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Abstract, We review the different aspects of integrable discretizations in space and time of the 

Korteweg-de Vries equation, including Miura transformations to related integrable difference equa- 

tions, connections to integrable mappings, similarity reductions and discrete versions of Painlev6 

equations as well as connections to Volterra systems. 

Mathematics Subject Classification (1991): 58F07. 

Key words: lattice equations, linearization, discretization, Miura transformations, similarity reduc- 

tions. 

1. Introduction 

When Korteweg and de Vries published their famous equation in the Philo- 
sophical Magazine [1], exactly one hundred years ago on the occasion of this 

conference, they were probably far from being aware of the enormous ramifica- 

tions this nonlinear partial differential equation would have, and whose revived 

interest was marked at the end of the sixties by the celebrated paper by Gardner, 

Green, Kruskal and Miura [2]. What is now called the KdV equation was the 

drosophila of a class of nonlinear evolution equations, which triggered the devel- 

opment of new methods and structures (inverse scattering transform, B~icklund 

transformations, bi-Hamiltonian structures, master-symmetries, etc.), applicable 

not only to the KdV equation itself, but also to a host of other systems as well 

(cf., e.g., [3, 4]). Independently, and curiously enough at roughly the same time 

as Korteweg and de Vries were studying models for shallow water waves, there 

was an important development in geometry, marked by the classic works of 

B~icklund [5], Darboux [6], and Bianchi [7]. It was only in this century that 

people realized how relevant the works of these classical geometers were to the 

study of the much more applied problem of the behaviour of water in canals. It is 

not surprising from a modem perspective why it took almost eighty years before 

this connection was fully understood: the road from geometry to the analysis 

of water waves goes via algebra, and a kind of algebra that was invented only 
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sixty years later, namely the type of infinite-dimensional Lie algebras that are 

nowadays known as Kac-Moody algebras. In this talk we do not want to go into 

even more recent and more exotic connection, such as with knot theory, quan- 

tum groups or moduli spaces of curves. Who could guess that (via string theory 

and conformal field theory) the small and beautiful equation that Korteweg and 

de Vries wrote down in their paper [1] would stand at the very foundations of 

present-day descriptions of the universe? 

Let us now come to the other theme of our talk: difference or discrete systems. 

Korteweg and de Vries lived in an era that had no knowledge of computers. In 

their days, nonetheless, from the point of view of classical education in math- 

ematics, differential analysis started with difference equations (cf., e.g., [8]). 

And it was thought to be very natural always to link differential and difference 

equations together. It was the time when another famous Dutch mathematician, 

Thomas Stieltjes, developed theories of continued fractions, recursion relations 

and orthogonal polynomials, thus standing in a long and rich tradition of 18th- 

and 19th-century classical analysis. Little did Korteweg and de Vries realize 

that also these subjects were intimately linked to their water-wave equation. The 

study of linear difference equations was being developed in the beginning of this 

century, mainly by the propagents of the Birkhoff school (cf., e.g., [9]). Unfor- 

tunately, the good tradition of treating differential equations always alongside 

their difference counterparts, and vice versa, seemed to have got lost during the 

second half of this century, especially after the second world war. 

Today, the advent of computers provides new motivations to look at difference 

equations. Neural networks, cellular automata, self-organizing phenomena and 

complexity are some of the key words of modem developments inspired by 

the birth and growth of newer and newer generations of computers. On the 

other hand, numerical analysis, and its applications to all branches of sciences 

where computer calculations play a role, relies heavily on discreteness in all 

its aspects: interpolations, convergence algorithms, and their analytical bases: 

orthogonal polynomials, recurrence relations. It is unlikely that Korteweg and 

de Vries could envisage how important their equation was to these aspects of 

modem-day research. Little also do the people who use these tools and methods, 

know that the small and elegant equation that Korteweg and de Vries wrote down 

in order to capture phenomena of wave motion is of relevance to them. 

In this paper we want to tie some of these different threads together. We will 

look into exact discretizations of the KdV equation and highlight a few impor- 

tant aspects of them. A starting point is an integrable lattice version of the KdV 

equation, which is a nonlinear partial difference equation, i.e. a system in which 

both the spatial- as well as the time-variable is discrete. Such systems were sys- 

tematically studied in a number of papers, e.g., in [10-18] (cf., also [19-23]). 

The lattice model is, in a sense, more fundamental than the original continuous 

equation, as one can always retrieve the latter by applying an appropriate con- 

t inuum limit on the lattice system. However, the reverse is not tree: to obtain a 
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discretization of the KdV equation which retains its essential integrability char- 

acteristics, is a highly nontrivial undertaking. Once having it at its disposal, one 

can use it as a universal model to study a number of features that, as we will 

see, become more transparent on the level of the difference system. 

The outline of this paper is as follows. In Section 2 we will exhibit the lattice 

version of the KdV equation, or rather of its potential (i.e. integrated) version. We 

will show what continuum limits to apply in order to get back to the continuous 

KdV equation and what are its relations to other integrable lattice systems. In 

Section 3, we will list some other integrable lattice equations that are less directly 

related to the KdV equation, but still are of importance. Next, we will look 

into special solutions of the KdV equation. First, in Section 4, solutions arising 

from periodic initial value problems in the lattice will be considered, leading 

to a reduction to integrable finite-dimensional mappings. Second, in Section 5, 

we will exhibit similarity type of solutions which lead to lattice and difference 

versions of the second Painlev6 transcendent. Finally, we give some insight into 

the algebraic background of these lattice equations, deriving them from the so- 

called direct linearization approach method. In this approach, briefly reviewed 

in Section 6, the relevant equations are embedded in an infinite matrix structure, 

which gives a powerful handle on establishing the interconnection of the different 

(Miura-) related systems. For example, a discrete-time version of the Volterra 

model arises naturally in this way, thus leading possibly to connections with 

matrix models in two-dimensional quantum gravity and string theory, but also 

with numerical schemes, Pad6 approximants and convergence algorithms. 

2. The KdV Lattice and Related Lattice Equations 

The lattice version of the KdV equation that we want to investigate in this paper 

is the following nonlinear partial difference equation 

(p  --  q q- U n , m + l  -- Un+l ,m) (P + q -- Un+l ,m+l  q-" U n , m )  = p2 _ q2. (2.1) 

To explain the notations in Equation (2.1), we mention that u = Un, m is the 

dynamical (field) variable at site (n, m), n, m E Z, p, q E C are lattice param- 

eters. Equation (2.1) was derived in [10] from the direct linearization approach 

(see Section 5 below), and further studied in a number of papers [11-14]. 

We mention first a few important aspects of Equation (2.1). First, we note that, 

in contrast to the continuum KdV equation, the lattice equation is covariant with 

respect to the interchange of the two discrete variables, n and m, interchanging 

also the lattice parameters p and q. This might come as a surprise, but as we 

shall see below, we must conclude that the noncovariance of the continuous KdV 

might be considered to be an artefact of the continuum limit. Actually, the discrete 

variables being on the same footing, is a very nice feature of the equation which 

allows us to play some games on the lattice (like making particular choices of 
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initial value- and boundary-value problems) which would be quite awkward in 

the continuum. 

Another feature of the equation is that it arises from a discrete action principle. 

The action for the KdV lattice (2.1) reads 

S = Z [~n,m-kl ( U n + l , m + '  - -  Un , rn )  _t_ 

n , r n c Z  

+c~ ln  (e +Un, ,~ - -Un+l ,m+l ) ] ,  (2.2) 

where ~ = p - q, e = p + q. The Euler-Lagrange equations for (2.2), which are 

obtained by variation of S with respect to the variables Un,m, i.e. 

6S 
--0~ 

(~Un,m 

leads to the equation 

Un_i_ l ,rn - -  U n , m  + 1 ~ U n _  l , m - -  U n , r n _  l - ~- 

e6 e~5 
+ - = 0, (2.3) 

E "[- Un , rn  - -  ~Zn+l,m+ 1 E + U n _ l , m _  1 - -  Un,rn  

which is a consequence of Equation (2.1). In fact, as we shali demonstrate below, 

Equation (2.1) goes to the potential (i.e. integrated) KdV equation, whereas Equa- 

tion (2.3) goes to the KdV equation itself. However, by abuse of terminology, 

we will refer to (2.1) as the lattice KdV equation, because we will be mainly 

concemed with that equation. 

A third important aspect of the lattice Equation (2.1), directly related to the 

integrability of ths system, is that it arises as the compatibility condition of an 

overdetermined linear system (Lax or Zakharov-Shabat pair). In fact, the Lax 

pair takes the form of a set of two equations for the translations of a 'wavevector' 

Ck in the n- and m-directions, 

(p - k ) r  + l, m)  = nk"  Ck(n, m),  (2.4a) 

(q - k ) r  + 1) = Mk.  r m), (2.4b) 

where Lk is given by 

p - un+l,m 1 ) 

Lk  = ]r _ p2 -k (p q- Un,m)(P -- Un+l,m) p q- Un,m ' 
(2.5) 

and where Mk is given by a similar matrix obtained from (2.5) by making the 

replacements p --+ q and (n + 1, m)  ---+ (n, m + 1). The subscript k in (2.4) and 

(2.5) denotes the dependence on the spectral parameter. Establishing a Lax pair 

and an action for the KdV system ensures us that, in principle, we can expect 

many of the integrability characteristics to hold for this system, such as the 
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existence of an infinite number of integrals of the discrete motion, of an inverse 

scattering scheme and of a canonical formalism. However, to make these things 

precise and to be able to solve suitable initial-value problems on the lattice, we 

should supply the KdV system with appropriate boundary conditions. Below, 

we shall investigate solution and initial value problems in two specific situation: 

(i) periodic initial data on well-chosen configurations of lattice points ('staircases' 

in the lattice). This will lead to exactly integrable mappings, i.e. discrete-time 

systems with a finite number of degrees of freedom; (ii) localized initial data 

under the condition of scaling invariance leading to lattice and discrete versions 

of the second Painlev6 transcendent. 

NOW why is it justified to refer to (2.1) as the lattice KdV equation? Well, let us 

investigate what happens under a continuum limit, bringing us back to the contin- 

uum situation. Since we have two discrete variables in the lattice equation, namely 

n and m, we have to perform the continuum limit in two steps: one letting the 

variable m become continuous, reducing our equation to a differential-difference 

equation, i.e. an equation with one discrete and one continuous variable, and a 

second step in which the remaining discrete variable will become continuous. 

Both steps are achieved by shrinking the corresponding lattice step (encoded in 

the parameters p and q) to zero. The most convenient way of doing this is first, 

on the lattice, to do a change of discrete variables, namely u~,m =: Un,(m),  and 

then doing the limit by taking 

5 -- p - q ~ )0 ,  m ~-+ co, 5raw-+r, (2.6) 

where n '  = n + m is to remain fixed. This limit is motivated from the behaviour 

of discrete plane-wave factors 

Pk(n'ra)=\~_k] \q_---L-~j ' (2.7) 

which, in fact, are related to solutions of (2.4) for the linearized problem, name- 

ly 

~ - k ]  k . ~ - k /  ' ~ \ p -  k /  exp ~p2-_~2 f (2.8) 

(cf. [10, 11, 14]). By this limit, the lattice KdV equation (2.1) goes over into 

the following differential-difference equation (we omit the prime of the n ~ vari- 

able) 

1 + OrUn = 2p (2.9) 
2p - U n +  1 -Jr- U n _  1 " 

This differential-difference equation is related to the Kac-van Moerbeke-Volterra 

equation [24]. Next, the second continuum limit is performed by taking 

p ---+ co, n > co, "r ) co, (2.10a) 
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such that 

2f__ 2 n -r 
2np + p2 I ~ x, ---3 p3 + 2)-Z , ~ t, (2.10b) 

in which case (2.9) goes over into the potential KdV equation 

ut = uxzz + 3u2z, (2.11) 

which is the integrated version of the KdV equation. 

Before looking into special reductions of the lattice KdV equation, let us focus 

for a moment  on a very important aspect of such integrable systems, namely that 

they are not isolated objects: they have a number of companion systems which 

are related to the original equation by some kind of implicit transformation, 

usually referred to as Miura transformation. This holds tree for the original KdV 

equation, but also for its lattice version (2.1). First, there is the discrete analogue 

of the modified Korteweg-de Vries (MKdV) equation, which reads 

( p -  ?') Vn 'm+l  ( q -  r) Vn+l,m 

Vn+ l ,m+ 1 Vn+ l ,m+ l 

= ( p + r )  vn+l'm ( q + r )  vn'm+l , (2.12) 

Vn,m Vn,m 

which we will refer to as the lattice modified KdV equation. 

The Miura transformation between the two Equations (2.12) and (2. l) can be 

obtained from the relations 

(p  -- ?~)Vn,rn -- (]9 -q- Un,rn)Vn+l,  m ~ t n + l , r n  , (2.13a) 

(p - Un+l,m)Vn,m -- (P + r)Vn+l,m = tn,m, (2.135) 

in which tJn, m and Vn, m are some new functions of the lattice sites. By the general 

covariance of the lattice systems, Equations (2.13) hold also for the other lattice 

direction, i.e. with the replacements: (n + 1, m)  H (n, m + 1) and p ~ q. 

Thus, by combining these relations we can eliminate, for instance, tn,m entirely, 

to obtain the Miura transformation between (2.1) and (2.12) consisiting of the 

relations 

p - q + Un,m+l  -- U n + l , m  

--~ (p  -- ?') Vn 'm+l  (q -- 7") 

Vnq-l,mq-1 

Vn+ 1 ,m 

Vn+ 1 ,mq- 1 
(2.14a) 

p "q- q -'~ lZn, m -- Unq_l,mq_ 1 

( p - -  r )  Vn,m n t- (q q- 7")Vn+l 'ra+l .  

Vn+ l ,m Vn+ 1,m 
(2.14b) 
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The lattice MKdV Equation (2.12) also carries a Lax pair which is again of 

the form (2.4), together with 

: Vn+l, m , (2.15) Lk ( k  2 - (p + r) 

instead of (2.5), and where again Mk is given by a similar matrix obtained from 

(2.15) by making the same replacements p -+ q and (n + 1 ,m) ---+ (n, m + 1). 

Again, there is an action principle, now not directly in terms of the variable vn,m, 

but in terms of its logarithm. Thus writing vn,,~ = e y~,m, we have the action 

S = ~ [Yn,m+l (Yn+l ,m+l  -- Yn ,m)  ~- [? (Yn,m -- Yn+l ,m+l  "~- CY) -- 

n ,mCZ 

- F  (Yn,m - Yn+l ,m+l  q- P) ], (2.16) 

in which the function F is given by 

F ( x )  _= d{ log(1 + e~), (2.17) 
OO 

which, in fact, is directly related to the Euler dilogarithm function, and where o- 

and p are parameters related to the lattice parameters p and q, namely by 

e~ _ q - r  e p  _ p - r  

p + r '  q + r "  

So, everything that holds true for the lattice KdV equation holds true also for the 

lattice MKdV equation. Performing the continuum limit (2.6) also to this case, 

we obtain in the first step 

p O ,  yn = tanh [ l ( y n + , -  Y n - , ) ] ,  Yn ==-In Vn, (2.18) 

which is a differential-difference version of the MKdV equation, and in the next 

step we get 

Yt = Yxx~ + 2Y 3, (2.19) 

which is the potential MKdV equation. 

There is, however, an even more fundamental lattice equation, related to both 

the lattice KdV and MKdV equations, which we write in terms of a new object 

Smm, related to the MKdV field by 

1 -- (p  --~ ~'t)8n+l, m q- (p -- ~')Sn, m -~ Vnq-l,mWn,rn, (2.20) 
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in which Wn,m is the MKdV field for the choice r r as the fixed parameter. For 

Sn,m we have the lattice equation 

1 -  (p + r')sn+l,m + ( p -  r)Sn,m 

1 - (q + rt)Sn,rn+l + (q -- r)Sn,m 

1 - (q + ~)~n+i,.~+~ + (q - ~ ' ) ~ + 1 , ~  

= 1 - (p + r)sn+l,rn+l + (p - r')sn,ra+I" (2.21) 

We will refer to Equation (2.21) as the lattice Krichever-Novikov equation. It was 

first derived in [10], where it was shown that, in fact, the other lattice equations 

are included in this more general equation for special choices of the parameters 

r and r'. Furthermore, continuum limits yield the various differential-difference 

counterparts of the KdV equation, as well as of the MKdV equation, as was 

shown in [11]. Finally, one can derive a Lax pair for Equation (2.21) which is 

of the form 

= p1 , (2.22) 
c~  (k ~ _ ~ )  ( p +  ~).~-~'~ 

with 

Pn,.~ = 1 - ( ;  + ~)~n+l,.~ + ( ;  - ~ ' )~ . ,~ ,  

P ' ~  = 1 - (p + ~')8.+1,m + ( ;  - ~ )~n , . .  

The equation for s is a very rich equation, and contains many parameter-subcases. 

In the continuum limit we obtain 

O T S n  = 8 n - -  1 - -  8nq -  1 - -  2p(sZn + 8 n + 1 8 n - 1 )  -~- (T  -t- T t ) S n ( 8 n q - 1  - -  8n-l) ,  (2.23) 

2p + (p - ~ ' ) ( ;  - ~)8n-1 - (p + ~ ' ) ( ;  + ~)Sn+l 

respectively, 

st = Sxxx + 3 (sxx + r' Sx)(Szx + rsz) (2.24) 
1 - ( r  + r ' ) s  - 2sx 

in the two subsequent steps. In the special case that r = r ~ = 0, Equation (2.24) 

reduces to another very important equation in the KdV family: the Schwarzian 

KdV equation, or Krichever-Novikov equation (cf. [25]), 

Ct = r 1 6 2  s ( ~ )  - r  3 e L  
Cz 2 r  (2.25) 

which is an equation invariant under M6bius transformations 

a ~ + b  
r  ' cr + d' (2.26) 
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i.e. the group S L ( 2 ,  R). In that special case the lattice Equation (2.21) can be 

easily seen to reduce to an even more simple equation, namely 

(Zn,m - Zn+l,m)(Zn,m+l -- Zn+l,m+l) q2 
= - -  (2.27) 

( Z n , m  - -  Z n , r n + l ) ( Z n + l , m  --  Zn+l ,m+l)  p2 '  

in which 

Tb 77/, 
Sn,m = zn,m + - + - - .  

P q 

The left-hand side of Equation (2.27) is the conformally invariant cross-ratio of 

four point in the complex plane, which - as was noted before in, e.g., [26] (cf. 

also [27]) - can be considered to be the discrete analogue of the Schwarzian 

derivative S. It is remarkable that the equation: cross-ratio equal to constant can 

be considered to be an integrable lattice equation carrying a Lax pair. 

3. Other Lattice Equations 

Of course, the lattice KdV is not the only equation for which all of this holds: 

there are many other integrable lattice equations known, and they were con- 

structed in a number of papers [10-17], as well as in the literature [19-23]. We 

cannot go here into the details of all these equations, as the focuspoint in this 

celebration paper is the Korteweg-de Vries example. However, to demonstrate 

the wide variety of equations, let us just list a few of them. 

Probably the best known example of an integrable lattice equation is the lattice 

analogue of the sine-Gordon equation, 

sin (O~,m + On+l,m + On,m+l + 0n+l,rn+l) 

= P- sin (0~,,~ - 0n+l,~ - 0~,m+l + 0n+l,m+l), (3.1) 
q 

is directly related to the lattice MKdV for fixed parameter r = 0 by a simple 

transformation of the form 

v,~,,~ , > exp{2 i ( - -1 )mOn,m} .  

The lattice sine-Gordon equation was first presented by Hirota [20], and therefore 

sometimes referred to as the Hirota equation. Actually, it was already present 

in the work of Bianchi [7], appearing as permutability condition of B~cklund 

transformations for the usual sine-Gordon equation, which has a great significance 

in the classical differential geometry of surfaces in R 3. 

Another important class of lattice equations is obtained by extending the lattice 

KdV equation to higher-order partial difference systems. This is the so-called 

lattice Gel'fand-Dikii hierarchy, presented first in [17], which is the discrete 

analogue of the integrable family of partial differential equations associated with 

the higher-order differential spectral problem (cf., e.g., [28]). The lattice KdV 
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equation is naturally embedded as the lowest member in this class of equations, 

which is labelled by the roots of unity, w - exp (27ri/N), N E Z. Let us mention 

only the first member after the KdV lattice (which is the case N = 2), leading to 

a lattice analogue of the Boussinesq (BSQ) equation (N = 3). The linear system 

in this case is given by 

(p + wk)r  + 1, m) -= Lk " Ck(n, m),  (3.2a) 

(q + m + 1) = M k .  (3.2b) 

in which 

p - U n + l ,  m 1 0 ) 

Lk = -vn+l,m p 1 , (3.3) 

k3 + p3 + ,  ~l)n,m p .~_ U n , m  

and again Mk is obtained by replacing p ~ q and (n + 1, m) --+ (n, m + 1). 

In (3.3) the v and w are auxiliary fields (not to be confused with the variables 

appearing in the previous section), and the term �9 in the left-lower comer of 

the matrix Lk is determined by the condition that the determinant det(Lk) = 
p3 + k3. 

The compatibility relations of (3.3) lead to the relations 

Vn,rn+l  - -  V n + l ,  m -~ 

W n , m +  1 - -  W n + l ,  m --~ 

Vnq_l ,m+ 1 --  Wn ,  m -~ 

U n + l , m + l  (P --  q + Un,m+l --  U n + l , m )  + 

+ + q U n + l , m  --  P U n , m + l  

- -Un,rn  (P --  q -~- Un,m+ 1 -- U n + l , m )  q- 

-~-P ~ n +  l , m  --  q Un~m+ l 

Pq - (P + q + Un,m) (p + q - u~+l,.~+l) + 
p3 _ q3 

p - -  q q- Un ,m+ 1 --  ~tn+l,  m 

(3.4) 

from which one obtains the lattice BSQ equation 

p3 _ q3 p3 _ q3 

p --  q q- ~Zn+l,m+ 1 --  ~Zn+2, m P -- q + U n , m + 2  --  U n + l , m +  1 

- - U n , m + l U n + l , m +  2 -+- U n + l , m % n + 2 , m +  1 q- 

+ U n + Z , m + Z ( P  - -  q + U n + l , m + 2  --  U n + 2 , m + l )  if" 

+ u n , ~  (p - q + u,~,~+l  - u n + l , ~ )  

= (2p + q) (Un+l,m + Un+l,m+2) -- 

- ( P  + 2q)(umm+l + u~+2,m+l). (3.5) 

From (3.5) by appropriate continuum limits, we recover the continuum BSQ 

equation. An intermediate continuum limit of the lattice BSQ yields the following 
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differential-difference equation 

( 1 ) = (1 + ~ n + l ) ( U n + 2 - - U n _  1 -- 3 p ) -  3p2 0r 1 + izn 

--(1 -~- /Ln_l)(q~n+ 1 -- Un_ 2 -- 3p), (3.6) 

whereas the second limit yields the (potential) BSQ equation. There is also an 

action for the BSQ lattice, given by (here ~ - p2 + pq + q2, 6 as before) 

S = ~ [ E ( S l n O S + U n , m + l - - U n + l , m ) + q U n , m U n , m + l - - P ~ n , m U n + l , m - -  

n,mCZ 

- - (p  q- q -~- Un,m) (]9 q- q -- Un+l,m+l)  ((5 -}- %n,m+l -- Un-l-l,rn)] - (3.7) 

So, in principle, the situation for the lattice BSQ equation is similar as for the 

KdV lattice, except that here we are dealing with a system in which there are 

not only nearest-neighbour terms in the equation, but also next-nearest-neighbour 

terms. Similar to the KdV situation, there is also here a Miura transformation to a 

modified equation, which is the discrete analogue of the modified BSQ equation 

(the continuum modified BSQ was first derived in [29]), and it reads 

(/)2 + pr  + r 2) Vn+l,m+ 1 -- (q2 + qr + r 2) Vn,m+ 2 73n+l,m§ 

(t9 -- r )  Vn,m+ 2 -- (q - r) Vn+l,m+ 1 Vn,m+l 

(p2 + pr  + r 2) v~+2,~ - (q2 + qr + r 2) v~+l,.~+~ v~+2,~+j 

( p - -  r )  Vn+l,m+l -- ( q - -  ?~)Vn+2,m Vn+l,rn 

: ( p - - r )  ( Vn,m 

\ Vn+ l,m 
/ 

- (q-  r) ( Vn,rrz 

\ Vn,m+ l 

\ 
Vn+ 1 ,m+2 

/ 
Vn+2,rn+2 ,/ 

Vn+2'm+l / " 

Vn+2,m+2 ,] 
(3.8) 

Apart from the above examples of lattice equations related in some way to 

our original lattice Equation (2.1), there are also lattice equations belonging to 

other types of spectral problems. Lattice systems related to the AKNS scheme 

[4], for PDE's include a complicated partial difference version of the nonlinear 

Schr6dinger equation (NLS) given in [19]. However, a more elegant version was 

derived in [11] which reads 

10~12 + [fll 2 + 2Re (0c~fl Cn,mr 

f l * r  - -  Oflr + 
= 1<2(1 + = 

,-h 12 ~ Oc~r - r (3.9) 
q-1fll2( 1 + Iwn,ml ] /3*r  -- O/3r 

in which o~ and/3 are parameters with Re(a) = Re(/3), depending on the lattice 

parameters, 0 is a parameter with modulus 1,101 = 1, and the * denotes complex 
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conjugation. This equation is Miura-related to a lattice version of the isotropic 

Heisenberg spin chain (IHSC) equation, also derived in [11[, reads 

S n + l , m +  1 - S n + l ,  m § S n , m + l  --  Sn, m 

~(Sn,m)(Sn~_m_2 Sn,m+l)_L OLSn,m+lSn,m 

- = A \  l+Sn,m+l'Sn,m ]' 
~ ( S n , m )  2 -~- (Sn , rn+ l  �9 S n , m )  2 § 3Sn,m+l �9 Sn, m + fl - o~ 2 - 1, 

ISn,,~l 2 = 1, (3.10) 

where (Af)n,~ = fn+l,m - from, and o~, fl are arbitrary real constants. Another 

lattice version of the IHSC was presented in [23], but that model seem to carry 

complex spins. An anisotropic version of (3.10), i.e. the lattice Landau-Lifschitz 

equation, was presented in [15]. 

Furthermore, there are lattice equations in (2 + 1) dimensions, which involve 

three lattice directions associated with three lattice parameters p, q, and r. Specific 

examples are the lattice KP equation [12, 13], 

p -- ?~ § ~Zn,m+l,k+l -- Un+l,m+l, k 

P -- ?" § Un,m,k+l -- ~n+l,m,k 

= q - r + U n W l , m , k +  1 - -  UnWl'm+l'k, (3.11) 

q -- 7" + Un,m,k+ 1 -- Un,m+l, k 

and the lattice sine-Gordon equation in (2 + 1) dimensions [20], which is a 

coupled system, namely 

7" (Vn,rn+l,k+lWn,m+l, k -- Wn+l,rn,kVn+l,m,k+l) § 

( vn+l'm'k+l Wn'm+l'k ~+q( Wn+l'rn'~k Vn'm+l'k--~+l~--.~0, 

+P \ Vn,m,k+l ~3)n+l,rn+l,k ] \ 21)n+l,rn+l,k Vn,m,k+l I 

(Vn+l,m,k Wn,m+l,k ~ + q (  Wn+l,m,k V~'m+l'k I = 0 ,  (3.12) 

P \  Vn,m,k Wn-4-1,m+l,k ] \Wn4-1,m-l-l,k Vn,m,k /I 

and the lattice modified KP (MKP) equation [13], 

(p § 8) (Vn+l,m,k+ 1 Vn+l,m4-1,k l § 

\ Vn,m,k+ 1 Vn,mWl,k ] 

/ 
§ -~ 8) I vn-}-l'm+l'k 

\ VnWl,m, k 
/ 

§  § 8) ( Vn,m+l,k+l 

\ Vn,m+l, k 

Vn'm+l'k+l 

Vn,m,k + l ,] 

Vn+l'm'k+l ) 

Vn+l,m,k 

+ 

in which s is an additional fixed parameter. For the special choice s = - r  this 

equation reduces to what is referred to in [23] as the discrete KP equation, and 

= 0, (3.13) 
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which is related to the DAGTE (discrete analogue of generalized Toda equation) 

of [20]. We can of course add other equations to this small list, such as the 

IHSC in (2 + 1) dimensions, the lattice Davey-Stewartson equation and gen- 

eralizations to matrix systems. A systematic construction of lattice equations in 

(2 + 1) dimensions was presented in [16]. Although these lattice equations share 

with their continuum counterparts many of the characteristics of integrable sys- 

tems, such as the existence of Lax pairs and discrete inverse scattering scheme, 

many of the features of these systems, still have to be investigated. There is to 

date little systematic study about solutions of such equations. Since a few years 

a number of people are engaged in developing the theory of integrable lattice 

equations further, i.e. the search for analytic solutions of initial and boundary 

problems, similarity reductions and the problem of quantization. In this contribu- 

tion, we will highlight for the lattice counterparts of the KdV equation what has 

been done so far. In particular, we will exhibit two special classes of solutions 

(reductions): solutions of periodic initial-value problems leading to integrable 

mappings, the lattice analogue of similarity solutions leading to lattice versions 

of the second Painlev6 equation. A third class of solutions of the lattice equations, 

in particular of the lattice KP equation, consists of pole-solutions (cf. [30]), of 

rational, trigonometric (hyperbolic) or elliptic type. As was shown in a number 

of recent papers, [31-33], these lead to integrable discrete-time many-body prob- 

lems of (relativistic or nonrelativistic) Calogero-Moser type. We will not have 

the opportunity of displaying these solutions here. 

4. Mappings of KdV Type 

A first type of solutions of the lattice KdV equation (2.1) that we will discuss 

here, are solutions arising from a periodic initial-value problem on the lattice. 

We will show here, that these solutions give a rise of a reduction to integrable 

dynamical mappings with 2P degrees of freedom (P = 1,2, . . .) .  An important 

feature of the lattice KdV equation (2.1) is that the variables in the equation are 

arranged along an elementary square or 'plaquette' in the lattice, i.e. involving 

the lattice points (n, m), (n + 1, m), (n, m + 1), and (n + 1, m + 1) only. Thus, 

a 'local' initial-value problem for the lattice KdV can be given by specifying 

values ao, al,az,  a3, . . ,  of the field u on a staircase consisting of alternating 

horizontal and vertical steps (cf. [34]), see Figure 1. 

Choosing such initial data for the variables along such a staircase on the 

lattice, namely 

Uj , j  = :  a2j, U j + l , j  = :  a 2 j + l ,  j C Z, 

we perform iterations by updating the lattice variables u along a vertical shift in 

the m-direction, i.e. 

! ! 
U j , j + I  = a2 j  , U j + l , j + l  = a 2 j + l  , 
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Fig. 1. Configuration of periodic initial data on the lattice. 

using the lattice KdV equation (2.1). In this way we obtained the following 

mapping 

e6 
' d (4.1) a2j  -= a 2 j + l  --  6 ~- 2 j + l  = a 2 j + 2 ,  

g - -  a 2 j + 2  -I- a2j  

where 6 --= p - q, e = p + q, which by imposing periodic initial conditions on 

the staircase, i.e. 

a 2 ( j + p )  -~- a2 j ,  a 2 ( j + P ) + l  = a 2 j + l ,  

reduces to a finite-dimensional mapping of dimension 2P.  Introducing the vari- 

ables for the differences on odd and even sites of the staircase, i.e. 

Xj  ~- E + a 2 j - I  -- a 2 j + l ,  y j  -= g + a2j --  a 2 j + 2 ,  (4.2) 

the mapping can be even further reduced to a (2P - 2)-dimensional one which 

reads 

{ x j  = y j ,  

y~ = -- _ _  
xj-t-I 

with the Casimirs 

P 

~ Xj  : C1 ,  

j = l  

e6 e6 j = 1 , . . . , P ,  (4.3) 

Yj+l + ~ '  

P - 1  

yJ = c 2 ,  

j=O 
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C1 and C'2 being constant equal to Pe. 
The mapping (4.3) is a multidimensional generalization of the McMillan map- 

ping [35], and it arises as the compatibility condition of a linear (Zakharov- 

Shabat type of) problem, which is obtained using a special property of the matri- 

ces Lk and Mk of (2.4), (2.5) and performing at each site of the staircase a gauge 

transformation (cf. [34, 36]). The compatibility equation for the mapping (4.3) 

in terms of the reduced variables xj and yj is 

L~(k). Mj(k) = Mj+I(k)" Lj(k),  (4.4) 

where 

Lj(k) = ld + e6 Xj+l " ld yj ' 

( - e r / y j  1 )  (4.5) 
M s ( k )  = Id  y j  ' 

in which A = k 2 - p 2 .  From this reduced linear system one can construct a 

monodromy matrix T(k) by gluing the elementary translation matrices Lj along 

the staircase over one period P,  leading to 

P - 1  

T(k) = I-[ n j (k) .  (4.6) 

j = 0  

The trace of the monodromy matrix (4.6) is invariant under the mapping as a 

consequence of the periodicity. Thus, by expanding the trace in powers of k 2 we 

obtain P - 1 nontrivial independent invariants. 

The generalized McMillan mappings, viewed as periodic reductions of the 

lattice KdV equation (2.1), can be integrated using the finite-gap integation tech- 

nique (cf. [37]). For this purpose, it is useful to reformulate the linear system in 

a different way, namely in terms of 2P  x 2P  matrices as follows / 0- o, 0 / 
0 e6 - x l  1 0 
�9 . , 

L . ~  = A~p, L = 0 -Yl ". , (4.7a) 

" ,  " -  1 

7/ 0 -. .  0 -YP-1 

- ~ x o  7/ . . . . . .  0 e6 

and 

( - e r / y o  1 
0 0 1 

t " 0 - - e r / y l  1 
cp = M.r  M = (4.7b) 

: " . .  " . ,  " . ,  

0 . . .  0 - - e e f / y p - i  1 

o . . .  o o 
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It is may be one of the advantages of the lattice systems that one can take advan- 

tage of these kind of reformulations. The compatibility of the system (4.7) 

L ~ = M .  L .  M -1, (4.8) 

again yields the mapping (4.3). The Floquet parameter r/, arising from the quasi- 

periodicity of the eigenfunctions ~b k of (4.7), in conjunction with the spectral 

parameter A, form the local coordinates on the following invariant spectral 

c u r v e  

det (L - h i )  = ,~P()~ + sS) P + 7/e - ~Ttr ( T ( k ) ) .  (4.9) 

The explicit solutions of the mappings (4.3) can be expressed in terms of the 

theta-functions associated with the hyperelliptic curve (4.9). Furthermore, the 

invariants, arising from the coefficients of (4.9) are in involution with respect to 

the Poisson brackets 

{ x j  , y j , }  = 6j,j, - ~Sj,j,+l, { x j  , x j , }  = {y j  , y j , }  = 0. (4.10) 

The involution property of the invariants which was proven in [36], follows also 

from the Poisson bracket 

{ t rT(k) ,  t rT(k ' )}  = 0, (4.11) 

which also follows as a consequence of a nonultralocal Yang-Baxter equation for 

the mappings established in [38]. The mapping (4.3) is a canonical transformation 

and can be inferred also from a generating function which we obtained in [36] 

from the action of the lattice KdV equation. This is another important advantage 

of the discrete situation: starting from the generalized McMillan mappings, one 

has an unambiguous quantization procedure, leading to what we have called a 

theory of integrable quantum mappings (cf. [39-44]). In fact, as was exhibited in 

[41, 42], there is a very interesting new type of quantum Yang-Baxter structure 

underlying these discrete-time systems. As we can associate with any periodic 

solution of the lattice KdV equation a McMillan mapping of arbitrary dimension, 

and as the lattice KdV equation can be considered to be a lattice regularization of 

the continuum KdV equation, we can adopt the point of view that this quanization 

procedure of the corresponding McMillan mappings amounts to a quantization 

of the KdV system. We will not go into any more details on this issue here, but 

refer to the paper by Prof. Faddeev in this symposium for a treatment of similar 

issues (cf., also [45]). 

As we have demonstrated above, the lattice KdV equation yields integrable 

mappings of arbitrary dimension as special reductions. This is very useful for 

nonlinear dynamics, as such maps can be used as a starting point for the study 

of near-integrable phenomena (e.g., by studying small perturbations around the 

integrable situation). It is only relatively recently that integrable maps have been 
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systematically studied (cf. [46-51]), for other treatments in the literature. Pos- 

sibly, this offers a hand to people working in the arena of chaotic phenomena, 

who now have at their disposal a large number of exactly solvable, yet highly 

nontrivial, discrete dynamical systems (other than the simple linear ones that 

were are traditionally used), to study the more analytical aspects of transitions 

from integrability to chaos. 

5. Similarity Reductions of Integrable Lattices 

Similarity solutions of the lattice equations provide another class of solutions 

that we want to consider in this talk. As is well-known the similarity solutions of 

integrable nonlinear partial differential equations (PDEs) give rise to the Painlev6 

transcendents. For instance, the Painlev6 II equation 

y " = 2 y 3 + ~ y + # ,  (5.1) 

in which ~ is the independent variable, is related to the KdV equation as well as to 

the MKdV equation by similarity reduction (for the connection between Painlev6 

equations and soliton equations, see [52-54] and references therein). The Painlev6 

equations were discovered in the beginning of this century in connection with the 

problem of classifying all second-order ordinary differential equations without 

movable singularities other than poles (cf. [55-57]). They were encountered in 

physics from the seventies onwards in many places, e.g., in the correlation func- 

tions of quantum exactly solvable (spin) models and, more recently, in connection 

with 2D quantum gravity and random matrix models. The issue of constructing 

difference analogues of the Painlev6 equations has been outstanding for a long 

time, but in the last few years major progress in this direction has been achieved 

(see [58] for a review). One of the methods that has been applied to obtain such 

discrete Painlev6 equations was the method of similarity reduction, extended to 

the lattice situation in [59]. 

The similarity reduction in the lattice case exhibits some new features with 

respect to the continuum case. Let us illustrate our idea by the analogy to that 

case. For example, the reduction to similarity solutions for the potential KdV 

can be formulated in terms of a system consisting of the equation itself and an 

integrable constraint, namely 

0 = u + x u z  + 3tut~ (5.2) 

from which one derives the similarity variable ~ =- x /3 ( t l / 3 ) ,  i.e. u ( x , t )  = 

t -1/3 = u(~). As was shown in [59], in the lattice case we supplement the 

original lattice equation, which is the lattice (potential) KdV Equation (2.1), 

with an integrable constraint 

U n + l , m  - -  U n - l , m  

0 = u + pn  2p - I t n + l , r n  -~ U n _ l ,  m 

Un,mq._ 1 - -  U n , m _  1 

+ qm 2q - Un,m_}_ 1 -}- U n , m _  1 
(5.3) 
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which, in contrast to the continuous case, is nonlinear. Although it might not be 

possible to solve explicitly for a similarity variable, nevertheless it provides us 

with a system of difference equations, which carries an associated isomonodromic 

deformation problem. In fact, the similarity reduction can be obtained from the 

Lax pair of the lattice KdV equation (2.4), together with 

S - ' r  ~_k  + p + k j j . r  

(5.4) 

In Equation (5.4) we used the following notations: 

--~ 2 p  - -  lZn.q-1, m q- U n _ l , m ,  Rq = 2q - U n , m +  1 + U n , m _ l ,  

Vp = ( p -  un+~,,~ 1 ) 
* p q- Zl, n _ l ,  m 

* - (p  - un+l,.~) ' (5.5) 

and Vq, resp., V~ denote the matrices obtained from (5.5) by interchanging p ~ q 

and (n + 1 ,m) ~ (n,m rk 1). * denotes in (5.5) the product of the diagonal 

entries, and finally the matrices F and S_ are given by 

1 0  ' 

(00) 
S _ =  O 1  " 

Clearly, by imposing the constraint (5.3) arising from the compatibility of the 

linear system (2.4) of the lattice KdV equation and the isomonodromy problem 

(5.4), we have an integrable reduction corresponding to the lattice analogue of a 

similarity reduction. In order to give an interpretation of this reduction from the 

point of view of the initial-value problem, let us note that global solutions can be 

obtained by imposing initial data on localized configurations of sites ( 'embryons')  

on the lattice (cf. [59]). This contrasts the situation of the mappings treated in 

the previous sections, where we have a periodic initial-value problem on an 

infinite path in the two-dimensional lattice. The similarity reduction is completely 

analogous to the continuous case, in which the PDE allows for similarity solutions 

that are obtained from an ordinary differential equation that requires initial data 

at a single point in spacetime. 

So far, we have discussed the similarity reduction of the lattice KdV equation. 

However, to get a more direct connection to the Painlev6 II equation, it is more 

convenient to work with the lattice MKdV equation, this providing an alternative 

way of obtaining a lattice discretization thereof. In that case, the compatibility 
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condition for (2.4) and (5.4) will again lead to an integrable constraint which 

is 

n V n + l , m  - V n - l , m  + m Vn,m+l  - V n , m - 1  = 0. (5.6) 

Vn+l,rn -~ Vnl ,m Vn,m --}- Vn ,m_  l 

Again, the system consisting of the lattice MKdV Equation (2.12) together with 

the similarity constraint (5.6) can be viewed as a lattice analogue of the Painlev6 

II equation. It is this system that we shall refer to as the lattice P-II system. 

We shall now discuss the continuum limits that enables one to recover Painlev6 

II from the lattice P-II system. In Section 2, we already discussed the continuum 

limit that  leads from the lattice equation to the (potential) KdV equation. As 

the lattice P-II is written as a system containing the original equation plus a 

similarity constraint, it suffices to look at what happens under this limit with 

the similarity constraint. Again, we have to perform the limit in two steps: the 

first leading to the differential-difference equation, and then the next step to the 

partial differential equation. Performing the first step, (2.6), we obtain from (5.3) 

the following nonautonomous differential-difference equation 

U -l) + pT.o ( n+l +  n-1) 
0 =  U n +  + 

2]) - Un+ 1 q- Un_ 1 

2p7. (TZnq_ 1 - -  U n _ l )  

-F ( 2 / ) - u n + I  + U n - 1 )  2" (5.7) 

The subsequent next step, performing the limit (2.10) leads to the similarity con- 

straint (5.2). Thus, by two subsequent limits, the lattice system goes over to the 

system containing the potential KdV equation and the l i n e a r  similarity constraint, 

which is then related to the Painlev6 II equation by a Miura transformation. 

To get the more direct connection to Painlev6 II, we can also use the lattice 

MKdV rather than the lattice KdV. In that case, the similarity constraint (5.6) 

has a limit 

0 : 27" 0~-(Yn+l -I- Y n - 1 )  "q- n (e y n + ' - y n - '  - e Y ' ~ - ' - Y n + l ) ,  (5.8) 

and the second continuum limit leads to the MKdV and similarity constraint 

x y z  + 3 t y t  = 0, (5.9) 

which immediately leads to the Painlev~ II equation (for special value of the 

parameter # = 0) after solving the linear constraint in terms of a similarity 

variable. 

A more direct way of obtaining Painlev~ type equations on the differential- 

difference level, is by eliminating from (5.7) and (5.8) the derivatives with respect 

to 7. by using Equations (2.9), resp., (2.18), which in the case of the MKdV 

equation, leads to an ordinary difference equation, namely 

Zn+ 1 -~ Z n -  l -f- - -  - O, Zn - -  tanh (Yn+l  - Y n - 1  , (5.10) 
7. 1-z  



152 FRANK NIJHOFF AND HANS CAPEL 

which under the above limit also leads to Painlev6 II. It is this equation that 

we would like to call nowadays the discrete Painlev~ H equation. Other discrete 

Painlev6 equations, i.e. nonautonomous ordinary difference equations that tend 

to the Painlev6 transcendents in a proper continuum limit and that share many of 

the integrability characteristics with the original Painlev6 equations, have been 

derived and studied in the recent literature (cf. [60-63]). This is an area of 

intensive research and many new and exciting results are to be expected here. 

6. Direct Linearization 

Let us now explain how the lattice equations arise from the direct linearization 

approach. This generalization of the inverse scattering approach, first introduced 

by Fokas and Ablowitz in [71] and generalized in [72-74] (see also [18] for 

a review), employs singular linear integral equations with general integration 

measure and contour. The integral equation introduced in [71 ] is of the form 

L u~ 
uk + Pk d)~(g) k + g -- Pk. (6.1) 

Here uk .is a wave function to be solved from the integral equation depending on 

a complex spectral parameter k and on the coordinates of the system. As we shall 

note below, these coordinates can be chosen to be discrete as well as continuous, 

and it is the freedom in this choice that makes integral equations of the type 

(6.1) a convenient tool to develop discrete integrable systems. Furthermore, in 

Equation (6.1) C is a contour in the complex k-plane and d),(k) is a suitably 

chosen integration measure, whereas Pk is a free-wave function depending in a 

given way on k and on the coordinates of the system. The contour C and measure 

d)~(k) need to be chosen to be such that the solution uk of the integral equation 

for given Pk is unique. 

Consider now, for example, the free-wave function 

Pk = ekX+k3t, (6.2) 

and let uk be the solution of (6.1) for some choice of C and d),(k), then the 

potential 

u(x , t )  = f c  d)~(k)uk(x,t)  (6.3) 

with the same C and dA(k) satisfies 

(0t - 03)u - 3(0zu) 2 = 0, (6.4) 

i.e. v = Oxu satisfies the Korteweg-de Vries equation. 

The integral Equation (6.1) is particularly useful to obtain the lattice discretiza- 

tion of the KdV equation. For this we need to see how B~icklund transformations 
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(BTs) arise in the direct linearization approach. The BTs are generated by sin- 

gular transformations of the measure, or equivalently by a transformation of the 

free-wave function 

p + k  
Pk ---+/Sk p -  k Pk. (6.5) 

In fact, it can be shown that ~ = f c  dA(k)~2k with 5k being the solution of 

(6.1) with Pk replaced by f3 k, is again a solution of (6.4). Considering now two 

different BTs, one given b y -  and p as paremeter as in Equation (6.5), and the 

other one being given by replacing the ~ and p replaced by A and q, we obtain by 

combining the two BTs 

( p +  q - ~z + u ) ( p -  q + ~ -  ~) = p2 _ q2 (6.6) 

which is the so-called Bianchi identity expressing the commutativity of the two 

BTs. The connection with the lattice KdV is now clear: the two BTs can be inde- 

pendently iterated retaining the commutativity, leading to a lattice of B/~cklund 

transformed fields u, and the Bianchi identity (6.6) can be interpreted as a con- 

sistency condition on a lattice in the form of a partial difference equation. Thus, 

associating the two BTs -and ^ with two basic translations on a two-dimensional 

lattice, one finds the lattice KdV equation (2.1). Thus, this partial difference 

equation is integrable in the sense that solutions can be obtained solving a linear 

integral equation. 

Now, to see the interconnection between the various different lattice equations, 

we introduce a slight generalization of the integral Equation (6.1), namely 

s .e 
uk + Pk d A(g) k + g - pkck, (6.7) 

where uk is now a vector solution, each entry being associated with the cor- 

responding entry of the vector ek in the inhomogeneous term, which is given 

by (ck)i = U, i E Z. Thus, we get an infinite vector of solutions, and for this 

'wave'-vector we can derive an infinite-matrix system of equations. In fact, intro- 

ducing the infinite-component 'potential' matrix U, with entries ~Zi,j, i , j  E Z, 

defined as 

U = ; d A(g) ue tee, (6.8) 

in which tce denotes the adjoint vector to ce and considering again a BT generated 

by (2.7), we can derive the following relations for the transformed wave-vectors 

fik 

(p-k)ak = (p+ O).uk, 

(p + k)uk = (p - A + U -  O) .  ilk. (6.9a) 
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The matrix A and its transposed tA that we have introduced in Equation (6.9) 

are index-raising operators acting from the left, respectively, from the right, 
= o (i+11 i.e. it acts on, e.g., uk by ( A .  uk) (i) ~k and O is a projection matrix 

singling out the central element of the infinite-component matrix, i.e. for example 

(O �9 uk) (i) o (0)~ By integrating Equations (6.9) over the region C with the "~k ui,O. 
same measure d)~(g), we arrive at a system of equations for U 

~ l .  (p - tA) = (p + A - ~ l - O ) -  U. (6.9b) 

The system of Equations (6.9b) is an infinitely coupled system, and from it 

one can derive an ininitely coupled system of nonlinear equations for the matrix 

U. However, it can be shown that by properly combining (6.9b) for different 

lattice directions and different lattice parameters p, q, . . . .  we can get rid of the 

index-raising operators A and find closed partial difference equations, together 

with their Lax pairs, by using Equations (6.9) to obtain finite-dimensional matrix 

systems for suitably chosen subsets of components of the vector uk. Thus, we 

can obtain from (6.9) the basic set of Equations (2.13), as well as (2.14) and 

(2.20) of Section 2, by making the following identifications 

u--Uo,o,  v - - l -  . U  , 
r + A  0,0 

I ) (6.10a) 
w = l -  U ' r ' +  tA 0,0' 

s =  - - . U . - -  , t___ - - . U .  tA (6.10b) 
r + A  r~+  tA 0,0 r + A  0,0 

Considering these objects as functions of the lattice sites (n, m), we obtain the 

corresponding lattice variables, respectively un,m, Vn,m, wn,m, Sn,m, and tn ,~  

of Section 2. Introducing, furthermore, the variables depending on the spectral 

parameter h 

( 1 )(0) 
vk -- "uk , uk -- (uk) (0) (6.11) 

r + A  

we can easily derive from having the general system (6.9) the set of equations 

(p - k)~k = (p - r )vk  + ~uk, (6.12a) 

(p + k)vk = (p + r )?k  - vgk,  (6.12b) 

from which one can also derive the Lax representations presented in Section 

2. As a particular interesting special example included in this entire parameter 

family of related objects, we look into the variables for r = - p ,  r r = - p .  In 
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that case, we have a very simple situation and, in fact, the system (6.12) leads 

to the following linear system 

~Pn,~(t~) = Pn+l,m(n) + I~,,~P~-I,,~(~), (6.13a) 

Pn,m+t(n) = Pn,,~(t~) + 1Qn,mPn-l,m(t~), (6.13b) 

in terms of the objects 

( p + k ~  -~/~ ( q + ~ - ~ / 2  

= t , q  - k )  

]Rn,rn __ hn,m Qn,rn - 2p hn,m+l (6.14) 
-- hn - l ,m '  P +  q hn- l ,m 

where hn,m = 1 + 2pSn,m, and where ~ = 2p (p2 _ k2)-1/2 is the 'effective' 

spectral parameter. The compatibility conditions of the system (6.13) leads to the 

following discrete equation for the variable Qn,m 

Qn,m+l C~Qn,m - 1 
- ( 6 . 1 5 )  

Q,n+l,m OZQn+l,m+l - 1 ' 

in which c~ = (q2 _ p2)/(4p2 ) arises as an integration constant. Equation (6.15) 

can be considered to be a discrete version of the Volterra-Kac-van Moerbeke 

equation (cf. [24]), which is recovered after a suitable continuum limit. In [63] 

another lattice discretization of the Volterra equation was discussed in connection 

with a q-deformation of the discrete Painlev6 I equation, arising in connection 

with orthogonal polynomials. We mention that the continuous-time Volterra sys- 

tem plays a role in matrix models for two-dimensional quantum gravity (cf., 

e.g., [60, 64, 65]). We expect, that the discrete Volterra Equation (6.15) would 

play a similar role in a discrete variant of that theory. Furthermore, such discrete 

lattice equations are also occurring in connection with convergence acceleration 

algorithms in numerical analysis (cf., e.g., [66]) and also [67], as well as in the 

QD-algorithm and the theory of Pad6 approximants (cf. [68-70]). This shows 

the ubiquitousness of the KdV equation in its discrete form: one hundred years 

after its appearance we have not yet ceased to marvel at its great variety of 

disguises. 
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