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AND NABIL H. MUSTAFA

Abstract. We discuss five fundamental results of discrete mathematics: the
lemmas of Sperner and Tucker from combinatorial topology and the theorems
of Carathéodory, Helly, and Tverberg from combinatorial geometry. We ex-
plore their connections and emphasize their broad impact in application areas

such as data science, game theory, graph theory, mathematical optimization,
computational geometry, etc.
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1. Introduction

This article surveys the theory and applications of five elementary theorems. Two
of them, due to Sperner and Tucker, are from combinatorial topology and are well
known for being the discrete analogues of Brouwer’s fixed point theorem and the
Borsuk–Ulam theorem. The other three, due to Carathéodory, Helly, and Tverberg,
are the pillars of combinatorial convexity. These theorems are between fifty and
one hundred years old, which is not very old as far as mathematics goes, but have
already produced a closely knit family of results in combinatorial geometry and
topology. They have also found spectacular applications in, among other places,
mathematical optimization, equilibrium theorems for games, graph theory, fair-
division problems, the theory of geometric algorithms, and data analysis.

The first goal of this paper is to introduce some of the many reformulations and
variations of our five theorems and explore how these results fit together. It is
convenient to split this presentation into two parts. Sections 2 and 3 discuss the
Sperner and Tucker theorems and the Carathéodory, Helly, and Tverberg theorems,
respectively. At a coarse level, the former deals with combinatorial topology and
the latter deals with combinatorial geometry. In each case, we include a special
section on algorithmic aspects of these results relevant later for applications.

The second goal of this survey is to sample some of the many applications of our
five theorems. In Sections 4 to 7 we proceed by broad areas and examine examples
from game theory and fair division, from graph theory, from optimization, and from
geometric data analysis. Some of our illustrations are classical (e.g., Nash equilibria,
von Neumann’s min-max theorem, linear programming), others are more specialized
(e.g., Dol’nikov’s colorability defect or the polynomial partitioning technique). We
aim to show that our five theorems provide simple proofs of each example. This
led us to present some new proofs, for instance for Meshulam’s lemma (Section 2)
or for the ham sandwich theorem (Section 7).

The research topics that we discuss are vibrant and have already prompted a
number of prior surveys [28, 42, 50, 71, 120, 152, 211, 219, 396], but other surveys
were focused on a single one of the five theorems or did not cover applications.
The important developments that we present here are from the past few years and
emphasize both a global view and the value of geometric and topological ideas for
modern applied and computational mathematics. This research area abounds with
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open questions, all the more enticing because they can often be stated without
much technical apparatus. We made a particular effort to stress some of them.

1.1. The five theorems at a glance. Let us start with a classical rendition of
Brouwer’s fixed point theorem. If you stand in your favorite Parisian boulangerie
holding a map of the city in your hands, then crumple it, squeeze it (without
ripping it apart, mind you), and throw it to the ground, some point on the map

must have landed right on top of its precise loca-
tion. Brouwer’s theorem follows from the classical
Sperner lemma on the labeling of triangulations (see
Figure 1). Surprisingly, all that is needed to prove
Sperner’s lemma is to understand why a house with
an odd number of openings (doors and windows) must
have a room with an odd number of openings. This sim-
plicity and its amazing applications attracted the atten-
tion of popular newspapers [370] and video sites [214].
Sperner’s lemma is one of these five theorems, and we
present it in detail in Section 2.1.

Figure 1. Sperner’s lemma in the plane. Start with a triangle
with vertices colored red, green, blue (left). Subdivide it into
smaller triangles that only meet at a common edge or a common
vertex (center). Color every new vertex on an edge of the orig-
inal triangle like either of the vertices of that original edge, and
color the remaining vertices arbitrarily (right). At least one of the
smaller triangles has vertices with pairwise distinct colors (see the
shaded triangles on the right).

In the game of Hex, two players take turns coloring, in black
and white, the hexagonal cells of an 11 × 11 diamond-shape
board (see picture on the right); the opposite sides of the board
have matching colors, and the player that manages to connect
the two sides of his/her color wins (here, black wins). Since
its invention by Hein in 1942, there has never been a draw in
Hex. The fact that there is always a winner happens to have a
geometric explanation: for any triangulation of the projective
plane and any two-coloring of its vertices, one of the color
classes spans a noncontractible cycle [361]. (To see that this

implies the impossibility of a draw in Hex, take the dual of the hexagonal cell
decomposition to obtain a triangulation of the diamond, then carefully identify the
boundaries to turn that diamond into a projective plane.) This geometric property
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Figure 2. Tucker’s lemma in the plane. Start with a symmetric
subdivision of the circle (left), and extend it into a triangulation
of the disk (center). Label every vertex of the triangulation by
{−2,−1, 1, 2} so that antipodal points on the circle get opposite
labels (right). There must exist an edge with opposite labels.

is equivalent to the two-dimensional case of Tucker’s lemma, whose statement is
given in the caption of Figure 2. Tucker’s lemma is also discussed in Section 2.1;
see in particular the detailed discussion following Proposition 2.2.

As a matter of fact, Gale [176] proved that the game of Hex cannot end in a
draw using Brouwer’s fixed point theorem, and Nash [302] proved that for boards
of arbitrary size, the first player has a winning strategy. Another application of
Tucker’s lemma is the ham sandwich theorem, which says that any three finite
measures in R3 (such as a piece of bread, a slice of cheese, and a slice of ham for
an open-faced sandwich) can be simultaneously bisected by a plane.

Let us now consider finite point sets in the plane. It turns
out that any seven points can be partitioned into three
parts so that the triangles, segments, and points that they
form have a point in common; for example, the seven points
shown at left admit {1, 7}, {2, 4, 6}, and {3, 5} as such a
partition. This is the simplest case of Tverberg’s theorem.
Tverberg’s theorem will be discussed at length in Section
3.3. As the number of points grows, so does the number of
possible parts in which we can partition the points while
assuring all the convex hulls intersect: 10 points allow four
parts, 13 points allow five parts, . . . , and in general 3r − 2
points allow r parts. A similar phenomenon holds in arbi-

trary dimension: any set of (r − 1)(d + 1) + 1 points can be partitioned into r
parts whose convex hulls intersect. Coming back to our (uncrumpled) map of Paris,
consider the 302 points that represent the subway stations. By Tverberg’s theorem,
they can be partitioned into 101 parts, so that the corresponding 101 triangles and
segments all intersect in a common point c. Observe that any line passing through
c must leave at least 101 subway stations on either of its (closed) sides. The median

of a list of real numbers separates the list in half by sizes. The properties of point
c make it an acceptable two-dimensional generalization of the median, but now for
the set of subway stations. More generally, the centerpoint theorem, which follows
from Tverberg’s theorem, asserts that for any finite measure μ in the plane there
is a point cμ such that μ(H) ≥ 1

3μ(R
2) for every halfplane H that contains cμ. As
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we will show in Section 7.4, centerpoints are very important objects in applications
and have influenced geometry too; e.g., Tverberg himself was motivated to prove
his famous theorem (which we discuss in Section 3.3), with the intention of finding
an elegant proof of the centerpoint theorem. See the end of his classic paper [376].

In the (fully supervised) classification problem in ma-
chine learning, one is given a data set (e.g., images), each
with a tag (e.g., indicating whether the image depicts a
cat or a car), and one is presented with new data to be
tagged. A natural approach is to map the set of data to a
set of points in some geometric space and look for a simple
separation in the space (e.g., a line or a circle in the plane)
that separates the points with different tags; for instance, perceptron neural net-
works—some of the basic classifiers—look for a hyperplane best separating the
tagged point sets. It is easy to conclude that a separator exists by producing an
explicit hyperplane. Kirchberger’s theorem states that it is also easy to certify when
no line separator exists. In the plane, when no line separator exists, then there must
exist a point of one of the colors, say blue, contained in a triangle of the opposite
color, red, or a red segment intersecting a blue segment. The set of all lines that

define a halfplane containing a given point of R2 defines
a convex cone in R3, so Kirchberger essentially reduces
to an intersection property: if a finite family of convex
sets in Rd has empty intersection, then some d + 1 of
these sets already have empty intersection. This prop-
erty is also known as Helly’s theorem and is one of our
main theorems. The curious reader may check that the
centerpoint theorem, discussed above, also follows eas-
ily from Helly’s theorem. It will be carefully studied in
Section 3.2.

Let us finally turn our attention to the geometry
underlying the popular magic squares from ancient
China. A magic square is an n × n square grid
of nonnegative real numbers such that the entries
along any row, column, and diagonal, all add up to
the same value. Look at the four 3 × 3 examples
on the right. It turns out that any 3 × 3 magic
square can be written as a linear combination, with
nonnegative coefficients, of only three of these four

0 2 1
2 1 0
1 0 2

2 0 1
0 1 2
1 2 0

1 2 0
0 1 2
2 0 1

1 0 2
2 1 0
0 2 1

magic squares! In fact, for any n there exists a finite set Xn of n×n magic squares
such that any other n × n magic square can be written using only (n − 1)2 − 1
elements of Xn. This last statement follows from Carathéodory’s theorem, which
we will study carefully in Section 3.1 : any vector in a cone in Rd is a nonnegative
linear combination of extreme rays of the cone, and a linear combination of k
elements suffice, where k is the dimension of the cone. Indeed, the set of n × n
magic squares forms a polyhedral cone in a vector space of dimension (n− 1)2 − 1.
It may come as a surprise that no one knows what Xn is for all n ≥ 6; see [9].
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A colorful generalization of Carathéodory’s theorem
asserts that if three polygons in the plane—one with
red vertices, one with green vertices, and one with blue
vertices—all contain a given point p ∈ R2, then there
exists a colorful triangle, using a vertex of each color,
that also contains p. This implies that for the center-
point c that we constructed earlier for the Parisian
subway stations from Tverberg’s theorem, at least(
101
3

)
of the triangles spanned by the subway stations

contain c. In fact, there is a quantitatively stronger statement given by the first

selection lemma. It states that for any set of n points in the plane, there exists a
point covered by at least 2

9

(
n
3

)
of the triangles they span. We will see more about

this topic in Section 7.4.

1.2. Notation and preliminaries. In this subsection we collect notation, termi-
nology, and general basic background on combinatorics, geometry, and topology
that will be used in the rest of this survey. The advanced reader may want to skip
or move quickly through this section. For a more thorough introduction to the top-
ics listed here, we recommend the classical books and textbooks in combinatorial
convexity [52,194,195,257] as well as [345, §5.3]. For topological combinatorics and
combinatorial aspects of algebraic topology, see [133, 258, 288].

Given n ∈ N, we write [n] to denote the set {1, 2, . . . , n}. If X is a set and k ∈ N,

we write
(
X
k

)
for the set of k-element subsets of X. The notation Õ(·) denotes

asymptotic notation where we ignore polylogarithmic factors: f(n) = Õ(g(n)) if

there exists k ∈ N such that f(n) = O(g(n) logk g(n)).
We denote by (e1, e2, . . . , ed) the orthonormal frame of Rd. Given two vectors x

and y in Rd, we write x ≤ y to mean that xi ≤ yi for i = 1, 2, . . . , d. We write Bd =

{x ∈ Rd :
∑d

i=1 x
2
i ≤ 1} for the unit ball in Rd and Sd = {x ∈ Rd+1 :

∑d+1
i=1 x2

i = 1}
for the unit sphere in Rd+1.

1.2.1. Polytopes, simplices, polyhedra, cones. Let A ⊆ Rd be a set. The convex hull

of A, denoted by conv(A), is the intersection of all convex sets containing A. In
other words, conv(A) is the smallest convex set containing A. It is well known that

conv(A) =

{
n∑

i=1

γiai : n ∈ N, ai ∈ A, γi ≥ 0, and γ1 + · · ·+ γn = 1

}
.

A polytope is the convex hull of a finite set of points in Rd. Here are a few ex-
amples. The convex hull of affinely independent points is a simplex ; the standard

k-dimensional simplex Δk is conv({e1, . . . , ek+1}), with ei is the i-standard unit
vector. The convex hull of e1,−e1, e2,−e2, . . . , ek,−ek is the k-dimensional cross-
polytope. The convex hull of all vectors with 0, 1 entries is the d-dimensional hy-
percube. A face of a polytope is its intersection with a hyperplane that avoids its
relative interior. Faces of dimension 0 are vertices and inclusion-maximal faces are
facets. A face of a polytope (resp., simplex) is also a polytope (resp., simplex).
There is a face of dimension −1, the empty set.

A polyhedron is the intersection of finitely many halfspaces in Rd. In particular,
any polyhedron can be represented as {x ∈ Rd : Ax ≤ b}, where A is an n×dmatrix
and b ∈ Rn. A polyhedral cone is a polyhedron that is closed under addition and
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scaling by a positive constant. In particular, any polyhedral cone can be written
as {x ∈ Rd : Ax ≥ 0}.

The polar of a point x ∈ Rd \ {0} is the halfspace {y ∈ Rd : x · y ≤ 1} (and
vice-versa) and the dual of x is the hyperplane {y ∈ Rd : x · y = 1} bounding
its polar; we speak of polarity or duality relative to o to represent the polarity or
duality after the coordinate system has been translated to have its origin in o.

TheWeyl–Minkowski theorem asserts that the polytopes are exactly the bounded
polyhedra. (This can be proven using polarity arguments.) Polytopes can thus be
represented both as convex hulls of finitely many points or as intersections of finitely
many halfspaces. To see that these viewpoints are complementary, we invite the
reader to prove that projections or intersections of polytopes are polytopes. The
Weyl–Minkowski theorem similarly implies that any polyhedral cone also writes as
the set of convex combinations of a finite set of rays emanating from the origin. By a
theorem of Motzkin et al. [284], every polyhedron P decomposes into the Minkowski

sum of a polytope Q and a polyhedral cone C: P = {x+ y : x ∈ Q,y ∈ C}.
A polyhedron is pointed if the largest affine subspace it contains is zero dimensio-

nal. Any polyhedron can be decomposed into the Minkowski sum of a pointed
polyhedron and a vector space.

1.2.2. Simplicial complexes. A geometric simplicial complex is a family of simplices
with two properties: the intersection of any two distinct simplices is a face of both
of them; and it contains all the faces of every member of the family. Simplicial
complexes may also be considered abstractly by only retaining which sets of vertices
span a simplex. Formally, an abstract simplicial complex K is a family of finite
subsets (the faces) of some ground set (the vertices) that is closed under taking
subsets: if σ ∈ K and τ ⊆ σ, then τ ∈ K. We write σn for the abstract n-dimensional

simplex consisting of all subsets of [n + 1]. A facet of a simplicial complex is an
inclusion-maximal face.

Let us stress that the meaning of the word face (or facet) depends on the context
and can denote a polytope (for polytopes), a simplex (for simplices), or a set of
vertices (for abstract simplicial complexes). In particular, we consider Δn to be a
polytope, so it has n + 1 faces of maximal dimension n − 1; in contrast, σn has a
single face of maximal dimension n.

Given a geometric simplicial complex K, we let |K| denote the underlying topo-
logical space, that is |K| =

⋃
σ∈K

σ. If L is the abstract simplicial complex obtained
from K, we say that K is a geometric realization of L and put |L| = |K|. (The
reader can check that all this is well-defined up to homeomorphism.) A triangula-

tion of a topological space X is a (geometric or abstract) simplicial complex whose
underlying topological space is homeomorphic to X.

1.2.3. Homology. We will use some basic notions of homology, mostly simplicial
homology over Z or Zq = Z/qZ. To allow readers unacquainted with homology to
appreciate at least our simplest examples, we recall here the basic definitions. An
important idea in homology theory is that topological spaces can be studied by asso-
ciating to them some groups, called homology groups. These groups can be defined
geometrically (in singular homology) or combinatorially (in simplicial homology)
from a triangulation of the space. In the cases that we consider, these approaches
produce isomorphic groups, and we mostly work with simplicial homology.
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Given a simplicial complex K, we denote by Ci(K,Z2) the set of finite formal sums
of i-dimensional faces of K, and C•(K,Z2) =

⊕∞
i=0 Ci(K,Z2) is the chain complex of

K. The map that sends every i-face of K to the formal sum, with coefficients in Z2,
of its (i− 1)-faces extends linearly, over Z2, to a map ∂i : Ci(K,Z2) → Ci−1(K,Z2).
Notice that C•(K,Z2) has an additive group structure and that the sum of the ∂i
is a morphism from C•(K,Z2) into itself; this morphism is called the boundary map

of C•(K,Z2). Note that with Z2-coefficients finite formal sums are simply subsets
and the boundary operator maps to proper subsets that appear an odd number of
times. It turns out that ∂i−1 ◦ ∂i = 0, so we can define the ith homology group of
K over Z2 coefficients as the quotient group Hi(K,Z2) = ker ∂i/ im ∂i+1.

Intuitively, the rank of Hi(K,Z2) relates to the number of independent holes
of dimension i in |K|; for example, the rank of H0(K,Z2) counts the number of
connected components of |K|. In particular, if K is a single vertex, then all its

homology groups are trivial except the 0th one. The reduced homology groups H̃i

modify slightly H0 so that it is trivial for connected sets; in dimension i ≥ 1,

homology groups and reduced homology groups coincide, and H̃−1 is defined as 0
for nonempty complexes. Going from Z2 to other coefficient groups involves only
one technical complication: the definition of ∂i involves some sign bookkeeping, so
as to ensure that ∂i−1 ◦ ∂i = 0; see [288] for details.

2. Combinatorial topology

From combinatorial topology, we will focus on two results about labeled or col-
ored triangulations of simplicial complexes—Sperner’s lemma and Tucker’s lemma.
The importance of these two lemmas owes much to their special position at the
crossroads of topology and combinatorics. As we alluded in the introduction,
Sperner’s and Tucker’s lemmas are the combinatorial equivalent versions to the
famous topological theorems of Brouwer and of Borsuk and Ulam, respectively.
Their combinatorial nature makes them particularly well-suited for computations
and applications too.

Combinatorial structures have been used in algebraic topology since Poincaré’s
foundational analysis situs, so it is not surprising that some topological questions
may be studied by combinatorial methods. The lemmas of Sperner and Tucker
are well-known for offering an elementary access, via labelings of combinatorial
structures, to important results in topology, such as the theorems of Brouwer and
of Borsuk and Ulam.

It is perhaps less obvious that some combinatorial problems may be studied
by topological methods. A seminal example of topological methods applied to
combinatorics was the use by L. Lovász of the Borsuk–Ulam theorem to settle a
conjecture of Kneser on the chromatic number of certain graphs (see Section 5).
His paper opened up the application of topological methods in combinatorics that
are now common tools. These techniques appear in several books [133, 258] and
surveys [62, 225]. In many cases the topological methods hinge on the theorems of
Brouwer or Borsuk and Ulam; as we discuss in the application sections, on several
occasions the topological machinery can be made implicit, and the combinatorial
question is settled directly by the lemmas of Sperner or Tucker.

2.1. Sperner and Tucker. A labeling of a simplicial complex K by a set S is
a map from the vertices of K to S; the label of a vertex is its image. Sperner’s
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lemma gives a sufficient condition for the existence of a fully labeled facet, that is a
facet whose vertices have pairwise distinct labels. (Sometimes the labels are called
colors, and fully labeled faces are called colorful ; we will avoid this terminology in
this paper to avoid confusion with the colorful theorems in convex geometry that
we discuss in Sections 3 and 5.)

Sperner’s lemma. Assume that the vertices of a finite triangulation T of a sim-

plex Δ are labeled so that any vertex lying in a face of Δ has the same label as one

of the vertices of that face. If the vertices of Δ are given pairwise distinct labels,

then the number of facets of T whose vertices have pairwise distinct labels is odd.

Figure 3. A Sperner labeling of a triangulation of Δ2 illustrated
by colors. The fully labeled triangles are shown shaded. The gray
edges augment the triangulation of Δ2 into a triangulation of S2.

We call a labeling that satisfies the assumptions of Sperner’s lemma a Sperner

labeling. A more general version holds for pseudomanifolds, i.e., for pure d-dimen-
sional simplicial complexes where every face of dimension d − 1 is contained in at
most two facets. (Recall that a simplicial complex is pure if all its inclusion-maximal
faces have the same dimension.) In particular, any triangulation of a d-dimensional
manifold is a pseudomanifold of dimension d. The boundary of a pseudomanifold
is the subcomplex generated by its (d− 1)-dimensional simplices that are faces of
exactly one d-dimensional simplex.

Proposition 2.1. Any labeling by [d+1] of a d-dimensional pseudomanifold without

boundary has an even number of fully labeled facets.

Proposition 2.1 follows from a simple parity argument. Consider the graph where
the nodes are the facets and where the edges connect pairs of facets that share a
(d− 1)-dimensional face whose vertices use every label in [d]. This graph has only
nodes of degree 0, 1, or 2, so it consists of vertex-disjoint cycles and paths. The
nodes of degree 1 are exactly the fully labeled facets, and there are evenly many of
them (twice the number of paths). Coming back to the remark in introduction, this
is where it is useful to understand why a house with an odd number of openings
has a room with an odd number of openings.

Clearly, Sperner’s lemma follows from Proposition 2.1. For this observe that
any Sperner labeling of a d-dimensional simplex Δd extends into a triangulation
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Figure 4. Geometric interpretation of the dominance graph for
� in the octahedral Tucker lemma for n = 2 (left) and n = 3
(right).

of Sd where (i) the outer vertices of Δd form a fully labeled facet, and (ii) no
other added facet is fully labeled (as illustrated in Figure 3). Knowing a vertex of
degree 1 allows us easily, by path following, to find another one; in Section 2.4 we
will present algorithmic applications of this idea. Other arguments can be used to
prove Sperner’s lemma [269].

Now we will state the octahedral Tucker lemma. This is a rather streamlined
version of Tucker’s lemma that already suffices for all our applications. Given
vectors of signs x,y ∈ {+,−, 0}n, we write x � y if every nonzero coordinate of x
is the same as in y. We let x+ denote the set of indices i such that xi = +, and
x− similarly. In particular, x � y if and only if x+ ⊆ y+ and x− ⊆ y−. Note
that each vector of signs uniquely identifies a coordinate (sub)orthant, and that the
order � indicates containment. There is an interpretation of ({+,−, 0}n,�) as a
simplicial complex illustrated in Figure 4. By ±a we mean a choice of one of the
two scalars −a or a.

Octahedral Tucker lemma. Let λ : {+,−, 0}n \ {0} → {±1,±2, . . . ,±m} be

such that λ(−x) = −λ(x) for all x. If λ(x) + λ(y) 	= 0 for all x � y, then n ≤ m.

The octahedral Tucker lemma was apparently first stated explicitly by Ziegler [395,
Lemma 4.1], following its implicit use by Matoušek [259] in his proof of the lower
bound on the chromatic number of Kneser graphs from Tucker’s lemma (see Sec-
tion 5.1). Several classical proofs of Proposition 2.2 can be found in Matoušek’s
book [258]. As we explain in Section 2.2, the lemmas of Sperner and Tucker are
indeed topological in that they essentially state that certain chain maps, namely
those induced by the labeling maps, are nontrivial in simplicial homology with
coefficients over Z2.

A more common version of Tucker’s lemma deals with triangulations of a ball
instead of an octahedron. Tucker’s lemma gives a lower bound on the number of
distinct labels used by labelings that avoid certain local patterns. We say that a
triangulation T of Bd induces a symmetric triangulation of Sd−1 if its boundary
∂T forms a centrally symmetric triangulation of Sd−1. A labeling of a symmetric
triangulation of Sd by integers is antipodal if antipodal vertices have opposite labels.

Proposition 2.2 (Tucker’s lemma). Let T be a triangulation of Bd that induces

a symmetric triangulation of Sd−1. Let λ be a labeling of the vertices of T by
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Figure 5. An illustration of Tucker’s lemma: a triangulation of
B2 that induces a symmetric triangulation of S1. On the left the
antipodal simplices on the boundary are painted with the same
color. On the right side, a labeling of the vertices that is antipodal
on the boundary.

{±1, . . . ,±d}. If λ(−v) = −λ(v) for every vertex v of ∂T, then there exists an

edge uv in T with λ(u) + λ(v) = 0; see Figure 5.

The octahedral version is obtained by applying Proposition 2.2 to the barycentric
subdivision T of the n-dimensional cross-polytope ♦n = conv{±ei}1≤i≤n [258, The-
orem 2.3.2]. Indeed, consider a map λ : {+,−, 0}n \ {0} → {±1, . . . ,±m} such
that λ(−x) = −λ(x) for all x and λ(x) + λ(y) 	= 0 for all x � y. Any x ∈
{+,−, 0, }n \ {0} can be interpreted as the vertex in T corresponding to the face
conv({ei : i ∈ x+} ∪ {−ei : i ∈ x−}) of ♦n. The edges in T connect pairs x and
y such that x � y. Defining λ(0) = m + 1, we get a labeling of all vertices of T
satisfying λ(−v) = −λ(v) for every vertex v of ∂T and having no edge uv in T

with λ(u) + λ(v) = 0. By Proposition 2.2, we must have m+ 1 > n.
As stated in the introduction, Tucker’s lemma is equivalent to the fact that for

any triangulation of the projective plane and any 2-coloring of its vertices, one of
the color classes spans a noncontractible cycle. Indeed, such a 2-coloring can be
seen as a 2-coloring of a triangulation of the disk, with symmetric vertices of the
boundary getting identical colors. If all monochromatic cycles were contractible, we
could easily choose a sign for each vertex and get a labeling that would contradict
Tucker’s lemma. The reverse implication is also easy and is left to the reader.

Consider a triangulation T as in Proposition 2.2 and a labeling λ of its vertices
by {±1, . . . ,±m}; a k-dimensional face of T is alternating if its vertices can be
indexed vi0 , . . . ,vik so that 0 < λ(vi0) < −λ(vi1) < · · · < (−1)kλ(vik) or if
0 > λ(vi0) > −λ(vi1) > · · · > (−1)kλ(vik). In the first case we call the simplex
positively alternating ; in the second case, negatively alternating. A lemma due to
Fan [160] generalizes Tucker’s lemma in terms of a parity counting of alternating
simplices.

Theorem 2.3 (Fan’s lemma). Let T be a triangulation of Bd that induces a

symmetric triangulation of Sd−1. Let λ be a labeling of the vertices of T by

{±1, . . . ,±m} such that λ(−v) = −λ(v) for every vertex v of ∂T. If no two
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adjacent vertices have opposite labels, then T has an odd number of alternating

facets.

Fan’s lemma readily implies Tucker’s lemma since the existence of an alternating
d-dimensional face implies m ≥ d + 1. Going in the other direction, it was only
recently observed by Alishahi [15] that an existential version of Fan’s lemma is
easily derived from Tucker’s lemma.

Let us illustrate that, surprisingly, Fan’s lemma can be easier to prove than
Tucker’s lemma: this is one example where a stronger hypothesis facilitates induc-
tion. We give an inductive proof for a flag of hemispheres, i.e., a triangulation T

of Bd such that the restriction of T on H+
i and on H−

i triangulates each of them,
where H+

i and H−
i are the i-dimensional hemispheres

H+
i = {x ∈ Sd−1 : xi+1 ≥ 0, xi+2 = · · · = xd = 0},

H−
i = {x ∈ Sd−1 : xi+1 ≤ 0, xi+2 = · · · = xd = 0}.

(Prescott and Su [318] gave another combinatorial constructive proof for this special
case.) Consider the graph whose nodes are the facets of T and whose edges connect
pairs of facets that share a (d − 1)-dimensional face that is positively alternating.
We augment this graph with an extra node s and add edges connecting s to all
facets of T that have a (d − 1)-dimensional positively alternating face on ∂T; in
a sense, s represents the outer facet. Apart from s, all nodes have degree 0, 1, or
2. The nodes of degree 1 are exactly the d-dimensional alternating facets. The
triangulation T refines H+

d−1, which is homeomorphic to Bd−1. So by induction
in dimension d − 1, the number of (d − 1)-dimensional alternating faces of ∂T in
H+

d−1 is odd; the same holds for the (d− 1)-dimensional faces of ∂T in H−
d−1. The

symmetry of ∂T and that of the labeling imply that the degree of s is odd; it follows
that there is an odd number of d-dimensional alternating facets in T.

The above elementary proof requires that the triangulation restricts nicely to
lower-dimensional spheres to allow induction. Two proofs of Theorem 2.3 can
be found in the literature, both for an equivalent version with a sphere instead
of a ball (later we will explain this equivalence for our own proof of Theorem
2.3). On the one hand, Živaljević [397] observed that the labeling is essentially a
classifying map that is unique up to Z2-homotopy, so the number of alternating
facets (mod 2) reformulates as the cap product of a certain cohomology class with a
certain homology class. On the other hand, Musin [289] builds a simplicial Z2-map
from the triangulation to a d-dimensional polytope for which the following holds:
a simplex is alternating if and only if its image by this simplicial map contains 0
in its convex hull; a degree argument then allows us to conclude. It turns out that
Alishahi’s idea to derive Fan’s lemma from Tucker’s lemma leads to a short proof of
Theorem 2.3, also based on a degree argument. Before we spell out this (original)
proof, let us stress that the following question remains.

Open Problem 2.4. Give a direct combinatorial proof of Fan’s lemma (as stated
in Theorem 2.3) and of Tucker’s lemma (Proposition 2.2) valid for any centrally
symmetric triangulation.

Let us now prove Theorem 2.3 for an arbitrary triangulation T of Bd. Let λ
be a labeling of the vertices of T satisfying the conditions of Theorem 2.3. We
first turn T into a triangulation T

′ of Sd by gluing two antipodal copies of Bd,
each triangulated by T; notice that the number of positively alternating facets
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of T
′ equals the number of alternating facets of T (both positive and negative

ones), since the negatively alternating facets in one copy of T become positively
alternating in the other copy. We define next a labeling μ of the vertices of sdT′ by
{±1, . . . ,±(d+1)}: a vertex v of sdT′ corresponds to a simplex τv of T′, and we set
the absolute value of μ(v) to be the number of vertices of the largest alternating face
of τv, and its sign according to alternation. This sign is defined uniquely since there
cannot be maximal alternating faces of both types in τ (this can be checked using
the fact that no adjacent vertices in T can have opposite labels). Now, a crucial
observation is that if σ is an alternating facet (for λ), then sdσ contains exactly
one alternating facet (for μ) of the same type; and if σ is not an alternating facet,
then sdσ contains no alternating facet. At this point, to establish Theorem 2.3, it
suffices thus to prove that sdT′ contains an odd number of positively alternating
facets. This fact follows from basic degree theory. The assumptions on λ guarantee
that μ induces an antipodal simplicial map from sdT′ to ∂♦d+1, the boundary of the
(d+ 1)-dimensional cross-polytope, whose vertices are identified with the elements
in {±1, . . . ,±(d+1)}. Any antipodal self-map of Sd is of odd degree [142, Theorem
4.3.32]. Thus, denoting by t ∈ Cd(sdT

′,Z2) the formal sum of all facets of sdT′ and
by z ∈ Cd(∂♦

d+1,Z2) the formal sum of all facets of ∂♦d+1, we must have μ♯(t) = z.
The only simplices that are mapped to the simplex {+1,−2, . . . , (−1)d(d+ 1)} by
μ♯ are the positively alternating ones, so there are an odd number of them.

2.2. Continuous versions. One of the most famous theorems about fixed points
is due to the Dutch mathematician L. E. J. Brouwer and states that any continuous
function from a ball into itself has a fixed point. Brouwer’s theorem is often seen
as a continuous version of Sperner’s lemma (without the oddness assertion): they
can be deduced easily from one another.

Let us sketch how Brouwer’s theorem follows from Sperner’s lemma (we discuss
the other direction in Section 2.3). Contrary to Brouwer’s original proof, which
says nothing about how to find the fixed point or a good approximation of it, this
proof has computational implications (see Section 2.4). Without loss of generality
we take the d-dimensional standard simplex Δd ⊂ Rd+1 as a realization of a ball
(it is easy to set up a homeomorphism). Then we triangulate the simplex Δd and
design a labeling of that triangulation tailored to the continuous function f under
consideration. Specifically, we associate to a vertex v of the triangulation the label
i if the ith barycentric coordinate of v is larger than the ith barycentric coordinate
of its image f(v). (So, intuitively, if v is labeled i, then f moves v away from the
ith vertex of the standard simplex.) Note that, unless the vertex v is a fixed point,
there must be at least one such index. If there are several such indices, simply
make an arbitrary choice among them. Now, the labeling we provided satisfies
the assumptions of Sperner’s lemma, so we can find a fully labeled simplex of T
such that the ith barycentric coordinate of the vertex labeled i is decreased by
f . Retriangulate Δd again and again adding more and more points in such a way
that the maximum diameter of the simplices appearing in the triangulation goes
to zero in the limit. At each step we find a fully labeled simplex. The barycenters
of all such simplices will produce an infinite sequence of points and, since it is a
bounded sequence, it contains a convergent subsequence. Let x∗ be the limit of
this subsequence. Since the map f is continuous, the ith barycentric coordinate of
x∗ is larger than or equal to the ith barycentric coordinate of f(x∗) for every i and
therefore x∗ is a fixed point of the map.
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Figure 6. An illustration of the KKM lemma in two dimensions.

The Knaster–Kuratowski–Mazurkiewicz theorem, also known as the KKM the-
orem, is a classical consequence of Sperner’s lemma or Brouwer’s theorem. It is
used, for instance, in game theory or for the study of variational inequalities. Con-
sider the d-dimensional simplex Δd = conv{ei : 1 ≤ i ≤ d + 1} and d + 1 closed
sets C1, C2, . . . , Cd+1 in Rd. This theorem (illustrated in Figure 6) ensures that if
for every I ⊆ [d + 1] the face conv{ei : i ∈ I} of Δd is covered by

⋃
i∈I Ci, then⋂d+1

i=1 Ci is nonempty. This statement is somehow reminiscent of Helly’s theorem.
A corollary of the KKM theorem can actually be used to prove it; see Section 3.2.
This corollary states that if d + 1 closed sets C1, C2, . . . , Cd+1 are such that each
of them contains a distinct facet of Δd and such that their union covers Δd, then
their intersection is nonempty (this statement is also called a dual KKM theorem

in [32]). To see that it is a consequence of the KKM theorem, assign number i to
the facet covered by Ci; number the vertices of Δd so that vertex i is on facet i;
the Ci’s satisfy then the condition of the KKM theorem.

Several variations of the original KKM theorem exist. Gale [177] proved the

following colorful version: given d+1 different KKM covers {C1
i }d+1

i=1 , {C2
i }d+1

i=1 , . . . ,

{Cd+1
i }d+1

i=1 of the d-simplex, there exists a permutation π of the numbers [d + 1]

such that
⋂d+1

i=1 Ci
π(i) 	= ∅. Clearly, choosing all the covers to be the same recovers

the classical version of KKM stated above. Gale’s colorful KKM theorem has an
intuitive interpretation first stated by Gale himself: “if each of three people paint
a triangle red, white, and blue according to the KKM rules of covering, then there
will be a point which is in the red set of one person, the white set of another,
the blue of the third”. A recent strengthening of this colorful theorem [32] states

that, given d KKM covers {C1
i }d+1

i=1 , {C2
i }d+1

i=1 , . . . , {Cd
i }d+1

i=1 of the d-simplex Δd,
then there exist a point x in Δd and d + 1 bijections πi : [d] → [d + 1] \ {i} for

i = 1, . . . , d+ 1, such that x ∈ ⋂d
j=1C

j
πi(j)

for every i. It is interesting to note the

proofs of these colorful results combine degree theory with Birkhoff’s theorem on
doubly stochastic matrices. Finally, we note that [291] has common generalizations
of Sperner, Tucker, KKM, and Fan.

Another fascinating and very useful consequence of Brouwer’s theorem is Kaku-
tani’s 1941 fixed-point theorem. It deals, not with real-valued functions, but with
set-valued functions, where points are mapped to subsets. For a suitable notion of
continuity, it ensures that for any continuous function F mapping points of a ball
to convex subsets of it there is an x such that x ∈ F (x). Kakutani’s theorem is
especially useful in game theory, its most traditional application being the Nash
theorem; see Section 4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Similar to Sperner’s lemma, Tucker’s lemma has continuous and covering ver-
sions. The continuous version is the celebrated Borsuk–Ulam theorem, which has
many applications in discrete geometry, combinatorics, and topology. It asserts
that there is no continuous function from Sd into Sd−1 that commutes with the
central symmetry. Nice proofs of the Borsuk–Ulam theorem from Tucker’s lemma,
as well as equivalent formulations and many applications, can be found for instance
in the books of Matoušek [258, Chapter 2.3] and de Longueville [133, Chapter 1].
Just as KKM is the covering version of Sperner’s lemma, Tucker’s lemma has a
covering version, the Lysternik–Schnirel’mann theorem [250]. It states that if the
sphere Sd is covered by d+ 1 closed subsets, then one of the sets must contain two
antipodal points. This theorem and some of its extensions (e.g., those due to Fan)
have found many applications in other areas of mathematics, for instance, for the
KKM theorem, in the study of variational inequalities.

2.3. Generalizations and variations. A labeling λ of a simplicial complex T by
a set S can be interpreted as a map from the vertices of T to the vertices of some
abstract simplicial complex K with vertex set S. This viewpoint leads to several
interesting developments.

A first idea is to extend λ into a linear map f from |T| into |K|. For a Sperner
labeling, f maps Δd into itself. Composing f with a suitable orthogonal trans-
formation ensures that any fixed point of the resulting map, which must exist
by Brouwer’s theorem, lies in a fully labeled simplex; this is the standard proof
of Sperner’s lemma from Brouwer’s theorem [133, Section 1.1]. Using this idea,
Sperner’s lemma was generalized to triangulations of arbitrary polytopes by De
Loera, Peterson, and Su [131].

Proposition 2.5 (Polytopal Sperner lemma). Let P ⊂ Rd be a polytope with n
vertices, let T be a triangulation of P , and let λ be a labeling of the vertices of T by

[n]. If the vertices of P have pairwise distinct labels and every vertex of T lying on

a face F of the boundary of P has same label as some vertex of F , then T contains

at least n− d fully labeled facets.

The gist of the proof is that λ extends into a piecewise linear map from |T| to P
(as illustrated in Figure 7). This map can be shown to be surjective, so its image
provides a covering of P by simplices spanned by its vertices. The number of such
simplices required to cover P is at least n − d, and each of them is the image
(under the extension of λ) of a fully labeled facet of T. This approach generalizes
to nonconvex polyhedral manifolds [273] and broader classes of manifolds [289,290].
The reader interested in recent progress on lower bounds for the number of fully
labeled facets is refered to the work of Asada et al. [32].

Another idea is to extend λ into a chain map λ♯ : C•(T, R) → C•(K, R). De-
pending on the coefficients ring R and the complex K, one gets different general-
izations of classical statements. This extension goes as follows. Send every simplex
{v0, . . . ,vk} of T to {λ(v0), . . . , λ(vk)} if the λ(vi) are pairwise distinct and to
0 otherwise; the linear extension of this map to C•(T,Z2) is the map λ♯, and it
commutes with ∂ (it is a chain map).

For R = Z2, we obtain a short proof by induction of Sperner’s lemma. As-
sume that λ is a Sperner labeling of a triangulation T of Δd, so λ♯ : C•(T,Z2) →
C•(σd,Z2). Let t denote the sum of d-simplices of T, and let σ denote the unique

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



430 J. A. DE LOERA, X. GOAOC, F. MEUNIER, AND N. H. MUSTAFA

Figure 7. A Sperner-type labeling of a triangulation of a polygon
and the associated surjective map to the polygon.

d-simplex of σd. Observe that λ♯(t) = ℓσ, where ℓ is the number of fully la-
beled simplices in T mod 2. A simple induction shows that λ♯(∂t) = ∂σ. Thus,
∂λ♯(t) = λ♯(∂t) 	= 0. It comes that ℓ 	= 0, and T has an odd number of fully labeled
simplices.

For R = Z, the same proof gives a Sperner-type result for oriented simplices.
The orientation of a fully labeled simplex {v1,v2, . . . ,vd+1} of T, where vi has
label i, is defined as the sign (1 or −1) of the determinant

∣∣∣∣
v1 v2 . . . vd+1

1 1 . . . 1

∣∣∣∣ .

Specifically, this proves that in any Sperner labeling of a triangulation of Δd by
[d+ 1] the orientations of the fully labeled simplices add up to 1 [161, Theorem 2].
This approach also yields a proof of (a signed version of) Fan’s lemma [133, Theo-
rem 1.10], again for triangulations with flags of hemispheres.

For R = Zq, this idea leads to generalizations of the lemmas of Tucker and Fan
with more than two signs [201,272]. The general insight, following a generalization
by Dold [144] of the Borsuk–Ulam theorem, is to replace Sd and the antipodality
by a suitable simplicial complex on which Zq acts freely. The resulting Zq-Fan
lemmas actually provide combinatorial proofs of Dold’s theorem. The deduction of
the Zq-Fan lemmas from their Zq-Tucker versions works as explained above in the
Z2 case [15].

A variant of the above argument yields a new and elementary proof of a relative of
Sperner’s lemma, due to Meshulam [270]. It is a powerful result that has found many
applications in graph theory and in discrete geometry, such as the recently found
generalization of the colorful Carathéodory theorem by Holmsen and Karasev [212].
We come back later to some of its applications in discrete geometry (Section 3.1)
and in graph theory (Section 5.2). Meshulam’s lemma was first explicitly derived
from (a special version of) Leray’s acyclic cover theorem (its first use was implicit;
see Kalai and Meshulam [222, Proposition 3.1] for an explicit statement and proof
for rational homology).

For the sake of presentation, we consider here homology over Z2 but the proof
generalizes, mutatis mutandis, to an arbitrary ring. Given a simplicial complex K

and a subset X of its vertices, we denote by K[X] the simplicial complex formed
by the simplices of K whose vertices are in X.

Proposition 2.6 (Meshulam’s lemma). Let λ be a labeling of the vertices of a

simplicial complex K by [d+ 1]. If H̃|I|−2

(
K[λ−1(I)]

)
is trivial for every nonempty

I ⊆ [d+ 1], then K contains a fully labeled d-dimensional face.
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The proof goes as follows. Let λ♯ : C•(K) → C•(σd) denote the chain map induced
by λ and recall that it maps simplices with repeated labels to 0. We build a chain
map f♯ : C•(σd) → C•(K) such that λ♯ ◦ f♯ = idσd

; the identity (λ♯ ◦ f♯)([d+ 1]) =
[d+1] then ensures that f♯([d+1]) contains an odd number of fully labeled simplices,
proving the statement. We build f♯ by increasing dimension. We start by setting
f♯({i}) to be some (arbitrary) vertex in λ−1({i}) for every i ∈ [d + 1]; this is

possible because H̃−1(K[λ
−1({i})]) is trivial. Assume that f♯ is defined over all

chains up to dimension k, that it maps any subset I of cardinality at most k + 1
to C•(K[λ−1(I)]), and that it commutes with the boundary operator. Now, for any
subset I of cardinality k + 2, we have

∂

(
∑

i∈I

f♯(I \ {i})
)

= ∂f♯

(
∑

i∈I

I \ {i}
)

= ∂f♯(∂I) = f♯(∂
2I) = 0,

so the k-chain
∑

i∈I f♯(I \ {i}) is a cycle in C•(K[λ−1(I)]). The assumption of the

lemma ensures that it is the boundary of some chain γ ∈ C|I|−1(K[λ
−1(I)]), and

we set f♯(I) to be γ. To see that (λ♯ ◦ f♯)(I) = I for any I ⊆ [d+1], first note that
this is straightforward for |I| = 1. For the general case, remark that

∂λ♯ (f♯(I)) = λ♯ (∂f♯(I)) =
∑

i∈I

λ♯ (f♯(I \ {i})) =
∑

i∈I

I \ {i},

so we can assume by induction that ∂λ♯ (f♯(I)) = ∂I. We conclude by observing
that f♯(I) ∈ C|I|−1(K[λ

−1(I)]) means that λ♯ (f♯(I)) is supported only on subsets
of I, so it must be that λ♯ (f♯(I)) = I.

The parity argument used to prove Proposition 2.1 can also be found, special-
ized to a certain labeled pseudomanifold, in Scarf’s proofs of the integer Helly
theorem [340] and his classical lemma in game theory [339]. There is a related
unbounded polar version that will be useful in Section 5.3.

Corollary 2.7 ([232, Theorem 3]). Let P be a d-dimensional pointed polyhedron

whose characteristic cone is generated by d linearly independent vectors and whose

facets are labeled by [d]. If no facet containing the ith extreme direction is labeled

i, then there exists a extreme point incident to a facet of each label.

Another recent variation of Sperner’s lemma, motivated by applications in ap-
proximation algorithms, asks for the minimum possible number of facets in the
Sperner labeling that must be nonuniquely labeled. Mirzakhani and Vondrak [281,
282] settled this question for certain triangulations of the simplex, for which they
provided the optimal Sperner labeling. They then proposed two very interesting
open questions.

Open Problem 2.8. Is there a theorem that interpolates between the result above
(lower bound on the number of simplices with at least two different colors) and the
original Sperner’s lemma (lower bound on the number of simplices with vertices
of different color) by predicting how many simplices are colored with at least j
different colors? How does such a theorem depend on the structure of the particular
triangulation?

It must be mentioned that Tucker-type theorems and Sperner-type theorems are
related to each other in interesting ways. For example, it is known that the Borsuk–
Ulam theorem implies the Brouwer fixed-point theorem, but at the combinatorial
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level Nyman and Su [306] proved that Fan’s lemma implies Sperner’s theorem too.
Other interconnections can be found in [318, 359].

2.4. Computational considerations. The proof of Sperner’s lemma given for
Proposition 2.1 builds a graph where every vertex has degree 0, 1, or 2, then exhibits
a vertex of degree 1 and argues that any other vertex of degree 1 must correspond to
a fully labeled simplex. This provides a simple algorithm for finding a fully labeled
simplex: just follow the path! We can combine this simple path-following algorithm
for finding fully labeled simplices with the proof of Brouwer’s theorem, presented
at the beginning of Section 2.2, and provide a method for finding an approximate

fixed point of the continuous map f . Again assume we are given a continuous map
f : Δd → Δd and an ε > 0. Our goal is to find x ∈ Δd such that ‖f(x)− x‖ ≤ ε.
For this, it suffices to compute a triangulation of Δd with simplices of diameter
sufficiently small, depending on ε and the modulus of continuity of f , label it as in
the proof of Brouwer’s theorem, and any vertex x of a fully labeled simplex does
the job (this fact is more easily formalized by using the ℓ∞ norm on the barycentric
coordinates). This template of proof was first presented in [338] and is quite flexible,
e.g., it applies to noncontracting functions. We left out many details, for instance
the choice of the triangulation to speed up the algorithm and the estimation of the
modulus of continuity. The interested reader can find more details on methods to
compute approximate fixed points based on these ideas in [374].

The theory of computational complexity is a formal way for computer scientists
to classify the inherent difficulty of computational problems. Families of problems,
called complexity classes, collect problems of equivalent difficulty (a complete intro-
duction can be found in [30]). Famous complexity classes of course include the class
P and the class NP, but here and in Section 3.4 we briefly discuss the complexity
classes that relate to computational versions of our five central theorems.

The path-following algorithm for computing the fully labeled simplex for Sper-
ner’s lemma is representative of the PPAD class, a complexity class well-suited for
studying computational problems whose solution is known to exist, but finding it
is not that easy. This class was presented by Papadimitriou [314]; see also [304].
The prototypical problem of the class PPAD (which abbreviates Polynomial Parity

Argument for Directed graphs) assumes an underlying directed graph where every
vertex has in- and out-degrees at most 1; the graph may be implicit, and all that is
required is the existence of a function that computes the neighborhood of a given
vertex in time polynomial in the encoding of that vertex. The PPAD problem asks,
given the encoding of an unbalanced vertex (that is, with different in- and out-
degrees), to compute the encoding of another unbalanced vertex. (Note that this
computational problem does not easily reduce to a meaningful associated decision
problem, since the existence of this other unbalanced vertex follows systematically
from parity considerations.) A problem is in the PPAD class if it has a polynomial
reduction to the PPAD problem, and a problem from the PPAD class is PPAD-

complete if every problem from the PPAD class has a polynomial reduction to that
problem. (All reductions here are meant in the usual sense of polynomial reductions;
see [304, §2].) PPAD-completeness results imply conditional lower bounds in the
following sense: one cannot solve a PPAD-complete problem substantially faster
than by path following, unless there is also a substantially better method than
path following for the PPAD problem (and similarly for every other problem in the
PPAD class). As in the case of the P vs NP problem, failure over time to improve
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on even the most streamlined of these problems supports the conjecture that none
of these methods can be substantially improved.

The Sperner problem—where one asks, given a Sperner labeling, for a fully la-
beled simplex—is well-known to be PPAD-complete in any fixed dimension. (For-
malizing this problem properly requires some care, for instance the definition of a
canonical sequence of triangulations with simplices of vanishing diameter, which we
do not discuss.) Papadimitriou’s seminal paper, which started the theory of PPAD
problems [314], settled the three-dimensional case and listed the two-dimensional
case as an important open problem; it was settled in the positive a decade later by
Chen and Deng [103].

While Tucker’s lemma can also be proved via a path-following argument [167],
the computational problem associated to Tucker’s lemma is not known to belong to
the PPAD class: contrary to Sperner’s lemma, there is no natural orientation of the
edges of the underlying graph. The suitable complexity class to use for the Tucker

problem is a superclass of the PPAD class, the class PPA. Here PPA abbreviates
Polynomial Parity Argument for graphs. This class was introduced at the same
time as the PPAD class, its definition is almost the same: instead of working with
directed graphs, one works with undirected ones. The underlying graph defining the
PPA problem has all its vertices of degree at most 2 and asks, given the encoding
of a vertex of degree 1, to output the encoding of another degree 1 vertex. PPA
contains PPAD, but it is a famous problem to decide whether the two classes are
actually the same; this was already asked in the paper founding this topic [314].
Experts believe that these two classes are different [191].

Open Problem 2.9. Are the complexity classes PPA and PPAD equal?

As for the Sperner problem, the Tucker problem is PPA-complete already in
dimension 2 (see Aisenberg et al. [11], who corrected an earlier, wrong, assertion
of PPAD-ness). Pálvölgyi [312] introduced a clean variation of this problem—the
octahedral Tucker problem—together with the open question below:

Given a function λ : {+,−, 0}n \ {0} → {±1,±2, . . . ,±m}, com-
putable in time polynomial in n and such that n > m and λ(−x) =
−λ(x) for all x, compute x � y such that λ(x) + λ(y) = 0.

Note that contrary to the Tucker problem we just discussed, the dimension is not
part of the input. The computational complexity of the algorithmic version of
the octahedral Tucker lemma had been an outstanding challenging problem, but
the paper [137] resolved this problem by proving octahedral Tucker lemma to be
PPA-complete.

We will also discuss in our applications (particularly in section 4.1.2) some con-
sequences of the lemmas of Sperner or Tucker whose computational versions may
be complete for two related complexity classes. The first class is FIXP, introduced
by Etessami and Yannakakis [158]. It consists of the problems whose resolution
on an instance ℓ reduces to the computation of a fixed point of some function Fℓ

that can be expressed by the operations {+, ∗,−, /,max,min} with rational con-
stants and functions and computed in time polynomial in the size of ℓ; this extends
PPAD, which coincides with the case of linear functions. The second class, called
∃R [341] (sometimes abbreviated ETR for existence of real solutions, see [181]),
studies problems that reduce to deciding the emptiness of a general semi-algebraic
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set, i.e., the set of real solutions of a system of inequalities with polynomials as
constraints. These two complexity classes are relevant in Section 4.

3. Combinatorial convexity

We now focus on three classical combinatorial theorems about convex sets first
identified in the early 20th century. These are the theorems of Carathéodory, Helly,
and Tverberg. The importance of convexity in applications, and hence of these
three theorems, owes much to the computational effectiveness of convex optimiza-
tion algorithms both in practice and in theory [58, 76]. This encourages applied
mathematicians to look for convexity or for ways to approximate complicated sets
using convex sets. Surprisingly, convexity appears in unexpected settings.

Extensive surveys were devoted to (subsets and variations on) some of these
three theorems by Danzer, Grünbaum, and Klee [120], Eckhoff [152], Holmsen
and Wenger [211] and Amenta, De Loera, and Soberón [28]. An account of early
variations of Carathéodory’s theorem is in the memoir by Reay [322].

There is an abundant literature on axiomatic convexity, which studies analogues
of the theorems of Carathéodory, Helly, and Tverberg, not over Euclidean spaces
as we do here, but over purely combinatorial abstract settings, for instance in the
convexity spaces defined by arbitrary graphs, finite geometries, matroids, greedoids,
etc. The three theorems play a significant and interesting role there too, but we do
not cover this topic here. We refer the interested reader to the references [148,230,
380].

3.1. Carathéodory. We will first consider Carathéodory-type theorems that cer-
tify membership of a point in the convex hull of a set via linear nonnegative com-
binations. The original theorem of Carathéodory [89] asserts that any point in
the convex hull of a finite point set in Rd is a convex combination of some at
most d + 1 of these points. Equivalently, if a vector b belongs to the cone of
X = {v1,v2, . . . ,vn} ⊂ Rd (i.e., the positive hull of all nonnegative real linear
combinations of vectors in X), then b is a positive combination of at most d vectors
of X. To see this, let A = (v1 v2 · · ·vn), and assume that x̃ is a solution of

(3.1)
Ax = b,
x ≥ 0.

If the support of x̃ has size at least d+1, then Ax = 0 has some nontrivial solution
z with support contained in the support of x̃. For an adequate value of t, the vector
x̃+ tz is a solution of system (3.1) with smaller sup-
port than x̃. A closer examination of this argument
yields that, in the plane, any point in the convex hull
of four points lies in two of the triangles they span
(as illustrated on the right). The following strength-
ening of Carathéodory’s theorem will be useful in
optimization.

Proposition 3.1. Any point in the convex hull of (at least) d+2 points in Rd lies

in the convex hull of at least two (d+ 1)-element subsets of these points.
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Let us give a geometric proof of Proposition 3.1 for
d+2 points. Let p be any one of the d+2 points, and
let x be in the interior of their convex hull. Shoot a
ray from p to x and collect the (at most) d vertices
of the face of a (triangulation of the) convex hull
through which this ray exits; these d points and p

contain the point x in their convex hull, and any of
the d+2 points can be used as the origin of the ray.

The figure above illustrates this process in the case of a (blue) point x contained in
the convex hull of the (white) vertices of a cube in R3. The green projections to faces
help us find the four white points containing x. Several variants of Carathéodory’s
theorem have been developed. For instance, Steinitz [364] proved that a point in
the interior of the convex hull of a set S lies in the interior of the convex hull of some
2d points of S. A related classical result is the Krein–Milman theorem [251]: if C is
a convex set, then every point in C is a convex combination of its extreme points,
i.e., those that are not convex combinations of others in the set. Allowing more
flexible representations, Dobbins [141] proved that any point in an ab-dimensional
polytope is the barycenter of a points on its b-dimensional skeleton (another proof
of Dobbins’s theorem is shown in [67]).

One of the most applicable and powerful variants is the colorful Carathéodory

theorem. We saw this in the introduction already.

Colorful Carathéodory theorem. Let C1, C2, . . . , Cd+1 be point sets in Rd. If

a point p is in the convex hull of every Ci, then there exist x1 ∈ C1, x2 ∈ C2, . . . ,

xd+1 ∈ Cd+1 such that p lies in the convex hull of {x1,x2, . . . ,xd+1}.

In other words, if the origin is contained in the convex hull of each of d + 1
point sets C1, C2, . . . , Cd+1 (the color classes), then it is contained in a colorful
simplex, i.e., one where each of the vertices comes from a different Ci (with the
understanding that this simplex may be degenerate). This theorem was discovered
by Bárány [40], who showed that a colorful simplex that minimizes the distance to
the origin must contain it. Indeed, when the distance is still positive, it is attained
on a facet and the vertex opposite to that facet may be changed to further decrease
the distance to the origin. This approach inspired new proofs and algorithms, by
minimization, of the colorful Carathéodory theorem [46] and other results such as
Tverberg’s theorem [329,377,378] (see more on Tverberg’s theorem later in Section
3.3).

An alternative proof of the colorful Carathéodory theorem applies Meshulam’s
lemma (Proposition 2.6) to the join of two abstract simplicial complexes built on

top of
⋃d+1

i=1 Ci: one has a simplex for any subset of points with no repeated color,
and the other has a simplex for every subset of points not surrounding the origin.

(The labeling is given by the identification of the vertices of the join to
⋃d+1

i=1 Ci.)
This approach emerged from a colorful Helly theorem of Kalai and Meshulam [222]
(see below) and later allowed a purely combinatorial generalization of the colorful
Carathéodory theorem by Holmsen [209], where the geometry and the colorfulness
are abstracted away into, respectively, an oriented matroid and a matroid. See also
the paper [212].
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The assumption of the colorful Carathéodory theorem ensures that not only
one, but actually many colorful simplices exist; we come back to this question
when discussing simplicial depth in Section 7.4. This also underlies its connection
to Tverberg’s theorem, which we discussed in Section 3.3.

Many variations and strengthenings of the colorful Carathéodory theorem have
been explored, starting with Bárány’s seminal paper [40] and other collaborations
[46]. Recent strengthenings include Deza et al. colorful simplicial depth [139] (dis-
cussed in Section 7.4) and Frick and Zerbib’s common generalization of the colorful
Carathéodory theorem and the KKM theorem [172]. Another key variation, dis-
covered independently by Arocha et al. [29] and Holmsen et al. [210], is that the
assumption that the convex hull of each Ci, 1 ≤ i ≤ d+1, contains the origin can be
weakened to only require that the convex hull of each pair Ci∪Cj , 1 ≤ i < j ≤ d+1,
contains the origin. There are examples showing that it is not sufficient that the
convex hulls of triples contain the origin, but weaker relaxations are possible [275].
Arocha et al. [29] also proved another “very colorful Carathéodory theorem”.

Via point-hyperplane duality, one can derive a colorful theorem of Helly from
the colorful Carathéodory theorem. We will not discuss this in detail, but let us
explain the basics. Consider d+1 families F1, F2, . . . , Fd+1 of convex sets inside Rd

(researchers think of these as colors). Assume that every colorful selection of d+1
of the sets (i.e., one set from each Fi) has a nonempty common intersection. Then,
the classical colorful Helly theorem of Lovász (see [40]) says that there is at least
one family Fi, whose sets have a nonempty intersection. Here is now the dual of
the very colorful Carathéodory theorem of [29]: given a finite family of halfspaces
in Rd colored with d + 1 colors, if every colorful selection of d + 1 halfspaces has
a nonempty common intersection, then there exist two color classes, all of whose
members intersect. For more examples and references, see [253] and references
therein.

The proof of the colorful Carathéodory theorem also implies that given d + 1
point sets C1, . . . , Cd+1 and a convex set C, either one Ci can be separated from C
by a hyperplane or there exists a colorful simplex intersecting C. Building on this,
Mustafa and Ray [295] showed that given ⌊d

2⌋+1 sets of points in Rd and a convex
object C, then either one of the sets can be separated from C by a constant number
of hyperplanes or there is a ⌊d

2⌋-dimensional colorful simplex intersecting C.

The integer Carathéodory problem considers a finite set X ⊂ Zd and v ∈ Zd in
its positive hull and asks whether v can be written as a nonnegative, integer linear
combination of some elements of X, and, if true, how many elements are needed.
The answer to the first question is negative in general. For instance consider

(3.2) X =

{(
1
0

)
,

(
1
2

)}
and v =

(
1
1

)
,

where v is an integral vector of the positive hull of X but is not an integer nonneg-
ative combination of elements of X.

It is thus natural to restrict one’s attention to subsets X ⊂ Zd such that every
integral point of the cone of X can be written as a nonnegative integer combination
of elements of X; such sets are called Hilbert generating sets. This restriction is
reasonable given that the integer points of any rational polyhedral cone C have a
finite Hilbert generating set. However, even in this setting, there is no version of
an integer Carathéodory theorem with a bound on the size of the representation
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depending only on the dimension. Take for example

(3.3)
Xn = {2iej + ed : 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ d− 1} ⊂ Zd and

vn = (2n − 1, 2n − 1, . . . , 2n − 1, n(d− 1))T ,

where vn can be written as an integer combination over Xn, but any such combi-
nation requires at least n summands. Notice that the coefficients in example (3.3)
grow quickly with n. Such growth is necessary to force larger and larger sums
because a Carathéodory-type theorem is possible if one wants to bound the num-
ber of summands in terms of the dimension and the size of the coordinates. The
best upper bound in that direction was recently obtained in [14]. An earlier bound
appears in [155].

Theorem 3.2. Let X = {x1, . . . ,xt} ⊆ Zd \ {0} be a finite set, let ‖X‖∞ =
maxx∈X ‖x‖∞, let W =

(
x1 · · ·xt

)
, and let Λ denote the sublattice of Zt of the

integer points in the row space of W . Any vector representable as nonnegative inte-

ger combination over X can be written as a combination of at most min{rankW +

log det(Λ), 2d log(2
√
d||X||∞)} terms.

The proof of Theorem 3.2 starts from some nonnegative integer combination and
uses some element of the kernel of W to eliminate one of the summands. This is
very similar to the classical proof of the real-valued Carathéodory theorem, but now
the kernel element must be an integral vector with coordinate entries in {−1, 1, 0}.
That such a vector exists is no longer a rank argument but follows from Siegel’s
lemma (see [352, 379]).

Interestingly, a full-fledged integer Carathéodory theorem, depending only on
the dimension, does exist for Hilbert bases of pointed cones. Let us explain. First
of all, a Hilbert basis is an inclusion-minimal Hilbert generating set. We say a cone
is pointed if it contains no linear subspace other than the nullspace. It is known
that a pointed cone has a unique Hilbert basis; see, e.g., [124, Corollary 2.6.4].
In contrast, when the cone is not pointed, there is no uniqueness, for instance
{(x, y) : x+ y = 0} has two Hilbert bases {(1,−1), (−1, 1)} and {(2,−2), (−1, 1)}.
As we will see in Sections 6.2.2 and 6.3.2, Hilbert bases play an important role in
optimization theory and in the solution of integer optimization problems. Here is
the best-known upper bound of the number of Hilbert basis elements necessary to
write a vector. This is due to Sebő [347].

Theorem 3.3. If the pointed cone C is generated by a Hilbert basis X ⊆ Zd, then

any of its integral points can be written as a nonnegative integer combination of at

most 2d− 2 elements of X.

A weaker version of Sebő’s theorem, with a constant 2d−1, was previously obtained
by Cook, Fonlupt, and Schrijver [115]. Note that the sets Xn in example (3.3) do
define pointed cones but are not the Hilbert bases of those cones. Sebő’s theorem
gives an upper bound, but the best-known lower bound on the size of the linear
combination is only d+⌊d

6⌋ for d ≥ 6 [83], so that leaves an open important problem:

Open Problem 3.4. Determine the best-possible constant for the integer Cara-
théodory theorem on Hilbert bases of pointed cones.

The answer is known to be d for d = 3 [347] and in some special cases such as the
cone formed by the bases of any matroid [184].
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We conclude with an approximate Carathéodory theorem, recently recovered by
Barman [51], which has an interesting application in game theory (see Section 4.1.2).
Informally, it says that any point in the convex hull of a point set X ⊆ Rd can be
approximated by a convex combination of few elements of X. The precise relation
between the quality of approximation and the size of the convex combination is
quantified as follows.

Theorem 3.5. Let p ∈ [2,∞), and let X ⊆ Rd. For any point a ∈ conv(X) and

any ε > 0, there is a point b such that (i) ‖a− b‖p ≤ ε, and (ii) b can be expressed

as a linear combination of at most 4p
(

maxx∈X ‖x‖p

ε

)2
vectors from X.

Observe that the number of points used to represent the approximation b to a is
independent of the ambient dimension d. The point b can in fact be chosen as the
barycenter of points of X with nonnegative integer weights, the sum of the weights

being at most k = 4p
(

maxx∈X ‖x‖p

ε

)2
. Barman’s nice probabilistic proof writes a

as a barycentric combination of d+1 points of X (by Carathéodory’s theorem) and
finds the k points adding to b by sampling those d+ 1 points using the weights as
probabilities (some special care must be taken to ensure a bound independent of the
dimension). Theorem 3.5 can also be derived from Maurey’s lemma in functional
analysis (see Pisier [316] and Carl [90]). See also [72] for the derivation of a related
theorem using the perceptron algorithm [305]. A very recent new generalization
of Theorem 3.5 was presented by Adiprasito, Bárány, and Mustafa in [3]. They
proved that, given a point set P ⊂ Rd of cardinality n, a point a ∈ conv(P ), and
an integer r ≤ d, r ≤ n, then there exists a subset Q ⊂ P of r elements such that
the distance between a and conv(Q) is less then diamP/

√
2r. Here the diameter of

P is the largest distance between a pair of points in P .

3.2. Helly. Helly’s theorem asserts that for a finite family of convex subsets of Rd

with at least d+1 members, if every d+1 member intersects, then the whole family
intersects. In the contrapositive, the empty intersection of finitely many convex sets
in Rd is always witnessed by the empty intersection of some d + 1 of the sets; see
Figure 8.

The special case of Helly’s theorem where each subset is a halfspace is of par-
ticular interest. Since a family of halfspaces not containing the origin has empty
intersection if and only if their inner normals positively span the space, Helly’s the-
orem for halfspaces is equivalent to Carathéodory’s theorem for their polars. Note

Figure 8. Helly’s theorem in the plane
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that the polar of a set of hyperplanes is a set of ray vectors. The case of halfspaces
implies the general case because, given a family of convex sets in Rd, we can replace
each set by a polytope that it contains without altering the intersection patterns.
It suffices to take a witness point in the intersection of every subfamily and then
replace each set by the convex hull of the witness points that it contains.

Helly’s original proof used the separability of compact convex sets by hyperplanes
to set up an induction on the dimension. It is spelled out in the survey of Danzer et
al. [120, Section 1] along with references to eight other proofs. The most common
proof deduces Helly’s theorem from Radon’s lemma (the case r = 2 of Tverberg’s
theorem) [257, Section 1.3]. Starting with k ≥ d + 2 convex sets C1, C2, . . . , Ck

where any k − 1 intersects, one picks a witness point wi ∈
⋂

j �=iCj . Partition
w1,w2, . . . ,wk into two subsets with intersecting convex hulls, and observe that
this intersection point lies in every convex set. A proof of Helly’s theorem, due
to Krasnoselsky [236], fits well with the theme of our survey as it uses the KKM
theorem. Lift the wi to the vertex ei of the simplex Δk−1. The map ei �→ wi

extends into a linear map f : Δk−1 → Rd, and setting Di = f−1(conv{wj : j 	= i})
produces k closed subsets of Δk−1. Each facet of Δk−1 is covered by a distinct Di

and the Di’s cover Δk−1 by Carathéodory’s theorem in Rd. The KKM theorem (see
Section 2.2) yields a point w ∈

⋂
i Di and the point f(w) is contained in every Ci.

Chakerian showed in [92] that Helly’s theorem also
follows from Brouwer’s fixed point theorem, in a sim-
ilar fashion as the proof of the KKM theorem: the
function, instead of moving every point x by the vec-
tor of its distances to each Ci, moves every point x to
the barycenter of its projections on each Ci. (See the
picture at right for an illustration: the projections of
x to the three convex sets, red, green, and blue, are
shown by the white points; the black square is their
barycenter).

Helly’s theorem for integral points was first estab-
lished by Doignon [143, Proposition 4.2] and rediscov-
ered later by Scarf [340] and Bell [56]. Hoffman [208]
observed that the techniques apply for more cases than
the integer lattice. The proofs of Doignon, Bell, and
Hoffman hinge on the following insight: if a polytope in
Rk has m vertices, each with integer coordinates, and
it contains no other integral point, then no two vertices
may have all their coordinates of the same parity (else
their midpoint would yield a contradiction), and thus m

is at most 2k. Bell’s proof starts with a family of m halfspaces in Rk whose intersec-
tion contains no integer point and such that removing any halfspace would enlarge
the intersection to include some integer point. Translating each halfspace in the
direction of its outer normal until every facet contains a witness point with integer
coordinates, one gets witness points that must be distinct and form a polytope as
above, so m is at most 2k. Hoffman’s proof is more complicated but holds in a
more general axiomatic setting. Scarf’s proof is algorithmic and relies on Sperner’s
lemma (see also the variation by Todd [373]). We remark that the equivalence via
polarity between Helly’s and Carathéodory’s theorems in Rd does not carry over
to Zd, as the bounds are respectively 2d and at most 2d− 2 (by Theorem 3.3).
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Some of our applications will use the following version where some of the coor-
dinates in the intersection may be required to be integers.

Mixed Helly theorem. Let F be a finite family of convex sets in Rd+k of cardi-

nality at least (d+1)2k. If every (d+1)2k members of F have a common point whose

last k coordinates are integer numbers, then all members of F have an intersection

point whose last k coordinates are integer numbers.

The mixed Helly theorem was announced by Hoffman [208] as one of the out-
comes of his axiomatic setting; however, he deferred details of the proof for the
mixed analogue of the property of the Doignon theorem to a forthcoming paper,
which never appeared. A complete proof came decades later and is due to Averkov
and Weismantel [36]. Their proof proceeds in two steps. They start with a family
of halfspaces in Rd+k whose intersection is a nonempty full-dimensional polytope
P containing no point whose last k coordinates are integers (the general case fol-
lows). They project P onto the last k coordinates, obtaining a polytope T (P ) in
Rk with no integer point; Doignon’s theorem then ensures that at most 2k of the
halfspaces supporting the facets of T (P ) already intersect with no integer point. By
Carathéodory’s theorem in Rd+k, each k-dimensional halfspace is the projection of
the intersection of some at most d+1 of the original halfspaces; the bound follows.

Fractional versions of Helly’s theorem play an important role in the study of
sampling and hitting geometric set systems. Here, fractional means that one only
assumes that some constant fraction of the subfamilies (of a given size) intersect,
and one concludes that some constant fraction of the whole family intersect.

Theorem (Fractional Helly theorem). Let 0 < α ≤ 1, and let F be a family of n
convex sets in Rd. If α

(
n

d+1

)
of the (d + 1)-element subsets of F have nonempty

intersection, then some (1− (1− α)
1

d+1 )n elements of F intersect.

The first result in this direction was proven by Katchalski and Liu [229]. Starting
with a family of n convex sets, they assign to any subfamily the lexicographically
minimum point in their intersection. The set of points lexicographically larger than
a given point is convex, so Helly’s theorem ensures that the minimal point of the
intersection of k ≥ d convex sets is also the minimal point in the intersection of
some d among them. A weak version of the above theorem, where the size of the
intersecting subfamily is only guaranteed to be at least α

d+1n, then follows from a
pigeonhole argument.

There are few settings in which fractional Helly theorems are known. On the
one hand, Matoušek [260] proved, via a general sampling technique due to Clark-
son [109,113], that any set system with bounded VC dimension affords a fractional
Helly theorem; his approach holds for other measures of complexity than the VC
dimension [315]); we come back to the notions of VC dimension in Section 7.2. On
the other hand, Bárány and Matoušek [45] established a fractional Helly theorem
for lattices, including over the integers. It is surprising that they only have to check
the nonempty integral intersection of a positive fraction of (d + 1)-tuples, instead
of the expected 2d-tuples of intersections.

The bound of (1 − (1 − α)
1

d+1 )n in Theorem 3.2 is sharp and was obtained by
Kalai [217] and, independently, by Eckhoff [151], via a study of nerve complexes
that led to a more general topological point of view. The nerve of a family of
convex sets is the abstract simplicial complex with a vertex for every set in the
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family, and a simplex for every intersecting subfamily. Helly’s theorem and its
fractional version easily translate in terms of nerves: the former states that the nerve
cannot contain the boundary of a (≥ d)-dimensional simplex without containing the
simplex, and the latter asserts that if the nerve contains a positive fraction of the
d-dimensional faces, then it must contain a simplex of dimension a positive fraction
of n. Kalai’s proof uses his technique of algebraic shifting [220] to study how the
number of simplices of various dimensions behaves as the nerve is simplified through
a sequence of d-collapses, a type of filtration available to nerves of convex sets [372].
If a complex is d-collapsible, then all its subcomplexes have trivial homology in
dimension d and above, i.e., it is d-Leray. Kalai’s proof of Theorem 3.2 extends
to d-Leray complexes (see [205, §5.2]), and Alon et al. [21] further proved that
families of subsets of Rd that are closed under intersection and whose nerve is d-
Leray also admit weak ε-nets and (p, q)-theorems; examples of such families include
good covers (this follows from the nerve theorem [75]) and acyclic covers [135].
Topological versions of Helly’s theorem have a further application in geometric
group theory [162].

Fairly general topological Helly theorems can be derived from nonembeddability
results via a construction reminiscent, again, of the setup of the KKM theorem. Let
us illustrate the basic idea with five sets in the plane. If any four intersect and any
three have path-connected intersection, then we can draw K5, the complete graph
on five vertices, inside the family by placing each vertex in the intersections of four
sets (different vertices missing different sets) and connecting any two vertices by a
path contained in the intersection of the three sets that contain them both. By a
classical theorem of Kuratowski for planar graphs [140], there exist two edges that
have no common vertex and that intersect. This intersection point must be in all
five sets. An induction on the same idea yields that in a family of planar sets, where
intersections are empty or path connected, if every four sets intersect, then they
all must intersect. In higher dimensions, where all graphs can be drawn without
crossing, the same approach can be combined with nonembeddability results de-
rived from the Borsuk–Ulam theorem, e.g., the Van Kampen–Flores theorem which

states that Δ
(k)
2k+2 does not embed in R2k [165, 381]; cf. [258, Chapter 5]. The dis-

cussion we present below on the topological Tverberg theorem is also connected to
embeddability of complexes; e.g., the paper [66] proves that the topological Radon
theorem implies the Van Kampen–Flores theorem.

The most general result in this direction [188] is that any family F of subsets
in Rd admits a Helly-type theorem in which the constant that replaces d+1 in the
case of convex sets is bounded as a function of the dimension d and

b = max
G⊆F ,0≤i≤⌈ d

2 ⌉−1
β̃i(
⋂

G),

where β̃i(X) denotes the ith reduced Betti numbers, over Z2, of a space X.
Nonembeddability arguments and the study of nerves offer two different path-

ways to topological Helly theorems. While the former allows more flexible assump-
tions, the latter offers more powerful conclusions in the form of a sharp fractional
Helly theorem. It is not known whether the benefits of both approaches could be
combined.

Open Problem 3.6. Given b and d, is there a fractional Helly theorem for families
F of subsets in Rd where β̃i(

⋂
G) ≤ b for any G ⊆ F and any 0 ≤ i ≤ ⌈d

2⌉ − 1?
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This open question relates to a more systematic effort to build a theory of homo-

logical VC dimension [221, Conjectures 6 and 7]. There are some recent results for
planar sets with connected intersections (the case d = 2 and b = 0) [213].

There are too many Helly-type theorems to list in this survey, but we wish to
point out at least one more variation. Quantitative Helly theorems were introduced
by Bárány, Katchalski, and Pach in [43]. In this family of Helly-style theorems one
is not content with a nonempty intersection of a family, but the intersections must
have measurable or enumerable information in the hypothesis and the conclusion.
Typical measurements include the volume, the diameter, or the number of points
in a lattice. Motivated by applications in optimization, in the last two years several
papers have been published on this subject, both for continuous [80, 127, 303] and
for discrete [12, 35, 106, 326] quantitative Helly-type theorems. For other recent
Helly-type theorems see [28].

We next discuss the fifth remarkable theorem of our survey.

3.3. Tverberg. Tverberg-type theorems allow for the partition of finite point sets
so that the convex hulls of the parts intersect. In its original form we have the
following.

Tverberg theorem. Any set of at least (r − 1)(d + 1) + 1 points in Rd can be

partitioned into r subsets whose convex hulls all have at least one point in common.

Such a division in parts is often called a Tverberg partition; see Figure 9. The case
r = 2 is known as Radon’s lemma [321], and the case d = 2, but with general r,
was proven by Birch [61] before Tverberg proved the general statement.

Tverberg’s first proof of his theorem [376] relies on a deformation argument: start
with a configuration with a known Tverberg partition, and move the points contin-
uously to the target configuration. This process is such that, while the number of
Tverberg partitions may change, there will always be one present. A simpler proof
consists in arguing that a partition of the point set minimizing an adequate function
must be a Tverberg partition. This idea, which originates in Bárány’s proof of the
colorful Carathéodory theorem, was gradually refined by Tverberg [377], Tverberg
and Vrećica [378], and Roudneff [329] (Roudneff minimizes the sum of the squared
distances between a point and the convex hulls of the parts). Another proof, due
to Sarkaria [334], uses multilinear algebra to deduce Tverberg’s theorem from the
colorful Carathéodory theorem; the idea behind Sarkaria’s proof was later made
simpler (using explicit tensors instead of number fields) and more algorithmic by
Bárány and Onn in [47]. Recently, Bárány and Soberón revisited these ideas and
proved a new generalization of Tverberg’s theorem using affine combinations [49].

Just as for Carathéodory’s and Helly’s theorems, there is an integer Tverberg

theorem. Its most recent version guarantees that any set of at least (r − 1)d2d + 1

Figure 9. Tverberg’s theorem in the plane: the two types of par-
titions for r = 3 (left) and for r = 4 (right).
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Figure 10. The lower bound for the integral Radon theorem.
Left: Five integral points in the plane with no integral Radon par-
tition. Right: A configuration of k integral points in Rd with no
Radon partition can be turned into a configuration of 2k integral
points in Rd+1 with no Radon partition.

integer points in Zd can be partitioned into r parts whose convex hulls have a point
of Zd in common [130]. The proof of this upper bound goes as follows. From the
integer Helly theorem, one can prove that any finite set of integer points S ⊂ Zd has
an integer centerpoint : a point p such that for every hyperplane H containing p,
one of its halfspaces contains at least |S|/2d points from S. Using this centerpoint,
it is not difficult to see that (r− 1)d2d+1 points can be partitioned into r pairwise
disjoint simplices all containing p. We will see more about centerpoints in Sections
6.5.5 and 7.4.

The upper bound on the integer Tverberg number is not known to be sharp, and
the best lower bound of 2d(r−1)+1 is due to Doignon (this result was communicated
in [153]). Recently in [125] the authors showed that the Tverberg number in Z2 is
exactly 4r − 3 when r ≥ 3, and they improved the upper bounds for the Tverberg
numbers of Z3.

The special case of bipartition, i.e., r = 2, is called the integral Radon theorem.
A sharper upper bound of d2d−d+3 and a lower bound of 5

42
d+1 were established

by Onn [308] (see Figure 10). Even low-dimensional cases are hard. The only sharp
bound known, also due to Onn, is for r = d = 2: any six integral points in the
plane have an integral Radon partition. An upper bound of 17 for the case d = 3
was proven by Bezdek and Blokhuis [60].

Open Problem 3.7. Determine the exact value of the integer Tverberg numbers.
In particular, is the integer Radon number for d = 3 less than 17? Is it bigger than
11?

More generally, there is the notion of an integer quantitative Tverberg number :
any set of at least

(
(2d − 2)

⌈
2
3 (k + 1)

⌉
+ 2
)
(r − 1)kd + k integer points can be

partitioned into r parts whose convex hulls have k integral points in common [130].
Similar results hold more generally for sets that are discrete (i.e., the sets intersect
any compact in only finitely many points), for instance, the difference between a
lattice and one of its sublattices. Recent improvements on the quantitative integer
Helly theorem [35, 106] leads to sharper upper bounds for the Tverberg version.

Open Problem 3.8. Determine tighter lower and upper bounds on the integer
quantitative Tverberg numbers.

Let Δ
(d)
(r−1)(d+1) denote the d-dimensional skeleton of the simplex with (r−1)(d+1)+1

vertices. Tverberg’s theorem can be understood as stating that for any linear

map from Δ
(d)
(r−1)(d+1) into Rd there must exist r disjoint simplices whose images
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Figure 11. The topological Tverberg theorem in the plane (r=3).
Left: A configuration of seven points and its Tverberg partition
into three parts. Center: The linear map used in the left is de-
formed continuously so as to break the previous Tverberg partition,
every edge not represented is kept straight. Right: Nonetheless, a
new Tverberg partition emerges.. Note that the topological Tver-
berg conjecture remains open in dimension two when r is not a
prime-power. See [42] and, for the two-dimensional case, [342].

intersect. This reformulation invites the question, going as far back as 1979 (see
ending of the important paper [39]), whether the same conclusion holds for all
continuous maps. In other words, is there a topological Tverberg theorem? For
r = 2, this is the question of nonembeddability discussed above in relation to
topological Helly theorems; see Figure 11.

Positive answers were obtained first for r = 2 (the topological Radon theorem) by
Bajmóczy and Bárány [39], then for r prime by Bárány et al. [48], and for r a power

of a prime by Özaydin [310] and independently, but later, by Volovikov [386] and
Sarkaria [335]. Matoušek [258, Chapters 5 and 6] offers an accessible introduction
to the techniques behind the topological Tverberg theorem.

For r = 2, the proof of the topological Radon theorem uses the notion of deleted
product of a geometric simplicial complex K with itself, defined as

K
2
∆ = {σ × τ : σ, τ ∈ K, σ ∩ τ = ∅}.

Now, for contradiction, suppose there exists a continuous map f : |K| → Rd with
the property that points in distinct faces are mapped to distinct points. It induces

another continuous map f̃ : |K2
∆| → Sd−1 where f̃(x1, x2) = f(x1)−f(x2)

‖f(x1)−f(x2)‖ . The

map f̃ commutes with the central symmetries of Sd−1 and K
2
∆, where the central

symmetry of K2
∆ is the exchange of the two components. When K is the boundary

of the d-dimensional simplex, K2
∆ is homotopy equivalent to Sd (this is not trivial).

Since the Borsuk–Ulam theorem prevents the existence of an antipodal map from
Sd to Sd−1, the continuous f will have two faces intersecting in its image, which
gives us a contradiction.

More generally, to prove the topological Tverberg theorem when r is a prime,

one may start with a map from K = Δ
(d)
(r−1)(d+1) to Rd with no r-wise intersection

and use it to build another map from an r-fold deleted product K
r
∆, replace the

antipodality by the action of the symmetric group, and apply a generalization of
the Borsuk–Ulam theorem such as Dold’s theorem [144]. The case of r a prime
power is technically more involved. (Note that this outline leaves out some issues
such as dimension-reduction considerations [342].)
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By the late 1990s, the widespread belief that Bárány’s question had a positive
answer for every r and d was known as the topological Tverberg conjecture. It was
only recently refuted by Frick [168], who completed an approach of Mabillard and

Wagner [252] building on Özaydin’s work [310]. In a nutshell, Özaydin proved that

an equivariant map from the adequate r-fold product X̃ exists if and only if r is
not a prime power. Mabillard and Wagner proposed an isotopy-based approach to
construct a map with no r-wise intersection when such an equivariant map exists,
but they could only develop it in codimension larger than what the topological
Tverberg conjecture allows. Frick overcame this codimension restriction, producing
the first series of counterexamples to the topological Tverberg conjecture. The
current state of affairs is that a counterexample is known for every r that is not a
prime power and for every d ≥ 2r. See the survey [42] for more details.

To conclude our discussion of “all things Tverberg”, let us highlight some natural
variants inspired by Tverberg’s theorem for which only very partial results are
known. One can find the most recent variants and extensions of Tverberg’s theorem
in [50, 126, 317].

A tolerant Tverberg theorem, due to Soberón and Strausz [358], asserts that any
set of (t+1)(r−1)(d+1)+1 points can be partitioned into r parts such that, after
deletion of any t points, what remains is a Tverberg partition. This bound was
improved to r(t+ 2)− 1 for d = 1 and to 2r(t+ 2)− 1 for d = 2 [285] (the bound
for d = 1 is tight). Recently there have been two significant improvements, Garćıa-
Coĺın et al. [180] gave an asymptotically tight bound for the tolerant Tverberg
theorem when the dimension and the size of the partition are fixed. Later, in [357],
Soberón used the probabilistic method to give another asymptotic bound that is
polynomial in all three parameters. Still we can ask for precise values.

Open Problem 3.9. What is the smallest number n such that any set of n points
in Rd has a Tverberg partition into r parts that tolerates the deletion of t points?

A related Carathéodory-type variation of Tverberg’s theorem [29] considers r linear
maps f1, . . . , fr, assumes that f1(e)∩ f2(e)∩ · · · ∩ fr(e) is nonempty for every one-
dimensional edge e of Δ(r−1)(d+1), and concludes the existence of disjoint faces in
the simplex Δ(r−1)(d+1), σ1, σ2, . . . , σr of dimensions summing to (r−1)(d+1)+1−r
and such that f1(σ1) ∩ f2(σ2) ∩ · · · ∩ fr(σr) is not empty.

A conjectured relaxed version of Tverberg’s theorem, due to Reay, goes as follows.
Denote by T (d, r, k) the minimum positive integer number n such that any set of n
points a1, . . . , an in Rd (not necessarily distinct) admits a partition into r pairwise
disjoint sets A1, . . . , Ar such that any size k subfamily of {conv(A1), conv(A2),
. . . , conv(Ar)} has a nonempty intersection. Note that Tverberg’s theorem says
T (d, r, r) = (r− 1)(d+1)+1; Reay conjectured that the Tverberg constant is tight
even for smaller values of k:

Conjecture 3.10. T (d, r, k) = (r − 1)(d+ 1) + 1 for all 2 ≤ k ≤ r.

Note that if all conv(Ai) intersect, then they intersect k-wise, so T (d, r, k) is at
most T (d, r, r) and in particular T (d, r, k) is finite for any k ≤ r. Moreover, Helly’s
theorem ensures that T (d, r, k) = T (d, r, r) for every d+1 ≤ k ≤ r. The conjecture
is known to hold for d+ 1 ≤ 2k − 1 or k < r < d+1

d+1−kk, and some weaker bounds

are known in several other cases; we refer the interested reader to [31] and the
discussion therein.
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Let us take this opportunity to mention another famous conjecture of a flavor
similar to Reay’s conjecture. A thrackle is a graph that can be drawn in the plane
in such a way that any pair of edges intersects precisely once, either at a common
vertex or a transverse intersection point.

Conjecture 3.11 (Conway’s thrackle conjecture). For any thrackle, the number

of edges is at most the number of vertices.

The conjecture is known to hold if all edges are drawn as straight line seg-
ments [156] (it is akin to Reay’s setup for k = 2). We refer the interested reader
to the recent progress of Fulek and Pach [175] and the discussion and references
therein.

The next big open question was stated in 1979 by Sierksma (he offered an entire
Dutch cheese as a prize for whoever could solve this problem). In unpublished
mimeographed notes, he conjectured about the number of distinct Tverberg parti-
tions of a set of points guaranteed to exist for (r − 1)(d+ 1) + 1 points in Rd.

Conjecture 3.12 (Sierksma). Any set of (r − 1)(d + 1) + 1 points in Rd has at

least ((r − 1)!)d distinct Tverberg partitions into r parts.

We do not state the lower bounds here, as they are a bit cumbersome, but lower
bounds for the number of Tverberg partitions were first obtained when r is prime
by Vučić and Živaljević in [388]. They used topological tools to settle this. Hell
showed that these bounds also hold when r is a prime power [206]. Later Hell,
without any topology, provided better bounds for the case of the plane [207].

Last, but certainly not least, the colorful Tverberg conjecture was formulated
by Bárány and Larman [44] some 25 years ago, but only a few results are known
today (see [50, 68, 69, 399] and the references therein).

Conjecture 3.13. Let F1, F2, . . . , Fd+1 ⊂ Rd be sets of r points each. There exists

a partition of
⋃d+1

i=1 Fi into r sets A1, A2, . . . , Ar of d + 1 points each, such that

every Ai contains exactly one point from every Fj and
⋂r

j=1 Aj 	= ∅.

Further conjectures along the lines of the Bárány–Larman conjecture, with col-
orful, discrete, and quantitative flavors were formulated by De Loera et al. [130].

3.4. Computational considerations. We continue our discussion of computa-
tional issues begun in Section 2.4. We remark that the Carathéodory and Helly
theorems, in their classical real-valued versions from Section 3, are dual to each
other and, essentially, if one has an algorithm to find the Carathéodory decompo-
sition of a vector in terms of other vectors, one also has an algorithm for finding
an intersection point for a family of convex sets. For Helly’s theorem, one wishes
to find a point in the intersection of convex sets. The problem of finding such an
intersection point can be thought of as a special case of the problem of minimizing a
convex function over convex sets. We will see explicit cases for this problem later in
Section 6, where the convex sets are explicitly given by constraints (i.e., equations
and inequalities), but for now all that we need to know is that (a) a whole range of
different algorithms for solving such problems exist; (b) some of these algorithms
are in fact efficient; and (c) depending on the type of input constraints (e.g., convex
sets defined linear inequalities versus arbitrary constraints), one can be even more
efficient [58, 76]. By the convexity assumption, a local minimum is also a global
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CARATHÉODORY, HELLY, SPERNER, TUCKER, AND TVERBERG 447

minimum and, thanks to Helly’s and Carathéodory’s theorems, there are nice nec-
essary and sufficient conditions for when we have found an optimum. We discuss
more about this in Section 6.

Convex optimization problems have been classified in levels of increased com-
putational difficulty, and different specialized algorithms are available (e.g., least
squares, linear programming, conic optimization, semidefinite programming, etc).
For example, Carathéodory’s theorem, in the simplest real-valued form presented
in Section 3.1, can be formulated as a linear programming problem, and Helly’s
theorem for halfspaces is reducible to linear programming too. The good news is
linear programs have efficient algorithmic solutions, both in theory and in practice
[344]. Still, even if we move to the most general version of a (real-valued) Helly’s
theorem of finite family of arbitrary convex sets, the challenge is to solve a convex

programming problem that has many types of algorithms. We cannot cover them
here, but we recommend [58,76] for excellent introductions to convexity algorithms
and computational methods.

Compare now the good news above to the bad news involving the integer and
mixed-integer versions of Carathéodory’s and Helly’s theorems. We are now in
the realm of combinatorial, integer, and mixed-integer programming where, for
the most part, the problems are not efficiently solvable. Solving combinatorial or
mixed-integer optimization problems, that is, finding an optimal solution to such
problems, can be a difficult task. Unlike linear programming, whose feasible region
is a convex (polyhedral) set, in combinatorial problems one must search a lattice
of feasible points or, in the mixed-integer case, a set of disjoint halflines or line
segments to find an optimal solution. Thus, unlike linear programming, finding a
global optimum to the problem requires us to relax, approximate, decompose the
solution space, and sometimes we are forced to enumerate all possibilities.

As an example of the higher computational difficulty of discrete versions of
Helly’s and Carathéodory’s theorems let us look at the problem of computing
a Hilbert basis. This was a particularly simple case for the integer version of
Carathéodory’s theorem presented in Section 3.1. Alas, in [150] it was proved that
deciding whether a given solution belongs to the Hilbert basis of a given system is
co-NP-complete. Thus, even in this tame case, the integral Carathéodory property
is hard to realize computationally.

We chose to highlight the colorful Carathéodory theorem because it is so general
and because it can be used to prove the original Carathéodory theorem and many
other existence theorems in high-dimensional discrete geometry, such as Tverberg’s
theorem or the centerpoint theorem (see Section 7 for details). While the original
Carathéodory’s theorem can be cast as a linear program and thus a solution can be
implemented in polynomial time, much less is known about the algorithmic com-
plexity of its colorful version. More precisely, the algorithmic colorful Carathéodory
problem is the computational problem of finding such a colorful choice of elements
as described in the theorem. Despite several efforts in the past, the computational
complexity of the colorful Carathéodory problem in arbitrary dimension is still
open. In [276], Meunier et al. showed that the problem lies in the complexity class
PPAD.

Open Problem 3.14. What is the complexity of finding a colorful simplex under
the hypotheses of the colorful Carathéodory theorem?
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This question was formulated for the first time by Bárány and Onn in [47] and
there they formulated a general family of related questions that come under the
name colorful linear programming.

Meunier and Sarrabezolles [277] have shown that a closely related problem is
PPAD-complete: given d + 1 pairs of points P1, . . . , Pd+1 ∈ Qd and a colorful
choice that contains the origin in its convex hull, find another colorful choice of
points that contains the origin in their convex hull.

Since we have no exact combinatorial polynomial-time algorithms for the colorful
Carathéodory theorem, approximation iterative algorithms are of interest. This
was first considered in [47], but other researchers (e.g., [286]) have approached this
problem too.

Let us now speak about computational complexity of Tverberg’s theorem. Sarka-
ria’s proof of Tverberg’s theorem (later simplified by Bárány and Onn [46]) gives a
polynomial-time way to compute a Tverberg partitions from a colorful Carathéo-
dory choice with the origin in its convex hull. In this way, the computational issues
about Tverberg’s theorem are closely connected to computational issues regarding
the colorful Carathéodory theorem. Since one can calculate a Tverberg partition
from a colorful selection of Carathéodory, one can show Tverberg’s theorem belongs
to the class PPAD. One of the simplest, yet most frustrating, aspects of Tverberg’s
result is that it is not clear how to find a Tverberg partition. So it is natural to ask
the following.

Open Problem 3.15. Is there a polynomial-time algorithm to find a Tverberg
partition when one exists? That is, given n = (d + 1)(m + 1) + 1 points in Rd,
compute, in time polynomial in n, a partition into m parts with intersecting convex
hulls.

Since finding an m-Tverberg partition is an open question, approximate versions
of Tverberg’s theorem are of interest. Mulzer et al. [286] designed a deterministic
algorithm that finds a Tverberg partition into n/4(d+ 1)3 parts in time dO(log d)n.
This means that for every fixed dimension one can compute an approximate Tver-
berg point (and hence also an approximate centerpoint) in linear time. Rolnick and
Soberón [325] proposed probabilistic algorithms for computing Tverberg partitions
into n/d3 parts with error probability ǫ and with time complexity that is weakly
polynomial in n, d, log( 1ǫ ).

4. Games and fair division

Mathematics and the social sciences have had rich interactions since Condorcet’s
seminal work on the analysis of voting systems. The relevance of (combinatorial)
convexity and topology to this interdisciplinary research was first established in the
1940s–1950s through the work of Nash, von Neumann, Gale, Shapley, Scarf, and
many others, and it has been confirmed in the following decades in the development
of fair-division algorithms and computational social choice (see, e.g., [78,79,117,304]
and the many references therein). This section shows how our five discrete theorems
appear in these topics too.

4.1. Strategic games. Game theory studies a broad range of games that model
situations where several agents collaborate or compete. Strategic games model the
situations where N players interact by each choosing from finitely many strategies

to play and enjoy a payoff depending on the strategies chosen by all players (his or
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her choice included). Formally, each player is modeled by the pair (Si, u
i), where

Si is a set of strategies available to him or her and where ui is a payoff function
S1 × · · · × SN → R. A central theme in the theory of strategic games is the search
for equilibria, where each player’s choice is the best response to the other players’
choices.

4.1.1. Nash equilibria. Formally, a Nash equilibrium in pure strategies is a choice
of strategy for each player s1 ∈ S1, . . . , sN ∈ SN such that for i = 1, . . . , N and all
g ∈ Si,

ui(s1, . . . , si−1, si, si+1, . . . , sN ) ≥ ui(s1, . . . , si−1, g, si+1, . . . , sN ).

Let us illustrate pure Nash equilibria with the max-cut game, where an arbitrary
graph G = (V,E) is fixed and each vertex x ∈ V represents a player. Each player
x chooses from two strategies Sx = {1,−1}, and his or her payoff function is the
number of neighbors of x in G with a different strategy:

ux(s1, . . . , s|V |) = |{y : xy ∈ E and sx 	= sy}|.

Any bipartition of V that maximizes the number of edges between the two parts,
also called maximum cut, is a pure Nash equilibrium. Indeed, if a player could
strictly increase his or her payoff by switching strategy, then this switch would
increase the value of the cut.

Now, unfortunately not every N -player game has a pure Nash equilibrium. For
example, consider the matching penny game. Players Alice and Bob simultaneously
select heads or tails of a coin. If the choice is the same, then Alice wins one penny
and Bob loses a penny. If they choose differently, then Bob wins a penny and Alice
loses a penny. Each player thus has a choice of two strategies, and the payoffs for
each player can be recorded in two 2× 2 matrices (A and B, for each player). Note
that the pure strategies alone offer no Nash equilibrium as this is a winner-takes-all
situation. (In the matching penny game, the payoff matrices can be put together
to show A + B = 0; this is an example of a zero-sum game, a notion to which we
will come back later.)

It turns out that equilibria always exist when considering a randomized choice of

the strategies. We now allow more freedom to the players by making them choose
not a single strategy, but a probability distribution over all their strategies. Once
choices are made, a random strategy is selected for each player from his or her
distribution, and the (random) payoff is determined. Each player then wants to
maximize his or her expected payoff. Formally, a mixed strategy for player i is
a probability distribution mi on the set of pure strategies Si. For instance, in
the matching penny game, this means that each player decides his or her move
according to a biased coin flip and is free to choose the bias. Note that the mixed
strategies include all the pure strategies as a special case too.

The set of all possible mixed strategies are the vectors that lie in the convex
polytope M =

∏
Δ|Si|−1. We define a product probability measure on S = S1 ×

· · · × SN by Pm(s) =
∏N

i=1 mi(si), where s = (s1, s2, . . . , sN ). Therefore, the
expected payoff for the probability distribution Pm(s) for the ith player is

U i(m1, . . . ,mN ) = U i(m) =
∑

s=(s1,s2,...,sN )∈S

Pm(s)ui(s).
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The mixed strategiesm = (m1, . . . ,mN ) form a Nash equilibrium in mixed strategies

if for each player i and for all probability distributions p on Si, modifying mi to p
does not increase the expected payoff with respect to the choices of other players,
that is

U i(m1, . . . ,mi, . . . ,mN ) ≥ U i(m1, . . . ,mi−1, p,mi+1, . . . ,mN ).

The literature has plenty of examples of two-player games [262, §8.1]. Thinking
about three or more players is more delicate, as illustrated by Nash’s three-man
poker game [301, p. 293].

The existence of Nash equilibria for mixed strategies—the theorem for which
John Nash received the Nobel prize—is one of the most celebrated applications of
combinatorial topology, following from Brouwer’s theorem; see [300, 301].

Theorem 4.1 (Nash’s theorem). Every N-player game with continuous payoff

functions has at least one Nash equilibrium in mixed strategies.

Nash’s original, very short, proof [300] makes strong use of the combinatorial topol-
ogy and convexity arguments. It considers the set-valued function that maps each
N -tuple of mixed strategies m = (m1, . . . ,mN ) to the set of N -tuples (t1, . . . , tN )
where ti is a best response to (m1, . . . ,mi−1,mi+1, . . . ,mN ). Because the proba-
bility distributions on Si are the points of the simplex Δ|Si|−1, Kakutani’s theorem
(we saw this in Section 2 after Brouwer) ensures this function has a fixed point,
which is the desired equilibrium.

Nash gave a second proof using Brouwer’s fixed point theorem [301]. For this,
Nash constructed a continuous function f from the polytope M , associated to the
game above, into itself. For m ∈ M , we define f(m) componentwise as follows:
f(m) = (fi(m), . . . , fN (m)), and each entry fi(m) is equal to

(fi1(m), fi2(m), . . . , fiti(m)),

where

fij(m)=
mij+max(0, ui(m1, . . . ,mi−1, s

(i)
j ,mi+1, . . . ,mN )−ui(m1, . . . ,mi, . . . ,mN ))

1+
∑|Si|

k=1 max(0, ui(m1, . . . ,mi−1, s
(i)
k ,mi+1, . . . ,mN )−ui(m1, . . . ,mi, . . . ,mN ))

,

where the s
(i)
j ’s are the pure strategies available for player i. Nash showed this

function f is a multivariate continuous map from the polytope M into itself and
thus, by Brouwer’s fixed point theorem, it must have at least one fixed point. Nash
then went to show that any fixed point of this function is in fact a Nash equilibrium.

The polytope M =
∏

Δ|Si|−1 is actually a Cartesian product of simplices, some-
times called a simplotope. The special structure of simplotopes has been exploited
for the computation of fixed points (see [346,374] and references therein) and in the
algebraic solution of equilibrium problems via polynomial equations [268]. There is
one more reason why knowing M is a polyhedron is useful. Despite its geometric
beauty and intricacy, there are several modeling limitations with the notion of Nash
equilibria. For example, the assumption behind Nash mixed strategies equilibria is
that the choices of each player are independent of those of his/her opponents, but
that may not hold. Alternative mathematical models that adjust the definition of
Nash mixed strategies to allow correlated equilibria appear in [33]. In other words,
the expression for the payoff function no longer uses the easy product probability
structure of a simplotope, but it can have a more complicated polyhedral geometry.
For example, it is known that all correlated equilibria are described by a finite set
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of linear inequalities and that it is nonempty, independently of Nash theorem. See
[186] and its references.

4.1.2. Two-player games. Nash equilibria have been largely investigated in the area
of algorithmic game theory, see for instance the introductory chapter of [304, §2].
We only discuss here some of their relations to combinatorial topology and convex-
ity.

The Nash equilibria for two players can be formulated as a linear complementar-

ity problem, the theory of which subsumes both linear programming and two-player
game theory (an introduction is in [116]). Let A and B denote the m × n pay-
off matrices of the first and second players, respectively. By definition, a pair
(x∗,y∗) ∈ Δm−1 ×Δn−1 is a Nash equilibrium if and only if

(4.1) x∗TAy∗ ≥ xTAy∗ ∀x ∈ Δm−1 and x∗TBy∗ ≥ x∗TBy ∀y ∈ Δn−1.

Here comes the linear complementarity formulation:

Proposition 4.2. The pair (x∗,y∗) ∈ Δm−1 ×Δn−1 satisfies (4.1) if and only if

there exist u∗ ≥ 0, v∗ ≥ 0, s ≥ 0, and t ≥ 0 such that

Ay∗ + u∗ = s1, BTx∗ + v∗ = t1, and x∗Tu∗ = y∗Tv∗ = 0.

Since all vectors are nonnegative, the conditions on inner products imply that
the supports of x∗ and u∗ are disjoint, and similarly for y∗ and v∗, hence the
aforementioned complementarity. The proof of Proposition 4.2 is as follows. Start
with a Nash equilibrium (x∗,y∗), and let s = x∗TAy∗ and t = x∗TBy∗; the
values of u∗ and v∗ are forced, and the complementarity conditions follow from
multiplying the first equation by x∗T and the second equation by y∗T . Conversely,
the complementarity x∗Tu∗ = 0 and x∗ ∈ Δm−1 yield that s = x∗TAy∗ (and
similarly t = x∗TBy∗); the positivity of xTu∗ for any x ∈ Δm−1 implies that x∗

is a best response to y∗; by a similar argument, y∗ is a best response to x∗.
The linear complementarity formulation of Proposition 4.2 yields, after adequate

rescaling, the standard method to compute two-player Nash equilibria: find a non-
trivial solution (i.e., other than x = y = 0) to the linear complementarity system

(4.2)
(
A Im

)( y

u

)
= 1,

(
In BT

)( v

x

)
= 1, and xTu = yTv = 0.

The standard method to solve a linear complementarity system of this form is
the Lemke–Howson pivoting algorithm [242] which operates on feasible bases. A
feasible basis of a linear system with nonnegativity constraints is a set of indices
of columns whose induced submatrix has the same rank as the system and defines
a nonnegative solution. The trivial solution x = y = 0 gives feasible bases I1

for

(
v

x

)
and J1 for

(
y

u

)
, and these bases are complementary, i.e., they have

disjoint supports. Pick an (arbitrary) element k1 /∈ I1. By Carathéodory’s theorem
(in the form of Proposition 3.1), I1 ∪{k1} contains another feasible basis I2 for the
system BTx+ v = 1. Switching from (I1, J1) to (I2, J1) is our first pivot step. We
remark that I2 and J1 are no longer disjoint, as they share k1. To remedy this, note
that the part of I2 corresponding to v lost some element k2 which is also absent from
the part of J1 corresponding to y. We can thus make k2 enter J1 without further
degrading the complementarity; Carathéodory’s theorem ensures that J1 ∪ {k2}
contains another feasible basis J2, and we pivot from (I2, J1) to (I2, J2). The part
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of J2 corresponding to u lost some element k3. If k3 = k1, then I2 and J2 are
complementary, and they determine our nontrivial solution; otherwise, we continue
pivoting by making k3 enter I2, etc., until a pivot makes k1 exit one of the bases.
The pair at hand is then complementary.

The Lemke–Howson algorithm is guaranteed to terminate under the nondege-
neracy assumption that 1 is not a positive combination of less than m columns of(
A Im

)
or less than n columns of

(
In BT

)
. This follows from a nondegener-

ate Carathéodory theorem (after Proposition 3.1): any point in the convex hull of
d+2 points of Rd that is nondegenerate (i.e., is not in the convex hull of some d of
them) lies in the convex hulls of exactly two (d+1)-element subsets. (Note that the
two nondegeneracy assumptions stated above are equivalent via the convex/conic
change of viewpoint.) Now, for any pair (I, J) of noncomplementary feasible bases
encountered by the algorithm, there is exactly one index k not in I∪J . A pivot step
makes k enter either I or J ; in each case, the nondegenerate Carathéodory theorem
yields exactly one other pair of feasible bases. Every pair (I, J) of noncomplemen-
tary feasible bases encountered by the algorithm thus has exactly two neighbors
through pivot steps. Since the trivial solution (I1, J1) has exactly one neighbor,
there is no place where the walk can loop back. We remark that this algorithm
gives an alternate (constructive) proof of the existence of a Nash equilibrium for
two-player games.

The argument that proves termination also reveals that, from a computational
complexity point of view, linear complementarity systems of the form of equa-
tion (4.2) are in the PPAD class. Let us point out that the Lemke–Howson algo-
rithm can be understood as a Sperner-type search for a fully labeled simplex in a
pseudomanifold. Let V = {±1,±2, . . . ,±(m+ n)}, where positive integers are un-
derstood as indices of columns of

(
A Im

)
and negative integers are understood as

(minus) indices of columns of
(
In BT

)
. Consider the simplicial complex K on V

whose maximal simplices are the union of the complement of a feasible basis of(
A Im

)
and the complement of a feasible basis of

(
In BT

)
. The nondegenerate

Carathéodory theorem spelled out above ensures that K is a pseudomanifold with-
out boundary. If every i ∈ V is labeled by its absolute value |i|, the fully labeled
simplices correspond exactly to the complementary feasible bases.

As a byproduct of the linear complementarity formulation of Proposition 4.2,
we also get that the problem of computing a Nash equilibrium for two players is
well-posed from the point of view of computational complexity: if the input involves
only rational data, there is an equilibrium that involves only rational data and has
an encoding size polynomial in the input size (see for instance the discussion in
the survey of McKelvey and McLennan [267]). This is in sharp contrast with the
case of three or more players: Nash’s three-player poker game [301] shows that a
three-player game with finitely many strategies and rational payoff arrays may have
a (unique) Nash equilibrium with irrational coordinates.

The Lemke–Howson algorithm has exponential complexity in the worst case [337],
and solving general linear complementarity problems is NP-hard [107]. The prob-
lem of computing a Nash equilibrium for two players is PPAD-complete [104] (see
also [121]). The intractability for games with three or more players is even more
stringent, as many decision problems are ∃R-complete, i.e., as difficult as decid-
ing the emptiness of a general semi-algebraic set; in particular this includes de-
ciding whether a three-player game has a Nash equilibrium within ℓ∞-distance r
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from a given distribution x [341, Corollary 5.5] or the existence of more than one
equilibrium or of equilibria with payoff or support conditions [181]. Behind this
∃R-completeness lurks a more daunting fact: Datta’s universality theorem [122]
asserts that arbitrarily complicated semi-algebraic sets can be encoded as sets of
Nash equilibria (formally: every real algebraic variety is isomorphic to the set of
mixed Nash equilibria of some multiplayer game). Whether the ∃R-completeness
results stated above could follow from Datta’s proof is an interesting open ques-
tion [341, Remark 5.6].

Open Problem 4.3. Can Datta’s universality theorem be improved to yield an
efficient polynomial-time reduction between any semi-algebraic set and the Nash
equilibria of a game?

Another open question is whether both few players and few strategies per player
already give rise to universality.

Open Problem 4.4. Is there a universality result for the set of Nash equilibria of
games with a constant number of players and a constant number of strategies?

4.1.3. Zero-sum games. The two-player games where what is won by a player is lost
by the other are called zero-sum games; this is the case when the payoff matrices
satisfy A = −B in the formulation (4.1). In this special case, it is customary
to consider that one player aims at maximizing the payoff while the other tries
to minimize it. Nash’s theorem then asserts that there exist x∗ ∈ Δn−1 and
y∗ ∈ Δm−1 such that

(4.3)
∀y ∈ Δm−1, x∗TAy ≥ x∗TAy∗,
∀x ∈ Δn−1, xTAy∗ ≤ x∗TAy∗.

This readily implies

(4.4)

x∗TAy∗ ≥ max
x∈∆n−1

xTAy∗ ≥ min
y∈∆m−1

max
x∈∆n−1

xTAy

≥ max
x∈∆n−1

min
y∈∆m−1

xTAy ≥ min
y∈∆m−1

x∗TAy ≥ x∗TAy∗.

The only inequality that does not follow from equation (4.3), the central one, holds
in fact for arbitrary bivariate functions (see Section 6.4.2). Altogether, this yields
the min-max theorem of von Neumann.

Theorem 4.5. For any A ∈ Rm×n,

max
x∈∆n−1

min
y∈∆m−1

xTAy = min
y∈∆m−1

max
x∈∆n−1

xTAy.

In game-theoretic language, the real number x∗TAy∗ is the value of the game.
Von Neumann’s theorem has a nice asynchronous interpretation: for any choice
of a strategy by the minimizing player, the maximizing player can respond so as
to ensure a payoff at least the value of the game. Moreover, if the maximizing
player cares only about achieving the value of the game, the strategy x∗ will work
regardless of what the opponent plays. (Of course, symmetric statements hold for
the minimizing player.) In zero-sum games, in each of the (possibly many) Nash
equilibria, every player gets the same payoff. This is specific to zero-sum games and
fails already for broader types of two-player games. A classical result of Dantzig
[119] says that the minmax identity of von Neumann’s theorem can be proved,
without help of combinatorial topology, via linear programming duality and is thus
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polynomially solvable. We will discuss more about this in Section 6. More generally,
if the rank of A+B is constant, then the problem is polynomial [223].

Formulation (4.1) suggests an approximate relaxation and the approximate Cara-
théodory theorem, Theorem 3.5, provides a positive complexity result. We say a
mixed strategy pair (x,y) is an ε-Nash equilibrium if

xTAy ≥ eTi Ay − ε ∀ i ∈ [n] and xTBy ≥ xTBej − ε ∀ j ∈ [n].

Intuitively, a mixed strategy pair is an ε-Nash equilibrium if no player can benefit
more than ε, in expectation, by a unilateral deviation.

The case when A + B = 0 is precisely the case of zero-sum games, for which
we know efficient algorithms exist. Barman, using the approximate Carathéodory
theorem presented in Theorem 3.5, provided an extension in [51].

Theorem 4.6. Suppose that all entries of the payoff matrices A,B lie in [−1, 1].
If the number of nonzero entries in A+B is at most s, then an ε-Nash equilibrium

of (A,B) can be computed in time nO( log(max (s,4))

ε2
).

This, in particular, gives a polynomial-time approximation scheme for Nash equi-
librium in games with fixed column sparsity s. Moreover, for arbitrary bimatrix
games—since s can be at most n—the running time of this algorithm matches the
best-known upper bound, which was obtained by Lipton, Markakis, and Mehta
[243].

4.2. Two fair-division problems: cakes and necklaces. In various situations
players are eager to divide goods in a fair way. There are several examples of such
fair-division problems where our five theorems (or their variations) play a key role.
We review some famous examples, all with combinatorial-topological proofs. Before
we start, we remark there are other interesting mathematical challenges arising in
distributing resources, some we will not cover here, such as gerrymandering, which
is the practice of drawing political maps to gain an advantage; see, e.g., [356] for
connections to the five theorems in this survey.

Cake cutting. A cake is a metaphor for a heterogeneous, divisible good, such as a
piece of land or an inheritance. We consider the problem of dividing a cake between
r players in such a way that each player prefers his or her part to any other part.
We call this envy-free. Let us point out that the literature about fair division,
including this and other types of cake-cutting problems, is both old and huge; see
e.g., [77–79, 324, 328, 363]. For example, one of the first envy-free division results
was shown by Dubins and Spanier [146].

One setting where pieces are connected is the following: The cake is identified
with the unit interval [0, 1] and a division of the cake into r pieces is an r-tuple
x = (x1, . . . , xr), with xj ≥ 0 for all j ∈ [r] and

∑r
j=1 xj = 1; in other words, a

division is a point x in the (r − 1)-dimensional simplex Δr−1. Here, xj represents
the size of the jth piece, when ordered from left to right. The preferences of player
i are modeled by a function P i mapping each division x ∈ Δr−1 to a nonempty
subset of [r] (indexing the pieces that he or she prefers). A division x is envy-free
if there exists a choice of pairwise distinct indices, one from each P i(x).

It is natural to assume that the set P i(x) of preferences of player i never contains
the index of a piece of size zero (i.e., all players are hungry), and it is common to
suppose that the P i’s are closed, that is if limn→∞ xn = x and j ∈ P i(xn) for every
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n, then j ∈ P i(x). Stromquist [366] and Woodall [392] proved the following result
independently.

Theorem 4.7. Under the assumptions that all r players are hungry and the pref-

erence functions P i are closed, there exists an envy-free division with connected

pieces.

The original proof relies on the KKM theorem we saw in Section 2. An unpub-
lished proof due to Forest Simmons was improved and adapted by Su [368]. The
idea is to refine the usual derivation of Brouwer’s theorem from Sperner’s lemma.
Take a sequence (Tn) of triangulations of Δr−1 whose edge-length goes to 0. Assign
every vertex to a player in a way that every full-dimensional simplex of Tn has a
vertex assigned to each player; this may not be possible for any sequence of triangu-
lations, but taking iterated barycentric subdivisions does the job. We label or color
every vertex x assigned to player i by some (arbitrary) element from P i(x). The
assumption that players are hungry ensures that this is a Sperner labeling. The
limit of a converging subsequence of fully labeled simplices is, by the closedness
assumption, an envy-free division.

It may be disappointing in practice that one only gets an iterative infinite process
converging to an envy-free division, but it has been shown in [367] that there exists
no finite procedure, if you require each person to get a connected piece (i.e., the cake
is cut by a minimal number of cuts). In fact, Aziz and Mackenzie [38] showed that
there is in fact a bounded finite procedure for r-person cake cutting bounded by a
huge number of steps, but this would involve breaking the cake into a ridiculous
number of pieces. Thus for now one cannot get a minimal number of cuts in a finite
procedure, but if you allow a lot of cuts, you get a division that is impractical since it
destroys the cake. This is why an infinite process converging to an envy-free solution
with a minimal number of cuts makes sense. Let us comment that the difficulty of
the process is not so surprising perhaps. It is known that in the polynomial-time
function model, where the utility functions are given explicitly by polynomial-time
algorithms, the envy-free cake-cutting problem has the same complexity as finding
a Brouwer’s fixed point, or, more formally, it is PPAD-complete [138].

The polytopal version of Sperner’s lemma (Proposition 2.5 in Section 2.3) has
many interesting game-theoretic applications. Su [369] recently gave a simple, ele-
gant proof that Hex does not end in a draw when using it. Cloutier, Nyman, and Su
[114] applied the polytopal Sperner’s lemma to multi-cake multi-player fair-division

problems. In this type of problem the players have several cakes to choose from, but
choices from one cake influence each other, e.g., for a player the amount of vanilla
cake may influence how much chocolate cake to order, or after some vanilla cake
the player may not want any chocolate cake. Cloutier et al. asked whether there
exists an integer r(q,m), independent of the preferences, such that there exists an
envy-free division of the m cakes not requiring the division of each cake into more
than r(q,m) pieces, some of which are assigned to each of the q players (some of
the pieces can remain unassigned). Note that Theorem 4.7 for a single cake asserts
that r(q, 1) = q. They also used the polytopal version of Sperner’s lemma, and
they proved the existence of r(2, 2) and r(2, 3) and that r(2, 2) = 3 and r(2, 3) ≤ 4.
This means that two cakes can be divided into three pieces each in such a way that
two players receive the pieces and everyone is satisfied with the fairness of division.
Moreover they asked whether r(2,m) ≤ m + 1. Recently, Lebert, Meunier, and
Carbonneaux [241] have shown r(2,m) exists for any m ≥ 2 and its value is at
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most m(m− 1)+ 1. Again they used the polytopal version of Sperner’s lemma and
an inequality between the matching number and the fractional matching number
in m-partite hypergraphs. Similarly, they showed r(3, 2) exists and r(3, 2) ≤ 5.
Several interesting open questions remain; consider the following.

Open Problem 4.8. Can the bound on r(2,m) be improved? Can one assure the
existence of r(q,m) for all values of q,m?

Finally, there are other surprising variations of the cake-division theorem. Con-
sider one where there are no cuts involved and one divides objects that are not
physically divisible. Consider a house with n rooms and a total rent amount to be
divided among n roommates. Assume that for each possible division of the rent
amount each roommate can point to one or more rooms as preferred. Then, the
theorem proved by Su in [368] states that there exists a division of the rent and
an assignment of rooms to each participant, such that each player receives one of
his/her preferred rooms. Similar assumptions on the preference function that we
made for cake-cutting before Theorem 4.7 must hold again to make this happen;
for instance, now it is assumed that each roommate prefers a free room over paying
rent. Once more the proof of this theorem is grounded in Sperner’s lemma. In most
results on fair division it is assumed that no player is happy with an empty piece
of cake, but imagine a part of the cake is undesirable (burnt cake anyone?) another
recent variation in [278, 348] considers the possibility players may prefer an empty
piece.

It is well-known that Gale’s colorful KKM theorem (see Section 2.2) has in-
teresting applications in economics, e.g., for the existence of economics equilibria.
Now, Asada et al. [32] used Gale’s colorful KKM theorem to prove an extension,
by Woodall [392], of Theorem 4.7 and a similar extension of the rental-harmony
result of Su. It turns out that there are envy-free cake divisions for any number
of players, even if the preferences of one person remain secret! Say the situation
is one where one of the cake-cutters (maybe the person celebrating a birthday) is
not providing preference information, but still the cutting of the cake can be made
without anyone being envious. Similarly, for deciding what the rent should be, it
suffices to consider the information of all but one of the roommates and still none
of them will be jealous. The authors provided a rather nice existence proof of such
fair divisions. Recently Frick, Houston-Edwards, and Meunier gave an iterative
approximation algorithm for the solution [171].

Necklace splitting. Another fair division problem asks for fair splitting, between two
thieves, of an open necklace with beads threaded along the string. Here, fair means
that for each type of bead the number of beads assigned to each of the thieves differs
by at most one (say because the thieves are unaware of the value of the beads).
Perhaps surprisingly, this can be achieved using only a few cuts (which turns out
to be convenient should the string material be precious). Contrary to the classical
statement, with this notion of fairness we do not need to add any conditions on
divisibility.

Theorem 4.9 (Necklace theorem). There exists a fair splitting of a necklace that

uses no more cuts than there are bead types.

The result is optimal because some bead arrangements need k cuts, where k
equals the number of bead types (e.g., such a situation happens when all beads
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of the same type are consecutive). Theorem 4.9 was first proved by Goldberg and
West [190] and a simpler proof using the Borsuk–Ulam theorem was proposed by
Alon and West [24], who also came up with the above popular formulation. More
generally, the challenge of finding a division of an object into two portions so that
each of n people believes the portions are equal is called consensus-halving. Note
that necklace splitting is a special case because different preferences are represented
by different beads. In [353] Simmons and Su showed how a nonconstructive exis-
tence result on consensus-halving can be obtained from the Borsuk–Ulam theorem.
They also showed, by a direct application of Tucker’s lemma, how one can construct
an approximate consensus-halving (up to a prespecified tolerance level).

Later on, a combinatorial proof due to Pálvölgyi [313] used the octahedral Tucker
lemma, instead of the Borsuk–Ulam theorem, for necklace-splitting. Here is a sketch
of that idea. Let n and t denote the numbers of beads and bead types, respectively,
let aj denote the number of beads of type j, and assume, ad absurdum, that any
fair splitting uses more than t cuts. Every vector x ∈ {+,−, 0}n defines a partial
assignment of the beads to the two thieves (identified with + and −, respectively).
If every extension of x into a complete assignment has at most t cuts, then no such
extension can be a fair splitting, and there is some j such that more than

aj

2 beads
of type j are assigned to the same thief by x. Define λ(x) to be the smallest such
index j, signed by the thief who gets more than

aj

2 beads of that type. If there is
an extension of x into a complete assignment with more than t cuts, define λ(x)
to be the maximum number of cuts achieved by a completion, signed by the first
component of that completion (that this sign is well-defined is straightforward).
This map λ satisfies the condition of the octahedral Tucker lemma with m = n− 1
and therefore cannot exist, contradicting the initial assumption.

The necklace splitting problem naturally generalizes from 2 to any number q of
thieves. Alon [19] showed that (q − 1)t cuts suffice (note that they are sometimes
necessary). His proof first assumes q to be prime and replaces (in a nontrivial way)
the stronger form of the Borsuk–Ulam theorem due to Bárány, Shlosman, and Szűcs
(see [19, Lemma 4.1] or [48, Statement B′]). The case of general q follows easily
by a recursive argument. (The original proof assumed aj to be divisible by q but
this was subsequently relaxed by Alon et al. [23], who obtained fair roundings via
integrality properties of flows.) It is not known, however, whether Pálvölgyi’s proof
can be adapted to the case with more than two thieves; perhaps an ingredient for
this could be Zq-generalizations of the octahedral Tucker lemma [274,395]. Another
open question [313] relates to the rounding: For those aj ’s not divisible by q, can
one choose the thieves who get the additional beads in the fair splitting? This is
easily seen to be true for two thieves, and it is also true for three [18]; it is open for
q ≥ 4.

Open Problem 4.10. Is it possible to choose for each type j the thieves who get
⌈aj/q⌉ and those who get ⌊aj/q⌋ in the fair splitting?

For two thieves, a fair splitting can be computed in linear time for t = 2 and in
O(nt−2) time for t ≥ 3 [190]. Let us mention again consensus-halving (the prob-
lem of dividing an object into two portions so that each of n players believes the
portions are equal) appears in many contexts. In [353] the Borsuk–Ulam theorem
and Tucker’s lemma were used for this purpose. A well-known challenge of compu-
tational complexity was to decide whether the computation of a fair splitting is a
PPA-complete problem [314]. This was just recently settled by Filos-Ratsikas and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



458 J. A. DE LOERA, X. GOAOC, F. MEUNIER, AND N. H. MUSTAFA

Goldberg [163, 164]. The fact that necklace splitting is PPA-complete implies that
the algorithmic version of the octahedral Tucker lemma is PPA-complete as well,
but there is also a paper directly proving that the algorithmic octahedral Tucker’s
lemma is PPA-complete [137] (see Section 2.4).

The topic of fair-division is very active, and once more we can only point to a
few additional types of results. One may, for instance, explore necklace splittings
with the added constraint that adjacent pieces of the necklace cannot be claimed
by certain pairs of thieves; for example, Asada et al. [32] prove that four thieves on
a circle can share the beads of the necklace, with the restriction that the two pairs
of nonadjacent thieves will not receive adjacent pieces of the necklace. There are
also several nice high-dimensional generalizations of (convex) splitting of booty; see
[70, 134] and the references therein.

5. Graphs

Graphs are often used to model problems where pairwise interactions are promi-
nent. This includes situations where graph-like structures are apparent, for instance
road or train networks, or situations as in Euler’s famous problem on the bridges
of Königsberg (although the curious reader may check that Euler’s original article
does not use any graph-related notions, but argues purely in terms of words coding
paths). In other situations, graphs are not evident, but they exist implicitly; for
instance, describing time dependencies between tasks in scheduling problems.

Graph theory developed in many independent directions, driven both by appli-
cations (e.g., finding graph matchings to resolve assignments [345]) and deep struc-
tural questions (e.g., the graph minor theory [248]). Its interaction with (combina-
torial) topology started in the mid-1970s with the proof by Lovász [62, Theorem 6.1]
of the conjecture of Frank and Maurer that any k-connected graph G = (V,E) can
be partitioned into k subsets that induce connected subgraphs and have prescribed
size (summing to |V |), and in which each contains a prescribed element. (This re-
sult was independently given a nontopological proof by Győry [199].) Lovász [247]
followed up shortly after with an astonishing solution to the Kneser conjecture
based on the Borsuk–Ulam theorem.

5.1. Chromatic number of graphs. A coloring of a graph by k colors is a map
from its vertex set into [k]; a coloring is proper if any adjacent vertices have different
colors. The chromatic number of a graph is the smallest integer k such that a proper
coloring by k colors exists. Graph colorings arise in applications such as frequency
assignment [1] or scheduling [136].

Proving good lower bounds on chromatic numbers is usually a difficult task, as
one needs to show that all colorings with fewer colors are improper. (In contrast,
proving an upper bound on the chromatic number of a given graph only requires
that one proper coloring be exhibited.) In some cases, such as the perfect graphs
discussed in Section 5.3, sharp lower bounds can be obtained from the existence
of large cliques. Kneser graphs are archetypes where this clique criterion fails
dramatically. The Kneser graph KG(n, k), where n and k are two integers, is the

graph with vertex set
(
[n]
k

)
—the k-element subsets of [n]—and where two subsets

form an edge if they are disjoint. When n ≥ 2k− 1, a natural coloring of KG(n, k)
assigns to every k-element subset that intersects [n − 2k + 1] its minimal element
and n − 2k + 2 to all remaining subsets (see Figure 12, and note that KG(5, 2) is
also known as Petersen’s graph). Kneser conjectured this to be optimal in 1955.
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Figure 12. A proper coloring with three colors: 1-red, 2-blue,
3-green on the Kneser graph KG(5, 2).

Lovász approached the Kneser conjecture via a topological invariant. Given a
graph G = (V,E), consider the simplicial complex N(G) that encodes its neigh-
borhoods: N(G) has the same vertex set as G, and a subset of the vertices forms
a simplex whenever they have a common neighbor in G. The key invariant is
the (homotopy) connectivity of N(G): if N(G) is (k − 1)-connected, then G is not
(k+1)-colorable. In the case of Kneser graphs, this yields a lower bound that proves
the conjecture. The interested reader may refer to the book of Matoušek [258, Sec-
tion 3.3] and the surveys of Björner [62, Section 6] and Bárány [41, Section 5] for
details.

The idea of associating a simplicial complex to a graph and to relate the chro-
matic number of the latter to topological properties of the former has been espe-
cially fruitful, and there are now various complexes that can be used to obtain lower
bounds for the chromatic number of a graph; see [263] and [234, Chapter 19] for sur-
veys on that approach. Recently, Frick used Tverberg-type results to show bounds
for chromatic numbers of (generalized) Kneser graphs and hypergraphs [169, 170].

The octahedral Tucker lemma emerged from a purely combinatorial proof of the
Kneser conjecture due to Matoušek [259]. Ziegler [395] then showed that his method
can combinatorialize other topological arguments for chromatic numbers. Let us
illustrate this method on a bound due to Dol’nikov which deals with hypergraphs.

Recall that a hypergraph is a pair H = (V,E) where V is a finite set (the vertices)
and E is a set of subsets of V (the edges); in particular, hypergraphs whose edges
all have size 2 are graphs. Given a hypergraph H = (V,E) and a subset S ⊆ V
of its vertices, the hypergraph H[S] induced on S has vertex set S and edge set
{e ∈ E : e ⊆ S}. A hypergraph H is 2-colorable if V can be colored so that no edge
is monochromatic. To any hypergraph H = (V,E), we associate the generalized

Kneser graph KG(H) = (V ′, E′) where

V ′ = E and E′ = {ef : e, f ∈ E and e ∩ f = ∅}.
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In particular, the generalized Kneser graph of the k-uniform hypergraph with vertex
set [n] is the usual Kneser graph KG(n, k). The colorability defect cd(H) of a
hypergraph H is the minimum number of vertices to be removed from H to ensure
that the remaining vertices can be 2-colored so that no edge of H is monochromatic
(edges with at least one removed vertex are discarded).

Theorem 5.1 (Dol’nikov [145]). For any hypergraph H, the chromatic number of

KG(H) is at least cd(H).

The combinatorial proof of Theorem 5.1 goes essentially as follows. Consider a
hypergraph H with vertex set (identified with) [n]. Given a proper coloring c of
KG(H) by [t], we define a map λ : {+,−, 0}n \ {0} → {±1, . . . ,±m} as follows.
Consider x ∈ {+,−, 0}n. If at least one edge of H is entirely contained in x+ or in
x−, then we choose such an edge with smallest color a, and we set

λ(x) = ε(n− cd(H) + a),

where ε ∈ {−,+} records which of x+ or x− contains the edge. (The sign ε
is unambiguously defined because the coloring is proper.) If neither x+ nor x−

contains an edge of H, then we define λ(x) to be ε(|x+|+ |x−|), where the sign ε is
the first nonzero entry of x. In the latter case, the edges of H contained in x+∪x−

induce a sub-hypergraph of H that is 2-colorable, so |x+ ∪ x−| ≤ n − cd(H). It
then follows that m = n−cd(H)+ t suffices and that in either case, x is mapped to
disjoint sets of labels, which helps in checking that λ satisfies the condition of the
octahedral Tucker lemma. As a consequence, n−cd(H)+t ≥ n, and the announced
inequality follows.

Since every graph is isomorphic to some (actually, many) generalized Kneser
graph, Theorem 5.1 provides a lower bound on the chromatic number of any graph.
In the case of Kneser graphs, this bound is sharp. There exist refinements of the
colorability defect that yield better combinatorial bounds [16]. Cases of equality for
Theorem 5.1 are remarkable for reasons related to circular chromatic numbers [17]
(see [394] for an introduction to circular chromatic numbers). Deciding whether the
chromatic number of KG(H) equals cd(H) is a natural problem asked in [17]. Very
recently, this has been proved to be NP-hard by Meunier and Mizrahi (personal
communication).

Some generalizations of the Kneser conjecture are still open. A k-element subset
A of [n] is s-stable if for any i, j ∈ A we have s ≤ |i−j| ≤ n−s (or, equivalently, if i
and j are distance at least s apart in Zn). Let KGs-stab(n, k) denote the graph with
vertices the s-stable k-element subsets of [n], and where two vertices span an edge
if they are disjoint. The graph KG2-stab(n, k), known as Schrijver’s graph [343], has
the same chromatic number as the Kneser graph; since KG2-stab(n, k) is a subgraph
of KG(n, k), this strengthens Lovász’s result. As a special case of a conjecture on
hypergraphs, Meunier [274] proposed the following.

Conjecture 5.2. For any s ≥ 2 and n ≥ ks ≥ 1, the chromatic number of

KGs-stab(n, k) is n− s(k − 1).

Besides the case s = 2, the conjecture is known for all even s [100] and for s ≥ 4
and n sufficiently large [216]. Some progress has been made by Chen [102]; see also
[170] for questions related to Kneser hypergraphs.

A more systematic viewpoint recasts graph colorings as special cases of graph
homomorphisms [200]. A homomorphism from a graph G = (V,E) to a graph
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H = (W,F ) is a map f : V → W such that for every edge vv′ ∈ E, the image
f(v)f(v′) is an edge of H, that is f(v)f(v′) ∈ F . A proper coloring of G with
k colors corresponds to a homomorphism from G to the complete graph with k
vertices. More generally, associating with every vertex of G a k-element subset of [n]
so that adjacent vertices have disjoint subsets amounts to finding a homomorphism
from G to KG(n, k). The structure of homomorphisms of Kneser graphs remains
to be elucidated, as is shown by the following, broadly open, conjecture.

Conjecture 5.3 (Stahl [360]). Let n, k, k′ be integers, and let q and r be such that

k′ = qk − r with 0 ≤ r < k. There is a homomorphism KG(n, k) → KG(n′, k′) if

and only if n′ ≥ qn− 2r.

For more details on partial progress on Stahl’s conjecture, see [200, §3.4].

5.2. Colorful independent sets. A subset of vertices of a graph is independent

if there is no edge between any pair of them. Independent sets are sometimes called
stable sets. This notion is central in graph theory. For instance, a proper coloring
of a graph can be understood as a partition of its vertices into independent sets,
namely the sets of vertices with the same color. The search for independent sets is
also natural in applications such as the design of error-correcting codes [261, §29].

Methods from combinatorial topology were particularly effective in finding in-
dependent sets with color constraints in the spirit of the colorful theorems in com-
binatorial convexity. The following example was first stated explicitly by Aharoni
et al. [7], who traced it back to the proof of a result of Haxell [204, Theorem 3] on
hypergraph matchings.

Theorem 5.4. Let G be a colored graph with maximum degree Δ. There exists an

independent set of G that intersects every color class of size at least 2Δ.

(Note that the coloring of G is not required to be proper.) It suffices to prove the
statement in the case where every color class has size at least 2Δ because deleting
every vertex in a color class of size less than 2Δ preserves independence and does
not augment the maximum degree. The gist of the proof of Aharoni et al. [7] is
to apply Meshulam’s lemma (Proposition 2.6) to the independence complex K of
G, the simplicial complex consisting of its independent sets. The connectivity of
K can be controlled via a variety of domination graph parameters; this principle,
which underlies some proofs of Meshulam [271], was made explicit by Aharoni et
al. [7, Theorem 2.3] and given a detailed proof by Adamaszek and Barmak [2]. In
particular, given a coloring of V (G) by [k], a subset I ⊆ [k], and an integer j, if no

2j+3 vertices of G dominate the vertices with colors in I, then H̃j

(
K[λ−1(I)],Z2

)

is trivial. (Recall that X dominates Y if every vertex of Y has a neighbor in
X.) Here, the condition holds for j = |I| − 2 because dominating 2Δ|I| vertices
requires at least 2|I| vertices when the maximum degree is Δ. By Meshulam’s
lemma (Proposition 2.6), therefore, the independence complex contains a colorful
simplex. This is an independent set that intersects every color class.

Theorem 5.4 can be improved for graphs with more structure as the following
example shows [18].

Theorem 5.5. In any coloring of a path, it is possible to delete a vertex of each

color so that the remaining vertices can be partitioned into two independent sets A
and B such that −1 ≤ |A ∩ U | − |B ∩ U | ≤ 1 for every color class U .
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(Again, the coloring does not need to be proper.) We sketch here a direct proof
based on the octahedral Tucker lemma in a way reminiscent of Pálvolgyi’s proof of
the necklace theorem (Theorem 4.9). We identify the vertex set of the path with
[n] and denote the color classes by U1, . . . , Ut. The existence of the two disjoint
independent sets will be ensured via the notion of alternating subsequences, which
has been useful in, e.g., other similar contexts. A sequence of elements in {+,−, 0}n
is alternating if all terms are nonzero and any two consecutive terms are different.
Given an x = (x1, . . . , xn) ∈ {+,−, 0}n, we denote by alt(x) the maximum length
of an alternating subsequence of x1, . . . , xn.

The definition of the map λ to which we will apply the octahedral Tucker lemma
requires the quantity s = max

{
alt(x) : x ∈ {+,−, 0}n s.t. I(x) = ∅

}
, where

I(x) =
{
i ∈ [t] : |x+ ∩ Ui| = |x− ∩ Ui| = |Ui|/2

or max(|x+ ∩ Ui|, |x− ∩ Ui|) > |Ui|/2
}
.

Note that s ≥ 0.
Consider a nonzero vector x ∈ {+,−, 0}n. We distinguish two cases. In the

case where I(x) 	= ∅, we set λ(x) = ±(s + i′), where i′ is the maximum element
in I(x) and where the sign is defined as follows. When |x+ ∩ Ui′ | = |x− ∩ Ui′ | =
|Ui′ |/2, the sign is + if min(x+ ∩ Ui′) < min(x− ∩ Ui′) and is − otherwise. When
max(|x+ ∩ Ui′ |, |x− ∩ Ui′ |) > |Ui′ |/2, the sign is + if |x+ ∩ Ui′ | > |Ui′ |/2, and it is
− otherwise. In the case where I(x) = ∅, we set λ(x) = ± alt(x), where the sign
is the first nonzero element of x. As in the proofs of Theorems 4.9 and 5.5, it can
be checked that the map λ satisfies the condition of the octahedral Tucker lemma
with m = s+ t. Thus we have s+ t ≥ n and there exists z′ ∈ {+,−, 0}n such that
I(z′) = ∅ and alt(z′) ≥ n− t. It implies that there exists z ∈ {+,−, 0}n such that
I(z) = ∅ and alt(z) = |z+| + |z−| = n − t. Let A = z+ and B = z−. They are
both independent sets. Since I(z) = ∅, we have |A ∩ Ui| + |B ∩ Ui| ≤ |Ui| − 1 for
all i. The fact that |A|+ |B| = n− t then leads to |A∩Ui|+ |B ∩Ui| = |Ui| − 1 for
all i, and the conclusion follows.

Many statements about independent sets have analogues in terms of matchings,
where a matching in a graph is a set of disjoint edges. This is natural since the
matchings of a graph G are the independent sets of its line graph, that is the graph
in which vertices are the edges of G, and where edges with a common endpoint
are connected. Matchings are important for theory and applications (see [249]
for an excellent book about matchings). For instance, many resource management
problems, take after the following example. Given a set of tasks and a set of workers,
and a list of compatible workers for each task, assign to each task a different worker
or report that no such assignment exists. The worker/task compatibilities can be
modeled by a bipartite graph, so the question is whether there exists a matching
that covers the vertex class modeling the tasks.

Colorful matchings still raise many questions, for instance the following well-
known conjecture due to Brualdi [82] and Stein [362].

Conjecture 5.6. If the edge set of Kn,n (a complete bipartite graph with n vertices

in each side) is partitioned into sets E1, . . . , En of size n each, then there exists a

matching in Kn,n consisting of one edge from all but possibly one Ei.

A famous conjecture of Ryser about Latin squares [333] asserts that if n is odd,
then under the same condition as the Brualdi–Stein conjecture, there exists a perfect
matching intersecting each Ei once.
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5.3. Kernels in graphs. A kernel in a directed graph is a subset K of the vertices
that is independent (no two vertices of K are joined by an arc) and absorbing (every
vertex v /∈ K has an outgoing arc v → u to a vertex u ∈ K). Kernels naturally arise
in certain combinatorial games, where they model the set of winning positions [387],
or in stable matchings: it turns out the stable matchings of a graph with preferences
equal the set of kernels of the associated line graph. Kernels proved effective in
revisiting classical questions and are, for instance, at the heart of the proof by
Galvin of Dinitz’s conjecture on list colorings [10, §33].

Not every directed graph has a kernel (consider a directed cycle of length 3); this
is in sharp contrast with the nondirected case, where the independent absorbing
sets are the inclusion-maximal independent sets. As shown by a series of works by
Richardson, Duchet, Meyniel, Galeana-Sánchez, and Neumann-Lara [147, 149, 178,
323], a sufficient condition for the existence of a kernel is that each odd directed
cycle has two chords whose heads are two consecutive vertices of the cycle. In
particular, any acyclic directed graph has a kernel; this situation is actually what
motivated, in the context of combinatorial games [387], the introduction of kernels.
In general, however, deciding if a directed graph has a kernel is NP-complete [108].

Sperner’s lemma comes up in the following relation between kernels and perfect
graphs. A graph is perfect if for all its induced subgraphs, including itself, the
chromatic number is equal to the clique number. These are precisely the graphs
for which the trivial lower bound on the chromatic number is sharp for the graphs
and all their induced subgraphs. The relation between kernels and perfect graphs
is a special case of a conjecture of Berge and Duchet [57] proved by Boros and
Gurvich [74].

Theorem 5.7. Any orientation of a perfect graph with no directed cycle of length

three has a kernel.

The original proof translates any directed graph into a coalitional game, where
the players are the cliques, and the outcomes are the stable sets. Under the theo-
rem’s assumptions, the game has stability properties that ensure, via results from
coalitional game theory, the existence of a nonrejecting outcome, which translates
into the desired kernel. A simpler and much more direct approach based on Scarf’s
lemma was proposed by Aharoni and Holzman [8] and was further simplified by
Király and Pap [232] using Sperner’s lemma.

The proof by Király and Pap goes as follows. Consider an orientation D = (V,A)
of a perfect graph with no directed cycle of length 3. Let P ⊆ RV denote the
polyhedron of (possibly negative) vertex weights summing to at most 1 on every
clique. This polyhedron has at least one extreme point (assigning 1 to any maximal
independent set of D and 0 to the remaining vertices does the job), so it is pointed.
Moreover, it has exactly n independent extreme directions (the −ev where ev is
the unit vector associated to vertex v). Every facet of P corresponds to a clique
on which the weights sum to exactly 1. Since there is no directed cycle of length
3, every clique has a source, i.e., a vertex that is absorbed by all other vertices of
the clique. Label each facet by the source of the corresponding clique. Note that a
facet containing −ev is not labeled by v. By Corollary 2.7, the polyhedron has an
extreme point ω that is incident to facets of each label. Now, consider the weights
on V defined by ω. If we could find an independent set K of D intersecting every
clique of weight 1, this set K would also be absorbing: indeed, every vertex v labels
a facet incident to ω, so it is a source of a clique of weight 1 which intersects K.
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The existence of K follows from a classical lemma of Lovász: in a perfect graph,
there exists an independent set intersecting every clique of maximum weight. (This
commonly used lemma is perhaps difficult to find spelled out in this form. A
standard way to prove it is to use perfectness and coloring for cliques of maximum
cardinality, then apply the vertex replication lemma of perfect graphs [246], to allow
rational weights, then generalize to real weights using linear programming.)

Theorem 5.7 ensures the existence of a kernel, but the proof does not give any
efficient method to compute one.

Open Problem 5.8. What is the complexity of computing a kernel in an orien-
tation of a perfect graph with no directed cycle of length three?

6. Optimization

Broadly speaking, mathematical optimization develops mathematical tools for
solving optimization problems. In this section we illustrate how the theorems of
Carathéodory, Sperner, and Helly and their variations provide original viewpoints
on different aspects of this field.

6.1. Linear programming. A linear program (LP) asks for the minimum of a
linear function under a set of linear constraints and is usually written

(6.1)

min cTx

s.t. Ax = b,

x ≥ 0.

Here, A is a m×n matrix, x is a vector of n indeterminates, b and c are vectors in
Rm and Rn, respectively, and x ≥ 0means that each row of x is nonnegative. Linear
programs may come in different presentations, with max in place of min or possibly
inequalities in place of equalities; these presentations are essentially equivalent [262,
§4]. Linear programming is by now a central tool in operations research as it allows
researchers to model a variety of resource management problems [262, §2] and can
be solved fairly effectively in practice. The theory of linear programming builds
on the study of systems of linear inequalities. While this seems to be just a small
variation from linear algebra, linear programming was only systematized in the late
1940s.

6.1.1. The simplex algorithm. Carathéodory’s theorem underlies the simplex algo-

rithm, arguably the standard method for solving linear optimization problems.
On the one hand, Carathéodory’s theorem gives a way to discretize an a priori

continuous problem. Indeed, the cone version of Carathéodory’s theorem ensures
that if the system Ax = b with x ≥ 0 admits a solution, then it admits a solution
with support of size the rank of A. Such a support, understood as a set of indices of
columns of A, is a feasible basis. A closer inspection of the proof of Proposition 3.1
reveals that the optimum of (6.1), if one exists, is attained on a solution supported
by a feasible basis. Since a feasible basis determines a unique solution of Ax = b,
the optimum can be found in finite (but possibly long) time by enumerating feasible
bases which are combinatorially described by their support.

On the other hand, Carathéodory’s theorem, in the form of Proposition 3.1, also
explains the pivoting mechanics of the simplex algorithm. Suppose there exists an
optimum, and that we have a feasible basis B determining a solution x∗. It turns
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out that if x∗ is not optimal, there exists i /∈ B such that increasing x∗
i improves

(i.e., decreases) the objective cTx. The set B ∪ {i} contains another feasible basis,
and it cannot define a worse solution than x∗ (again, a consequence of the proof
of Proposition 3.1). Switching to that new basis is a pivot step. It is a nontrivial
result of Bland that there exist rules for choosing noncycling sequences of pivot
steps; see [344, §11.3] and [262, §5.8]. Broadly speaking, the simplex algorithm
starts by computing a feasible basis, and then it performs such pivot steps until no
entry outside the basis can be used to improve the objective; the final basis then
determines an optimal solution.

6.2. Integer programming. An integer program (IP) adds integrality constraints
to linear programs by restricting all of the variables to take their values over Z rather
than R, for instance

(6.2)

min cTx

s.t. Ax = b,

x ≥ 0,x ∈ Zn.

This variation arises naturally in the management of indivisible resources or yes/no
decision making; the emblematic example is the knapsack problem which asks, given
a set of objects with weights and values, for the subset of maximal value whose
weight does not exceed a given threshold.

The relaxation of an integer linear program is the linear program obtained by
forgetting the integrality conditions, as is (6.1) for (6.2). In general, the solution to
the relaxed linear program provides a bound on the solution to the integer program,
a lower bound in the case of (6.1) and (6.2). Linear programming and relaxation
play a fundamental role in combinatorial algorithms; we refer the reader to the
books [385, 391] for more detail.

What we just said applies also on mixed integer programs in which only some of
the variables are required to be integers.

6.2.1. Sparsity of integer solutions. Carathéodory’s theorem readily measures the
sparsity of optimal solutions. For example, Theorem 3.2 provides the following
bound on the support of an optimal solution.

Corollary 6.1. Let A ∈ Zm×d, b ∈ Zm, and c ∈ Zd. The integer point of the

polyhedron {x ∈ Rd : Ax = b, x ≥ 0} that minimizes cTx has at most

2(m+ 1) log(2
√
(m+ 1)M)

nonzero components, where M is the largest of the entries of A, c in absolute value.

Similar results have been used, for instance, for solving of bin-packing problems;
see e.g., [155, 189]. See [13] for an application to the sparsity of optimal solutions
and tighter bounds for special cases such as knapsack problems.

6.2.2. Graver bases. Another example of the influence of Carathéodory’s theorem
is the use of Hilbert bases by Graver’s optimization methods. Although we present
these ideas for integer programs, they apply more broadly, for instance to convex in-
teger optimization problems, with respect to a convex objective function composed
with linear functions, or convex separable functions; see [124, §3 and §4] and [309].
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Figure 13. A planar projection illustration of Graver basis meth-
ods for Ax = b for A = (1 2 1). The Graver basis of Ax = 0

consists of (2,−1, 0), (0,−1, 2), (1, 0,−1), (1,−1, 1), and their op-
posites. On the left, the neighbors of an integer point through the
Graver basis. On the right, the cone x ≥ 0 (shaded) and a walk
from an arbitrary (black) feasible integer point to the (red) integer
point optimal for the given direction c.

Consider the integer program (6.2) and assume, as is usually the case in practice,
that A ∈ Qm×n. We can decompose the polyhedron Ax = 0 into 2n cones,

{Ax = 0} =
⋃

ε∈{−1,1}n

{Ax = 0, ε1x1 ≥ 0, ε2x2 ≥ 0, . . . , εnxn ≥ 0};

see the left-hand side of Figure 13. Each of these cones is pointed and rational, so
it has a Hilbert basis [124, Corollary 2.6.4]. The union of these 2d Hilbert bases is
called the Graver basis of A. Note that Sebő’s integer Carathéodory theorem (The-
orem 3.3) ensures that any integer point in the polyhedron Ax = b can be written as
a nonnegative integer linear combination of at most 2n−2 vectors from the Graver
basis of A. Moreover, Graver [192] established the following remarkable augmenta-
tion property: any nonoptimal feasible solution of the integer program (6.2) can be
improved by adding some suitable vector from the Graver basis of A. Hence, any
integer program of the form (6.2) can be solved by first computing a Graver basis
for Ax = b, then computing a feasible solution, and finally improving this solution
by a greedy walk on the set of integer solutions, the candidate steps being provided
by the vectors of the Graver basis; see the right-hand side of Figure 13.

The main obstacle to the practical use of Graver bases is their potentially expo-
nential size. For general matrices, deciding if a given set of vectors is a Hilbert basis
is already co-NP-complete [150]. The good news, from the last decade of work, is
that for highly structured matrices, such as those with regular block decomposi-
tions, Graver bases can be computed efficiently and are actually manageable for
optimization (see details in [124, Chapters 3 and 4] and the extensive presentation
in [309]).

6.3. LP duality. An important idea for the study of linear programs is the notion
of LP duality. This idea naturally arises from the question of certifying the quality
of a solution to a linear program. For example, the objective function value of an

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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optimal solution to

(6.3)

min 5x1 + 3x2

s.t.

(
2 3
1 2

)(
x1

x2

)
≥
(
2
5

)
,

x ≥ 0

can be seen to be at least 2 by looking at the first constraint and at least 15
2

by scaling the second constraint by 3
2 . More generally, the solution of a linear

program (P) can be bounded from below by the solution of a linear program (D),
where

min cTx(P)

s.t. Ax ≥ b, and

x ≥ 0

max bTy(D)

s.t. ATy ≤ c,

y ≥ 0.

The linear programs (P) and (D) are said to be dual to one another; the variable
y of the dual program can be interpreted as the weights of a linear combination of
the constraints of the primal program (and conversely). This relation, called weak

linear programming duality, can be strengthened.

Theorem 6.2 (Strong duality). Given two dual linear programs, if at least one is

feasible, then they have the same optimal value.

The duality theory of linear optimization has many applications, such as fast
certification of solutions or primal-dual algorithms and in proving combinatorial
theorems [344]. But it also plays a role in discrete geometry, for example in the
proof of (p, q) theorems [22]. In the following subsection we are going to prove
Theorem 6.2 in an atypical way.

6.3.1. LP duality from the MinMax theorem. LP duality is the classical favorite
approach to prove von Neumann’s MinMax theorem (Theorem 4.5) for two-player
zero-sum games, as we mentioned in Section 4.1.2. Going in the other direction,
Dantzig [119] proposed a deduction of the strong duality theorem from the MinMax
theorem; as we explain below, Dantzig’s proof required a detour, in some cases,
via Farkas’s lemma, another result equivalent to Theorem 6.2. The impression of
equivalence between the MinMax theorem, Nash equilibria for zero-sum two-player
games, and the strong duality theorem nevertheless lingered and became a folklore
theorem. It is only recently that Adler [5] filled in the missing case to give a genuine
direct equivalence between these three cornerstones.

Dantzig’s approach proceeds as follows. The weak duality already proves one
inequality. The other inequality reduces to finding a solution (x,y) ≥ 0 of the
system (P+D):

(P+D)

⎧
⎨
⎩

Ax− b ≥ 0,
−ATy + c ≥ 0,

bTy − cTx ≥ 0.
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This system rewrites
⎛
⎝

0 A −b

−AT 0 c

bT −cT 0

⎞
⎠

︸ ︷︷ ︸
M

⎛
⎝
y

x

1

⎞
⎠ ≥ 0,

so our task is to find a vector z with positive last component and such that Mz ≥ 0.
Consider the zero-sum game with payoff matrix −M , and let (s∗, t∗) be a Nash
equilibrium. The matrix −M has dimension n × n, so one may pit each strategy
against itself to see that the value v of the game satisfies

s∗T (−M)s∗ ≥ v ≥ t∗T (−M)t∗.

Since M is antisymmetric, this implies that v = 0. Moreover, for any z ∈ Δn−1,

we have s∗T (−M)z ≥ 0, so Ms∗ ≥ 0. Since s∗ ∈ Δn−1, writing s∗ = (ỹ x̃ ũ)T

leads to the desired solution whenever ũ 	= 0. When ũ = 0, Dantzig concluded by
a separate use of Farkas’s lemma (the incompleteness in his derivation). Adler was
able to complete this missing case, without appealing to Farkas.

6.3.2. Totally dual integral polyhedra. Applied optimization models typically in-
volve rational polyhedra, which are expressed as systems of linear inequalities with
rational coefficients. An important question for computation is whether a ratio-
nal polyhedron is integral, that is whether all its vertices have integer coordinates.
Indeed, for integral polyhedra, integer optimization (which is typically very hard)
becomes linear optimization (which is considered tractable). Let us see how Hilbert
bases help when looking for rational polyhedra that are integral. In what follows,
we consider a rational polyhedron P = {x : Ax ≤ b} with A and b rational.

Checking whether P is integral is a finite process, as one can simply list all the
vertices. The following structural result allows us to bypass this tedious enumer-
ation in various situations. Observe that if P is integral, then for every integral
vector w, the value max{wTx : x ∈ P} is an integer (indeed, it is the inner product
of two integral vectors). Surprisingly, a rational polyhedron is integral if and only
if it satisfies this condition. This equivalence, due to Edmonds and Giles [154], is
still not a practical way to detect integral polyhedra (the set of candidate vectors
w is infinite) but it suggests that we look at things via duality. Indeed, the strong
LP duality (Theorem 6.2) states

max{wTx : Ax ≤ b} = min{yTb : ATy = w,y ≥ 0},
so P is integral if the vector b is integral and the right-hand side minimization
problem has an integral optimal value for every integral vector w. (Note that,
in general, integrality properties are not preserved through linear programming
duality.) A system of inequalities Ax ≤ b is totally dual integral (TDI) if the right-
hand side minimization problem above has an integral solution for every integral
vector w (for which the optimum is finite). A rational polyhedron P that can be
represented by a TDI system where b is integral is thus integral. The converse is
true and any integral polyhedron can be represented by a TDI system of inequalities
(but which, in practice, may not be easy to find). Let us stress that TDI-ness is
a property of the system of inequalities, not of the underlying polyhedron: Giles
and Pulleyblank [187] proved that for every rational system of inequalities Ax ≤ b,
there is a rational number α such that αAx ≤ αb is TDI. They also proved, using
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Carathéodory-style properties, that a system of inequalities Ax ≤ b is TDI if and
only if for every face F of P , the rows of A which are active in F form a Hilbert
basis for that supporting cone. This makes checking TDI-ness a finite process, but
it is still not a practical one as checking whether a system of vectors forms a Hilbert
basis is not efficient. See [150] and references therein for computational issues.

TDI-ness and related notions, such as box-TDI-ness, often shed new light on
results in combinatorial optimization, for instance on the matroid intersection the-
orem. Consider two matroids M1 and M2 over the same ground set S, understood
as their sets of independent sets. Any matroid has an associated matroid polytope,
obtained by taking the convex hull of its (indicator vectors of) independent sets. It
turns out that the convex hull of the independent sets in M1 ∩M2 coincides with
the intersection of the matroid polytopes of both matroids. This is remarkable, as
in general conv(A∩B) is different from conv(A)∩ conv(B); see [345, §41] for more
on this topic.

A special case of TDI-ness allows for linear programming proofs of combinatorial
results. A matrix A is totally unimodular (TU) if every square submatrix has
determinant in {0,−1,+1}. For such a matrix, the polyhedron {x : Ax ≤ b,x ≥
0} is integral for every integral vector b. TU matrices give rise to TDI systems.
They are completely characterized and are very important in combinatorics and
optimization (see [350, 390]). Since the transpose of a TU matrix is TU again, the
strong duality theorem in linear programming (Theorem 6.2) provides alternative
proofs of Kőnig’s theorem (the maximum cardinality of a matching in a bipartite
graph is equal to the minimum cardinality of a set of nodes intersecting each edge),
the Kőnig–Rado theorem (the maximum cardinality of a stable set in a bipartite
graph without isolated vertices is equal to the minimum number of edges needed to
cover all nodes), and the integrality of the max-flow/min-cut theorem. In all three
cases, the matrix A is the node-arc incidence matrix of a directed graph, and it is
an easy exercise to check that such a matrix is TU.

6.4. Convex optimization. Using linearization techniques, one may apply ideas
from the theory of linear programming, and its duality, to more general optimization
problems of the form

(P′)
min f(x)
s.t. hj(x) ≤ 0, j = 1, . . . , q,

where f and hj ’s are differentiable functions Rn → R∪ {−∞,+∞} (not just linear
as before).

6.4.1. The KKT conditions from LP duality. A milestone in mathematical pro-
gramming is the following necessary optimality condition, due to Karush, Kuhn,
and Tucker [76].

Theorem 6.3 (KKT condition). Let x∗ be a feasible solution of the problem (P′)
such that the constraints are qualified at x∗. If x∗ is a local optimum, then there

are nonnegative real numbers μ1, μ2, . . . , μq such that

∇f(x∗) +
q∑

j=1

μj∇hj(x
∗) = 0 and ∀j, μjhj(x

∗) = 0.

The requirement that the “constraints are qualified” is a regularity condition on
the feasible domain F = {x : hj(x) ≤ 0, j ∈ [q]} near x∗. We do not spell out
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this rather technical condition, but we will give a sufficient requirement. Call a
direction d feasible at x∗ if F contains a segment of positive length with endpoint
x∗ and direction d. (This is where we are approximating: the adequate notion of
feasibility is somewhat more flexible.) The constraints are qualified at x∗ if the
closure of the cone of feasible directions coincides with the tangent cone at x∗, that
is

{d : ∇hj(x
∗) · d ≤ 0 for all j ∈ [q] s.t. hj(x

∗) = 0}.
Even this coarser requirement may prove tedious to check, and several simpler
sufficient conditions were investigated. The above criterion readily yields that affine
constraints are qualified in any feasible point. Another important case is that of
convex differentiable constraints, which are qualified at any feasible point provided
there exists a point satisfying strictly every constraint [76, §5.5].

The factors μi in Theorem 6.3 are the Lagrange multipliers. The strong duality
theorem is classically equivalent to the following lemma of Farkas [344, § 7.3].

Lemma 6.4 (Farkas’s lemma). Let A be a real matrix, and let b be a vector. There

exists x ≥ 0 such that Ax = b if and only if y ·b ≥ 0 for every y such that ATy ≥ 0.

Theorem 6.3 can be deduced from Farkas’s lemma via the following linearization
argument. Let x∗ be a feasible solution of (P′), and write

A = −
(
(∇hj(x

∗))j∈J

)
where J = {j ∈ [q] : hj(x

∗) = 0}.

Let x∗ be a local optimum of (P′). Since f is differentiable, ∇f(x∗) · d ≥ 0 for
every direction d feasible at x∗. Moreover, since the constraints are qualified at
x∗, any direction d satisfying ATd ≥ 0 is in the closure of the cone of directions
feasible at x∗, hence

∀d ∈ Rn s.t. ATd ≥ 0, ∇f(x∗) · d ≥ 0.

By Farkas’s lemma, this is equivalent to the existence of a vector µ′ in RJ
+ such

that Aµ′ = ∇f(x∗). Completing µ′ into µ by zeroes yields Theorem 6.3.

6.4.2. Strong duality in convex programming from the KKT conditions. The KKT
condition (Theorem 6.3) can, in turn, be used to prove a strong duality theorem for
convex programming, generalizing Theorem 6.2. Let us introduce the Lagrangian
function

L(x,µ) = f(x) +

q∑

j=1

μjhj(x).

Since

sup
µ∈R

q
+

L(x,µ) =
{

f(x) if μjhj(x) ≤ 0,
+∞ otherwise.

(P′) is equivalent to

min sup{L(x,µ) : µ ∈ R
q
+}

s.t. x ∈ Rn.

The same argument as in equation (4.4) yields

(6.4) inf
x∈Rn

sup{L(x,µ) : µ ∈ R
q
+} ≥ sup

μ∈R
q
+

inf{L(x,µ) : x ∈ Rn}.
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Finding the right-hand side term consists in solving the following dual program:

(D′)
max g(µ) where g(µ) = inf{L(x,µ) : x ∈ Rn}
s.t. µ ≥ 0.

This dual program always asks us to maximize a concave function. In the case
where problem (P′) is a linear program, this notion of duality coincides with the
LP duality introduced in Section 6.3.

Proposition 6.5 (Strong duality for convex optimization). Suppose that in (P′),
f and h1, . . . , hq are convex functions. Suppose moreover that the constraints are

qualified at every feasible solution. If (P′) has an optimal solution, then the dual

program has one also, and the optimal values of (P′) and (D′) coincide.

The proof goes as follows. Let x∗ be an optimal solution of (P′). By Theorem 6.3,
there exists µ∗ ∈ R

q
+ such that

∇f(x∗) +
q∑

j=1

μ∗
j∇hj(x

∗) = 0 and ∀j, μ∗
jhj(x

∗) = 0.

On the one hand, we have

L(x∗,µ∗) = f(x∗) +
q∑

j=1

μ∗
jhj(x

∗) = f(x∗).

On the other hand, we have

∇xL(x,µ∗) = ∇f(x) +

q∑

j=1

μ∗
j∇hj(x), so ∇xL(x∗,µ∗) = 0.

The map x �→ L(x,µ∗) is convex because µ∗ ≥ 0, so x∗ is a global minimum and
g(µ∗) = L(x∗,µ∗) = f(x∗). Together with the weak duality of equation (6.4), this
ensures that µ∗ is an optimal solution for (D′).

6.5. Sampling approaches. Let us now consider optimization problems of the
form

(6.5)
min f(x)

s.t. x ∈ C1 ∩ C2 ∩ · · · ∩ Cm,

where one minimizes a function over an intersection of subsets Ci, the constraints.
Such problems include linear programming (when f is linear and the Ci are half-
spaces), convex programming (when f is convex and the Ci are convex sets), or
their integral or mixed analogues (via restrictions to Zk × Rd).

6.5.1. Witness sets of constraints. A first use of Helly’s theorem concerns the re-
moval of redundant constraints defining an optimal solution. To begin, consider
the linear program

(6.6)

min cTx

s.t. Ax ≤ b,

x ∈ Rd,

where A ∈ Rm×n (this form differs from those seen so far but is equivalent [262, §4]).
Assume that the problem is feasible, and let t denote its solution. The set Ax ≤ b of
feasible solutions is an intersection of m halfspaces, and their common intersection
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with cTx < t, another halfspace, is empty. By Helly’s theorem, some d+1 of these
m+ 1 halfspaces must have empty intersection, and cTx < t must be one of them.
It follows that we may drop from (6.6) all but some (carefully chosen) d constraints
without changing the solution. Recall that Helly’s theorem for halfspaces is dual to
Carathéodory’s theorem; in the dual, this argument yields that an optimal solution
can be realized by a feasible basis (as introduced in Section 6.1.1).

More generally, given a problem of the form (6.5), a subsetW ⊆ {C1, C2, . . . , Cm}
is a witness set of constraints if

min f(x) = min f(x)

s.t. x ∈
m⋂

i=1

Ci s.t. x ∈
⋂

C∈W

C,

and W is inclusion-minimal for that property; in other words, a witness set is
a nonredundant set of constraints that defines the same optimum as the entire
problem. The above argument gives, mutatis mutandis, that the witness sets of any
feasible mixed-convex programming over Zk × Rd have size at most 2k(d+ 1)− 1;
this bound increases by 1 for unfeasible programs.

The relation between Helly’s theorem and witness sets extends beyond convexity,
as observed by Amenta [26]. We say that a family F admits a Helly-type theorem

with constant h if the nonempty intersection of every h-element subset of F implies
the nonempty intersection of F . Consider a minimization problem of the form (6.5),
where f is a function from a space X to a space V . We assume that V is equipped
with a total order ≺, so that the minimization question makes sense. For any v ∈ V
we let Lv = {x ∈ X : f(x) ≺ v}.

Proposition 6.6. Let h ∈ N. If every family {C1, C2, . . . , Cm, Lv} admits a Helly-

type theorem with constant h, then any witness set of constraints of (6.5) has size

at most h (actually, h− 1 if the problem is feasible).

Note that we make no assumption on f (not even continuity!), X, or V . The
proof for the feasible case goes as follows. Let F = {C1, C2, . . . , Cm}, and let
s denote the solution to (6.5). For G ⊆ {C1, C2, . . . , Cm}, define s(G) as the
minimum of f over

⋂
C∈G C, and put

s′ = max{s(G) : G ⊆ F and |G| = h− 1}.

On the one hand, s ≥ s(G) for every G ⊆ F , we have s ≥ s′. On the other hand,
every h elements of F intersect (because (6.5) is feasible) and Ls′ intersects any h−1
elements of F (by definition of s′); thus, every h elements in F ∪ {Ls′} intersect,
and the Helly-type theorem on F ∪ {Ls′} ensures that s ≤ s′. By minimality, any
witness set thus has size at most h− 1.

6.5.2. Combinatorial algorithms for linear programming. Devising algorithms for
linear programming with provably good complexity has been a major challenge for
the past 70 years. The interior point method of Karmarkar [228] and the analysis of
the ellipsoid method by Khachyian [231] only showed that the complexity of LP is
polynomial in the number m of constraints, the number d of variables, and the bit
complexity L of the entries of the matrix A and vectors b and c. A major question
thus remains:
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Open Problem 6.7. Is there an algorithm that solves linear programming in time
polynomials in the number of constraints and the number of variables, assuming
that arithmetic operations on input numbers have unit cost?

(This is problem number nine in Smale’s list of open problems [355].) An algorithm
with complexity polynomial in m and d in the unit cost model is called strongly

polynomial. Although the simplex algorithm proves effective in practice, no choice
of pivoting rule is known to ensure a number of step polynomial in the number m
of constraints and the number d of variables; in fact, for every pivot rule whose
worst-case complexity is established, that complexity is at least exponential in m
and d (see [37, 118, 173, 233] and the references therein). Although no strongly
polynomial time algorithm is known, partial progress was made through the 1980s
and 1990s via combinatorial random sampling algorithms; this approach hinges on
the fact that the bounded size of witness sets allows us to throw away redundant
constraints quickly.

Let us illustrate the basic idea of combinatorial random sampling algorithms in
its simplest form, due to Seidel [349] (see also [123, §4]). Consider

(6.7)

min cTx

s.t. x ∈ Rd,

x ∈ H1 ∩H2 ∩ · · · ∩Hm,

where each Hi is a halfspace in Rd. Pick t ∈ [m] uniformly at random, and let st
denote the solution to the linear program with the constraint Ht removed. The
idea is to compute st recursively, then deduce s from st: we check in O(d) time
whether st belongs to Ht. If st ∈ Ht, then s = st, and if st /∈ Ht, then s must
belong to the hyperplane bounding Ht and be the solution to the linear program

(6.8)

min cTx

s.t. x ∈ ∂Ht,

x ∈
⋂

i∈[m]\{t}
(Hi ∩ ∂Ht).

This new linear program has m−1 constraints in d−1 variables and can be obtained
from (6.7) in time O(dm). Altogether, the expected time T (m, d) to compute s

writes
T (m, d) = T (m− 1, d) +O(d) + �st /∈Ht

T (m− 1, d− 1).

Observe that st /∈ Ht if and only if Ht belongs to every witness set for (6.7). Since
the size of witness sets is at most d, the event st /∈ Ht occurs with probability at
most d

m when t is chosen uniformly at random. Altogether, this recursion solves to
T (m, d) = O(d!m), which is the running time of Seidel’s algorithm. In fact, Seidel’s
algorithm builds on an idea by Clarkson, which we describe next.

The iterated reweighting method of Clarkson [110] consists of assigning a weight

wi, initially set to 1, to every constraint Hi and iterating a simple process: Sample
O(d2) constraints with probabilities proportional to their current weights and solve
the problem on these constraints. If the solution is feasible, we are done; otherwise
double the weights of all violated constraints, and reiterate. It remains to be shown
that, almost surely, the algorithm terminates. This can be seen by comparing the
growth rates of the total weight of the system, and the weights of some witness set
W . On the one hand, every unsuccessful iteration must double the weight of at
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least one constraint in W . On the other hand, as the constraints are chosen in each
iteration with probability proportional to their current weight, the expected total

weight of the constraints violated at any given iteration is O
(∑

i wi

d

)
[94]. Thus,

after k iterations, W has weight Ω(d2k/d) but the total weight of all the constraints

in the system is O

(
m
(
1 + O(1)

d

)k)
. Putting these two bounds together implies

that the algorithm terminates, with high probability, within O(d logm) iterations.
At each iteration one has to solve a linear program on O(d2) constraints, which
can be done in time O(d)d/2+O(1), say by the simplex method, and compute the set
of violating constraints, which takes time O(md). This implies an overall running
time of O(d2m logm+O(d)d/2+O(1) logm).

Clarkson’s approach was later improved by Matoušek et al. [264] to achieve an

expected time complexity of O(d2m + eO(
√
d log d)). A similar bound was obtained

independently by Kalai [218] via a randomized pivot rule for the simplex algorithm.
Clarkson’s algorithm was subsequently derandomized; see [94] and the references
therein for the latest developments.

6.5.3. Combinatorial abstractions of LP. Clarkson’s algorithm uses very little struc-
ture from linear programming, namely the abilities to solve a small-size problem
and to decide if a given solution violates a given constraint. Surprisingly, there are
many computational problems for which these two operations can be performed
effectively to find a solution and which are not linear. A simple example is the
computation of the smallest enclosing circle of a finite point set P ⊂ R2. Here, the
constraints are the points of P , the candidate solutions are the circles, and a circle
violates a point if it does not enclose it. Observe that subsets of points that mini-
mally define their enclosing centers have size at most 3, so in this case witness sets
again have size at most 3. It turns out that Clarkson’s algorithm readily applies to
this problem. This is not an LP in disguise: a generic instance may have witness
sets of size 2 or 3.

Various combinatorial abstractions of LP were studied in order to understand
precisely what class of problems can be solved with the randomized approach we
described before. Consider an abstract set of constraints numbered from 1 to m,
and an objective function that associates to any set S ⊆ [m] the value f(S) ∈ R

of the optimum when only the constraints in S are considered. A natural black-
box model allows us to compute f(S) when S has bounded size (independently of

m), or to decide violations asking whether f(S ∪ {i}) ?
= f(S). It turns out that

Clarkson’s algorithm can effectively compute f(S) in this abstract model under
three assumptions [264]:

(i) f is decreasing under inclusion, that is, f(S) ≤ f(T ) whenever S ⊆ T ⊆
[m];

(ii) f is local in the sense that

f(S) 	= f(S ∪ {i}) ⇔ f(T ) 	= f(T ∪ {i})
∀S ⊆ T ⊆ [m] such that f(S) = f(T ), and ∀i ∈ [m]; and

(iii) witness sets have bounded size, where a witness set S is a minimal subset
of [m] with f(S) = f([m]).

Functions f satisfying (i) and (ii) are called LP-type problems or generalized linear

programming problems.
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Any generic problem of the form (6.5) is LP-type; here by “generic” we mean
that for every subset of constraints, f achieves its minimum over the intersection of
those constraints in only a bounded number of points. As noted in Proposition 6.6,
controlling the size of the witness set for such problems, and thus the effectiveness
of Clarkson’s approach, is a matter of Helly-type theorems. Later a generalization,
called violator spaces [182], was shown to give the precise family of problems solved
by Clarkson’s approach.

6.5.4. Chance-constrained optimization. Consider the problem of computing, given
n points in the plane, the smallest disk containing a given proportion of these
points (say 70%). More generally, given a probability measure μ in the plane and
a positive number ε, one may consider the optimization problem

min r

s.t. Pr [‖x− y‖2 ≤ r] ≥ 1− ε,

x ∈ R2,

where y is a random point chosen from the probability distribution μ. This quan-
titative variation of the smallest enclosing circle problem, discussed above, is no
longer LP-type but can still be solved effectively. The technique relies, again, on
the fact that witness sets have bounded size, and it applies more generally to a
chance-constrained problem (CCP). A CCP asks to optimize a function of a vari-
able x ∈ Rd under constraints depending on a parameter w ∈ Δ of the form:

CCP (ε) = min g(x)

s.t. Pr (f(x,w) ≤ 0) ≥ 1− ε, x ∈ K.

Here, g is a convex function, the probability is taken relative to a measure μ on the
space Δ of parameters, f(x,w) is measurable with respect to w, f(·,w) is convex
for every w, and K is a convex set. This type of optimization problem naturally
arises when modeling with uncertain constraints [351].

An approach to solve CCP, initiated by Calafiore and Campi [87,88], is to sample
w1,w2, . . . ,wN from μ and solve the deterministic convex program

SCP (N) = min g(x)

s.t. f(x,wi) ≤ 0, i = 1, 2, . . . , N, x ∈ K.

For any δ ∈ (0, 1), if N ≥ 2d
ε ln 1

ε + 2
ε ln

1
δ + 2d, then the solution to SCP (N) is a

solution to CCP (ε) with probability at least 1− δ [87, 88].
The proof in [128] goes as follows. For x ∈ Rd, let V (x) = Pr (f(x,w) > 0) so

that we are interested in ensuring V (x) < ε. Each of the N constraints f(·,wi) ≤ 0

is convex, so any witness set has size at most d. Now, for every I ∈
(
[N ]
d

)
, we define

ΓI
N =

{
(w1, . . . ,wN ) ∈ ΔN : (wi)i∈I is a witness set

}
.

Note that the ΓI
N decompose ΔN according to which ones are the indices of the d

witness constraints. Let x∗ denote the optimal solution of SCP (N), and let xI be
the solution to the convex program defined by the constraints {wi : i ∈ I} alone.
The probability of failure Pr (V (x∗) ≥ ε) is less than or equal to

∑

I∈([N]
d )

Pr
({(

w1, . . . ,wN
)
∈ ΓI

N : V (xI) ≥ ε
})

.
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The summand corresponding to index set I rewrites as

Pr
[{(

wi
)
i∈I

: V (xI) ≥ ε
}]

×
∏

j /∈I

Pr
[{(

wi
)
i∈I

: f
(
xI ,w

j
)
≤ 0
} ∣∣∣
{(

wi
)
i∈I

: V (xI) ≥ ε
}]

.

The first factor is at most 1 and each of the following N − d factors is at most ε.

Altogether, we get Pr (V (x∗)) ≤
(
N
d

)
(1− ε)

N−d
, and the announced bound follows.

6.5.5. S-optimization. There are many situations where one wants to optimize un-
der convex constraints while restricting the solutions to belong to some set S; these
are called S-optimization problems. This allows one to model complicated con-
straints such as mixed-integer constraints (S = Rd×Zk), sparsity constraints (e.g.,
compressed sensing), or complementarity constraints.

Several of the techniques described above generalize if the intersections of S with
convex sets of the ambient space admits a Helly-type theorem. We denote its Helly
number by h(S), for example h(Rd × Zk) = 2k(d+ 1). Proposition 6.6 yields that
witness sets have size at most h(S)− 1, and the reader can check that the analysis
of chance constraint programs in Section 6.5.4 applies: the solution to SCP (N) is
a solution to CCP (ε) with probability at least 1− δ if

N ≥ 2h(S)− 2

ε
ln

1

ε
+

2

ε
ln

1

δ
+ 2h(S)− 2.

In fact, the proof presented above differs from the initial argument [87, 88] and
was found when generalizing CCP to the S-optimization setup [128]. Helly-type
theorems have been obtained for various sets S [34, 129, 179, 319].

Let us now turn our attention to the problem of minimizing a convex function g
over an arbitrary subset S ⊆ Rd. We assume that g is given by a first-order
evaluation oracle and that S is nonempty and closed. The cutting plane method

that we now present allows one to approximate the solution. To allow us to control
the quality of the approximation, we fix a finite measure μ supported on S. The
algorithm starts with a convex set E0 that contains the solution in its interior and
is such that μ(intE0) > 0. It then builds a sequence {Ei} where each Ei is also a
convex set that contains the solution in its interior. Given Ei−1, we select a point
xi ∈ (intEi−1) ∩ S and compute g(xi) and a subgradient hi ∈ ∂g(xi). We set
x⋆ := argmin

x∈{x1,...,xi}g(x) and define Ei in a way that ensures that

Ei ⊇ {x ∈ E0 : g(x
⋆)− g(xj) ≥ hT

j (x− xj) ∀j ∈ [i]},

and that μ(intEi) is nonincreasing. We stop when μ(intEi) is smaller than the
desired error and return x∗. This approach leaves many details unspecified, in
particular the precise definition of Ei and the way to choose the points xi. When
S = Rd and μ is the Lebesgue measure, a possible implementation is the classical
ellipsoid method [231]. When S = Zd and μ is the counting measure for Zd, we
obtain cutting plane algorithms for convex integer optimization problems. Another
variant of this method, which uses random sampling, was explored by Bertsimas
and Vempala [59].

The choice of the points xi in the cutting plane method is important. A par-
ticularly good choice are the Tukey centers. Given a vector u ∈ Sd−1 and a point
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x ∈ Rd, we let H+(u,x) denote the halfspace {y ∈ Rd : uT (y − x) ≥ 0}. Consider
the function

(6.9) F(S, μ) := max
x∈S

inf
u∈Sn−1

μ(H+(u,x)).

A Tukey center is a point that attains the maximum value of F(S, μ). Lower bounds
on F(S, μ), and therefore on the depth of Tukey centers (see Section 7.4), can often
be obtained from Helly-type theorems. For instance, if S = Rd and μ is the counting
measure of a finite subset of Rd, then the centerpoint theorem (Theorem 7.12)
ensures that F(S, μ) ≥ 1

d+1 |P |. The proof of the centerpoint theorem from Helly’s

theorem extends to the setting of S-convexity: if S ⊆ Rd is nonempty and closed
and μ is finite and supported on S, then F(S, μ) ≥ 1

h(S)μ(R
d) [55]. For instance,

Doignon’s theorem ensures that if S = Zd and μC counts integer points inside a

compact set C, then F(S, μC) ≥ |C∩Z
d|

2d
. It turns out that choosing xi among

the points maximizing F(μi, S), where μi is the restriction of μ to int(Ei−1), gives
the best running times among cutting plane algorithms for convex minimization
over S [55].

More notions generalize to S-optimization. For instance there exists an analogue
of the strong duality theorem for S-convex optimization under some natural con-
ditions [54]. We will meet Tukey centers again in Section 7.4, and we conclude this
section with a challenge:

Open Problem 6.8. What is the complexity of computing Tukey centers for given
S and μ? For example, can one compute an exact Tukey center of the integer points
of a convex polytope in polynomial time in the input size?

7. Data point sets

In this section we consider some computer science results that are either appli-
cations of the main theorems or strongly related to them. There are simply far too
many results for us to do justice to even a small number of them, thus we restrict
ourselves to a few central themes, including classification, geometric shape analysis,
and partitioning of n points in d-dimensional Euclidean spaces. These will involve
an interplay between affine geometric and topological techniques, offering the usual
mix of advantages and drawbacks of the two: Affine tools—Radon’s lemma, Helly’s
theorem, linear programming duality, simplicial decompositions—will imply fast
algorithms, though they apply to a restricted group of geometric objects. Topolog-
ical tools—the Borsuk–Ulam theorem, Tucker’s lemma—yield broader structural
statements, though, at this moment, settling the algorithmic feasibility of these
methods remains a major open problem.

7.1. Equipartitioning: the ham sandwich theorem and its relatives. We
say that a hyperplane h bisects a set P of points if the two open halfspaces defined

by h contain at most |P |
2 points of P . Note that if |P | is odd, then a point of P

must necessarily lie on h. The famous ham sandwich theorem is the starting point
of a large number of results concerning equipartitioning of geometric objects with
other geometric objects.

Theorem 7.1. Let P1, . . . , Pd be finite point sets in Rd. Then there exists a hy-

perplane h that simultaneously bisects each Pi, i = 1, . . . , d.
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The theorem holds more generally for finite Borel measures that evaluate to
zero on every affine hyperplane. All known proofs of Theorem 7.1 are essentially
topological in nature. A classical proof follows from the Borsuk–Ulam theorem by
identifying points of Sd with hyperplanes in Rd, and where the function f : Sd → Rd

encodes the imbalance of the d point sets (more generally, measures) with respect to
that hyperplane [258]. We now outline another proof of the ham sandwich theorem
using Tucker’s lemma. The proof we present was found independently by Holmsen
and by the third author (both unpublished).

For simplicity we will assume that the given point sets P1, . . . , Pd are in general

position, and let
⋃d

i=1 Pi = {p1, . . . ,pn}. Each pair (a, b) ∈ (Rd × R+) \ {0, 0}
induces a sign pattern x ∈ {+,−, 0}n with xj being the sign of a · pj + b. We will
apply Tucker’s lemma (Proposition 2.2) on an abstract simplicial complex induced
by these sign patterns to show that there is a pair (a, b) whose sign pattern x is
such that {pj : j ∈ x+} and {pj : j ∈ x−} each contain at most half of each Pi.
Then the hyperplane {y ∈ Rd : a · y + b = 0} bisects each Pi.

Denote by P the partially ordered set of all achievable sign patterns endowed
with the partial order � (see Section 2 before Tucker’s octahedral lemma). It is a
well-known result from oriented matroid theory that the order complex T of P is a
triangulation of Bd that is symmetric on its boundary. Suppose, for contradiction,
that there is no hyperplane bisecting each Pi. Given an x in P, we define λ(x)
to be εi, where i is the smallest index such that either {pj : j ∈ x+} ∩ Pi or

{pj : j ∈ x−} ∩ Pi contains more than half of the points of Pi, and where ε is + if
it is the first set and is − if it is the second. This map λ is clearly antipodal on
the boundary of T and labels the vertices of T with the elements of {±1, . . . ,±d}.
According to Tucker’s lemma, there exists an edge uv of T with λ(u) + λ(v) = 0.
Without loss of generality, we assume that u � v and that −λ(u) = λ(v) = k
for some k ∈ [d]. By definition of λ, we have then |{pj : j ∈ u−} ∩ Pk| > |Pk|/2
and |{pj : j ∈ v+} ∩ Pk| > |Pk|/2. Combined with u− ⊆ v−, it implies that

|{pj : j ∈ v− ∪ v+} ∩ Pk| > |Pk|, a contradiction.
We will see further applications of the ham sandwich theorem later on, but for

now we point out that it gives another proof of Theorem 4.9: given an open necklace
with t types of beads to be divided equally between two thieves, embed the beads
of the necklace along a moment curve in Rt, and use a hyperplane h guaranteed by
Theorem 7.1 to bisect each type of bead. As any hyperplane intersects a moment
curve at t points, h splits the open necklace into t + 1 pieces that can then be
divided among the two thieves.

Note that from the above discussion, we have the following computational hier-

archy : computing a solution to this variation of the octahedral Tucker problem is
harder than computing a ham sandwich cut (note also that this implies that the
latter is in PPA), which is harder than computing a solution to the fair splitting
necklace problem. In particular, the Filos-Ratsikas and Goldberg paper [164] proves
that computing the ham sandwich cut is PPA-complete (see Section 4.2).

As far as the efficiency aspects of Theorem 7.1 are concerned, given point sets, of
a total of n points in R2, a bisecting line can be computed in O(n) time. In Rd the
best algorithm for computing a ham sandwich cut for d point sets in Rd runs in time
O(nd−1) [245]; in fact the algorithm proposed presents a new proof of Theorem 7.1
that proceeds by induction on the dimension and thus is more amenable to efficient
algorithm design.
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By now there are dozens of variants of the ham sandwich theorem, and gener-
alizations to other types of bisecting and bisected objects. We now present a few
nice examples. For the ham sandwich theorem, see also [258, 398] and references
therein.

One variation is called the center transversal theorem: given s + 1 point sets
in Rd where s ∈ {0, . . . , d − 1}, there exists an s-dimensional affine subspace h of
Rd such that any hyperplane containing h has at least 1

(d−s+1) -th fraction of the

points of Pi on each side, for i = 0, . . . , s + 1. In fact, it has been conjectured

that the constant 1
(d−s+1) can be replaced by (s+1)

(d+s+1) ; see [86]. Theorem 7.1 is the

case s = d − 1, and the case s = 0 is the important centerpoint theorem that we
encountered in the introduction and will visit again later. We refer the reader to
the book [258] for many variants of this and related theorems in R2 and higher
dimensions. Here now are two famous conjectures.

Conjecture 7.2. Let P be a set of points in R4. Then there exists a set H of four

hyperplanes such that each of the resulting 16 open regions of R4 \ H contains at

most
|P |
16 points of P .

In the papers [64,65], the authors showed that in R5 it is indeed possible to find
four hyperplanes that divide the set into 16 equal parts; see also [354]. We should
mention here a related theorem of Yao and Yao [393] (see also Theorem 7.8): Given
a set P of n points in Rd, one can partition Rd into 2d regions such that the interior
of each region contains at most n

2d
points of P , and any hyperplane intersects the

interior of at most 2d − 1 regions.
Next we consider another conjecture by Tverberg and Vrećica [378].

Conjecture 7.3. Let 0 ≤ k ≤ d − 1 be a given parameter, and let P0, P1, . . . , Pk

be finite point sets in Rd. If |Pi| = (ri − 1)(d − k + 1) + 1 for i = 0, 1, . . . , k,
then each Pi can be partitioned into ri parts Pi,1, Pi,2, . . . , Pi,ri such that the sets

{conv(Pi,j) : 0 ≤ i ≤ k, 1 ≤ j ≤ ri} can be intersected by a k-dimensional affine

space.

Note that Tverberg’s theorem is the case when k = 0 in the above statement.
If one wants to partition more than d point sets in Rd, then hyperplanes are often

insufficient; however the following important variant of the ham sandwich theorem,
due to Stone and Tukey [365], shows that then polynomials of a sufficiently high
degree can be used to do the partition.

We say that a d-variate polynomial f ∈ R[x1, . . . , xd] bisects a point set P ⊆ Rd

if it evaluates to negative on at most |P |
2 points of P and likewise evaluates to

positive on at most |P |
2 points of P . Note that for the case of polynomials of degree

1, this coincides with our earlier definition of bisection for hyperplanes.

Theorem 7.4. Let P1, . . . , Ps be finite point sets in Rd. Then there exists a

d-variate polynomial f ∈ R[x1, . . . , xd] of degree O(s
1
d ) such that f bisects each

Pi, i = 1, . . . , s.

The idea is to reduce the above problem to the usual ham sandwich theorem in a
suitably high dimension. As a d-variate polynomial of degree D has d′ =

(
D+d
d

)
− 1

monomials (aside from the constant term), identify each such monomial with a

distinct dimension of Rd′

. Then each d-variate polynomial f of degree D can be
identified with a hyperplane in Rd′

, where the coefficients defining the hyperplane
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in Rd′

(i.e., the d′ coordinates of the normal vector of the hyperplane) correspond to
the coefficients of the corresponding monomials of f . This also gives a mapping—
called a Veronese mapping—of the points in P1 ∪ · · · ∪ Ps to Rd′

, where the ith
coordinate of a point p ∈ Rd is the value of the corresponding monomial on p.
One can now use Theorem 7.1 on the d sets corresponding to the lifted points of
P1, . . . , Ps to get a hyperplane h in Rd′

that bisects each of the s lifted sets. Note
that to use the ham sandwich theorem, we require s ≤ d′ =

(
D+d
d

)
−1 and thus need

to satisfy the constraint D = Ω(s
1
d ). The ham sandwich hyperplane h corresponds

to the required d-variate polynomial in Rd, of degree O(s
1
d ).

7.2. Parametrized partitioning of data via geometric methods. So far the
partitioning statements have been of the type where the input geometric configu-
ration precisely fixes the output type; e.g., given d point sets in Rd fixes the output
of Theorem 7.1 to be a hyperplane, or given s point sets in Rd in Theorem 7.4
fixes the output to be a polynomial of degree O(s

1
d ). Now we consider statements

where, besides the input geometric configuration, one is also given an independent
parameter r and the complexity of the output is a function of both the geometric
configuration as well as the value of r. Thus one gets a hierarchy of output struc-
tures (varying with r), and one is free to choose the value of r depending on the
precise problem at hand. This turns out to be very useful for designing hierarchi-
cal data structures where one can pick the value of r to maximize computational
efficiency.

These kinds of partitioning statements, which we call parameterized spatial par-

titioning, have been a key theme in discrete and computational geometry for both
algorithmic and proof purposes. Consider, for example, Hopcroft’s problem studied
in the early 1980s: Given a set of lines L and a set of points P , an incidence is a
pair (p, l), where p ∈ P , l ∈ L, and the point p lies on the line l. Then given L and
P , is there an efficient method to determine if there exists at least one incidence
between them? It is not difficult to see that a spatial partition that either partitions
the points or partitions the line (in a suitable sense) is useful for decomposing the
original problem into several problems of smaller size. The current best algorithm
with a running time of 2O(log∗ n) · n 4

3 is based on such techniques. We refer the
reader to [157] for details on this and other related results on Hopcroft’s problem.

For a more mathematical application in a similar setting, consider the following
question posed by Erdős [156]: What is the maximum number of incidences between
any n points and any n lines in the plane? Erdős observed that as the bipartite
incidence graph between points and lines is K2,2-free, this is upper-bounded by

O
(
n

3
2

)
. More generally, the maximum number of incidences between m lines and n

points is O(n
√
m). On the other hand, a set of points in a “grid-like” configuration

exhibits Ω
(
n

4
3

)
incidences, and Erdős conjectured this to be, asymptotically, the

right bound.
This question was resolved affirmatively by Szemerédi and Trotter by a compli-

cated combinatorial argument [371]. We sketch here a beautiful and simple proof of
this theorem by Clarkson et al. [111] that showcases the use of spatial partitioning
for proving combinatorial bounds. Given a set L of n lines in the plane, suppose
that for any parameter r > 1, there exists a partition of the plane into t = O(r2)
(possibly unbounded) interior-disjoint triangles Π = {△1, . . . ,△t} such that each
triangle △i, for i = 1 · · · t, intersects at most n

r lines of L in its interior. Now one
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can partition the incidences between P and L into those for which the points lie on
boundary of some triangle, and those for which the points lie in the interior of some
triangle of Π. It is not difficult to see that the former can be only O(nr); on the
other hand, a triangle △i intersecting mi lines of L in its interior and containing ni

points of P can contain O(ni
√
mi) incidences in its interior (via the graph-theoretic

bound). This gives the overall number of incidences lying in the interior of triangles
to be

∑
i O(ni

√
mi) = O(n

√
n
r ). Thus for any r > 1, the total number of incidences

is bounded by O

(
nr + n

3
2√
r

)
, and setting r = Θ(n

1
3 ) gives the desired bound!

We now elaborate on this structural partitioning problem and its variations. The
key behind the proof is the partition of R2 into triangles, each of which intersects
proportionally few lines of L. More generally, in any dimension, one can show the
existence of a similar partition of hyperplanes [96].

Theorem 7.5. Given a set H of hyperplanes in Rd and a parameter r ≥ 1, there
exists a partition of Rd into Θ(rd) interior-disjoint simplices such that the interior

of any simplex intersects at most
|H|
r hyperplanes of H.

Such a partition is called a 1
r -cutting of H. Note that the bound of Θ(rd) cannot

be improved: each simplex can contain at most ( |H|
r )d vertices induced by d-tuples

of H in its interior, and so there must be Ω(rd) simplices to account for all the
Θ(|H|d) vertices induced by H.

The intuition behind Theorem 7.5 is as follows. Pick each hyperplane of H
into a random sample R independently with probability p (to be set later). Then
E[|R|] = |H| ·p, and so R partitions Rd into O

(
(|H|p)d

)
induced cells, each of which

can then be further partitioned into simplices, to get a partition of Rd into an
expected total of O

(
(|H|p)d

)
simplices. Furthermore, note that each such simplex

intersects, in expectation, 1
p hyperplanes of H in its interior. Setting p = r

|H|
gives the required statement. This argument was done “in expectation”, and it is
nontrivial to convert it with the same asymptotic bounds to where each simplex is

guaranteed to intersect no more than |H|
r hyperplanes of H.

The proof of Theorem 7.5 is usually presented in the more general abstract
framework of the theory of ε-nets, whose setting we briefly describe now. Given a
base set of elements X, a set system R on X, and a parameter 0 ≤ ε ≤ 1, call a set
N ⊆ X an ε-net for R if N contains at least one element from each R ∈ R with
|R| ≥ ε · |X|. In the case of 1

r -cuttings, the set X is the set of hyperplanes H, and

R ∈ R if and only if there exists a simplex Δ with R = int(Δ) ∩ H. Then a 1
r -

cutting can be constructed by taking an ε-net N for R with ε = 1
r and partitioning

Rd into O(|N |d) simplices using N . As the interior of each simplex induced by N

does not intersect any hyperplane of N , it can only intersect less than ε · |H| = |H|
r

hyperplanes of H, as desired.
Bounds on ε-nets have been extensively studied for set systems satisfying a com-

binatorial condition, called the Vapnik–Chervonenkis (VC) dimension [383]: Given
a set system (X,R), define the projection of R onto a set Y ⊆ X, denoted R|Y ,
as the set system R|Y = {Y ∩R : R ∈ R}. We say that a subset Y is shattered by
R if all 2|Y | subsets of Y can be realized by intersection with some set of R, i.e., if
|R|Y | = 2|Y |. Then the VC dimension of R is defined to be the size of the largest
set that is shattered by R.
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The VC dimension plays an important role in the theory of set systems derived
from geometric configurations due to the fact that the VC dimension of such systems
is usually quite small. For example, consider the set system whereX is a finite set of
n points in Rd, and the subsets in R are derived from intersection with halfspaces;
here R ∈ R if and only if there exists a halfspace h such that R = h ∩X. The VC
dimension of this set system is d+1; in other words, given any setX of d+2 points in
Rd, one cannot “separate” all subsets of X by intersection with halfspaces. This is
an immediate consequence of Radon’s lemma (recall that Radon’s lemma is the case
of Tverberg’s theorem for two parts, r = 2, namely that any set P of d+2 points in
Rd can be partitioned into two subsets P1, P2 such that conv(P1)∩ conv(P2) 	= ∅):
the convex hulls of the Radon partitions intersect, and thus cannot be separated
by a hyperplane. On the other hand, any set of d+1 points in general position can
be shattered by halfspaces in Rd. By Veronese maps, this implies more generally
bounded VC dimension for set systems induced by geometric objects of bounded
algebraic complexity (see [257, Chapter 10]).

Returning to ε-nets, building on the work of Vapnik and Chervonenkis [383],
Haussler and Welzl [203] showed the existence of small ε-nets as a function of the
VC dimension of a set system.

Theorem 7.6. Let (X,R) be a finite set system with VC dimension at most d ≥ 1.
Then for any real parameter ε > 0, there exists an ε-net for R of size O(dε log

1
ε ).

The power of this theorem derives from the fact that the size is independent of
the number of elements in X and the number of sets in R. Combined with the VC
dimension bound of d + 1 on set systems induced on points in Rd by halfspaces,
Theorem 7.6 implies the existence of ε-nets of size O

(
d
ε log

1
ε

)
, which has been

shown to be optimal [239]. The bounds of Theorem 7.6 can be further improved
for many geometric set systems, and recent work presents a unified framework
for these bounds [95, 292, 384]. We refer the reader to the books [311, Chapter
15], [257, Chapter 10], [97, Chapter 4], and [256, Chapter 5] for more detailed
expositions on ε-nets and their many applications.

The theory of VC dimension fails to help in the construction of ε-nets when it
is unbounded. A basic case is the set system induced by convex objects in Rd;
namely, given a set P of n points in Rd and a parameter ε > 0, one would like to
show the existence of a small set Q ⊂ Rd, called a weak ε-net for P induced by
convex objects, such that any convex object containing at least εn points of P must
contain at least one point of Q. Note here that Q can be any set of points in Rd,
and is not just limited to being a subset of P—hence the term weak.

An initial bound of O( 1
εd+1 ) on the size of Q was shown by Alon et al. [20]

(their proof uses the colorful Carathéodory’s theorem together with Tverberg’s
theorem; see the discussion about simplicial depth in Section 7.4), and this was

improved to Õ( 1
εd
) by Chazelle et al. [98]. This was improved even further, by

logarithmic factors, by Matoušek and Wagner [265] whose elegant proof we outline
now. Partition P into t equal sized subsets P = {P1, . . . , Pt}, for a parameter
t that is chosen optimally, such that any hyperplane intersects the convex hulls
of O(t1−1/d) subsets of P. Let C be a convex object containing εn points of P .
When C intersects few sets of P, the proportion of points of C is contained in some
Pi ∈ P is higher than ε, hence C can be hit by a set constructed inductively for
Pi. Otherwise, C intersects many sets of P. In this case, pick one arbitrary point
from each set of P intersecting C. Let q be the centerpoint of those points. Then
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q must be contained in C, as otherwise the hyperplane separating q from C must
intersect the convex hulls of many sets in P, a contradiction to the definition of P.

For the case d = 2, Rubin [332] proved the bound of O( 1
ε1.5+δ ), where δ > 0 is

an arbitrarily small constant.
Finding asymptotically optimal bounds for weak ε-nets induced by convex

objects in Rd is a tantalizing open problem. The best known lower bounds of
Ω( 1ε (log

1
ε )

d) [85] are quite far from the upper bounds. On the other hand, there
are partial results that indicate the upper bounds that can be improved. For exam-
ple, it is known [293] that one can construct weak ε-nets from Õ( 1ε ) points of P in

Rd. Pick a set Q′ of Õ( 1ε ) points that form an ε-net for the set system induced by
the intersection of d halfspaces. Then adding points lying in Tverberg partitions of
carefully chosen subsets of Q′ results in a weak ε-net, though of size O( 1

εd+2 ). For
a different formulation, one can also fix an integer parameter k > 0, and then ask
for the minimization problem. Find ε = ε(k) such that for any set P of points in
Rd there exists a set Q ⊂ Rd of k points such that all convex objects containing at
least ε · |P | points of P are hit by Q; see [294].

Open Problem 7.7. What is the asymptotically best bound for the size of the
smallest weak ε-net for the set system induced by convex objects in Rd?

We next turn to the algorithmic aspects of spatial partitioning. There has been
substantial work on improving the constants in the bounds on ε-nets, as they are
directly linked to the approximation ratios of algorithms for the geometric hitting
set problem [81, 159]. Given a set P of points in Rd and a set O of geometric
objects, the goal is to compute a minimum subset of P that hits all the objects
in O. This can be written as an integer program, which is then approximated as
follows:

(a) solve the linear relaxation of the integer program (i.e., the linear program
obtained by replacing the integral constraints with real ones); and

(b) assign weights to the points of P according to the linear program; and
finally

(c) compute a 1
W -net N for the set system induced by O, where W is the value

of the linear programming relaxation.

As the weight of the points contained in each object of O is at least 1 by the linear
program, N is a hitting set for O. The size of N is then bounded by the size of a
1
W -net; e.g., if an ε-net exists of size c

ε for some constant c, then N has size at most
c ·W ; i.e., at most c times the optimal solution. We refer the reader to the recent
surveys [105, 299] for precise bounds on ε-nets and cuttings for various geometric
set systems as well as the current best algorithms for computing such nets.

Cuttings, together with linear programming duality (or alternatively, Farkas’s
lemma), can be used to derive another important partitioning tool we have al-
ready encountered in the construction of weak ε-nets—the simplicial partition the-
orem [255].

Theorem 7.8. Let P be a set of points in Rd, and let t > 1 be a given integer

parameter. Then there exists a partition of P into t sets P = {P1, . . . , Pt} such

that (a) |Pi| ≤ 2|P |
t for all i = 1, . . . , t and (b) any hyperplane intersects the convex

hull of O
(
t1−

1
d

)
sets of P.
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We outline the general idea of the proof. Given P , one can first discretize the
space of all possible hyperplanes in Rd into a finite set H of hyperplanes, so that one
only needs to construct a partition P such that each hyperplane of H intersects the
convex hulls of O(t1−

1
d ) sets of P. Construct a Θ( 1

t1/d
)-cutting for H, consisting

of at most t simplices, and let P ′ be the collection of points of P lying in each

simplex of the cutting. Then, on average, |P ′| = Θ( |P |
t ) for each P ′ ∈ P ′, and

furthermore the convex hull of each P ′ is intersected by at most |H|
t1/d

hyperplanes
of H. This is, in a suitable sense, the dual of the statement that we want, where
each hyperplane should intersect few cells in the cutting (and thus few convex hulls
of sets in P ′). However we are not far off—the total number of intersecting pairs

of hyperplanes of H with convex hulls of sets in P ′ is O(t · |H|
t1/d

) = O(t1−
1
d · H). In

other words, the average hyperplane in H intersects the convex hulls of O(t1−
1
d )

sets of P ′. Now LP duality [202] (or Farkas’s lemma [183]) shows the existence of
the required partition.

7.3. Parametrized partitioning of data via topological methods. Now we
move to more recent approaches to parameterized spatial partitioning. These meth-
ods use equipartitioning results such as the ham sandwich theorem and Theorem 7.4
to show the existence of polynomials that induce parametrized partitions of Rd. The
resulting statements are similar in spirit and use those we saw earlier for affine ob-
jects. The main advantage of these newer approaches is that partitioning space
with polynomials circumvents several difficult technical issues that arise when deal-
ing with piecewise linear objects. On the other hand, new computational challenges
arise in the topological approaches, as they often do not lend themselves to efficient
algorithm design.

We present now a polynomial version of Theorem 7.8, discovered by Guth and
Katz [198]. For more on the impact of this theorem, see the book [197]. In what
follows given a polynomial f , we denote by Z(f) the zero set of f .

Theorem 7.9. Let P be a set of n points in Rd, and let r > 1 be a given parameter.

Then there exists a d-variate polynomial f of degree O(r
1
d ) such that each connected

component of Rd \ Z(f) contains at most
|P |
r points.

Here the points lying in the components of Rd \Z(f) play the role of the sets in
Theorem 7.8. Observe that any hyperplane h in Rd intersects O

(
(deg(f))d−1

)
=

O(r1−
1
d ) different components of Rd \ Z(f), quantitatively the same bound as in

Theorem 7.8. In contrast with Theorem 7.8, these components are interior disjoint,
though they will, in general, not be convex.

We sketch a proof: Partition P into two equal sized sets P1, P2 by a polynomial,
say f0, of degree O(1) (using Theorem 7.1, for example). Then partition these two
point sets P1 and P2 into four equal disjoint subsets P3, P4, P5, P6 using a polyno-
mial, say f1, of degree O(2

1
d ) via Theorem 7.4. Continuing, let fi be a polynomial

of degree at most O((2i)
1
d ) that equipartitions 2i equal-sized disjoint subsets of P ,

for i = 0, . . . , log r. Note here that as long as 2i ≤ d, a hyperplane suffices for fi.
The key observation now is that the polynomial f formed by taking the product of

all these polynomials, namely f =
∏log r

i=0 fi, is the required polynomial: as the zero
set of f is simply the union of the zero sets of all the fi’s, each connected region

of Rd \ Z(f) can contain at most |P |
2log r = |P |

r points of P . The degree of f can be
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bounded as

deg(f) ≤
log r∑

i=0

deg(fi) ≤
log r∑

i=0

O
(
(2i)

1
d

)
= O

(
r

1
d

)
.

Theorem 7.9 gives another proof of the Szemerédi–Trotter theorem to bound the
number of incidences between a set P of n points and a set L of n lines in the plane,
this time by partitioning the points instead of the lines: Apply Theorem 7.9 on P

with r = n
2
3 to get a polynomial f , with deg(f) = O(n

1
3 ). Note that each line of L

intersects O(
√
r) = O(n

1
3 ) components of R2 \Z(f) and each of the O(r) = O(n

2
3 )

components of R2 \ Z(f) contains at most O(nr ) = O(n
1
3 ) points of P . A simple

calculation by summing up the incidences across each component induced by f
shows that the overall number of incidences is bounded by O(n

4
3 ).

On the computational side, an efficient algorithm for computing the partition
guaranteed by Theorem 7.9 was discovered by Agarwal et al. [6], who then used
it to construct efficient data structures for answering range queries with constant-
complexity semi-algebraic sets as ranges, in time close to O(n1− 1

d ).
We now move on to our last topic in this section, a recent beautiful theorem of

Guth [196] which gives a very general theorem that implies many statements that
were previously regarded as unconnected.

Theorem 7.10. Let Γ be a set of k-dimensional varieties in Rd, each defined by

at most m polynomial equations of degree at most D. For any parameter r ≥ 1,

there exists a d-variate polynomial f of degree O(r
1

d−k ) so that each component of

Rd \ Z(f) intersects at most
|Γ|
r varieties of Γ. The constant in the asymptotic

notation depends on D,m, and d.

Note that this theorem implies Theorem 7.9 by setting k = 0, and it implies
Theorem 7.5 (strictly speaking, a polynomial version of it where Rd is partitioned
into the components of Rd \Z(f) instead of simplices) by setting k = d−1. See [63]
for an exciting new alternative proof of Theorem 7.10 that extends it to a setting
with several algebraic varieties.

We present a brief sketch of the proof of Theorem 7.10, which builds upon the
proof of Theorem 7.9 in a natural way. The goal, as before, is to find polynomials

f0, . . . , fs, where s ≤ log r
d

d−k and deg(fi) ≤ 2
i
d for each i = 0, . . . , s. Then the

required polynomial will be

f =

log r
d

d−k∏

i=0

fi with deg(f) ≤
log r

d
d−k∑

i=0

deg(fi) ≤
log r

d
d−k∑

i=0

O
(
2

i
d

)
= O

(
r

1
d−k

)
,

as required. To see the idea behind the proof of Theorem 7.10, trace the proof of
Theorem 7.9 backward: the polynomials fi’s were constructed using Theorem 7.4,
whose proof used the ham sandwich theorem in a suitably high dimension, whose
proof identified the coefficients of the polynomial with points of the sphere Sd

′

in
a suitable dimension d′ and then applied the Borsuk–Ulam theorem. Note that
the fi’s were constructed independently via an iterative argument, where the first
f0 was used to partition the given point set P into two sets. These two sets were
then equipartitioned with f1 and so on. This approach relied crucially on the
fact that a point, outside the zero set of any polynomial fi, lies in precisely one
cell induced by their product. This fact fails for k-dimensional varieties when
k > 0: Assume one has constructed polynomials f0, . . . , fs′−1, s

′ < s, such that each
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component induced by f ′ =
∏s′−1

i=0 fi has the same number of incidences with the
varieties in Γ. Then, even if the next polynomial fs′ equipartitions the incidences
of each component of f ′, that does not imply that each component induced by the
polynomial f ′ · fs′ will have the same number of incidences with Γ.

The key idea here is to compute f0, . . . , fs simultaneously. Thus we will identify,
as before, the coefficients of each fi with some Sdi , but now instead of applying
the Borsuk–Ulam theorem separately for each i, we will consider the product of
these spheres and apply the following natural variant of the Borsuk–Ulam theorem
to get the required polynomials f0, . . . , fs in one step. For an integer s ≥ 1, let

Xs =
∏s

i=1 S
2i−1

, and for each i ∈ [s], define the functions

Fli(x1, . . . ,xi−1,xi,xi+1, . . . ,xs) = (x1, . . . ,xi−1,−xi,xi+1, . . . ,xs).

For each v ∈ Z \ {0}, let fv : Xs → R be a continuous function with the property
that fv(Fli(x)) = (−1)vifv(x). Then there exists a point x ∈ Xs where fv(x) = 0
for all v ∈ Z \ {0}.

We conclude this section with an open problem—the affine version of Theo-
rem 7.10.

Conjecture 7.11. For any set H1 of n k1-dimensional flats, any set H2 of m
k2-dimensional flats in Rd, and any integer r, there exists a partition of Rd into

O(rd) simplices such that (a) each simplex intersects O
(

n
rd−k1

)
flats of H1, and (b)

each flat in H2 intersects O
(
rk2
)
simplices.

7.4. Depth of point sets. Data science aims to understand the features of data
sets. The goal of data depth measures is to generalize the idea of the statistical
median of a set of reals to higher dimensions: the data consists of a finite set P
of points in Rd, and the goal is to compute a point q ∈ Rd that is a combinatorial

center of the data P . As we will see, there are several natural ways to measure
data depth, and they are related to each other in sometimes surprising ways.

Figure 14 shows a set of points in R2 (circles), with combinatorial centers under
three different measures: halfspace depth (cross), simplicial depth (box), and Oja
depth (shaded disk). As the figure shows, the points for these three measures are
geometrically close. Given integers d and n, let Pd

n be the point set in Rd of size n,

Figure 14. Left: A set of points in R2 together with three cen-
ters under halfspace (cross), simplicial (box) and Oja (disk) depth
measures. Right: The β-deep regions under halfspace depth mea-
sure.
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with at least ⌊ n
d+1⌋ points placed at each of the vertices of the standard simplex.

Slightly perturb each point so that all n points are distinct, and in general position.
This point set will be very useful for the remainder of this section, as it essentially
captures both the intuition as well as the worst-case behavior with respect to many
depth measures.

Halfspace depth. Given a set P of n points in Rd, the halfspace depth of a point
q ∈ Rd with respect to P is the minimum number of points of P in any closed
halfspace containing q:

Halfspace-Depth(q, P ) = min
halfspace H, q∈H

|H ∩ P |.

Define the halfspace depth of P as the maximum halfspace depth of any point in
Rd (this has also been called Tukey depth [375]). The separation theorem implies
that any point outside conv(P ) has halfspace depth 0. It is a nontrivial fact, first
shown by Rado in 1947, that points of high halfspace depth exist for every point
set.

Theorem 7.12 (Centerpoint theorem [320]). Any set of n points in Rd has half-

space depth at least ⌈ n
d+1⌉.

Recall such a point is called a centerpoint of P , and we saw its importance and
generalizations in various places within this survey (e.g., in Section 6.5.5). It turns
out the centerpoint theorem is optimal, in the sense that the bound ⌈ n

d+1⌉ cannot be
improved; Pd

n is an example of a point set where it is not possible to do better. By
now there are several proofs of the centerpoint theorem: using Brouwer’s fixed-point
theorem [91], using Helly’s theorem [257], following from Tverberg’s theorem, and
an elementary extremal argument by induction on the dimension d [294]. Perhaps
the following proof is the simplest: observe that any point q ∈ Rd hitting all convex
objects containing greater than d

d+1n points of P is a centerpoint, whose existence
now follows from Helly’s theorem.

The centerpoint theorem and its generalizations have found several applications
in combinatorial geometry, statistics, geometric algorithms, meshing, and related
areas. A beautiful example is by Miller and Thurston [279], who showed that
given a set D of n disjoint disks in the plane, there exists another disk B ⊂ R2

intersecting O(
√
n) disks of D, and with at least n

4 disks of D lying completely in

the two connected components of R2 induced by B. To see this, use an inverse
stereographic projection to lift the centers of the disks of D to a set P of points
lying on a carefully chosen sphere in R3. Then, with high probability, the image
of the intersection of a random hyperplane through the centerpoint of P with the
sphere is the required disk D!

A point of highest halfspace depth with respect to P is called a Tukey median

of P . It may not be unique. In general, the set of points of halfspace depth at
least βn, for 0 ≤ β ≤ 1, forms a convex region called the β-deep region of P . It is
the intersection of all halfspaces containing more than (1− β)n points of P . Each
facet of this region is supported by a hyperplane that passes through d points of
P ; Figure 14 shows that set of all such regions for the earlier point set. Mart́ınez-
Sandoval and Tamam, gave a generalization of Tukey depth in [254] which connects
depth to fractional Helly theorems.

Algorithms. There has been considerable work on the algorithmic question of
computing points of large halfspace depth. We first discuss the case in R2, which is
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by now settled. A centerpoint of n points in R2 can be computed in O(n) time [215],
the key tool being the linear-time algorithm for computing ham sandwich partitions
of two point sets in the plane. Chan [93] gave an O(n logn) time randomized
algorithm for computing a point of the highest halfspace depth, i.e., a Tukey median
for a set of points in the plane. The set of all depth contours of n points in R2 can
be computed in time O(n2) [280]. A real-time GPU-based algorithm for computing
the set of all deep regions of a two-dimensional point set was given in [237]. Turning
to Rd, d ≥ 3, the current best algorithms for both computing any centerpoint and
the highest depth point take O(nd−1) time [93]. Clarkson et al. [112] presented an
iterative method to compute approximate centerpoints: the algorithm constructs a
(d+ 2)-ary tree T , where the n leaves of T are the input points, and each internal
node represents the Radon point (namely, the unique point lying in the common
intersection of the convex hulls of the two Tverberg partitions of these d+2 points)
of its d+2 children. This method was improved to the current best algorithm [287]
which computes a point of halfspace depth at least n

4(d+1)3 in time dO(log d)n. In

fact, this method computes an approximate Tverberg partition; namely, a partition
of P into ⌈ n

4(d+1)3 ⌉ sets whose convex hulls have a common intersection.

Open Problem 7.13. Can a centerpoint of n points in R3 be computed in Õ(n)
time?

Simplicial Depth. A straightforward implication of Proposition 3.1 is that given a
set P of n points in Rd, any point q ∈ conv(P ) lies in the convex hull of at least

n − d tuples of
(

P
d+1

)
. In fact, any centerpoint must be contained in many more

simplices spanned by (d + 1)-tuples of points in P . Not surprisingly, the number
of (d + 1)-tuples of P whose convex hull contains q is positively correlated to the
halfspace depth of q. This leads to the related depth measure of a simplicial depth,
of first defined by Liu [244], which is the number of simplices spanned by points of
P containing a given point,

Simplicial-Depth(q, P ) =

∣∣∣∣
{
Q ∈

(
P

d+ 1

)
: q ∈ conv(Q)

}∣∣∣∣ .

The simplicial depth of P is the highest simplicial depth of any point q ∈ Rd. As
mentioned earlier, there is a close relation between halfspace depth and simplicial
depth; the current best bound [389] shows that a point of halfspace depth τn has
simplicial depth at least

(d+ 1)τd − 2dτd+1

(d+ 1)!
· nd+1 −O(nd).

Bárány [40] showed that the colorful Carathéodory’s theorem together with
Tverberg’s theorem implies that there always exists a point contained in at least

1
d!(d+1)d+1 · nd+1 simplices spanned by P . Let cd be a constant such that any set P

of n points has simplicial depth at least cd · nd+1. The optimal dependency on cd
is a long-standing open problem. Bukh, Matoušek, and Nivash [86] constructed n
points in Rd so that no point in Rd is contained in, up to lower-order terms, more
than ( n

d+1 )
d+1 simplices defined by P . Furthermore, they conjectured that this is

the optimal bound.
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Conjecture 7.14. Any set of n points in Rd has simplicial depth at least
(⌈

n

(d+ 1)

⌉)d+1

.

For d = 2, a positive answer to the above conjecture was known already in 1984
by Boros and Füredi [73]. Bukh [84] gave a beautiful short proof: the required
point set is the common intersection point of three lines in R2, having a common
intersection and where each of the six induced cones contain at least n

6 points of
P ; the existence of such three lines follows via an elementary topological argument.
For d = 3, an elementary argument shows that c3 ≥ 0.0023 [53]. Using algebraic
topology machinery, Gromov [193] improved the bound to the value c3 ≥ 0.0026.
This bound for R3 has since been improved even further by Matoušek and Wag-
ner [266] to 0.00263, and then by Král et al. [235] to 0.0031. In fact, Gromov proves
the bound for general d, showing that

cd ≥ 2d

(d+ 1)!2(d+ 1)
.

His proof has since been simplified by Karasev [227]. Using the concepts of Gale
diagrams and secondary polytopes, one can observe that the concept of simplicial
depth is equivalent to a different maximization problem: Given a set of points on the
sphere Sd, what is the triangulation that uses those points (but possibly not all) as
vertices that have the largest number of d-dimensional simplices? (See [132, Chapter
5] and the references therein.)

We conclude this discussion of simplicial depth with colorful simplicial depth,
which was introduced by Deza et al. [139]. Consider a set of points P in Rd

partitioned into (d + 1) color classes P = P0 ∪ · · · ∪ Pd. Suppose that P has the
property that the origin o is in the relative interior of each conv(Pi), for 0 ≤ i ≤ d.
Recall from Section 3.1 that a colorful simplex is a simplex where each of the vertices
comes from a different Pi. While the colorful Carathéodory theorem asserts the
existence of at least one colorful simplex containing o, one can further ask about the
number of distinct colorful simplices containing o that must always exist. Define the
colorful simplicial depth of P , denoted ColorfulSimp-Depth(P ), as the number
of colorful simplices in P containing o. Deza et al. [139] proposed some lower
bounds on the colorful simplicial depth, and they conjectured that if |Pi| = d + 1
for 0 ≤ i ≤ d, then ColorfulSimp-Depth(P ) ≥ d2 + 1. This was proven by
Sarrabezolles [336]. The bound is optimal by the work of Deza et al. [139]. They
also conjectured the following upper bound which was shown by Adiprasito et al. [4]:
let P = P0 ∪ · · · ∪ Pd be a point set in Rd with |Pi| ≥ 2 for all 0 ≤ i ≤ d. If no
colorful simplex S spanned by P of dimension d − 1 contains the origin o in its

convex hull, then ColorfulSimp-Depth(P ) ≤ 1 +
∏d

i=0(|Pi| − 1).
Algorithms. For the case of the plane, computing the simplicial depth of a query

point can be done in time O(n logn) [185], which is optimal. Aloupis et al. [25]
presented an algorithm to compute a point of highest simplicial depth in R2 in
time O(n4). Using the fact that finding the highest simplicial depth is Gale dual to
the problem of finding a maximum triangulation of points in the sphere, then one
can set up an integer program to find a point of largest simplicial depth for any
point configuration (see [132, Chapter 8]). A GPU-based algorithm for computing
simplicial depth and colorful simplicial depth of point sets in the plane was given
in [238].
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Ray-shooting depth. It turns out that the previous two measures—halfspace depth
and simplicial depth—are further related to each other via an even more general
depth measure, called ray-shooting depth. Given a set P of n points in Rd, let EP

be the set of all
(
n
d

)
(d−1)-simplices spanned by points of P . Given a point q ∈ Rd

and a direction u ∈ Sd−1, let r(q,u) be the half-infinite ray from q in direction u.
Then the ray-shooting depth of a point q ∈ Rd is defined as

Rayshooting-Depth(q, P ) = min
u∈Sd−1

∣∣{e ∈ EP : r(q,u) ∩ e 	= ∅
}∣∣.

The ray-shooting depth of P is the maximum ray-shooting depth of any point in
Rd. The notion of ray-shooting depth was first introduced in Fox et al. [166], who
proved the following using Brouwer’s fixed point theorem.

Theorem 7.15. Any set of n points in R2 has ray-shooting depth at least n2

9 .

Note that any point realizing the maximum ray-shooting depth must have half-

space depth at least n
3 and simplicial depth at least n3

27 : Let q be a point with

ray-shooting depth at least n2

9 . Then any line through q must intersect at least 2n2

9
segments in EP , so both halfspaces defined by it must contain at least n

3 points.
For simplicial depth, consider, for each point p ∈ P , the ray from q in the direc-
tion −→pq. Then for every edge {pi,pj} that intersects this ray, the triangle defined
by {p,pi,pj} must contain q. Summing up these triangles over all points, each

triangle can be counted three times, and so q lies in at least n3

27 distinct triangles
spanned by P .

The problem of showing the existence of a point with large ray-shooting depth
is open in higher dimensions.

Conjecture 7.16. Any set of n points in Rd has ray-shooting depth at least(
⌈ n
d+1⌉

)d
.

Other notions of ray-shooting depth for convex sets, instead of points sets, were
studied in [174].

Algorithms. The proof in [166] is topological and does not give a method for
computing such a point. A combinatorial proof, together with efficient algorithms
were obtained in Mustafa et al. [296], where they showed how compute a point of

ray-shooting depth at least n2

9 in time Õ(n2).

Oja depth. It turns out that ray-shooting depth is related to another older depth
measure, the Oja depth of a point set, first defined by Oja [307]. Assume, without
loss of generality, that vol(conv(P )) = 1. Then define the Oja depth of a point q
with respect to P as

Oja-Depth(q, P ) =
∑

P ′⊆P
|P ′|=d

vol

(
conv(P ′ ∪ {q})

)
.

The Oja depth of P is the minimum Oja depth over all q ∈ Rd. It is easy to see
that the Oja depth of Pd

n is at least ( n
d+1 )

d. The conjecture [99] is that the lower

bound given by Pd
n is essentially tight.

Conjecture 7.17. The Oja depth of any set of n points in Rd is at most
(

n
d+1

)d
.
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The conjecture has been resolved only for the case d = 2 by Mustafa et al. [298].
For general d, it can be shown that the center of mass of P has Oja depth at most(
n
d

)
/(d+1) [99]. This estimate can be improved via ray-shooting depth, as the Oja

depth of any point q which has ray-shooting depth at least n2

9 is at least n2

7.2 . The
reason is the number of triangles spanned by pairs of points in P and the point
q, containing any point p ∈ R2, is at most the number of edges spanned by P

intersecting the ray −→qp, which is at most n2

4 − n2

9 = n2

7.2 . Integrating over all p ∈ R2

gives the required bound. A calculation in Rd gives the current best bound [298]:

Theorem 7.18. Every set of n points in Rd, d ≥ 3, has Oja depth at most

2nd

2dd!
− 2d

(d+ 1)2(d+ 1)!

(
n

d

)
+O(nd−1).

Algorithms. For the case d=2, Rousseeuw and Ruts [330] presented anO(n5 log n)
time algorithm for computing the lowest depth point, which was then improved to
the current best algorithm with running time O(n log3 n) [25]. A point of Oja depth

at most n2

9 can be computed in O(n logn) time [298]. For general d, various heuris-
tics for computing points with low Oja depth were given by Ronkainen, Oja, and
Orponen [327].

Regression depth. The next depth measure, unlike earlier measures, is a combina-
torial analogue of fitting a hyperplane through a set of points. Therefore it will
be more convenient to state it in the dual. Given a point p ∈ Rd, let p∗ be its
dual hyperplane, and for a set of points P , let P ∗ = {p∗ : p ∈ P}. Then define the
regression depth of a point as

Regression-Depth(q, P ) = min
u∈Sd−1

∣∣{H ∈ P ∗ : r(q,u) ∩H 	= ∅
}∣∣.

The regression depth of a set P of points in Rd is the maximum regression depth of
any point q ∈ Rd. It was introduced by Rousseeuw and Hubert [331], who showed
that any set P of n points in R2 has regression depth at least ⌈n

3 ⌉. Their proof is
elegant: given the set P of n points, let P1, P2, P3 be a partition of P by consecutive
x-coordinate values, and where |Pi| ≤ ⌈n

3 ⌉ for i = 1, 2, 3. Then the required line is
the ham sandwich cut of the two sets P1 ∪ P2 and P2 ∪ P3. The optimal bound for
general d was discovered later.

Theorem 7.19 ([27, 224, 283]). Any set of n points in Rd has regression depth at

least ⌈ n
d+1⌉.

Given a set X ⊆ Rd and a point q ∈ Rd, the closest point in X to q (if it ex-
ists) is denoted by c(q,X). The proof in [224] deduces it from the centerpoint
theorem: define the function f(q) that maps q ∈ Rd to a centerpoint of the set
{c(q, p∗) : p ∈ P}. This can be done so that f(·) is continuous and maps a suffi-
ciently large ball to itself. Then observe that the dual of any fixed point of f(·) is
the required hyperplane.

Algorithms. The method of [331] gives a linear-time algorithm for computing
a point of regression depth at least ⌈n

3 ⌉ immediately, as it uses only ham sand-

wich cuts. A point of maximum regression depth in R2 can be computed in time
O(n logn) [382], improving upon an earlier O(n log2 n) time algorithm [240]. For
d ≥ 3, the best algorithm takes time O(nd) [382] to compute a point of maximum
regression depth.
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The k-centerpoint conjectures. It turns out that many of the depth measures dis-
cussed are special cases of the following more general conjecture, first proposed by
Mustafa et al. [297]; see also the related paper [226].

Conjecture 7.20. For any set P of n points in Rd and any integer 0 ≤ k ≤ d,
there exists a point q ∈ Rd such that any (d − k)-half flat through q intersects at

least
(
⌈ n
d+1⌉

)k+1
of the k-simplices spanned by P .

The case k = 0 corresponds to halfspace depth, k = d corresponds to simplicial
depth, and k = d− 1 corresponds to ray-shooting depth.

It is not hard to show that given a set P of n points in Rd, and an integer
0 ≤ k ≤ d− 1, there exists a point q ∈ Rd such that any (d− k)-half flat through
q intersects at least

max

{( n
d+1

k + 1

)
,

2d

(d+ 1)(d+ 1)!
(

n
d−k

) ·
(

n

d+ 1

)}

k-simplices spanned by P . For simplicity, assume that |P | is a multiple of (d+ 1).
The proof follows from the use of Tverberg’s theorem to partition P into t = n

(d+1)

sets P1, . . . , Pt such that there exists a point q with q ∈ conv(Pi) for all i. Consider
any (d−k)-dimensional half-flat F through q, where ∂F is a (d−k−1)-dimensional
flat containing q. Project F onto a (k + 1)-dimensional subspace H orthogonal to
∂F such that the projection of F is a ray r in H, and ∂F and q are projected
to the point q′. And let P ′

1, . . . , P
′
t be the projected sets whose convex hulls now

contain the point q′. Then note that the k-dimensional simplex spanned by (k+1)
points Q′ ⊂ P ′ intersects the ray r if and only if the k-dimensional simplex defined
by the corresponding set Q in Rd intersects the flat F . Now apply the single-point
version (i.e., given any point s ∈ Rd and d sets P1, . . . , Pd in Rd such that each
conv(Pi) contains the origin, there exists a d-simplex spanned by s and one point
from each Pi which also contains the origin) of a colorful Carathéodory theorem to
every (k + 1)-tuple of sets, say P ′

1, . . . , P
′
k+1, together with the point s at infinity

in the direction antipodal to the direction of r to get a “colorful” simplex, defined
by s and one point from each P ′

i , and containing q′. Then the ray r must intersect
the k-simplex defined by the (k + 1) points of P ′, and so the corresponding points

of P in Rd span a (k + 1)-simplex intersecting F . In total, we get
(
n/(d+1)

k+1

)
of the

k-simplices intersecting F . Another way is to use the simplicial depth bound of
Gromov, that given any set P of n points in Rd, there exists a point q lying in
2d/((d+ 1)(d+ 1)!) ·

(
n

d+1

)
d-simplices. Now take any (d − k)-half flat through q.

It must intersect at least one k-simplex of each d-simplex containing it, where each
k-simplex is counted at most

(
n

d−k

)
times. This implies the stated bound.

In the plane (d = 2) the centerpoint theorem can be restated as follows: Given a
set P of n points in the plane, there exists a point q such that if you take any line
L passing through q, and move it continuously until it arrives outside the convex
hull of P , then along this motion, the line will intersect at least n/3 points of P .
The following more general statement has also been conjectured in [297]:

Conjecture 7.21. Given a set P of n points in Rd and an integer 0 ≤ k ≤ d, there
exists a point q ∈ Rd such that the following holds: Let Fq, Fo be two (d− k − 1)-
flats, such that q ∈ Fq and Fo does not intersect the convex hull of P . Then any
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continuous motion family of (d− k − 1)-flats, starting at Fq and ending at Fo, must

intersect at least
(
⌈ n
d+1⌉

)k+1

k-simplices spanned by P .

In Conjecture 7.21, the case k = d gives a “−1”-flat moving to infinity, which can
be treated as a stationary point. The validity of these conjectures for the planar
case d = 2 follows from the work of Gromov [193].
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member of Institut Universitaire de France. His research is in discrete and compu-
tational geometry.

Frédéric Meunier is professor of operations research at École des Ponts ParisTech.
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[46] I. Bárány and S. Onn, Carathéodory’s theorem, colourful and applicable, Intuitive geometry

(Budapest, 1995), Bolyai Soc. Math. Stud., vol. 6, János Bolyai Math. Soc., Budapest, 1997,
pp. 11–21. MR1470753 ↑435, 436, 448
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[71] P. V. M. Blagojević and G. M. Ziegler, Beyond the Borsuk-Ulam theorem: the topological
Tverberg story, A journey through discrete mathematics, Springer, Cham, 2017, pp. 273–341.
MR3726602 ↑416

[72] A. Blum, S. Har-Peled, and B. Raichel, Sparse approximation via generating point sets,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
ACM, New York, 2016, pp. 548–557, DOI 10.1137/1.9781611974331.ch40. MR3478416 ↑438
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Discrete Appl. Math. 156 (2008), no. 11, 2124–2141, DOI 10.1016/j.dam.2007.08.048.
MR2437006 ↑475

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=2149262
https://www.ams.org/mathscinet-getitem?mr=0051506
https://www.ams.org/mathscinet-getitem?mr=0214048
https://www.ams.org/mathscinet-getitem?mr=2555905
https://www.ams.org/mathscinet-getitem?mr=3826233
https://www.ams.org/mathscinet-getitem?mr=618536
https://www.ams.org/mathscinet-getitem?mr=3637933
https://www.ams.org/mathscinet-getitem?mr=2820908
https://www.ams.org/mathscinet-getitem?mr=2519884
https://www.ams.org/mathscinet-getitem?mr=2785903
https://www.ams.org/mathscinet-getitem?mr=551501
https://www.ams.org/mathscinet-getitem?mr=741586
https://www.ams.org/mathscinet-getitem?mr=732201
https://www.ams.org/mathscinet-getitem?mr=3690670
https://www.ams.org/mathscinet-getitem?mr=3382467
https://www.ams.org/mathscinet-getitem?mr=2437006


502 J. A. DE LOERA, X. GOAOC, F. MEUNIER, AND N. H. MUSTAFA

[183] P. Giannopoulos, M. Konzack, and W. Mulzer, Low-crossing spanning trees: an alterna-
tive proof and experiments, Proceedings European Workshop on Computational Geometry
(2014). ↑484

[184] D. Gijswijt and G. Regts, Polyhedra with the integer Carathéodory property, J. Combin.
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[255] J. Matoušek, Efficient partition trees, Discrete Comput. Geom. 8 (1992), no. 3, 315–334,
DOI 10.1007/BF02293051. ACM Symposium on Computational Geometry (North Conway,
NH, 1991). MR1174360 ↑483
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(1965), 50. MR0188891 ↑434

[323] M. Richardson, Solutions of irreflexive relations, Ann. of Math. (2) 58 (1953), 573–590;
errata 60 (1954), 595, DOI 10.2307/1969755. MR0075184 ↑463

[324] J. Robertson and W. Webb, Cake-cutting algorithms: Be fair if you can, A K Peters, Ltd.,
Natick, MA, 1998. MR1643406 ↑454

[325] D. Rolnick and P. Soberón, Algorithmic aspects of Tverberg’s theorem, arXiv:1601.03083
(2016). ↑448

[326] D. Rolnick and P. Soberón, Quantitative (p, q) theorems in combinatorial geometry, Discrete
Math. 340 (2017), no. 10, 2516–2527, DOI 10.1016/j.disc.2017.06.017. MR3674153 ↑442

[327] T. Ronkainen, H. Oja, and P. Orponen, Computation of the multivariate Oja median,
Developments in robust statistics (Vorau, 2001), Physica, Heidelberg, 2003, pp. 344–359.
MR1977491 ↑491

[328] J. Rothe (ed.), Economics and computation: An introduction to algorithmic game theory,
computational social choice, and fair division, Springer Texts in Business and Economics,
Springer, Heidelberg, 2016. With illustrations by Irene Rothe. MR3381851 ↑454

[329] J.-P. Roudneff, Partitions of points into simplices with k-dimensional intersection. I.
The conic Tverberg’s theorem, European J. Combin. 22 (2001), no. 5, 733–743, DOI
10.1006/eujc.2000.0493. Combinatorial geometries (Luminy, 1999). MR1845497 ↑435, 442

[330] P. Rousseeuw and I. Ruts, Algorithm AS 307: Bivariate location depth, J. R. Stat. Soc. Ser.
C. Appl. Stat. 45 (1996), 516–526. ↑491

[331] P. J. Rousseeuw and M. Hubert, Regression depth, J. Amer. Statist. Assoc. 94 (1999),
no. 446, 388–433, DOI 10.2307/2670155. With discussion and a reply by the authors and

Stefan Van Aelst. MR1702314 ↑491
[332] N. Rubin, An improved bound for weak epsilon-nets in the plane, Proceedings IEEE Sym-

posium on Foundations of Computer Science (FOCS) 2018. ↑483
[333] H. J. Ryser, Neuere Probleme der Kombinatorik, Vorträge über Kombinatorik (July 1967),
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