangles A ; making up the

triangulation of f)l, e f),. This is a relatively straightforward argument, and we
refer the reader to [7].

TABLE 1
Maximal degree integration rules
r 0 1 2 3
F 1 3 6 10
d 1 2 4 6

We note that, in general, G, # I',, because of the presence of the Jacobian
|D;m, X D,m,| in the integrand of (3.14). Nonetheless, what is referred to as
superconvergence is still attained. With approximations in S, of degree < r, one
would ordinarily have

(3.19) lx = x,ll = O(A™)
for the Galerkin approximation and
(3.20) |x = xF|., = O(h*+?)

for the iterated Galerkin approximation. According to Table 1 and (3.18), we do not
quite attain this order of superconvergence with z}, although there is an improve-
ment over (3.19). More accurate numerical integration will be needed to replicate
(3.20), and this will be returned to in Section 7.

Application 3. We consider two different approximating families S, while using
the same integration rule, thus arriving at the same iterated discrete Galerkin
method. Let D be a smooth simple closed curve in the plane. Then C(D) can be
replaced by C,[0, 2], the space of continuous periodic functions on [0,27]. As our
first choice of S, use S, = .7, the set of trigonometric polynomials of degree < n,

e(s)=a,+ ), [ajcos(js) + bjsin(js)].
j=1
Then the dimension of S, is N = 2n + 1. For the second choice of §,, let S, =.%,,
the set of continuous piecewise-linear periodic functions on [0,2#], with each
¢ € %, linear on[tj_l,tj], j=1...,2n+1,

t, = jh, 0<j<2n, h=2 2n+ 1),
(321) =] J 7/( )

Lner =l Dy =1
The dimension of %, isalso N = 2n + 1.

License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use




604 KENDALL ATKINSON AND ALEX BOGOMOLNY

For the integration rule, use the trapezoidal rule with the nodes in (3.21). Then the
number of distinct nodes is only R = 2n + 1 because of the periodicity of the
functions being integrated. This is a natural integration rule to use when §, =.9,,
because the integration rule then has degree of precision d = 2n and G, = T,. This
would seem to preserve the rapid convergence of the Galerkin method with S, = .7,.
For the space S, = %,, however, we will not have G, = I',. For a basis of .%,, use
the standard ‘hat’ functions:

(S_tj—l)/h’ tj,1<S<t,

‘Pj(5)= (th—s)/h, LSs<ty, j=1...2n+ 1,

0, otherwise.

Then T, is almost tridiagonal (it is circulant); and ® = I, G, = hl. G, is not a good
approximation of [’,.
According to the standard theory of Galerkin’s method, one would expect
Ix = x4l = 0(h?),  |x = x|, = O(h*)

with S, =.%,. But according to Theorem 2.2 and formula (3.2), we need only
consider the integration error in examining the error in z}¥, and it will coincide with
the result using the more sophisticated approximation from 7. It is well known that
for sufficiently smooth periodic integrands, the trapezoidal rule converges very
rapidly; see [6, p. 253] and [16, p. 314]. Thus ||x — z¥||, will converge very rapidly,
regardless of which underlying space S, is being used. When going back to z,,
however, this greater speed will be lost for approximants from .%,, except at the
node points (since z,(t;) = z(¢;)).

4. The Discrete Orthogonal Projection. We will introduce a discrete analogue to
the orthogonal projection P, of L?*(D) onto S,. Using this discrete projection, we
will give an error analysis in Section 5 for the discrete Galerkin method when
R > N. In this section the discrete projection is defined and its properties are
examined. Examples with important subspaces S, will be given in Sections 6 and 7.

Using the numerical integration method (2.3), define

R

(4.1) (f.8)n= L wf(t)glt),  f. g€ C(D),

(42) Il =V(f i f)u fEC(D).

The latter is only a seminorm on C(D), but we will henceforth assume it is a norm

on S,

(4.3) [H3] fesS, and ||f|,=0 implies f=0.
We also assume

(4.4) [H4] w; > 0, j=1,...,R.

With [H4], it is usually straightforward to prove [H3]. In particular, we have the
following easily proven result.

LeMMA 4.1. Ler [H4] hold, and, in addition, assume that functions from S, possess
the interpolating property (2.18) with respect to a subset of N of the integration nodes
used in (4.1). Then [H3] holds. O
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With the definitions (4.1) and (4.2) and using [H4], it is easy to show that
(4.5) I(f,8)ul <N flillglles £, g€ C(D),

R 12
(4.6) Il < el fllws €= [;wk . fec(D).

Since the integration rule is convergent on C(D), the constant ¢ can be bounded
independent of A.
Define the projection operator Q,: C(D) — S, by

(4.7) (Qufd),=(f )y allyeSs,.
To see that such a Q, f is uniquely defined, let S, = Span{¢,,..., ¢, } and write

N
(4.8) 0,f(s)=o9(s)= L agls), seD.
j=1
To satisfy (4.7), it is necessary and sufficient that a, ..., a, satisfy the linear system
N
(4.9) Yolg.9),=(f9), i=1...N
j=1

The coefficient matrix is a Gram matrix relative to the inner product (4.1), and it is
also the matrix G, of (2.16). To show G, is nonsingular, we use the standard
arguments to show it is positive definite, with the aid of {H3]. Thus (4.9) is uniquely
solvable and Q, f is uniquely defined. The linearity of (4.9), relative to f, will also
show @, is linear; and the uniqueness of Q,f shows Q, is a projection, i.e.,
Q;% = O

As a first indication of the usefulness of Q,, we give the following result.

LEMMA 4.2. Let z, and z} be the discrete Galerkin and discrete iterated Galerkin
solutions, from (2.5)-(2.7), assuming they exist. Then

(4.10) 2, = Q,zk,
in analogy with (1.11) for the original Galerkin method.
Proof. Recall Lemma 2.1, that ®Wz, = 0Wz}.

Equating corresponding elements,
R R

Yowe 1)z, () = 2 welr) 2k (1), i=1,....N,
k=1 k=1

(zh,(p,.)h=(z,’,",<p,)h, i=1,...,N.
Since { @y, ..., @y} is a basis of S, this says
(zpd), = (z5.¢), ally €S,
From z, € §,, the uniqueness of Q,z} combined with this latter result proves

(4.10). O
Some additional properties of 0, are given in the following

LEMMA 4.3. (a) Q, is selfadjoint on C(D), relative to the discrete inner product
4.1):

(4.11) (Qnf.8)y=(f.Qu8)s. [ g€ C(D).
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(b)
(4.12) 1w flls <Ifllas  f€ C(D).
(c) If the family {Q,: h > 0} is uniformly bounded on C(D), using the usual
operator norm induced by the uniform norm || - ||, then
(4.13) If = i/l < c- minimum||f - @],
PES,

with ¢ independent of h and f.
(d) When N = R, the projection Q, is the interpolating projection from C(D) onto
Sy, i.e.,

(4.14) (@uf)t)=f(2), i=1..N.
Proof. (a) From (4.7) with ¢ = O, g,
(th’th)h = (f’th)h'
Similarly,

(Qs8, th)h = (g, Onf -
Using the symmetry of the inner product, result (4.11) is proven.

(b)
10415 = (Quf.0nf)
= (fv th)h’ using ¥ = Q,f in (4-7)

<[f1al@nslly, using (4.5).
If Q,f # 0, cancel ||Q, fil, to prove (4.12). If Q, f = 0, then (4.12) is trivially true.

(c) Let
(4.15) g = Supremum ||Q, || < .
h>0
Then for any ¢ € §,,,
(4.16) f-Quf=f-o+ Q90— Qf=U-0)f-9),
(4.17) 1/ = Onflle < (M + DI f — @l

Let ¢ = 1 + ¢, and form the minimum of the right side over S, to prove (4.13).
(d) The system (4.9), defining Q, f, can be written as

Ga=0WE,  f=[f(t).....f(t:)]".
Using (2.16) for G,,

OWdTa = OWI.
Since ® and W are nonsingular, we have
Olq =f.

But from (4.8), with s = ¢,, we have

th(ti)"_'(q)Ta)i=(f)i=f(ti)’ i=1»""N’
and thus the result is proven. O
Part (c) shows that @, f — f in C(D) if (i) the family {Q,: & > 0} is uniformly
bounded on C(D), and (ii) the family {S,: 4 > 0} approximates all elements of
C(D). Conversely, if Q,f — f for all f€ C(D), then {Q,} is uniformly bounded
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by the principle of uniform boundedness. We examine next the general problem of
bounding the family { Q, } for some important approximating families { S, }.

In general, we need to bound Q, f in (4.8), subject to ay, ..., ay satisfying (4.9).
The choice of the basis {@y,..., ¢y} of S, is at our disposal. Since the coefficient
matrix of (4.8) is G,, a bound for Q, can be produced by using

ol <]G3*) Max (/..

(4.18) N
<G flle Max 3 wile,(2,)]
I<isN
with & = [a;, ..., ay]". The matrix norm used in ||G;!|| is the row norm. Combining
(4.8) and (4.18),
. N R
(4.20) ¢ =||G;1||[Max ) |‘P1(5)|”: Max 3 wle.(2,)]]-
s€D ;_y I<isN

Thus the problem of bounding Q, is reduced to that of bounding G;', at least in the
case when the underlying subspaces S, are of finite element type. For then,

N

Max ) |¢,(s)|

seD i=1
can be reasonably assumed to be bounded independent of #; while for the last term
in (4.20), an estimate

R
Max 3 wlo (1) < ch®
I<isN

could be established.

Bounds on ||I';}|| were studied in [10], {18] in case of spline spaces S, and in [17),
[19] for finite element spaces over subregions in R”. The possibility of defining the
discrete inner product and the corresponding projection was mentioned in the latter
paper; and the discrete projection onto spline spaces in conjunction with collocation
methods at Gaussian points was used in {21], [22]. Unlike the latter two papers and
aforementioned works [12], [30], we do not require G, = T, in order to establish
convergence ||x — z¥|| — 0.

Anticipating the superconvergence results for the discrete iterate z;f, we next show
that the discrete Galerkin solution z, inherits certain superconvergence properties of
zk.

LEMMA 4.4. Let z, and z}¥ be defined as in Lemma 4.2. Then
(4-21) 104x = z4ll, < ¢ x = z¥] ..,
where c is the constant in (4.6).

Proof. Using consecutively (4.10), (4.12), and (4.6), one has

124x = 2ully =l @u(x = 28} |y <llx = 2kl < el x = 2. ©

Assuming (4.19), we state a stronger result.
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LEMMA 4.5. Assume (4.19) holds, i.e., |Q,f |l < cl|flle for all f € C(D) with ¢
independent of h. Then

(4.22) 101x = 2ll.e < cllx = 27 ]...
Proof. In (4.19), set f = x — z}; and then use

Q1% = 24l =HQh(X - Z/T) ”oc < c||x - z;’f“w u
With N = R, Q, isjust the interpolating projection. Thus (4.22) extends the result
of Richter [26], on the superconvergence of (x — x,)(¢;) for collocation at Gaussian
points, to the case of the discrete Galerkin method.
Thus we see that the convergence of the discrete Galerkin method hinges on
availability of the bound (4.19). This will be discussed in Sections 6 and 7. But first
we introduce the formalism for handling the fully discretized Galerkin method.

5. General Error Analysis. Recall the numerical integral operator ¥, based on
the integration rule (2.3),
R

(5.1) (A, )(s)= L wK(s,1,)f(1), s €D.

Jj=1
Using the notion of the discrete inner product (4.1), we also have

(52) (A )(s) = (ko [
where k= K(s, *).

LEMMA 5.1. The discrete Galerkin method (2.5)—(2.6) can be written equivalently as

(5.3) (1= Q,%,)z,= Qy», z, € C(D).
Moreover, the discrete iterated Galerkin solution satisfies
(5.4) (I =X,0,)z = ».

Proof. From (5.3), z,, = Q,(y + X}, z,) € S,. Using this, rewrite (5.3) as
u[(1 = 2,)z,—y] =0, 2, € 5.
This is equivalent to saying that z, € S, and that it satisfies
(I=2)z,—v.¥),=0 alyeES,.
Choose a basis {@,,..., ¢y} of S,, and successively set ¢ = ¢, i =1,..., N. This
leads directly to the formulation (2.5)—(2.6), showing the equivalence with the
formula (5.3).
As to z}¥, the definition (2.7) is equivalent to
(5.5) =y +X,z,,
from which Q,z% = Q,y + Q,X,2, = z,, supplying another proof of Lemma 4.2.
Now replacing z, with @,z in (5.5), we prove (5.4). O
Solvability of the two equations (5.3) and (5.4) follows easily from the standard
theory of collectively compact families of operators, {1}, [5].
THEOREM 5.2. Assume the integral equation (I — X )x = y is uniquely solvable for
every y € C(D), and assume K(s, t) is continuous for s, t € D. Let
(5.6) {S,c C(D): h> 0}
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be a sequence of approximating subspaces with the property that for each f € C(D),

(5.7) py(f)= min|f-ol, >0 ash-0.
PES,
Finally, assume that the discrete projections {Q,: h > 0} are uniformly bounded,
(5.8) q=sup|[Q, < o0.
h>0

Then {Q,X,} and {X,0,} each form a pointwise convergent and collectively
compact family of operators. Hence, for all sufficiently small h, the operators I — Q, X,
and I — X,Q, are invertible on C(D) ( for, say, h < h), and

(5.9) l(1-0.2)7 | <B.  |(U-#,0,)" <B<w.
Moreover,

(5.10) (1_Qh‘){h)(x—zh)=(1_Qh)(y+‘){hx)+(‘){_‘x/h)x
and

(5.11) (1 = 2,0 (x = 2¥) = Hx = H,Q,x.

Thus both ||x — z,||, and ||x — z}}|| tend to O as h — 0.

Proof. We concentrate on the equation (5.4). Equation (5.3) can be dealt with in a
similar manner. We show that {X,Q,: h > 0} is a pointwise convergent and
collectively compact family of operators on C(D). Then the general theory of
collectively compact operators can be used to complete the proof (e.g., see [1] or [5,
p. 96)).

From (5.7), (5.8), and (4.17),

(5.12) If = @uflle < (1 + q)ou(f),

proving that Q,f — fas h — 0, for all f € C(D). Then

(5.13) ff_Xthf=[ff‘fhf]‘*'fh[f_th]-

It is straightforward to show that || X¢'f — X, f||., = O (see [5, p. 90]); and then the
principle of uniform boundedness implies { ¢}, } is uniformly bounded. Combining
the latter with (5.12), the last term in (5.13) also goes to zero, completing the proof
that #,0,f — Xf.

The collective compactness of { #,Q,: h > 0} will follow by standard arguments.
Combined with the pointwise convergence of { #,0, }, the remaining results follow
from known theory [1],[5]. O

We now give another proof of Theorem 2.2, within this new framework.

COROLLARY 5.3. When N = R, the discrete iterated Galerkin solution results from a
Nystrom approximation of the iniegral equation (1.1).

Proof. From Lemma 4.3(d), we have ¢,Q, f(s) = X, f(s) for all f € C(D). Thus
formula (5.4) for z}¥ reduces to
(I-x WZE =,
the Nystrom method. O

To obtain superconvergence results for z* to x in the original Galerkin method,
examine the error term in (5.11). This reduces to examining the error

Hx(s) —H,0,x(s).
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LEMMA 54. Let k (t) = K(s,t), s, t € D. Then
(5.14) A'x(s) —KA,0,x(s) = [Ji’x(s) _‘){hx(s)] +((1 — Qu)k, (1 - Qh)x)h
and
|Ji/x 5) = A0, x(s | |)£fx fhx(s)l

(5.15)
+” (1 - Qh)ks”h,l ”(1 - Qh)'x“h,oo‘

The seminorms are

R
(5.16) £l = Zwlf(E) ], N flhw = Max1mum|f ).

j=1 I<j<R
Proof. Write
Hx(s) = H,Q,x(s) = [)i/x(s) _‘){hx(s)] +2,(1 = Q,)x(s).
Then note that from (5.2),

(1= Q)x(s) = (k. (1 = @)x), = (k. (1 - @)x),
= ((I - Qh)ks>(1 - Qh)x)h'
The last two steps used the facts that / — Q, is a projection and that it is selfadjoint
from Lemma 4.3(a). (5.15) follows easily from (5.14). O

This shows the quantities that must be examined in order to obtain convergence
results for z}¥, namely, (1) ¥'x — X ,x, (2) x — Q,x, and (3) ({ — Q,)k,. The first is
simply the numerical integration error. The second and third are the errors in using
the projection of C(D) into S, and these are examined for particular cases in the
next two sections.

When S, contains only piecewise-continuous functions, the above arguments can
still be used. Note that if S, € L*(D), then X L*(D)— C(D) implies that
X0, C(D)— C(D), and z} will still be a continuous function. The discrete
solution z, will not be continuous, but the following bound in (5.17) is still valid.

Note also that for the difference x — z, one has

(5-17) ”x_zh” ”x— Qnzi ”oc |x— hx” +||Qh””x_zh Hoo’

which provides a way other than (5.10) to estimate ||x — z,|,. As the first applica-
tion of the above lemma, consider the simple case of a smooth kernel K(s,¢) and a
smooth right-hand side y. Assume also that for smooth f,

inf ||f— ¢, =0(k);
PES,
and assume the integration formula used is of degree of precision d. Then under the
assumption that {Q, } is uniformly bounded,
(5.18) lx = z,]|, = O(hmntd+D),
(519) ||X _ z;:‘Hoo — O(hmm(Zl.d+l))‘

(5.19) actually coincides with a result by Chandler [12], while (5.18) improves the
corresponding result of his in the event we are concerned with, i.e., when the same
integration formula is used in defining Q, and X,.
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While we are on the case of smooth kernels, let us use (5.14) to make a remark
that parallels one in [28]. Namely, the rate of convergence observed in (5.19) remains
the same for all derivatives of x — z}¥, i.e,,

(5.20) |D(x = 23|, = O(Rmin@td+D),

where « i1s a multi-index. This follows from (i) the fact that the uniform bounded-
ness of (I —X,0,)"' in C(D), h < h,, implies their uniform boundedness in
C*(D), the space of k times continuously differentiable functions, and (ii) the easy
formula

(5.21) [ D, (1 - Qx| = msax((l — Qk (I = Q4)x),,
where k% = DK (s, -).
6. Bounds on G . See the Supplements section at the end of this issue.

7. Applications. In this section, we derive the bound in (4.19)-(4.20), using the
results of the preceding section. To define the projection Q,, we have to specify the
spaces S, and the numerical quadratures (2.3).

We consider finite element spaces as described in Section 6. Starting with an
integration formula over the reference element,

(7.1) [a@yd= ¥ wai),
we define the composite formula over D,
(7.2) [ o(0)d -y 2 @ (1),

k=1 j=1

where ¢, = Fk(t ), and wy =W, |DFk(t ), k .. E j=1,..., ¢, in accor-
dance with (3.13)-(3.14).
Using (7.2), we define the scalar product (-, ), asin (4.1) and (6.2), with

(7.3) (9. 9)e Z (1) ¥ (1)

This clearly satisfies (6.10) and (6.11), if the scalar product (-, )" is defined by
means of

a~ ~ j A
(7.4) (9,9)= X wa(£) (7).

To state a general result, we have to impose two additional conditions, in addition
to (a)-(j) of Section 6.
F, is continuously differentiable and

(k) max]DFk(t)| km(e,), k=1,...,E.
In case F, is an affine mapping as in (6.11), this follows from |DF,| = m(e,)/m(é).
(1) Let M; = {k: C;D e, }. Then |M;|< M, j=1,...,N.

This is easily verified for all commonly used finite element spaces.
We can now state the following general result.
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THEOREM 7.1. Let spaces S, be defined as in (a)-(}), where for definiteness, we set
h = max(d(e,)), k =1,..., E. Then with (-, -}, defined as above and Q, as in (4.7),

(7.5) 1o, < C
independent of h.

Proof. We have to estimate the three terms in (4. 20) First, using (j), we get

Max E lp:(s)|= Max Max Z lp,(s) ]
seD [ k=1...., Es€e
= Max Max ), |<P, |
(7'6) ..... E see, iel,
< M- Max Max Max|g,(s)]
k=1,..., E s€e; lelk
<M- Max Max|q>j )< C- M,
Jj=1,... v §€¢é

for a constant C independent of A.
Foralli=1,..., N and k € M,, denote the progenitor of ¢, over ¢, as ¢, :
@71,‘ = lek o F,
as in (6.14). Using this notation, we next estimate the last factor in (4.20). Thus, for

all i =1,..., N, we see that
R

E F
Y wile (1) ]= Zl 21

k=1

*Pi(tjk)l

) Zwk

keM, j=1

(i)ik(fj) |’ from (j)

(7.7) P
kY Y wm(e)|d, (i) from (k)

keM, j=1

N

N
<
£

ag!

™

(i)l(fj) ‘ : Max m(ek)

M- ch" = Ch",
where n = nor i = n — 1 asin (h), and C is independent of A.
Finally, applying Lemma 6.3, (k), and the same bound on m(e,) as in (7.7), we
obtain through Theorem 6.1 the estimate

(7.8) Gt < cn-
with C independent of A.
Combining (4.20), (7.6)-(7.8), we finish the proof. O
Examples. Consider the unit simplex &, as in (3.11). Let 8,, 0,, ; be its vertices
while §,,, D,;, 0,; are the midpoints of its sides. First we study the element
{é 30 } where 2, is the set of polynomials of degree less than 2, and
= {§, }. The scalar products are defined with

Dy Uv v
AA

(7.9) (6.4) = Lo

i=1
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The space S, consists of piecewise-linear continuous functions, and the discrete
iterated Galerkin method reduces to the Nystrom method with nodes at vertices of
the triangulation.

If one chooses instead 2° = {8, , 6, , 6, } and replaces (7.9) with

012° 703" T

3

(7.10) (9.9) = & (0,,)9(0,,).
i.j=1

i+j

N =~

then S, will consist of piecewise-linear functions, continuous at the midpoints of the
sides of the triangular elements. The discrete iterated Galerkin method coincides
with the Nystrom method with nodes at these points. Again, although (7.10) is exact
for the finite elements concerned, Q, does not reduce to the customary orthogonal
projection P,.

It immediately follows from the general theory that, taking operators # with a
smooth kernel, we have ||x — z¥||, < ch? in the first case, while ||x — z}||,, < ch®
in the second case, since the degree of precision of the quadrature in (7.9) is 1, while
that of the quadrature in (7.10) is 2. Note that |[x — x}||., < ch*, from which we see
that, though the discrete iterate z;* converges faster than z, (or for that matter x,,), it
does not attain the full superconvergence of x}. As we see, to achieve this, it does
not suffice to choose an integration formula for which the integral in (7.4) is
evaluated exactly. To obtain the convergence rate O(h*) for z}, an integration
formula with degree of precision d > 3 is needed. From [24], there exists a formula
with d = 3 that has 4 nodes.

As the last example of finite element spaces, we consider the piecewise-smooth
surface D from (3.9). The triangulation is defined by (3.10)—(3.12), while the scalar
products (-, ), are defined by means of the integration (3.13)—(3.14). The kernel of
the integral operator £ is assumed to be smooth on each of the patches D,. The
same holds for the solution x, provided the right-hand side y is sufficiently smooth.

Theorem 7.1 applies directly; thus we have that (4.19) holds. Convergence
estimates easily follow from (5.14), (5.17). The difference (#'— %), )x(s) is bounded
as in [7], [8]; we have as before

Ix = 24l < c(h®*1 4 A1) and |x — 22|, < c(h4*T + RAHDY,

To attain the rate of convergence of the exact Galerkin iterate x}, which is
h*r*D_one has to choose an integration formula with

(7.11) d+1320r+1).

Finally, note again that (7.11) does not imply Q, = P,.

Lastly, we would like to remark on the applicability of the developed theory to the
spline spaces. The crucial assumption (j) holds for the spline spaces S(r, k) with
2k < r — 1, where

S(r.k)={fe C*a.b]: flu, ,mEP}.

Here, A: a=1t,< --- <1, = b is a partition of a finite interval [a, b], 2, is the
set of polynomials of degree less than r. When 2k = r — 1 one has a space of
Hermite splines; with 2k < r — 1 the splines are less continuous than in the latter

case.
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Thus we can formulate the following
COROLLARY 7.2. Assume for S, = S(r, k) with 2k < r — 1 that (a)—(k) hold. Then
with (-, ), defined by (6.2) and @, by (4.7),
|| Qh ” < C’
independent of h. O

Example. Let K be an operator with a smooth kernel. Then using the above-de-
fined spline spaces S, of Corollary 7.2, we have two estimates for the exact Galerkin
and iterated Galerkin methods:

(7.12) lx = x4l < ch”
and
(7.13) [x = x|l < cn®,

provided the right-hand side y € C'{a, b].
If the quadrature in (7.1) has degree of precision d, then from (5.14) we
immediately have

7.14 x = zX| < (R + %),
h fioo
and combined with (5.17),
(7.15 Ix =z, ||, <c(h?"t + h7).
hlloo

Then using numerical integration maintains the accuracy of the Galerkin method if
d > r — 1. To preserve the accuracy of the iterate, we need d > 2r — 1; although
with d > r — 1, the discrete iterate will exhibit superconvergence. Compare with
[12].

Remark. Consider more general spline spaces S, = S(r, k), with a greater order of
smoothness. Assume that the numerical integration (7.1) over the reference element
has degree of precision d > 2r — 2. As a basis for S, use the normalized B-splines.
Then G, = T, because the numerical integration of all inner products is exact,

((p"l/)h:(q)’\p)’ q),leES,,.

Thus, although Q, # P,, the results of de Boor [10] can be used to bound {|G; ||,
giving the result (7.8) with n = 1. Also, since B-splines are nonnegative and
constitute a partition of unity, (7.6) is verified directly, with

N
Yles)|=1, a<s<b.
i=1

The assumption (1) holds easily, and this implies (7.7). Thus we also have for the
general spline spaces S, = S(r, k) that

leqll< C,
independent of h, provided the degree of precision d of (7.1) satisfies d > 2r — 2.
With this, the inequalities (7.12)—(7.15) also apply to S, = S(r, k). In (7.15), we
need d > 2r — 1 in order to recover the full speed of convergence of the iterated
Galerkin method. This was noted previously in [12].
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6. Bound on G;l. In this section we adopt the approach of
[17] in order to bound IIG}_IIII in (4.20). This approach is
quite general, and the reader may wish to refer ahead to Section

7, which contains more specific examples of subspaces S

he
We distinguish between two cases:
(i) D 1is a region in rR",
(ii) D 1is a surface in R”.

In the first case, the modifications needed of Descloux’s

presentation are just notational; while in the second, they are
minor 1in every respect. Thus we introduce the following
notations and assumptions.
(a) DC R™ is either a region or a piecewise smooth
hypersurface in R". In the latter case, the surface
D 1is assumed to be Lipschitz: and the general schema
for D 1is that of application 2 in Section 3.

{(b) m is ejther the Lebesgue measure in Rr™ or the
measure over D induced by the latter.

(¢) The closure D of D is subdivided into the union of
closed sets e i= 1.'--.Eh = E, each one of which
is the closure of its interior in the natural topology
of D. h is a characteristic parameter of the
division. In the case D is a piecewise smooth
surface, the interior of each e, belongs to one and
only one of the smooth sections that make up D.

(d) m(e;) » 0, 1 =1.-+-.E;

m(elnej)=0. i,j = 1, E; i # j.
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0025-5718 /87 $1.00 + $.25 per page

S11

License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use




SUPPLEMENT

S12

(v°9) .mnrca:o=v~-m =9
T

‘g §o uordsiqms ® g Jo 2s®d 9yl uy Moy

‘0 = 3 ‘si103a19y] () pue (j) £q

F 1=f s
= 'édddns n o j ddns ‘(9) £&g ‘F'e--'1 =1 ‘0O = | 3
N

[
-
wmon
-

¥
Jeyl SNOTAQO ST 3] PUE ‘T ees'[ = T ‘0 = {3'3) serrdur siyp

¥a A y
‘Q = (3'3) W = (3*3) 9osoddns ‘1 3 3§ Buwos uJ0y -K1eso(o

kS
Kisa [21] ur 1 waxoayl jo 3wyl smo[[oj jooad ayj -joold

‘y uo puadap jou s3op D IuYym
(€°9) DD > N, o

1- -

sSPY U0 .nnnns.“svv = ao X143 0UW

woan 2ayi Joj puv H uo 3onpoud 42uul uvV S1 zﬁ...v uayl
=1

(z°9) P = e
ct

aurdag piloy (1)-(e) 2unssy -1-9 waioayy
‘wa103Y) BUIMO[[O0J 2yl 21BIS 24 ‘SIYI YITIp

"0 < D YITA

Yiaf . LR . fraf
. ¢ A f te o, 0y x
(1°9) o (o5 I y { sgx (®
fqtees'T = ¥
L
pue a2 X I{e J103j 3eYl OS[E DSuUNssy T ete)
¥y q
jonpoad JeIBOS ® USAIB °oq 213yl 1397 : _ S uQ

‘y §o juspuadopuyr yioq

‘et = o ces (Fayps(te)ge

pue

‘Freestt = F O N'eee'U =X 05 Anovexﬂwovau

‘aoejins B 10 uoldorx ® s1 (g

19yzaym uo 3Buipuadap ‘1-u o=

Ie

10 u = U Yifm uayl

‘L jo Is3swelp 2yl ejousp (A)p 39T ‘¥ DA JIo4

‘y 3o juspuadapur

=1 ws |t

uay] °Z 1I9S D2I1JUly B U] SIUIWS[S jJO Idqunu
sy1 sjouwsp |z} 181 pue :{ls ¢ £t 1y =t aeq

Yo ¢ no 1eys yons [ sS1SIXd @19yl '} [l oy

.w.«a jo Jlaqunu
21fUlj ® JO uUOIUN ® SY Y4 ddns = «U ‘Nieos'1l = ¥
11e 103 pue ncz =N .Azs.....«sVENAm = nm

(r)

(w)

(3)
(3)

(2)

License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use



S13

SUPPLEMENT

q

ury sy - '§ saoeds [BUOISUBWIP-91IUIJ dYl JO UOIIONIISUOD
syl 31noqe 2(jid2ads II0w I3q SN I3[ MON .:w JO UO[3IDONIISUO)
t anx 1 =4
- °| o
. LT G #o T = le -4
N
=X 1
souay gty W = o ‘(a) £g 0_9 = 4 jeys yons Lw 3 @
N
L
S1S1X2 alays uaya ' :w 3 4 31 ‘puey JI3yjo a3yl ugQ
L9
‘juapuadapuy A[ieauj] 24e Ow
wolj suoyiouny 2BY3 (]°Q) WOIJ SMO[[OJ 2F ‘O ¢« D 9OUF§ "~ JOOoId
¥ s
.Acw 3 ¢ ° *} = _Aw ul $1SVq © SwJ4o AﬁH 3 ¥
1
L T,
xsv = Ow 312s 3yi1 uayj ‘proy (r)-(®) aunssy -Z°9 ewwa|
Buimorio}

ayy KAq pejreorpur se ‘uorrezatdaazuy oarduys LisA ® S3ijupe

(1'9) ur saiwadde aeya ~H 313s 94yl 1eYs ‘OS[E® IAIISqQ

“}I0OMIWELF 2A0qQe 2yl 03U [[9M $3113 (£°g) uoraewidaiur ayi

pue (p'p) uo paseq (1°'p) 31onpoud Jauuyl 9Yl ‘'II10FAIIY] “{uor1

—eadajuy 10ex3 sasn [21]) s uo se[nwioj uorjlIevIZIIUI FO ISN

LS

ayi y3nouayy st (1-9) ur (') sjonpoad Jsuuy 3IYiy jJOo IDI0YD
a1qissod auo 3jeyi ai1ou ‘(g F)}-(61 %) punoq passnosip A[{snorasad
34yl Y3l TM UOIID3UUOD Yl aas O *(1°9) SBurien(eias o031 paonpaul

snyil st =~m0= Suypunoq jo waiqoad ay3s ‘1-9g waioayj Bursp

- ‘yjoows asimavard pue
z31Yyosdy] @Je 1BYl SIVBFINS JI03 SpIoYy A[Iuapras uini ur {(9-9)
‘a jo ui1oyaeysq 3yz uo (9'g9) ueyr uorjdunsse jusaBuriis olouw

e 3Bupjew ALq psaroaduy aq uedo (g-g) A3rrenbaur as33e[ BYL

Allﬁvr:uz i

(8°9) LSt § AT N DM,

BurdAjsyaes 19Ba3ur 1say[eWS @Yy st d Ppue [ > S > Qg SIIYM

. . u -—
(L79) 271t 2Ht), s =0
usy] ‘saayds 3jum ay3 jo eaie
aya 210uUap :w 191 ‘a jo siuyod [[® 1noqe .Ahv:m salayds
Suipuodsaiaod 3y pue 1 snipel jo Auvcm syreq 1[ie Jloj
u - u
(979) ((1) "'s)esae 2 5 ((1) g u @lu

£319doad 3Yy3s Yirm jueIsSuod ® aq L 337

"SAOT[0J s® S uOIEdTjIpow SIBIPIWWL ISOw YL " .4

uy 9oevjins e Buiaq (@ JO 9sed IY) 031 sSABA JUSISJJIP ul pIrjIpouw

#q ueo asayl [11] ur punoj aue (g-g)-(y-g9) suoyreyas ayj

‘U 11®BQ 3TUR 8yl jO 3wnfoa ay3 st Y pue ‘1S oo = 1

(s°9) (-1 5 g4 _qUt-Duton

z-

SurdAjsiaes JoBsaul asayfews 9y st d ‘1 > s > O 2II1aym

License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use



SUPPLEMENT

S14

J03 spunoq Jladdn pue JI3M0] 2J% On pue Op Jj1 ‘"es®d stiyi uj
=1 =fy =1
r 1
(91°9) wa o5 "x'x 23;3 w :m 9p| 5 wxw »
a a a
01 sotr3yrrdurs (g1°9) ‘sproy (11°9) JI
[ ]
1=1 =11 =¥
. .t f .1 Ay o ¥ A 1
(s1°9) 2X w o5 Tx'x (¢ |Maa] T M) w sax{ »
a 1 1 a a
se uall1amaa sy (1°9) ‘{(f) Suiunssy
"g L AJeyrolo) 39S ‘Op 31eyl Luwos
104 ‘211 £3s13BS 031 Tile} saomwds suypids ayi jJo 31sow pue ‘sadeds

juswa[a 23fuyrj 3Ino sa[3uys 3eya s (f) wuworaipuod oyj]
sanbiun sy () ur o

uorlouny ayi g-g vwwa Ag fatesaty =¥ w§v = ow 31144 pue

(v1°9) d o é = & 21BY1 Yons S > ¢ sS1SIX® 249Y)

o. v

ee'T = ¥ F'eee’l = 11® 103 r)

£3a19doad ayi yiia

s jo s syseq ® 3JO 9OU235IX3 91inbal am ‘ucliIIppE UJ
‘[81°% -wyl *.Z] @9s !93eipouwmy S$S3[ Yyonuw
sy suoyiodounj surjds jo sededs 10} jooud ay] ‘(€r-9) Aystaes op

sooeds juewa[d® JITUTJ [[B IBYI 89S 031 I[NOIFFIP 30U ST 3]

(e1°9) THteee' T = ' s =

£119doad a4yl ssossod [[® J2PISUOD M nm saoedg

(a)u A L
(z1°9) () —X— = (4°d)|7g 39p| = (4°0)
v o~ Axovs vy o~
sswooaq {01-9) asusy (a)us(Me)u = _xh:: pue g 1ep = lyg
(11°9) Mg mxm = mxh = s
‘Burddew suijje ue sy xu yoeva uaya ¥sed Byl uj
.Mh JOo XiJdjeuw :N«ﬁOOﬁh @yl s1 M&Q 3lays
b A 15
(o1°9) © (4 N_ Aq| ¢ N_ dal) = ((s)+'(s)e)
T T
jo suesu
RS 1
£q s uo (') sjonpoad JIauui s9ONPUT IT UIYL s (ete)
jonpold Jauujy u® Ppaurjep Sy IIIYI S uo asoddns ‘A[reurd
15
(6°9) {5 3 ¢ ouwos soj (5) = (s)b : 6} = °s
198 Ay 3 Amvxh = s pue a3 3 S S1FIM [[eys Ip A3 oiuo
El jo xh UOTl1BWIOJSUBIY 1-1 ® dees T = N e yoes Jo0j
pue ‘s J3A0 suojidouni jo § odoeds [eUOlSUSWIpP-BITUI} e ‘B

-

JUQWA[S SOUIIDJAI1 ' USAIB S| 213y} Qunsse M ‘[loe-88 "dd ‘11]

License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use



")
—
w

SUPPLEMENT

u ‘11ews A(auayroryyns sy Yy papraoad

O m < [ (w)ol - % z v

Sa1JS1IBS y+y JO Y anjeaualdya

1S9[TeUS 3Yl ‘WwWIOU XTJleWw SNnIUsqolg 9yl ST h=.= alaymn  ‘(y)o >
4 [ N=<= \ @d2uys ‘uay] ‘Y Jo sanjeAuaFra aure aA a1aym
r asfsy
5 | x-x| urw

uayl y§+y JO anreauaia ue sy Y JI -[gog ‘d ‘g] @ss Khiosys

uorleqiniiad wosjy 3[nsal paepuels B S3sn jooud ay] -jooaq

‘11ows fAi1jualdrddns s1 Yy papraoud

FSAST
(12°9) ‘| (lg)aep| uin mm =»
Fel

@sooy2 uvl? 2uo (G1°9Q) ul uayj

(029} Hrese'T = Mate.otr =1t (4o S _An.".cvxo_
2uUNSSD ‘SuU0}IDIOU IA0QD YT Y3l °€°'Q ewwa
(61°9) Lol = ma<nﬂwam.avxo.«wvu =y
pue
(Felayy =y
2314m usyyl
g xpa3ew swos oy
(81°9) ((s*w)lo+n) a)rop = (5) (M)

1Byl OS[e puv § 3 H'd I11e I03

~

(L1°9) (#1M4a] *#) = (4. Maa| "o, 1 Maa])
T T

sunsse ‘as®v0 [BI8Us8d sJow Y3z ujJ
‘geeett = Qo (Mg)aep| T o pue

ou_Axmvu@ﬂ_ 5 o usyl .n.....—uﬂ.aA Aﬁs.asvv Jo sanyeausdias ayl

License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use



