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The Discrete Shearlet Transform : A New

Directional Transform and Compactly

Supported Shearlet Frames

Wang-Q Lim

Abstract

It is now widely acknowledged that analyzing the intrinsic geometrical features of the underlying

image is essential in many applications including image processing. In order to achieve this, several

directional image representation schemes have been proposed. In this paper, we develop the discrete

shearlet transform (DST) which provides efficient multiscale directional representation and show that the

implementation of the transform is built in the discrete framework based on a multiresolution analysis

(MRA). We assess the performance of the DST in image denoising and approximation applications.

In image approximations, our approximation scheme using the DST outperforms the discrete wavelet

transform (DWT) while the computational cost of our scheme is comparable to the DWT. Also, in image

denoising, the DST compares favorably with other existing transforms in the literature.

Index Terms

Discrete shearlet transform, shearlets, wavelets, multiresolution analysis, image approximations, im-

age denoising.

EDICS Category: SMR-REP, TEC-MRS and TEC-RST

I. INTRODUCTION

One of the most useful features of wavelets is their ability to efficiently approximate signals contain-

ing pointwise singularities. Consider a one-dimensional signal s(t) which is smooth away from point
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discontinuities. If s(t) is approximated using the best M -term wavelet expansion, then the rate of decay

of the approximation error, as a function of M , is optimal. In particular, it is significantly better than the

corresponding Fourier approximation error [1],[2].

However, wavelets fail to capture the geometric regularity along the singularities of surfaces, because

of their isotropic support. To exploit the anisotropic regularity of a surface along edges, the basis must

include elongated functions that are nearly parallel to the edges. Several image representations have

been proposed to capture the geometric regularity of a given image [3],[4],[5],[6],[7],[8]. They include

curvelets [7], contourlets [5] and bandelets [3]. In particular, the construction of curvelets is not built

directly in the discrete domain and they do not provide a multiresolution representation of the geometry.

In consequence, the implementation and the mathematical analysis are more involved and less efficient.

Contourlets are bases constructed with elongated basis functions using the combination of a multiscale

and a directional filter bank. However, contourlets have less clear directional features than curvelets,

which leads to artifacts in denoising and compression. Bandelets are bases adapted to the function that

is represented. Asymptotically, the resulting bandelets are regular functions with compact support, which

is not the case of contourlets. However, in order to find basis optimally adapted to an image of size N ,

the bandelet transform searches for the optimal geometry. For an image of N pixels, the complexity of

this best bandelet basis algorithm is O(N3/2) which requires extensive computation [8].

Recently, a new representation scheme has been introduced in [9] and [10]. This is so called the

shearlet representation which yields nearly optimal approximation properties [11]. Shearlets are frame

elements used in this representation scheme. This new representation is based on a simple and rigorous

mathematical framework which not only provides a more flexible theoretical tool for the geometric

representation of multidimensional data, but is also more natural for implementation.As a result, the

shearlet approach can be associated to a multiresolution analysis (MRA) and this leads to a unified

treatment of both the continuous and discrete world [10]. However, all known constructions of shearlets

so far are band-limited functions which have an unbounded support in space domain. In fact, in order

to capture the local features of a given image efficiently, representation elements need to be compactly

supported in the space domain. Furthermore, this property often leads to more convenient framework for

practically relevant discrete implementation.

The paper is structured as follows. In Section II, we describe some basic properties of shearlets and

explain an intuitive idea of how shearlets can provide efficient geometric representations. We construct

compactly supported shearlets generated by separable functions in Section III. In this case, the separable

generating functions are constructed using a MRA and this leads to the fast discrete shearlet transform
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(DST) which we describe in Section IV. Applications of the DST in image approximations and denoising

are discussed in Section V and VI. Concluding remarks are drawn in Section VII.

II. SHEARLETS

A family of vectors {ϕn}n∈Γ constitute a frame for a Hilbert space H if there exist two positive

constants A,B such that for each f ∈ H we have

A‖f‖2 ≤
∑

n∈Γ

|〈f, ϕn〉|2 ≤ B‖f‖2.

In the event that A = B, the frame is said to be tight. Let us introduce some notations that we will use

throughout this paper. The Fourier transform of f is defined by

f̂(ω) =

∫

Rd

f(x)e−2πix·ωdx.

Also, for t ∈ Rd and A ∈ GLd(R), we define the following unitary operators.

Tt(f)(x) = f(x− t)

and

DA(f)(x) = |A|− 1

2 f(A−1x).

Here, we denote GLd(R) the set of all d× d invertible matrices with real entries. Finally, for q ∈ (12 , 1]

and a > 1, we define

A0 =



aq 0

0 a
1

2


 and B0 =



1 1

0 1


 (II.1)

and

A1 =



a

1

2 0

0 aq


 and B1 =



1 0

1 1


 . (II.2)

We are now ready to define a shearlet frame as follows. Let sj =
⌈
aj(q−1/2)

⌉
and c ∈ R+ be the

sampling constant. For ψ1
0, . . . , ψ

L
0 , ψ

1
1, . . . , ψ

L
1 ∈ L2(R2) and φ ∈ L2(R2), we define

Ψ0 = {ψi
jkm : j, k ∈ Z, m ∈ Z

2, i = 1, . . . , L},

and

Ψ = {Tcmφ : m ∈ Z
2} ∪ {ψi

jkm : j ≥ 0,−sj ≤ k ≤ sj , m ∈ Z
2, i = 1, . . . , L}

∪ {ψ̃i
jkm : j ≥ 0,−sj ≤ k ≤ sj , m ∈ Z

2, i = 1, . . . , L}
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where

ψi
jkm = DA−j

0 B−k
0
Tcmψ

i
0 and ψ̃i

jkm = DA−j
1 B−k

1
Tcmψ

i
1. (II.3)

If Ψ (or Ψ0) is a frame for L2(R2) then we call the functions ψi
jkm and ψ̃i

jkm in the system Ψ (or Ψ0)

shearlets.

Observe that shearlets in Ψ (or Ψ0) are obtained by applying translations with the sampling constant

c followed by applying anisotropic scaling matrices Aj
ℓ and shear matrices Bk

ℓ to the fixed generating

functions ψi
0 and ψi

1. Those matrices Aj
ℓ and Bk

ℓ lead to windows which can be elongated along arbitrary

directions and the geometric structures of singularities in images can be efficiently represented and

analyzed using them. In fact, it can be shown that 2 dimensional piecewise smooth functions with

C2singularities can be approximated with nearly optimal approximation rate using shearlets. We refer to

[11] for details. Furthermore, one can show that shearlets can completely analyze the singular structures

of piecewise smooth images [12]. Those properties of shearlets are useful especially in image processing

since singularities and irregular structures carry essential information in an underlying image. For example,

discontinuities in the intensity of an image indicate the presence of edges. The following example shows

Fig. 1. The tiling of the frequency plane R̂
2 induced by shearlets in Ψ. The tiling of horizontal conic region is illustrated in

solid line and the tiling of vertical conic region is in dashed line.

how shearlets localize the frequency domain. Let us assume that a = 2 and q = 1 in (II.1) and (II.2).

For any ω ∈ R̂2, ω1 6= 0 (or ω2 6= 0), let ψ1
0 and ψ1

1 be given by

ψ̂1
0(ω) = ψ̂1(ω1)ψ̂2(

ω2

ω1
),

ψ̂1
1(ω) = ψ̂1(ω2)ψ̂2(

ω1

ω2
)
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where ψ̂1, ψ̂2 are infinitely smooth functions, supp(ψ̂1) ⊂ [−4
5 ,−1

4 ]∪ [14 ,
4
5 ] and supp(ψ̂2) ⊂ [−1, 1]. We

assume that
∑

j≥0

|ψ̂1(2
−jω1)|2 = 1 for |ω1| ≥

1

2

and
1∑

ℓ=−1

|ψ̂2(ω1 + ℓ)|2 = 1 for ω1 ∈ [−1, 1].

Then it can be easily shown that the band-limited functions ψ̂1
0 and ψ̂1

1 generate a tight frame Ψ for

L2(R2) with an appropriate choice of φ and some modification of shearlet elements ψ1
jkm and ψ̃1

jkm

whose frequency support intersects the line ω1 = ω2 or ω1 = −ω2 (see [11] for more details). Figure 1

shows the tiling of the frequency plane R̂2 using the band-limited shearlet system Ψ that we described

above. It was shown that this band-limited system Ψ can provide nearly optimal approximation for a

piecewise smooth function f with C2 smoothness except at points lying on C2 curves [11]. However,

the band-limited shearlet elements have an unbounded support in the space domain. Thus, they are not

well localized in the space. Furthermore, it is not clear how to develop the discrete shearlet transform

naturally derived from this construction so that it inherit the appropriate mathematical properties from

the corresponding shearlet system on continuous domain.

The aim of this paper is basically to provide the novel construction of shearlets which overcomes

the drawbacks of the band-limited shearlets and other directional representation systems. In addition to

directionality and anisotropy, we identify a wish list for the new construction of shearlets :

1) Frame property : This will lead to a stable reconstruction of a given image.

2) Localization : The each of shearlet frame elements needs to be well localized in both the space

and the frequency domain.

3) Efficient implementation : The discrete implementation needs to be naturally derived from the

construction of shearlets so that it inherit the nice properties from the corresponding shearlet system.

4) Sparse approximation : The new construction scheme should provide sparse approximation com-

parable with the band-limited shearlets.

III. CONSTRUCTION OF SHEARLETS

In this section, we will introduce some useful sufficient conditions to construct compactly supported

shearlets associated with a MRA. Based on this construction, we will develop the DST in Section IV.
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A. Some sufficient conditions for the construction of shearlets

Recall that c > 0 is the sampling constant in (II.3). We need the following result in [13] to derive the

main result in this section.

Theorem III.1. Let c > 0 and for s ∈ R̂2, we define

Φ(s) = ess sup
ω∈R̂2

L∑

i=1

∑

j,k∈Z

|ψ̂i
0((B

T
0 )

kAj
0ω)ψ̂

i
0((B

T
0 )

kAj
0ω + s)| (III.4)

where ψ1
0, . . . , ψ

L
0 ∈ L2(R2). If there exist 0 < D1 < D2 <∞ such that

D1 ≤
L∑

i=1

∑

j,k∈Z

|ψ̂i
0((B

T
0 )

kAj
0ω)|2 ≤ D2 for a.e ω ∈ R̂

2 (III.5)

and
∑

s∈Z2\{0}

√
Φ
(s
c

)
Φ
(
−s
c

)
= ǫ0 < D1 (III.6)

then Ψ0 is a frame for L2(R2) with frame bounds C1 and C2 satisfying

1

c2
(D1 − ǫ0) ≤ C1 ≤ C2 ≤

1

c2
(D2 + ǫ0).

By Theorem III.1, one can show the following result.

Proposition III.2. Let α > 0 and γ > 2(α+ 2). If functions ψ1
0, . . . , ψ

L
0 satisfy

|ψ̂i
0(ω)| ≤ C|ω1|α

1

(1 + |ω1|2)γ/2
( |ω1|2
|ω1|2 + |ω2|2

)γ/2
(III.7)

for a.e ω ∈ R̂2 and

D1 ≤
L∑

i=1

∑

j,k∈Z

|ψ̂i
0((B

T
0 )

kAj
0ω)|2 for a.e ω ∈ R̂

2 (III.8)

then there exists c0 > 0 such that Ψ0 is a frame for L2(R2) for any sampling constant c ≤ c0.

Proof : See Appendix A.

Proposition III.2 implies that if functions ψ1
0, . . . , ψ

L
0 have sufficient vanishing moments and fast decay

in the frequency domain and III.8 is satisfied then there exists the sampling constant c0 such that the

functions ψ1
0, . . . , ψ

L
0 generate a frame Ψ0 with any sampling constant c ≤ c0. This result can be easily

extended to obtain similar sufficient conditions for Ψ to be a frame for L2(R2).

Corollary III.3. Let α and γ be constants as in Proposition III.2. Assume that α′ ≥ α + γ and γ′ ≥
α′ − α+ γ. For i = 1, . . . , L, we define ψi

0(x1, x2) = γi(x1)θ(x2) such that

|γ̂i(ω1)| ≤ K1
|ω1|α

′

(1 + |ω1|2)γ′/2
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and

|θ̂(ω2)| ≤ K2(1 + |ω2|2)−γ′/2.

If

ess inf
|ω2|≤1/2

|θ̂(ω2)|2 ≥ K3 > 0 (III.9)

and

ess inf
βa−q≤|ω1|≤β

L∑

i=1

|γ̂i(ω1)|2 ≥ K4 > 0 for 0 < β ≤ min (1,
aq

2
) (III.10)

then there exists c0 > 0 such that Ψ0 is a frame for L2(R2) for all c ≤ c0.

Proof : First, it is easy to see that

|ω1|α
′

(1 + |ω1|2)γ′/2(1 + |ω2|2)γ′/2
< C

|ω1|α+γ

(1 + |ω1|2)γ/2
1

(|ω1|2 + |ω2|2)γ/2
.

This implies that ψ1
0, . . . , ψ

L
0 satisfy (III.7). Thus, it suffices to show (III.8). Let Λ = {(ω1, ω2) ∈ R̂2 :

βa−q ≤ |ω1| ≤ β, |ω2| ≤ 1/2}. Direct computation gives us

∑

j,k∈Z

L∑

i=1

|ψ̂i
0((B

T )kAjω)|2 ≥ K2
3K

2
4

∑

j,k∈Z

χAj
0(B

T
0 )kΛ(ω)

for a.e ω ∈ R̂2 and
⋃

j∈Z

⋃

k∈Z

Aj
0(B

T
0 )

kΛ = R̂
2.

We complete the proof. ✷

Corollary III.4. For i = 1, . . . , L, let ψi
0(x) = γi(x1)θ(x2), ψ

i
1(x) = γi(x2)θ(x1) and φ(x) = θ(x1)θ(x2)

where the functions γi and θ satisfy the assumptions in Corollary III.3. Then there exists c0 > 0 such

that ψi
ℓ and φ generate a shearlet frame Ψ of L2(R2) for c ≤ c0.

Proof : Note that in this case, (III.4) and (III.5) become

Φ(s) = ess sup
ω∈R̂2

1∑

ℓ=0

L∑

i=1

∞∑

j=0

sj∑

k=−sj

|ψ̂i
ℓ((B

T
ℓ )

kAj
ℓω)ψ̂

i
ℓ((B

T
ℓ )

kAj
ℓω + s)|+ |φ̂(ω)φ̂(ω + s)| (III.11)

and

D1 ≤
1∑

ℓ=0

L∑

i=1

∞∑

j=0

sj∑

k=−sj

|ψ̂i
ℓ((B

T
ℓ )

kAj
ℓω)|2 + |φ̂(ω)|2 ≤ D2 for a.e ω ∈ R̂

2 (III.12)
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where sj =
⌈
aj(q−1/2)

⌉
. (III.11) and (III.12) can be similarly estimated to obtain (III.6) and the upper

bound D2 in (III.12). We now estimate the lower bound in (III.12). Define

Λ0 = {ω ∈ R̂
2 : βa−q ≤ |ω1| ≤ β, |ω2| ≤ 1/2}

and

Λ1 = {ω ∈ R̂
2 : βa−q ≤ |ω2| ≤ β, |ω1| ≤ 1/2}.

Then we obtain

1∑

ℓ=0

L∑

i=1

∞∑

j=0

sj∑

k=−sj

|ψ̂i
ℓ((B

T
ℓ )

kAj
ℓω)|2 + |φ̂(ω)|2 ≥ K

1∑

ℓ=0

∞∑

j=0

sj∑

k=−sj

χAj
ℓ(B

T
ℓ )kΛℓ

(ω) +K ′χ[−1/2,1/2]2(ω)

for a.e ω ∈ R̂2 and

[−1/2, 1/2]2 ∪
( 1⋃

ℓ=0

∞⋃

j=0

sj⋃

k=−sj

Aj
ℓ(B

T
ℓ )

kΛℓ

)
= R̂

2.

This completes the proof. ✷

���

���

���

���

Fig. 2. Essential frequency supports of shearlets ψi
0 and ψi

1 in the frequency plane : Nonseparable shearlets (left) and separable

shearlets (right). Both of separable and nonseparable windows can cover whole frequency plane by applying shear and scaling

matrices.

Corollaries III.3 and III.4 show us that one can easily construct compactly supported shearlet frames

generated by separable generating functions. Observe that horizontal and vertical rectangular windows

can cover frequency plane by applying scaling and shear matrices (see Figure 2 (right)) and the resulting

windows provide directional decomposition of the frequency plane. We should point out that compared to

shearlets generated from the separable functions, shearlets generated from nonseparable functions whose

essential frequency support looks as in Figure 2 (left) can more effectively cover the frequency plane

R̂2. In fact, in this case there is basically no overlap between the essential supports of shearlets as we
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level 0

level 1

level 0

level 1

Fig. 3. Examples of shearlets in the space and frequency domain: Shearlets ψi
jk0 associated with matrices A0 and B0 in (II.1)

when j = 0, 1 (top rows). The magnitude of the Fourier transform of shearlets |ψ̂i
jk0| associated with matrices A0 and B0 in

(II.1) when j = 0, 1 (bottom rows).

have seen in Figure 1. This indicates nonseparable generating functions for shearlet system can provide

the better frame bounds or even tight frame. However, the advantage of this separable construction is of

course the simplicity of the construction and one can easily obtain shearlets with good properties such

as compact support and regularity. On the other hand, this separibility leads to a fast implementation

of computing the shearlet coefficients as we will show in the next sections. Figure 3 shows compactly

supported shearlets associated with matrices A0 and B0 which provide directional windows in the space

and frequency domain. Note that in this case, all of those are generated by separable functions of the

form γi(x1)θ(x2). We now describe concrete examples of compactly supported shearlet frames using

Corollaries (III.3) and (III.4).

B. Examples of compactly supported shearlets

Assume that a = 4 and q = 1 in (II.1). Then we have

A0 =



4 0

0 2


 and B0 =



1 1

0 1


 .

Let us consider a box spline [1] of order m defined as follows.

θ̂m(ω1) =
(sinπω1

πω1

)m+1
e−iǫω1
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with ǫ = 1 for m even and ǫ = 0 for m odd. Observe that we have the following two scaling equation.

θ̂m(2ω1) = m0(ω1)θ̂m(ω1)

and

m0(ω1) = (cosπω1)
m+1e−iǫπω1 .

Let α′ and γ′ be positive real numbers as in Corollary III.3. We now define

ψ̂1
0(ω) = (i)ℓ

(
sinπω1

)ℓ
θ̂m(ω1)θ̂m(ω2)

and

ψ̂2
0(ω) = (i)ℓ

(
sin

πω1

2

)ℓ
θ̂m(

ω1

2
)θ̂m(ω2)

where ℓ ≥ α′ and m+ 1 ≥ γ′. Then by Corollary III.3, ψ1
0 and ψ2

0 generate a frame Ψ0 for c ≤ c0 with

some c0 > 0.

Define φ(x1, x2) = θm(x1)θm(x2),

ψ̂1
1(ω) = (i)ℓ

(
sinπω2

)ℓ
θ̂m(ω2)θ̂m(ω1)

and

ψ̂2
1(ω) = (i)ℓ

(
sin

πω2

2

)ℓ
θ̂m(

ω2

2
)θ̂m(ω1).

Then, by Corollary (III.4), the functions φ, ψi
ℓ for ℓ = 0, 1 and i = 1, 2 generate a frame Ψ with c ≤ c0

for some c0 > 0.

IV. DISCRETE SHEARLET TRANSFORM

In the previous section, we constructed compactly supported shearlets associated with a MRA. In this

section, we will show that this MRA leads to the fast DST which computes the shearlet coefficients

〈f, ψi
jkm〉 and 〈f, ψ̃i

jkm〉. To be more specific, we let a = 2, q = 1 and the sampling constant c = 1

in (II.1) and (II.2). Also, to save notations, we slightly modify the notations we used in the previous

section. First, for j ≥ 0, define

A0,j =



2j 0

0 2⌊j/2⌋


 , B0 =



1 1

0 1


 and Q0 =



2 0

0 1


 .

and

A1,j =



2⌊j/2⌋ 0

0 2j


 , B1 =



1 0

1 1


 and Q1 =



1 0

0 2


 .
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Finally, we let x = (x1, x2) ∈ R2,n = (n1, n2),m = (m1,m2),d = (d1, d2) ∈ Z2 and I2 be a 2 by 2

identity matrix.

A. Forward Transform

Assume that θ0 ∈ L2(R) is a compactly supported function such that {θ0(· − n1) : n1 ∈ Z} is an

orthonormal sequence and

θ0(x1) =
∑

n1∈Z

h0(n1)
√
2θ0(2x1 − n1). (IV.13)

Also, define

γ(x1) =
∑

n1∈Z

g(n1)
√
2θ0(2x1 − n1) (IV.14)

such that γ has sufficient vanishing moments and the pair of the filters h0 and g is a pair of conjugate

mirror filters. We also assume that γ and θ satisfy the conditions in Corollary III.3. For j ∈ Z+ ∪ {0},

let

θ0j,n1
(x1) = 2j/2θ0(2jx1 − n1) and γj,n1

(x1) = 2j/2γ(2jx1 − n1). (IV.15)

Then {θ0j,n1
}n1∈Z and {γj,n1

}n1∈Z are orthonormal bases of V 0
j = span{θ0j,n1

: n1 ∈ Z} and Wj =

span{γj,n1
: n1 ∈ Z} respectively. Also, we have V 0

j+1 = V 0
j ⊕Wj for each j ∈ Z and further assume

subspaces V 0
j satisfy the MRA conditions. For s ∈ [−1, 1], define

ψ0
jsn(x) = DB−s

0 A−1

0,j
Tnψ

0
0

where ψ0
0(x) = γ(x1)θ

0(x2). In this case, we have

ψ0
j0n(x) = γj,n1

(x1)θ
0
⌊j/2⌋,n2

(x2) and ψ0
jsn = DB−s

0
ψ0
j0n.

Similarly, we also define

ψ̃0
jsn(x) = DB−s

1 A−1

1,j
Tnψ

0
1

where ψ0
1(x) = γ(x2)θ

0(x1). Let sjk = k/2⌈j/2⌉ for j ≥ 0 and −2⌈j/2⌉ ≤ k ≤ 2⌈j/2⌉. Since Aℓ,jB
sjk
ℓ =

Bk
ℓAℓ,j for ℓ = 0, 1, we obtain shearlets

ψ0
jsjkn = DA−1

0,jB
−k
0
ψ0
0 and ψ̃0

jsjkn = DA−1

1,jB
−k
1
ψ0
1

which are the functions of the form in (II.3).

From now on, we will use the notations we defined above throughout this paper. We now explicitly

derive discrete formulas to compute shearlet coefficients 〈f, ψ0
jsjkn〉 and 〈f, ψ̃0

jsjkn〉 for j ≥ 0,−2⌈j/2⌉ ≤
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k ≤ 2⌈j/2⌉ and f ∈ L2(R2). We mainly consider 〈f, ψ0
jsjkn〉 and the rest of shearlet coefficients are

similarly computed.

Assume that f ∈ V 0
J ⊗ V 0

J = span{θ0J,n1
(x1)θ0J,n2

(x2) : (n1, n2) ∈ Z2}. and φ00(x) = θ0(x1)θ
0(x2)

for fixed J > 0. Then we can write

f =
∑

n∈Z2

fJ(n)D2−JI2Tnφ
0
0 (IV.16)

where fJ(n) = 〈f,D2−JI2Tnφ
0
0〉. For j > 0, let gj and h0j be the Fourier coefficients of

Gj(ω1) =

j−2∏

k=0

H0(2kω1)G(2
j−1ω1) and H0

j (ω1) =

j−1∏

k=0

H0(2kω1)

respectively, where

H0(ω1) =
∑

n1

h0(n1)e
−2iπω1 and G(ω1) =

∑

n1

g(n1)e
−2iπω1 .

Also, we let gj(n1) = h0j (n1) = δ(n1) when j = 0. The following lemma is an immediate consequence

of the cascade algorithm followed from (IV.13) and (IV.14).

Lemma IV.1. Assume that θ0 and γ ∈ L2(R) satisfy (IV.13) and (IV.14). For each j ∈ Z+ ∪ {0}, define

γj,n1
and θ0j,n2

as in (IV.15). Then we have

γj,n1
(x1) =

∑

d1

gJ−j(d1 − 2J−jn1)θ
0
J,d1(x1). (IV.17)

and

θ0j,n2
(x2) =

∑

d2

h0J−j(d2 − 2J−jn2)θ
0
J,d2(x2) (IV.18)

for 0 ≤ j < J .

Proof : See Appendix B.

From (IV.17) and (IV.18), we obtain

ψ0
j0n(x) =

∑

d∈Z2

gJ−j(d1 − 2J−jn1)h
0
J−⌊j/2⌋(d2 − 2J−⌊j/2⌋n2)θ

0
J,d1(x1)θ

0
J,d2(x2). (IV.19)

On the other hand, we have

〈f, ψ0
jsjkn〉 = 〈DB

sjk
0

f, ψ0
j0n〉 (IV.20)

We note that if the function DB
sjk
0

f ∈ VJ ⊗ VJ so that it can be represented by a linear combination

of integer translates of the scaling function φ00 at J th level then the shearlet coefficients in (IV.20) can

be easily computed by applying the separable wavelet transform associated with the anisotropic scaling

January 27, 2010 DRAFT



IEEE TRANS. IMAGE PROCESSING 13

matrix A0,j . However, this is not the case unless k = 0. In MRA approach, it is essential to represent

an underlying function by a linear combination of integer translates of scaling function at the given

resolution level. We now show that this can be done by refining integer grid 2−JZ2 along the horizontal

axis. Lemma IV.1 implies that

θ0J,n1
(x1) =

∑

d1∈Z

h0⌈j/2⌉(d1 − 2⌈j/2⌉n1)θ
0
J+⌈j/2⌉,d1

(x1).

Hence, we have

f(x) =
∑

n∈Z2

((fJ)↑2⌈j/2⌉ ∗1 h0⌈j/2⌉)(n)D2−JQ
−⌈j/2⌉
0

Tnφ
0
0(x) (IV.21)

where ∗1 and ↑ 2j are 1D convolution and upsampling by 2j along the horizontal axis and

DB
sjk
0

f =
∑

n∈Z2

((fJ)↑2⌈j/2⌉ ∗1 h0⌈j/2⌉)(B−k
0 n)D2−JQ

−⌈j/2⌉
0

Tnφ
0
k (IV.22)

where φ0k = DBk
0
φ00. (IV.22) implies that the function DB

sjk
0

f can be represented by a linear combination

of integer translates of sheared scaling function φ0k on anisotropic grid 2−J−⌈j/2⌉Z2 × 2−JZ2 obtained

by refinement along the horizontal axis. For nonnegative integers j1 and j2, define a linear transform

Wj1,j2 : ℓ
2(Z2) → ℓ2(Z2) by

W0
j1,j2(f)(n1, n2) =

∑

m∈Z2

gj1(m1 − 2j1n1)h
0
j2(m2 − 2j2n2)f(m1,m2)

for f ∈ ℓ2(Z2). This is simply the separable wavelet transform associated with a diagonal sampling

matrix whose diagonal entries are 2j1 and 2j2 . We also let Φk(n) = 〈φ0k, Tnφ00〉 and h0j (n1) = h0j (−n1).
Then, by (IV.19),(IV.20) and (IV.22),

〈f, ψ0
jsj,kn〉 = W0

J−j,J−⌊j/2⌋

((
[((fJ)↑2⌈j/2⌉ ∗1 h0⌈j/2⌉)(B−k

0 ·) ∗ Φk] ∗1 h0⌈j/2⌉
)
↓2⌈j/2⌉

)
(n) (IV.23)

where ∗1, ↑ 2j and ↓ 2j are 1D convolution, upsampling and downsampling by 2j along the horizontal

axis, respectively (see Figure 4(a)). Notice that
(
[((fJ)↑2⌈j/2⌉ ∗1h0⌈j/2⌉)(B

−k
0 ·)∗Φk]∗1h0⌈j/2⌉

)
↓2⌈j/2⌉ com-

putes interpolating sample values fJ(B
sjk
0 n) from fJ(n). Alternatively, one can approximate fJ(B

sjk
0 n)

by taking fJ(m) where m ∈ Z2 is an integer lattice point closest to B
sj,k
0 n. This suggests the following

formula :

〈f, ψ0
jsjkn〉 ≈ W0

J−j,J−⌊j/2⌋(Psjk(fJ))(n) (IV.24)

where

Ps(fJ)(n) = fJ
(
n1 + ⌊sn2⌋, n2

)
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Fig. 4. (a) Two computation steps to compute the shearlet coefficients : Refinement along the horizontal axis (top) and

resampling associated with shear matrix (middle) followed by the separable wavelet transform (bottom) (b) Refinement along

the horizontal to obtain the coefficients of D
B

k/2⌈j/2⌉

0

f when j = 4 and k = 1.

for s ∈ [−1, 1]. Similarly, the shearlet coefficients 〈f, ψ̃0
jsj,kn〉 can be explicitly computed. Also, we have

approximating formula as follows :

〈f, ψ̃0
jsj,kn〉 ≈ W̃0

J−j,J−⌊j/2⌋(P̃sj,k(fJ))(n) (IV.25)

where

W̃0
j1,j2(f)(n1, n2) =

∑

m∈Z2

gj1(m2 − 2j1n2)h
0
j2(m1 − 2j2n1)f(m1,m2)

and

P̃s(fJ)(n) = fJ
(
n1, n2 + ⌊sn1⌋

)
.

Using (IV.24) and (IV.25), we now define the DST S : ℓ2(Z2) → ℓ2(Z2) which computes the shearlet

coefficients of f ∈ V 0
J ⊗ V 0

J . Define an index set

Λ0 = {(j, k) : j = 0, 1, . . . , J − 1,−2⌈j/2⌉ ≤ k ≤ 2⌈j/2⌉}

and

S(f) =
(
(〈f, Tnφ

0
0〉)n∈Z2 , S0(f), S̃0(f)

)

where 



S0(f) =
(
W0

J−j,J−⌊j/2⌋(Psjk(fJ))
)
(j,k)∈Λ0

S̃0(f) =
(
W̃0

J−j,J−⌊j/2⌋(P̃sjk(fJ))
)
(j,k)∈Λ0

(IV.26)

We should point out that directional filters associated with the discrete shear operations Ps and P̃s in
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Fig. 5. (a): Directional filters with the grid refinement associated with B
k/2
0

for k = 1. (b): Aliased directional filters associted

with B
k/2
0

for k = 1.

(IV.26) provide unsatisfactory frequency localization mainly due to the periodicity of 2D spectrum of

discrete signals. Especially when the power of shear matrix B0 (or B1) is a non integer, the resulting shear

matrix Bs
0 (or Bs

1) does not preserve the structure of integer lattice Z2 and this makes the corresponding

directional filter (in IV.26) aliased as we can see in Figure 5(b). On the other hand, we notice that the

aliasing components introduced by the shear operations DB
sjk
0

with non integer powers sjk = k/2⌈j/2⌉

can be removed by upsampling 2⌈j/2⌉ ↑ along the horizontal axis, followed by lowpass filtering as we

proposed in (IV.23) (see Figure 4(a)). In fact, this refinement along the horizontal axis leads to shear

matrices Bk
0 (from B

sjk
0 ) which preserve integer lattice and the aliasing components due to the shear

operations DB
sjk
0

are removed. Figure 5(a) shows the frequency support of one of the resulting directional

filters with this refinement.

In order to deal with images defined on finite domain, modification of our DST is necessary for

shearlets near the boundary of the domain. The simplest way to deal with these boundary issues for linear

transform involving convolution is to periodize an underlying image. Of course, this simple scheme can

easily adapted to the DST and we used this for numerical tests for image approximations we will describe

in later section. However, the periodization produces artificial line singularities due to shear operations

as well as singularities on the boundary. For those artificial line singularities, one can apply a mirror

extension along the horizontal or vertical axis depending on the choice of shear matrices B0 and B1

respectively.

Before we finish this section, we briefly mention about the redundancy of the DST. For simplicity,

we only consider the case when the sampling constant c = 1 and this can be easily generalized. Let us
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assume fJ is a 2J × 2J discrete image. We notice that shear operations Psjk and P̃sjk do not change the

size of the image and the anisotropic wavelet transforms W0
j1,j2

and W̃0
j1,j2 produce 2J−j1 × 2J−j2 and

2J−j2 × 2J−j1 subimages respectively. Also, the transform S0 is to apply 2⌈j/2⌉+1 + 1 shear operations

followed by anisotropic wavelet transform W0
J−j,J−⌊j/2⌋ at each jth level. Thus, S0 provides 2⌈j/2⌉+1+1

subimages of size 2j×2⌊j/2⌋ at each jth level. This indicates that the total number of shearlet coefficients

obtained from S0 is

#(S0) =

(J−1)∑

j=0

(2⌈j/2⌉+1 + 1)(2j+⌊j/2⌋)

and #(S̃0) = #(S0). Finally, the size of DC coefficients 〈f, Tnφ
0
0〉 is 1× 1. Therefore, the total number

of shearlet coefficients #(S) obtained from the DST S is

#(S) = 2

(J−1)∑

j=0

(2⌈j/2⌉+1 + 1)(2j+⌊j/2⌋) + 1

= 2
(
2

J−1∑

j=0

4j +

J−1∑

j=0

(2
√
2)j

)
+1

=
4

3
(4J − 1) +

2

2
√
2− 1

((2
√
2)J − 1) + 1.

From this, redundancy ratio is given by

#(S)

22J
=

4

3
(1− 4−J) +

2

2
√
2− 1

(2−J/2 − 4−J) + 4−J ≤ 2

for J ≥ 1.

B. Inverse Transform

It is well known that an inverse frame operator with reasonable frame bounds can be effectively

computed by applying iterative schemes such as conjugate gradient iterations [1]. Let S∗ be the adjoint

operator of the DST S. Then the pseudo inverse to the frame operator S is given by (S∗S)−1S∗ and this

can be efficiently computed by conjugate gradient iterations. As one can see in Figure 6(a), only few

iterations provide good approximation to a given image f from the shearlet coefficients.

C. Extended Discrete Shearlet Transform

In the previous section, we derived a fast algorithm to compute the shearlet frame coefficients based

on a standard MRA approach. However, it is often convenient to work with a tight frame rather than

a general frame in many applications. In particular, one can not directly compute an inverse of frame
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Fig. 6. (a) Convergence rate of approximating inverse DST for a random image whose entries are uniformly distributed and

Lena : vertical axis : ℓ2 relative error
‖f−f̂‖2
‖f‖2

and horizontal axis : the number of iterations in conjugate gradient iterations.

Random image (solid line) and Lena (dashed line). (b) Tree structure of wavelet packet basis elements θ
p
j when ℓ0 = 2.

operator (if it is not tight) and needs to use an iterative scheme to approximate the inverse. In this

section, we will extend the shearlet frame which we constructed in the previous section to obtain a tight

frame composed of directional orthonormal bases. We also show that for this extended construction,

each of those directional orthonormal bases provides anisotropic window functions elongated along the

direction determined by the action of shear matrix. This extended construction will be basically the same

as the construction of shearlet system we described in the previous section except that we add extra

basis elements to the shearlet system to obtain an orthonormal basis for each shear matrix. Based on this

construction, we will then develop decomposition algorithm which explicitly decomposes a given image

into directional components using orthogonal transforms. This decomposition algorithm will be directly

extended from the DST and we will use definitions in IV.A.

For fixed shear parameter s ∈ [−1, 1], consider a shearlet system Ψs associated with the shear matrix

Bs
0 as follows:

Ψs = {ψ0
jsn : j ∈ Z

+ ∪ {0},n ∈ Z
2}.

For each shear parameter s, we now construct an orthonormal basis Ψ′
s containing Ψs such that each

basis element in Ψ′
s is an anisotropic window function elongated along the direction determined by the

shear parameter s. We only consider the orthonormal bases Ψ′
s associated with the shear matrices Bs

0 for

details and similar arguments can be applied for the systems associated with the shear matrices Bs
1.
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We first need the following facts which are immediate consequences of the basic ideas of wavelet

packet basis [14].

Lemma IV.2. For θp ∈ L2(R), let θpj,n1
(x1) = 2j/2θp(2jx1−n1). Define V p

j = span(θpj,n1
)n1∈Z for each

j, p ∈ Z+ ∪ {0}. Assume that (θp0,n1
)n1∈Z is an orthonormal basis of V p

0 for a fixed p and let

θ2pj,0 =
∑

h0(n1)θ
p
j+1,n1

and θ2p+1
j,0 =

∑
g(n1)θ

p
j+1,n1

. (IV.27)

where h0 and g are conjugate mirror filters. Then (θ2pj,n1
)n1∈Z and (θ2p+1

j,n1
)n1∈Z are orthonormal bases

of V 2p
j and V 2p+1

j . Furthermore, V p
j+1 = V 2p

j ⊕ V 2p+1
j .

Proof : For the proof, we refer to [14].

Corollary IV.3. Let j be a fixed nonnegative integer. Assume that (θ00,n1
)n1∈Z forms an orthonormal

basis of V 0
0 and subspaces (V 0

j′)j′∈Z satisfy the MRA conditions. For ℓ = 1, 2, . . . and p = 0, 1, . . . , let

θ2pj+ℓ−1,0 =
∑

n1∈Z

h0(n1)θ
p
j+ℓ,n1

and θ2p+1
j+ℓ−1,0 =

∑

n1∈Z

g(n1)θ
p
j+ℓ,n1

(IV.28)

where h0 and g are conjugate mirror filters. Then {θpj,n1
: n1 ∈ Z, p = 0, 1, 2, . . . } forms an orthonormal

basis of L2(R).

Proof : We may assume that j = 0 without loss of generality. The recursive formula (IV.28) provides a

sequence of functions (θp0,0)p=0,...,2ℓ0−1 when ℓ = ℓ0 > 0 (see Figure 6(b)). By Lemma IV.2, (θp0,n1
)n1∈Z

forms an orthonormal basis of V p
0 for each p = 0, 1, . . . , 2ℓ0 − 1 and ⊕2ℓ0−1

p=0 V p
0 = V 0

ℓ0
. Recall that MRA

implies that L2(R) = ∪∞
j=0V

0
j and V 0

j ⊂ V 0
j+1. Thus our claim is obvious since ℓ0 is arbitrary. ✷

Using (IV.28), define

Ψ′
0 = {ψp

j0n : j, p ∈ Z
+ ∪ {0},n ∈ Z

2} ∪ {φp0n : p ∈ Z
+ ∪ {0},n ∈ Z

2}

where

ψp
j0n(x) = γj,n1

(x1)θ
p
⌊j/2⌋,n2

(x2) and φp0n(x) = θ00,n1
(x1)θ

p
0,n1

(x2).

By Corollary IV.3, we notice that {ψp
j0n : p ∈ Z+ ∪ {0},n ∈ Z2} and {φp0n : p ∈ Z+ ∪ {0},n ∈ Z2} are

orthonormal bases of Wj ⊗ L2(R) and V 0
0 ⊗ L2(R) respectively. Therefore, Ψ′

0 is an orthonormal basis

of L2(R2) and Ψ0 ⊂ Ψ′
0. For each shear parameter s ∈ [−1, 1], we also define Ψ′

s = DB−s
0
Ψ′

0. That is,

Ψ′
s = {ψp

jsn : j, p ∈ Z
+ ∪ {0},n ∈ Z

2} ∪ {φpsn : p ∈ Z
+ ∪ {0},n ∈ Z

2}
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Fig. 7. Frequency tilings associated with bases Ψ′
s(left) and Ψ̃′

s(right) when s = 0.

where ψp
jsn = DB−s

0
ψp
j0n and φpsn = DB−s

0
φp0n. It is clear that Ψ′

s is an orthonormal basis of L2(R2).

Similarly, we define

ψ̃p
j0n(x) = γj,n2

(x2)θ
p
⌊j/2⌋,n1

(x1), φ̃
p
0n = θ00,n2

(x2)θ
p
0,n1

(x1)

and

ψ̃p
jsn = DB−s

1
ψ̃p
j0n, φ̃

p
sn = DB−s

1
φ̃p0n.

Then

Ψ̃′
s = {ψ̃p

jsn : j, p ∈ Z
+ ∪ {0}, n ∈ Z

2} ∪ {φ̃psn : p ∈ Z
+ ∪ {0}, n ∈ Z

2}

is an orthonormal basis of L2(R2) for each s ∈ [−1, 1]. Figure 7 shows the frequency tilings obtained

by bases Ψ′
s and Ψ̃′

s when s = 0.

Next, we derive a fast algorithm to compute the extended shearlet coefficients 〈f, ψµ〉 and 〈f, ψ̃µ′〉 for

ψµ ∈ Ψ′
µ and ψ̃µ′ ∈ Ψ̃′

s. For p ∈ Z+ ∪ {0}, consider binary expansion of p so that p =
∑j−1

k=0 ǫk2
k with

ǫk ∈ {0, 1}. Let hpj be the Fourier coefficients of
∏j−1

k=0H
ǫk(2kω1) where

H0(ω1) =
∑

n1∈Z

h0(n1)e
−2πω1n1 and H1(ω1) =

∑

n1∈Z

g(n1)e
−2πω1n1 .

For p = 0, 1, . . . , 2j2−1 and i = 0, 1, define linear maps Wp,i
j1,j2

: ℓ2(Z2) → ℓ2(Z2) and W̃p,i
j1,j2

: ℓ2(Z2) →
ℓ2(Z2) as follows.




Wp,i

j1,j2
(f)(n) =

∑
m1

∑
m2
f(m1,m2)g

i
j1
(m1 − 2j1n1)h

p
j2
(m2 − 2j2n2)

W̃p,i
j1,j2

(f)(n) =
∑

m1

∑
m2
f(m1,m2)g

i
j1
(m2 − 2j1n2)h

p
j2
(m1 − 2j2n1)
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for f ∈ ℓ2(Z2), where the filter coefficients g1j1 = gj1(highpass filter) and g0j1 = h0j1(lowpass filter). We

assume (IV.16) for f ∈ VJ ⊗ VJ with positive integer J . Using the same arguments as in the previous

section, one can show that for j = 0, 1, . . . , (J − 1) and −2⌈j/2⌉ ≤ k ≤ 2⌈j/2⌉,

〈f, ψp
jsjkn〉 = Wp,1

J−j,J−⌊j/2⌋

((
[((fJ)↑2⌈j/2⌉ ∗1 h0⌈j/2⌉)(B−k

0 ·) ∗ Φk] ∗1 h0⌈j/2⌉
)
↓2⌈j/2⌉

)
(n)

and this indicates that

〈f, ψp
jsjkn〉 ≈ Wp,1

J−j,J−⌊j/2⌋(Psj,k(fJ))(n).

Similarly, we have

〈f, ψ̃p
jsjkn〉 ≈ W̃p,1

J−j,J−⌊j/2⌋(P̃sj,k(fJ))(n)

We are now ready to define the extended DST Ŝ : ℓ2(Z2) → ℓ2(Z2). We first let

Wj1,j2 = (Wp,1
j1,j2

)p=0,...,2j2−1 and W̃j1,j2 = (̃W
p,1

j1,j2
)p=0,...,2j2−1.

For M ∈ Z+, let us define

Ŝ = (Ŝ−2M , . . . , Ŝ2M , ˆ̃S−2M , . . . , ˆ̃S2M )

where

Ŝk =
(
(Wp,0

J,J((Pk/2M )))2
J−1

p=0 , (WJ−j,J−⌊j/2⌋(Pk/2M ))J−1
j=0

)

and

ˆ̃Sk =
(
(W̃p,0

J,J(P̃k/2M ))2
J−1

p=0 , (W̃J−j,J−⌊j/2⌋(P̃k/2M ))J−1
j=0

)

for −2M ≤ k ≤ 2M . Basically, each subtransform Ŝk or
ˆ̃Sk consists of the discrete shear transform

Pk/2M or P̃k/2M and the anisotropic discrete wavelet transform (ADWT) Wj1,j2 (horizontal direction) or

W̃j1,j2 (vertical direction). Figure 8 summarizes our extended DST.

Finally, It is clear that each Ŝk and
ˆ̃Sk are orthogonal transforms. Therefore, the extended DST S

consists of those 2M+2+2 orthogonal transforms and 2M+2+2 is the number of directions. This implies

that the inverse DST is simply the adjoint of S with normalization. For fJ ∈ ℓ2(Z2), we have

1

2M+2 + 2
Ŝ∗(Ŝ(fJ)) = fJ . (IV.29)
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Fig. 8. Block diagram of the extended DST

V. IMAGE APPROXIMATIONS USING DST

In this section, we introduce an adaptive image approximation scheme using the extended DST that

we described in the previous section. Suppose that Bk are orthonormal bases associated with orthogonal

transforms Ŝk−2M−1 for k = 1, . . . , 2M+1+1 and associated with orthogonal transforms
ˆ̃Sk−3(2M )−2 for

k = 2M+1 + 2, . . . , 2M+2 + 2. The main idea of our adaptive approximation scheme is similar to the

Matching Pursuit (MP) introduced by Mallat and Zhong [15]. The matching pursuit selects vectors one

by one from a given basis dictionary, while optimizing the signal approximation at each step. On the

other hand, our approximation scheme selects the best basis so that it provides the best approximation

with P nonzero terms among all of the bases Bk at each step. Let

B =

2M+2+2⋃

k=1

Bk.

and this is a basis dictionary consisting of 2M+2 + 2 orthonormal bases. Observe that for f ∈ ℓ2(Z2),

each subtransform Ŝk or
ˆ̃Sk of the DST Ŝ can be written as (〈f, ϕk

γ〉)γ∈Γ where ϕk
γ ∈ Bk.

The best P term approximation for given signal f ∈ ℓ2(Z2) with respect to basis Bk is

Qk,P (f) =
∑

γ∈Ik
P

〈f, ϕk
γ〉ϕk

γ where ϕk
γ ∈ Bk.

Here, IkP is an index set of P largest coefficients 〈f, ϕk
γ〉. In this case, the residual is

R(f) = f −Qk,P (f).

Since R(f) is orthogonal to Qk,P , we have

‖f‖2 = ‖R(f)‖2 + ‖Qk,P (f)‖2
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and

‖Qk,P (f)‖2 =
∑

γ∈Ik
P

|〈f, ϕk
γ〉|2

To minimize ‖R(f)‖, we must choose the best orthogonal projection Qk,P such that ‖Qk,P (f)‖ is

maximum among ‖Qℓ,P (f)‖ for ℓ = 1, . . . , 2M+2+2. Let R0(f) = f . Suppose that the mth order residue

Rm(f) is already computed for m ≥ 0. The next iteration chooses the index km ∈ {1, . . . , 2M+2 + 2}
such that

km = argsupk

∑

γ∈Ik
P

|〈Rm(f), ϕk
γ〉|2

where ϕk
γ ∈ Bk for each k = 1, . . . , 2M+2 + 2 and

Rm(f) = Qkm,P (R
m(f)) +Rm+1(f) (V.30)

The orthogonality of Rm+1(f) and Qkm,P (R
m(f)) implies

‖Rm(f)‖2 = ‖Qkm,P (R
m(f))‖2 + ‖Rm+1(f)‖2 (V.31)

Summing (IV.30) from m between 0 and K − 1 yields

f =

K−1∑

m=0

Qkm,P (R
m(f)) +RK(f). (V.32)

Similarly, summing (IV.31) from m between 0 and K − 1 gives

‖f‖2 =
K−1∑

m=0

‖Qkm,P (R
m(f))‖2 + ‖RK(f)‖2. (V.33)

It is easy to show that ‖Rm‖ converges exponentially to 0 when m tends to infinity.

Our adaptive approximation scheme using the DST is implemented with the following steps.

1. Initialization : Set m = 0 and compute the extended DST ; Ŝ(Rm(f))

2. Best match : Find the best orthogonal projection Qkm,P such that

km = argsupk‖Qk,P (R
m(f))‖

3. Update : Compute m+ 1 th order residual Rm+1(f) ;

Rm+1(f) = Rm(f)−Qkm,P (R
m(f)).

4. Stopping rule : If

‖Rm+1(f)‖2 = ‖Rm(f)‖2 − ‖Qkm,P (R
m(f))‖2 ≤ ǫ2‖f‖2
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Fig. 9. Nonlinear approximation results on different test images: From top left, clockwise: ’Lena’, ’Barbara’, ’boat’ and

’goldhill’. Horizontal axis : the number of nonzero coefficients in log scale and Vertical axis : PSNR

then stop. Otherwise m = m+1 and go to 1.

In this case K is the number of iterations and P nonzero coefficients are added at each iteration.

Therefore, KP coefficients are produced after K iterations in the MP step. Also we note that our extended

DST requires O((2M+2 + 2)N) operations where N is the size of input image. Therefore, the total

computation cost of this adaptive approximation scheme is O((2M+2 +2)NK) and this could be highly

expensive depending on the choice of M and K. However, our tests indicate that only a few iterations

and directions can still provide good approximations. For numerical tests, we compare the performance

of our adaptive approximation scheme using the extended DST to other non adaptive transforms such

as the discrete biorthogonal CDF 9/7 wavelet transform (DWT)[16] and contourlet transform (CT)[5]

in image compression (see Figures 9 and 10). We used 5 level decomposition and only two directions

(vertical and horizontal) and applied one iteration in the MP step. In this case, the running time of our

proposed scheme is competitive to the standard DWT while it outperforms other transforms. In fact,

with these choices, our adaptive approximation MATLAB routine takes 0.65 seconds while the DWT

MATLAB routine (available at www-stat.stanford.edu/wavelab/) takes 0.51 seconds (see Figure 11 (a)).

Finally, we note that one can achieve significant improvement over other transforms by increasing the

number of iterations but this will increase computation cost as well.
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(a)

(d)(c)

(b)

Fig. 10. Compression results of ’Barbara’ image of size 512 × 512: The image is reconstructed from 5024 most significant

coefficients. (a) Zoomed original image (b) Zoomed image reconstructed by the DWT (PSNR = 25.01) (c) Zoomed image

reconstructed by the CT (PSNR = 25.87) (d) Zoomed image reconstructed by the DST (PSNR = 26.73).

0.51 sec1 (4 level decomposition)DWT (9/7 CDF)

0.65 sec2 (5 level decomposition)DST

SpeedRedundancyTransform 
(Forward+Inverse)

1227.87 sec16 + 16 + 8 + 8 + 4 directions +1 = 53  NSCT

14.15 sec64 shifts = 64TIWT

40.93 sec18 directions X 2 shifts X (2) = 72DST 18

14.17 sec10 directions X mirror extensions (2) = 20 DST 10

SpeedRedundancyTransform

(a)

(b)

Fig. 11. Running time of DST and DWT for image approximations and denoising on desktop with 2.53GHz, 1.98 GB of

RAM. (a) Image approximations and (b) denoising
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TABLE I

DST10 DST18 NSCT TIWT DST10 DST18 NSCT TIWT

σ Noisy Lena Boat

σ = 10 28.15dB 35.75dB 35.96dB 35.47dB 35.16dB 34.22dB 34.42dB 33.67dB 33.64dB

σ = 20 22.14dB 32.28dB 32.51dB 32.32dB 31.54dB 30.49dB 30.71dB 30.34dB 29.85dB

σ = 30 18.60dB 30.33dB 30.59dB 30.53dB 29.51dB 28.48dB 28.69dB 28.60dB 27.78dB

σ = 40 16.11dB 28.87dB 29.15dB 29.12dB 27.93dB 27.21dB 27.44dB 27.39dB 26.43dB

σ = 50 14.17dB 27.82dB 28.11dB 28.09dB 26.76dB 26.21dB 26.45dB 26.50dB 25.33dB

σ Noisy Peppers Goldhill

σ = 10 28.15dB 34.45dB 35.67dB 35.23dB 35.20dB 33.30dB 33.47dB 32.76dB 32.64dB

σ = 20 22.14dB 32.21dB 32.44dB 32.28dB 31.83dB 30.09dB 30.27dB 29.90dB 29.33dB

σ = 30 18.60dB 30.23dB 30.48dB 30.48dB 29.65dB 28.41dB 28.60dB 28.44dB 27.57dB

σ = 40 16.11dB 28.85dB 29.11dB 29.11dB 28.00dB 27.23dB 27.43dB 27.38dB 26.26dB

σ = 50 14.17dB 27.78dB 28.06dB 28.02dB 26.72dB 26.41dB 26.61dB 26.61dB 25.39dB

Fig. 12. Comparison of various transforms in denoising

VI. IMAGE DENOISING USING DST

In order to illustrate the potential of the DST, we study additive white Gaussian noise removal by

means of hard thresholding estimator. We want to estimate signals that are considered to be realization

of real random vector f . The noisy measurements are

g = f +W

where W is a zero-mean Gaussian white noise of variance σ2.

For our numerical tests. We compared the performance of the extended DST to other transforms such

as the Nonsubsampled Contourlet Transform (NSCT)[17] and Translation Invariant Wavelet Transform

January 27, 2010 DRAFT



IEEE TRANS. IMAGE PROCESSING 26

(a) (b) (c)

Fig. 13. Comparison between the DST and NSCT for denoising Gaussian noise with σ = 15. (a) Original Boat image. (b)

Denoised with NSCT [17], PSNR = 31.66dB. (c) Denoised with the DST18, PSNR = 32.17dB

(TIWT)[18] in this denoising task. To highlight the performance of the extended DST relative to other

transforms, we apply hard threshold on the coefficients of various transforms. We choose the threshold

Tj = Kjσ

where j is the index of decomposition level, Kj are constants experimentally determined so that they

can produce overall optimal performance for each transform and σ is the variance of noise. We tested

two types of the extended DST for which one uses 18 directions (DST 18) and the other one uses

10 directions (DST 10). Also, in order to avoid artificial discontinuities due to shear operations and

periodization, we applied the DST to a mirror extended image. In this case, we used a mirror extension

along the horizontal or vertical axis depending on the choice of shear matrices B0 and B1 respectively.

Table I shows the PSNR results for various transforms and noise intensities. The results show the DST is

consistently superior to the TIWT and NSCT in PSNR measure while the running time of our proposed

transform is quite competitive to other transforms.

VII. CONCLUSION

We have constructed compactly supported shearlet system which can provide efficient directional image

representation. We also have developed the two types of fast discrete implementations of shearlets called

the DST and the extended DST. Especially the extended DST is simply applying shear transforms on the

discrete domain followed by the anisotropic wavelet transforms. Thus, the extended DST is implemented

by applying finitely many orthogonal transforms and the inverse transform is straightforward.

Application of our proposed transform in image approximations and denoising were studied. In image

approximations, the results obtained with our adaptive image representation using the extended DST are
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consistently superior to other transforms such as the DWT and CT both visually and with respect to

PSNR. In denoising, we studied the performance of the extended DST coupled with a hard thresholding

estimator. Our results indicate that the DST consistently outperforms other competing transforms such

as the NSCT and TIWT in PSNR.

One of the main features of our DST is that it can exactly compute the shearlet coefficients based on a

MRA (see IV.23). In fact, shear operations preserve the structure of integer lattice and this allows them to

be faithfully adapted for discrete framework such that the DST is naturally derived from the construction

of shearlet frame. Furthermore, it can be shown that our compactly supported shearlet frame generated by

separable wavelets can provide nearly optimal approximation for a piecewise smooth function. In other

words, one can achieve that

‖f − fM‖2 ≤ CM−2(logM)3 as M → ∞

where f is C2 smooth function except at points lying on C2 curves and fM is shearlet nonlinear

approximation obtained by taking the M largest shearlet coefficients. This approximation rate is same as

one obtained with curvelets or band-limited shearelts and the proof of this claim will appear in elsewhere

[21]. This indicates that our new construction scheme of shearlets provides sparse approximation as well

as efficient implementation which explicitly computes the shearlet coefficients.

However, we should point out that there are basically two issues that need to be resolved concerning

our proposed construction of shearlets. First of all, our proposed DST does not share tree structure

based on filter banks like other multiscale transforms such as DWT and CT. Therefore, computation cost

increases as we increase the number of shear operations. Secondly, the ratio of the frame bounds for our

construction depends on the choice of the sampling constant c. Especially, this implies that one needs to

increase the redundancy of shearlet frame in order to achieve more reasonable frame bounds.

Thus, for future study, we will focus on improving construction of shearlets such that the resulting

construction can provide more structured discrete transform as well as less redundant shearlet frame.
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APPENDIX A

PROOF OF PROPOSITION III.2

Without loss of generality, we may assume that 1 ≤ |ω1| ≤ aq and ω2 ∈ R̂. Also, we let ω = (ω1, ω2) ∈
R̂2 and s = (s1, s2) ∈ R̂2. We first observe that

ess sup
ω1∈R̂

∑

j∈Z

(aqj |ω1|)α
(1 + |aqjω1|2)β/2

<∞ with β > α. (A.34)

(For the proof, see [19].) Also, it is easy to see that

sup
x

∑

k∈Z

1

((x+ k)2 + 1)ρ/2
<∞ if ρ > 1. (A.35)

Notice that we may assume that for s1 ∈ R̂, aqjω1 6= −s1 for all j ∈ Z since a set

{(ω1, ω2) ∈ R̂
2 : aqjω1 = −s1 for some j ∈ Z}

is a set of measure 0. Let us estimate Φ(s). Direct computation gives

∑

j,k∈Z

|ψ̂i
0((B

T
0 )

kAj
0ω)ψ̂

i
0((B

T
0 )

kAj
0ω + s)| ≤ C1

∑

j∈Z

aqαj |ω1|α
(1 + |aqjω1|2)γ/2

|aqjω1 + s1|α
(1 + |aqjω1 + s1|2)γ/2

×
∑

k∈Z

(
1 + |aj(1/2−q)ω2

ω1
+ k|2

)− γ

2

×
(
1 +

∣∣∣a
j/2ω2 + kaqjω1 + s2

aqjω1 + s1

∣∣∣
2)−γ/2

=
∑

|aqjω1|>1/2‖s‖∞

· · ·+
∑

|aqjω1|≤1/2‖s‖∞

. . .

= E1 + E2.

where ‖s‖∞ = max(|s1|, |s1|). By (A.34) and (A.35), we have

E1 ≤ C ′
1

∑

|aqjω1|>1/2‖s‖∞

(aqj |ω1|)α−γ

where α− γ < 0 by assumption. In fact, one can show that

∑

|aqjω1|>1/2‖s‖∞

(aqj |ω1|)α−γ ≤ C2‖s‖α−γ
∞ (A.36)

(For the proof, see [19].)

Next, we estimate E2. First assume that ‖s‖∞ = s1. By (A.35), we obtain

E2 ≤ C3

∑

|aqjω1|≤1/2‖s‖∞

aqαj |ω1|α
(1 + |aqjω1|2)γ/2

|aqjω1 + s1|α
(1 + |aqjω1 + s1|2)γ/2
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Note that |aqjω1 + s1| ≥ |s1| − |aqjω1| ≥ 1/2|s1| and |aqjω1 + s1| ≤ 3/2|s1|. Thus, by (A.34),

E2 ≤ C4

∑

j∈Z

aqαj |ω1|α
(1 + |aqjω1|2)γ/2

|s1|α−γ ≤ C5‖s‖α−γ
∞ . (A.37)

Finally, assume that ‖s‖∞ = |s2|, then we have

E2 ≤ C5

∑

|aqjω1|≤1/2‖s‖∞

aqαj |ω1|α
(1 + |aqjω1|2)γ/2

|aqjω1 + s1|α
(1 + |aqjω1 + s1|2)γ/2

×
∑

k∈Z

(
1 + |aj(1/2−q)ω2

ω1
+ k|2

)− γ

4

(
1 + |aj(1/2−q)ω2

ω1
+ k|2

)− γ

4

× |1 + a−qjω−1
1 s1|γ/2(

|1 + a−qjω−1
1 s1|2 + |k + aj(1/2−q) ω2

ω1
+ s2a−qj

ω1
|2
)γ/4

Observe that

z2

(1 + x2)(z2 + (x+ y)2)
≤ C6max(z2, 1)

1

y2
y 6= 0.

Assume that z2 = |1 + a−qjω−1
1 s1|2 ≥ 1. By (A.34) and (A.35), we have

E2 ≤ C7

∑

|aqjω1|≤1/2‖s‖∞

aqαj |ω1|α
(1 + |aqjω1|2)γ/2

|aqjω1 + s1|α
(1 + |aqjω1 + s1|2)γ/2

× |aqjω1 + s1|γ/2
|s2|γ/2

≤ C8‖s‖α−γ/2
∞ (A.38)

If z2 = |1 + a−qjω−1
1 s1|2 ≤ 1 one can also similarly estimate E2 to obtain (A.38). By (A.36),(A.37)and

(A.38), we have
∑

s∈Z2\{0}

√
Φ
(s
c

)
Φ
(
−s
c

)
≤ C8

( ∑

m∈Z2\0

‖m‖α−γ/2
∞

)
cα−γ/2

and
∑

m∈Z2\0 ‖m‖α−γ/2
∞ < ∞ when γ/2− α > 2. Therefore, for any D1 > 0, there exists c0 > 0 such

that

D1 −
∑

s∈Z2\{0}

√
Φ
(s
c

)
Φ
(
−s
c

)
> 0

for all c ≤ c0. This proves the condition (III.6) in Theorem III.1. Also, γ − α > 0 and α > 0. The

inequality (A.35) implies that for 1 ≤ |ω1| ≤ aq and ω2 ∈ R, we have that

L∑

i=1

∑

j,k∈Z

|ψ̂i
0((B

T
0 )

kAj
0ω)|2 ≤ K

∑

j∈Z

|aqjω1|2α
(1 + |aqjω1|2)−γ

∑

k∈Z

(
1 + |aj(1/2−q)ω2

ω1
+ k|2

)−γ

≤ K
∑

j∈Z

|aqjω1|2α(1 + |aqjω1|2)−γ

≤ K
( ∞∑

j=0

|aq(−j+1)|2α +

∞∑

j=1

(1 + |aqj |2)−(γ−α)
)
<∞.

This implies the upper bound condition in (III.5) in Theorem III.1. ✷
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APPENDIX B

PROOF OF LEMMA IV.1

We only prove (IV.18) and (IV.17) is proved similarly. Taking the Fourier transform on (IV.13) gives

θ̂0(ω1)
1√
2
H0

(ω1

2

)
θ̂0
(ω1

2

)
.

Then direct computation gives

̂D2−jT2j−Jn1
θ0(ω1) = 2−j/2θ̂0

(ω1

2j

)
e−i2π

n1

2J
ω1

= 2−
j+1

2 H0
( ω1

2j+1

)
θ̂0
( ω1

2j+1

)
e−i2π

n1

2J
ω1

= 2−J/2H0
( ω1

2j+1

)
· · ·H0

(ω1

2J

)
θ̂0
(ω1

2J

)
e−i2π

n1

2J
ω1

=

J−j−1∏

k=0

H0
(
2k
ω1

2J

)
2−J/2θ̂0

(ω1

2J

)
e−i2π

n1

2J
ω1

Thus we have

̂D2−jT2j−Jn1
θ0(ω1) = H0

J−j

(ω1

2J

)
2−J/2θ̂0

(ω1

2J

)
e−i2π

n1

2J
ω1 (B.39)

Taking an inverse Fourier transform on (B.49) gives

D2−jT2j−Jn1
θ0(x1) =

∑

m1

h0J−j(m1)D2−JTn1+m1
θ0(x1).

This implies (IV.18). ✷
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