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Introduction

TGF-β superfamily members are multifunctional cytokines 

that regulate a broad range of cellular functions, including cell 

proliferation, differentiation, and apoptosis (Massague et al., 

2000; Derynck et al., 2001). TGF-β signals through a hetero-

meric complex of two types of transmembrane Ser/Thr kinases: 

TGF-β type I receptor and TGF-β type II receptor (TβRII). 

TGF-β binding to TβRII induces the recruitment and phos-

phorylation of TGF-β type I receptor, which, in turn, phos-

phorylates the receptor-regulated Smads (R-Smads) Smad2 

and Smad3. Once phosphorylated, Smad2 and Smad3 associ-

ate with the common partner Smad, Smad4, and translocate to 

the nucleus, where they regulate the expression of TGF-β tar-

get genes. In contrast to R-Smads and Smad4, the inhibitory 

Smad, Smad7, appears to block signal transduction by prevent-

ing access of R-Smads to the TGF-β receptor or by recruiting 

distinct E3 ubiquitin ligases that target the receptor–Smad7 

complex for degradation (Kavsak et al., 2000; Ebisawa et al., 

2001; Seo et al., 2004).

Upon TGF-β stimulation, Smad2 is recruited to the recep-

tor complex by an adaptor molecule called Smad anchor for re-

ceptor activation (SARA). At steady state, SARA-bound Smad2 

is localized in early endosomes to which the receptor is internal-

ized via clathrin-coated pits (Hayes et al., 2002; Di Guglielmo 

et al., 2003). The importance of the clathrin-mediated endocytic 

pathway in TGF-β signaling is also manifested by the recent 

� nding that cPML (cytoplasmic form of the promyelocytic leu-

kemia protein) mediates TGF-β signaling by facilitating recruit-

ment of the SARA–Smad2 complex and TGF-β receptors to 

early endosomes (Lin et al., 2004).

In addition to clathrin, TGF-β receptors can also associate 

with caveolin (Razani et al., 2001), which leads to their inter-

nalization into caveolin1-positive vesicles with subsequent deg-

radation through the proteasome pathway. Consistent with this 

notion, the caveolin1-positive vesicles were found to associate 

with Smad7 (Ito et al., 2004), which is known to mediate the 

 association of the E3 ligases Smurf1 and Smurf2 to receptors, 

leading to their degradation.
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T
ransforming growth factor-β (TGF-β) regulates a 
wide variety of biological processes through two 
types of Ser/Thr transmembrane receptors: the TGF-β 

type I receptor and the TGF-β type II receptor (TβRII). Upon 
ligand binding, TGF-β type I receptor activated by TβRII 
propagates signals to Smad proteins, which mediate the 
activation of TGF-β target genes. In this study, we identify 
ADAM12 (a disintegrin and metalloproteinase 12) as a 
component of the TGF-β signaling pathway that acts 
through association with TβRII. We found that ADAM12 

functions by a mechanism independent of its protease 
activity to facilitate the activation of TGF-β signaling, includ-
ing the phosphorylation of Smad2, association of Smad2 
with Smad4, and transcriptional activation. Furthermore, 
ADAM12 induces the accumulation of TβRII in early endo-
somal vesicles and stabilizes the TβRII protein presumably 
by suppressing the association of TβRII with Smad7. These 
results defi ne ADAM12 as a new partner of TβRII that 
facilitates its traffi cking to early endosomes in which activa-
tion of the Smad pathway is initiated.
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To gain more insight into the regulation of TGF-β signal-

ing, we have performed yeast two-hybrid screens using TβRII 

as bait. ADAM12 (a disintegrin and metalloproteinase 12) was 

one of the TβRII interactors that exhibited speci� c and strong 

binding to TβRII. ADAM12 belongs to the ADAMs family, 

which are glycoproteins characterized by a multidomain struc-

ture comprised of pro-, metalloproteinase, disintegrin, cysteine-

rich, transmembrane, and cytoplasmic domains (Primakoff and 

Myles, 2000; Seals and Courtneidge, 2003). ADAMs exhibit 

proteolytic, cell adhesion, and signaling properties, and pertur-

bations of ADAM expression are associated with several human 

diseases, including cancers (Duffy et al., 2003). In the present 

study, we provide the � rst evidence that ADAM12 interacts 

with TβRII and enhances TGF-β signaling by controlling the 

localization of TGF-β receptors to early endosomes. These re-

sults reveal a new role for ADAM12 in the regulation of TGF-β 

receptor traf� cking.

Results and discussion

Using the extracellular domain of human TβRII as bait, we 

performed a yeast two-hybrid screen of a human placental cDNA 

library. Eight different fragments of ADAM12 were found to inter-

act with TβRII (Fig. 1 A). Two variants were previously described 

for ADAM12: a transmembrane glycoprotein (Yagami-Hiromasa 

et al., 1995) and a shorter secreted form (Gilpin et al., 1998). 

The common sequences shared by the overlapping fragments of 

the prey span the metalloproteinase and disintegrin domains 

common to the two variants (Fig. 1 A).

To con� rm the association of ADAM12 with TβRII, a frag-

ment of ADAM12 isolated in the yeast two-hybrid screen (amino 

acids 142–739 that include the metalloproteinase and cysteine-

rich domains; Fig. 1 A) was tagged with Flag and cotransfected 

into 293 cells alone or in combination with HA-TβRII. Immuno-

precipitation with anti-Flag followed by immunoblotting with 

anti-HA revealed that TβRII can interact with ADAM12, and this 

interaction was not affected by TGF-β (Fig. 1 B). To provide fur-

ther evidence that ADAM12 interacts with TβRII, we examined 

their colocalization by immuno� uorescence. As expected, TβRII 

is localized predominantly in patched areas near the cell surface. 

Interestingly, we found that ADAM12 extensively colocalized 

with TβRII, con� rming their interaction (Fig. 1 C).

To examine whether the association of ADAM12 with 

TβRII can occur under physiological conditions, we used 

he patic stellate cells (HSCs), Rhabdomyosarcoma (RD), and 

C2C12 cells, three cell lines that were previously described to 

express detectable ADAM12 (Gilpin et al., 1998; Galliano et al., 

2000; Le Pabic et al., 2003). In immunoprecipitates prepared 

with preimmune antisera, no TβRII was coprecipitated. How-

ever, in the anti-ADAM12 immunoprecipitates, we could clearly 

detect TβRII coprecipitating with ADAM12 (Fig. 1 D). Forma-

tion of the endogenous ADAM12–TβRII complex was also 

Figure 1. T�RII interacts with ADAM12. (A) Schematic diagram of ADAM12 fragments that interact with TβRII in two-hybrid assays. (B) 293T cells were 
transfected with HA-TβRII in the presence or absence of Flag-ADAM12. Cell lysates were subjected to anti-Flag immunoprecipitation (IP) followed by immuno -
blotting (IB) with anti-HA. In this and all of the following experiments, the expression of proteins was determined by direct immunoblotting. (C) C2C12 cells 
transfected with GFP-ADAM12 and HA-TβRII were immunostained with anti-HA followed by TRITC-conjugated secondary IgG. The panels represent 
three representative fi elds. (D–F) Cell extracts from HSC, RD, and C2C12 cells (D) or C2C12 cells (E and F) were immunoprecipitated with anti-ADAM12 
(D and F) or anti-TβRII (E) and immunoblotted with the indicated antibodies.
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demonstrated by anti-ADAM12 immunoblotting of anti-TβRII 

immunoprecipitates (Fig. 1 E). The interaction of ADAM12 

with TβRII is speci� c because we were unable to detect an in-

teraction between TβRII and ADAM10 or ADAM17 (Fig. 1 E), 

which share the structure organization with ADAM12. Simi-

larly, we were unable to see an interaction between ADAM12 

and the bone morphogenetic protein type II receptor (Fig. 1 F).

To explore the functional signi� cance of the interac-

tion between ADAM12 and TβRII, we investigated whether 

the expression of ADAM12 may in� uence TGF-β–mediated 

transcriptional esponses. For this, we made use of the TGF-β/

Smad2-responsive reporter ARE3-Lux (Labbe et al., 1998) and 

found that the expression of ADAM12 resulted in an approxi-

mately � vefold increase in TGF-β–induced transcription (Fig. 

2 A). A similar effect of ADAM12 was observed with the TGF-β/

Smad3-responsive reporter CAGA9-Lux (approximately three-

fold in Fig. 2 B and sixfold in Fig. 2 C; Zawel et al., 1998).

Next, we attempted to con� rm the role of ADAM12 in 

enhancing TGF-β signaling by investigating its effect on the ex-

pression of endogenous plasminogen activator inhibitor-1 (PAI-1), 

which contains CAGA boxes in the promoter. The results showed 

that the TGF-β–dependent expression of PAI-1 was increased 

by the expression of ADAM12 (Fig. S1 A, avail  able at http://

www.jcb.org/cgi/content/full/jcb.200612046/DC1). During the 

course of these analyses, we also investigated the role of endoge-

nous ADAM12 in enhancing the transcriptional activation of 

collagen I (COL1A2) by TGF-β. For this, HSC cells were 

treated by ADAM12 antisense oligonucleotides before TGF-β 

stimulation, and the expression of ADAM12 or COL1A2 was 

analyzed. As we recently reported (Le Pabic et al., 2003), TGF-β 

treatment induces an accumulation of ADAM12 mRNA and 

protein, and this increase was reduced to the background level 

by ADAM12 antisense. Similarly, treatment of cells with anti-

sense to ADAM12 attenuated the TGF-β–dependent induction 

of COL1A2 mRNA (Fig. S1 B). To con� rm these results, we 

depleted HSC, RD, and C2C12 cells from ADAM12 by RNAi. 

When ADAM12 was targeted in these cells using a speci� c 

short hairpin RNA (shRNA), both the steady-state levels and 

the TGF-β–dependent accumulation of ADAM12 were reduced. 

Interestingly, the knockdown of ADAM12 resulted in a decrease 

in the TGF-β–induced expression of PAI-1 (Fig. 2 D). A similar 

result was obtained with JunB (Fig. 2 D), the expression of which 

Figure 2. ADAM12 increases TGF-� signaling. (A–C) HepG2 (A and B) and C2C12 (C) cells transfected with ARE3-Lux together with FAST1 (A) or CAGA9-
Lux (B and C) in the presence or absence of ADAM12 were treated with or without TGF-β. In these and all of the following reporter assays, luciferase activity 
was determined and normalized, and results are expressed as means ± SD (error bars) of triplicates from fi ve independent experiments. (D) HSC, RD, or 
C2C12 cells were transfected with the indicated combinations of pEGFP, ADAM12 shRNA, or scrambled shRNA. 36 h later, GFP-transfected cells were 
sorted by FACS and exposed to TGF-β for 16 h. The expression of endogenous PAI-1, JunB, and ADAM12 was assessed by direct immunoblotting (IB). 
(E and F) 293T cells were transfected with myc-Smad2, Flag-ADAM12, and HA-Smad4 as indicated. For Smad2 phosphorylation (E), cell lysates were 
 immunoblotted with antiphospho-Smad2. For the association of Smad2 with Smad4 (F), cell lysates were immunoprecipitated (IP) with an anti-myc before 
immunoblotting with anti-HA. (G) C2C12 cells were transfected with the indicated combinations of pEGFP, ADAM12 shRNA, or scrambled shRNA. 36 h 
later, GFP-transfected cells were sorted by FACS and exposed to TGF-β for 30 min. The phosphorylation of endogenous Smad2 was assessed by immuno-
blotting with antiphospho-Smad2. White lines indicate that intervening lanes have been spliced out.
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is up-regulated by TGF-β through a mechanism similar to that 

of PAI-1.

To investigate the mechanism underlying the effects of 

ADAM12 on TGF-β signaling, we investigated whether the ex-

pression of ADAM12 may regulate the TGF-β–dependent phos-

phorylation of Smad2. We observed that exposure of cells to 

TGF-β resulted in increased Smad2 phosphorylation, and this 

effect was further enhanced by the expression of ADAM12 (Fig. 

2 E). Consistent with this, the expression of ADAM12 enhanced 

the ability of TGF-β to induce assembly of the Smad2–Smad4 

complex (Fig. 2 F). In addition, the depletion of endogenous 

ADAM12 by RNAi suppressed Smad2 phosphorylation (Fig. 

2 G). Collectively, these data suggest that ADAM12 may func-

tion to enhance TGF-β signaling by facilitating Smad2 phos-

phorylation and its subsequent heterodimerization with Smad4.

At least six members of the ADAM family have been 

demonstrated to have proteolytic activity, including ADAM12 

(Loechel et al., 2000; Shi et al., 2000). In initial experiments, 

we found that a truncated form of ADAM12 (ADAM12-tail), 

which lacks the cytoplasmic domain, retains its ability to en-

hance TGF-β signaling (Fig. 3 A). Therefore, we sought to in-

vestigate whether the increase in TGF-β transcriptional activity 

mediated by ADAM12 may involve its catalytic activity. To ap-

proach this question, we investigated the effect of phenanthro-

line, a speci� c metalloproteinase inhibitor, on the ability of 

ADAM12 to enhance TGF-β transcriptional responses. Surpris-

ingly, exposure of cells to phenanthroline failed to suppress the 

effect of ADAM12 on TGF-β–induced CAGA9-Lux (Fig. 3 B). 

In another approach, we used ADAM12-E351Q, a protease in-

active mutant. As shown in Fig. 3 C, the expression of ADAM12-

E351Q enhanced TGF-β–induced transcription with an activity 

similar to that of wild-type ADAM12. Together, these results 

indicate that ADAM12 enhances TGF-β signaling through a 

protease-independent mechanism.

During our immuno� uorescence analyses, we observed 

that ADAM12 and TβRII are colocalized predominantly in 

patched areas near the cell surface in C2C12 cells, but a substan-

tial fraction of both proteins can also colocalize in endosome 

vesicle-like structures (Fig. 1 C). This pattern of colocalization 

of ADAM12 and TβRII in the two compartments was also evi-

dent in Mv1Lu cells (Fig. 4 A), but their distribution is more 

pronounced in endosomal vesicles when compared with C2C12 

cells (Fig. 1 C). Based on the � ndings that TβRII colocalizes 

with early endosomal antigen 1 (EEA1), a marker of early endo-

somes (Di Guglielmo et al., 2003), we sought to investigate 

whether ADAM12 colocalizes with TβRII in the EEA1-enriched 

compartment using Mv1Lu cells that exhibit extensive staining of 

these proteins in early endosomes (Fig. 4 A; Di Guglielmo et al., 

2003). As for TβRII, there is some colocalization of ADAM12 

with EEA1 in Mv1Lu cells (Fig. 4 A and Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200612046/DC1), sug   -

gesting that ADAM12 may accumulate in early endosomes to 

which TβRII is internalized via clathrin-coated pits.

To examine whether the localization of ADAM12 in early 

endosomes plays a role in TGF-β signaling, we examined the ef-

fect of inhibition of clathrin-mediated endocytosis by potassium 

depletion, which was reported to prevent endosome- dependent 

TGF-β signaling (Di Guglielmo et al., 2003). As shown in Fig. 

4 B, potassium depletion decreased the ability of ADAM12 to 

enhance TGF-β–induced transcription. Potassium depletion 

also decreased TGF-β signaling in the absence of transfected 

ADAM12, but this effect seems to depend on ADAM12 be-

cause it was lost in cells depleted from endogenous ADAM12 

by RNAi. In a control experiment, we found that potassium 

depletion can further decrease TGF-β–induced transcription in 

cells depleted from Smad3 (Fig. 4 C), supporting the hypothesis 

that potassium depletion may inhibit TGF-β signaling by spe-

ci� cally interfering with ADAM12 function. To provide further 

Figure 3. Up-regulation of TGF-� signaling by ADAM12 does not involve its cytoplasmic domain or its protease activity. (A–C) HepG2 cells were trans-
fected with CAGA9-Lux, ADAM12, ADAM12-tail, and ADAM12.E351Q as indicated. For A and C, cells were treated with or without TGF-β for 16 h 
before lysis. Dose effects are shown in insets. For B, cells were treated with 1.10 phenanthroline in the presence or absence of TGF-β. In all cases, luciferase 
activity was determined. Error bars represent SD. WT, wild type.
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evidence that ADAM12 functions in TGF-β signaling by facili-

tating the traf� cking of TβRII to early endosomes, we examined 

the localization of SARA, which has been shown to interact 

with TβRII at the plasma membrane and in EEA1-positive early 

endosomes (Hayes et al., 2002; Itoh et al., 2002). We observed 

that the expression of ADAM12 caused the redistribution of the 

TβRII–SARA complexes from the plasma membrane into early 

endosomes (Fig. 4 D). This effect is likely to be direct because 

the expression of ADAM12 had no effect on the association of 

TβRII with several transmembrane proteins that could poten-

tially prevent or enhance its traf� cking (Fig. S3, available at 

http://www.jcb.org/cgi/content/full/jcb.200612046/DC1).

To provide further evidence that ADAM12 facilitates the 

localization of TβRII in early endosomes, we tested the effect of 

nystatin, a sterol-binding antibiotic that is known to induce the 

redistribution of TGF-β receptors into EEA1-positive endosomes 

by affecting the raft structures (Di Guglielmo et al., 2003). We 

reasoned that if we induce the majority of TβRII to accumulate 

in early endosomes by an alternative approach, such as the treat-

ment of cells with nystatin, ADAM12 should have no further 

effect on TGF-β–mediated transcription. As shown in Fig. 4 E, 

exposure of cells to nystatin caused a considerable increase in 

the TGF-β–mediated activation of CAGA9-Lux, and this in-

crease was not affected by the expression of ADAM12. Under 

these experimental conditions, the expression of Smad3 can syn-

ergize with nystatin to enhance TGF-β–induced transcription, 

arguing against the possibility that the lack of ADAM12 effect is 

caused by the ability of nystatin to elicit the maximum threshold 

level of TGF-β signaling in this cell system. Collectively, these 

results suggest that ADAM12 may function as an important 

component in TGF-β signaling by modulating the traf� cking of 

the TGF-β receptor.

Figure 4. ADAM12 facilitates clathrin-
 dependent TGF-� signaling. (A) MvLu1 cells 
transfected with GFP-ADAM12 and HA-TβRII 
were immunostained with rabbit anti-HA and 
mouse anti-EEA1 followed by secondary stain-
ing with TRITC-conjugated anti–rabbit and Cy5-
conjugated anti–mouse IgG. The subcellular 
localization of GFP-ADAM12 (green), TβRII (red), 
and EEA1 (blue) was analyzed by a confo-
cal microscope. Colocalization of EEA1 with 
ADAM12, ADAM12 with TβRII, and EEA1 with 
TβRII appears as turquoise, yellow, and purple, 
respectively. The panels represent three inde-
pendent representative fi elds. Representative ar-
eas from cells that display TβRII and ADAM12 
in the EEA1 compartments are enlarged in the 
insets. (B and C) HepG2 cells were transfected 
with the indicated combinations of CAGA9-Lux, 
ADAM12 shRNA, ADAM12, Smad3 shRNA, or 
scrambled shRNA. Cells were potassium de-
pleted before stimulation with TGF-β, and luci-
ferase activity was examined. (D) COS7 cells 
were transfected with HA-TβRII and Flag-SARA 
with or without ADAM12. Cells were immuno-
stained with rabbit anti-HA and mouse anti-EEA1 
 followed by secondary staining with TRITC-
conjugated anti–rabbit and Cy5-conjugated 
anti–mouse IgG. For the detection of Flag-SARA, 
cells were incubated with FITC-conjugated anti-
Flag. Flag-SARA, TβRII, and EEA1 appear as 
green, red, and blue, respectively. (E) HepG2 
cells transfected with CAGA9-Lux and the indi-
cated expression vectors were treated with nys-
tatin at 10 μM for 1 h before stimulation with 
TGF-β, and luciferase activity was examined. 
Error bars represent SD.
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The clathrin-dependent internalization into early endo-

somes promotes TGF-β signaling, whereas the lipid raft–caveolar 

internalization pathway is required for receptor turnover. To ob-

tain direct evidence that the accumulation of ADAM12 in early 

endosomes plays a role in the up-regulation of TGF-β signaling, 

we examine whether the expression of ADAM12 interferes with 

TβRII degradation. To approach this question, we � rst investi-

gated the effect of ADAM12 on TβRII ubiquitination. We ob-

served that the coexpression of ADAM12 resulted in a substantial 

decrease in the ubiquitination of TβRII (Fig. 5 A). In support of 

this result, the expression of ADAM12 increased the steady-state 

levels of TβRII (Fig. 5 B). Furthermore, in pulse-chase experi-

ments, the expression of ADAM12 resulted in a marked decrease 

in the turnover of TβRII (Fig. 5 C). A similar result was obtained 

with the cytoplasmic truncated form ADAM12-tail, which, like 

the wild-type counterpart, can enhance TGF-β signaling (Fig. 5 C). 

As a control, we found that expression of the extracellular solu-

ble form of ADAM12 failed to stabilize TβRII (Fig. 5 C), pro-

viding support to the theory that ADAM12 may stabilize TβRII 

by facilitating its intracellular redistribution from the plasma 

membrane to early endosomes.

In contrast to clathrin-enriched vesicles, TβRII enriched in 

caveolin1-positive vesicles was found to associate with Smad7, 

which is known to mediate the association of Smurf1/2 to recep-

tors, leading to their degradation. To con� rm that ADAM12 can 

interfere with the ubiquitin-dependent degradation of TβRII, we 

examined its effect on the association of TβRII with Smad7. We 

observed that the expression of ADAM12 induced a reduced 

 assembly of the TβRII–Smad7 complex (Fig. 5 D). Further evi-

dence that ADAM12 can modulate the interaction of Smad7 with 

TβRII was obtained by experiments showing a considerable 

increase in accumulation of the endogenous Smad7–TβRII 

complex in cells depleted from endogenous ADAM12 (Fig. 5 E). 

As Smad7 can restrict the access of Smad2 to TGF-β receptor, 

we also investigated whether endogenous ADAM12 regulates 

the association of endogenous Smad2 with endogenous TβRII. 

In fact, we found that the depletion of ADAM12 can interfere 

with the association of Smad2 with TβRII (Fig. 5 E). These re-

sults suggest that ADAM12 may counteract the internalization of 

TβRII into caveolin1-positive vesicles and may counteract its 

subsequent degradation.

Concluding remarks

Overall, our data describe a new function for ADAM12 in the 

positive regulation of TGF-β signaling by modulating receptor 

traf� cking. At present, a small number of proteins that interact 

with TGF-β receptors are described to regulate the traf� cking 

and turnover of these receptors. Thus, identi� cation of ADAM12 

as a novel partner of TβRII provides new insight into the initia-

tion of TGF-β signaling, which takes place in early endosomes.

Materials and methods

Yeast two-hybrid screening
A fragment corresponding to the extracellular domain (20–160 amino 
acids) of human TβRII was cloned into pBTM116. The human cDNA 
 libraries from placenta were constructed in pGADGH. A total of 10 × 106 

Figure 5. ADAM12 prevents T�RII degrada-
tion. (A) Cells were transfected with HA-TβRII 
and myc-Ub in the presence or absence of 
ADAM12. Cell lysates were normalized on the 
basis of TβRII expression, immunoprecipitated 
(two samples for each condition) with anti-myc, 
and immunoblotted with anti-HA. (B) 293T cells 
were transfected with HA-TβRII and increasing 
amounts of Flag-ADAM12. Cells were treated 
with TGF-β for 18 h before lysis, and cell lysates 
were immunoblotted with anti-HA, anti-Flag, or 
antiactin. (C) 293T cells transfected with HA-
TβRII and the indicated expression vectors were 
pulse-chased with [35S]Met/Cys, and labeled 
HA-TβRII was immunoprecipitated and ana-
lyzed by SDS-PAGE and autoradiography. 
(D) Cells were transfected with HA-TβRII, myc-
Smad7, and Flag-ADAM12 as indicated. Cell 
lysates were normalized on the basis of TβRII 
expression, immunoprecipitated (two samples 
for each condition) with anti-myc, and immuno-
blotted with anti-HA. (E) C2C12 cells were 
transfected with the indicated combinations 
of pEGFP, ADAM12 shRNA, or scrambled 
shRNA. 36 h later, GFP-transfected cells were 
sorted by FACS, lysed, and normalized on the 
basis of TβRII expression. Then, the association 
of TβRII with Smad7 or Smad2 was analyzed by 
immunoprecipitation (IP)/immunoblotting (IB).
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independent colonies were screened as previously described (Colland 
et al., 2004). The prey fragments of the positive clones were PCR ampli-
fi ed and sequenced.

Cell culture and transfection
The human embryonic kidney cell line 293T, HSCs, human RD cells, 
mouse C2C12 cells, monkey kidney COS7 cells, and mink lung MvLu1 
cells were transfected using LipofectAMINE-Plus reagent (Invitrogen) ac-
cording to the manufacturer’s instructions. For experiments with ADAM12 
antisense, cells were incubated with 2 μM of antisense oligonucleotides 
to ADAM12 (C T C T C T T T T A T G C C T T C T  and C C C C A T T C C T T T C T C C ) or ran-
dom control oligonucleotides (A C T A C T A C A C T A G A C T A C  and G C T C T A T-
G A C T C C C A G ) as previously described (Lafuste et al., 2005). For RNAi 
experiments, cells were transfected with 0.5 μg of expression vector en-
coding the indicated shRNA.

Plasmids
ARE3-Lux, GAGA9-Lux, FAST1, HA-Smad4, myc-Smad2, and myc-Smad7 
were previously described (Dumont et al., 2003; Seo et al., 2004). The ex-
pression vector for HA-TβRII was provided by J. Wrana (Samuel  Lunenfeld 
Research Institute, Mount Sinai Hospital, Toronto, Ontario,  Canada). 
 Expression constructs for wild type or mutants of ADAM12 and ADAM12 
fused to EGFP were prepared as previously described (Hougaard et al., 
2000). The expression vector encoding ADAM12 shRNA or scrambled 
shRNA was constructed using the BLOCK-IT U6 RNA System (Invitrogen) 
according to the manufacturer’s instructions. The expression vector for 
Flag-ADAM12 was obtained by fusing the Flag epitope to the N terminus 
of the ADAM12 fragment (amino acids 142–739) isolated in the yeast 
two-hybrid screen.

Transcriptional reporter assays
HepG2, C2C12, or 293T cells were transfected by LipofectAMINE, and, 
30 h later, they were treated for 18 h with 2 ng/ml human TGF-β1 (Sigma-
Aldrich). Cell extracts were assayed for luciferase activity using the Dual 
Luciferase Reporter Assay System (Promega), and luciferase activities were 
normalized on the basis of Renilla luciferase expression from the pRL-TK 
control vector. For potassium depletion experiments, transfected cells were 
incubated in medium and water (1:1) for 5 min at 37°C followed by incu-
bation in medium depleted or not depleted in KCl for 1 h at 37°C before 
stimulation with TGF-β.

Immunoprecipitation and immunoblotting
After transfection, cells were lysed in lysis buffer (Dumont et al., 2003), 
and cell lysates were subjected to immunoprecipitation with the appropri-
ate antibody for 2 h followed by adsorption to Sepharose bead–coupled 
protein G for 1 h. Immunoprecipitates were washed fi ve times with lysis 
buffer containing 0.5% NP-40. For the association of endogenous TβRII 
with endogenous ADAMs, immunoprecipitates were washed three times 
with lysis buffer containing 0.5% NP-40 and two times with lysis buffer 
containing 1% NP-40. Then, samples were separated by SDS-PAGE and 
analyzed by immunoblotting with the indicated antibodies. The following 
antibodies were used: anti-ADAM12 Rb 122 (Gilpin et al., 1998), anti-Flag 
M2 (Sigma-Aldrich), anti-HA and anti–myc-9E10 (Boehringer  Manheim), 
antiphospho-Smad2 (Cell Signaling Technologies), anti-Smad2 (Zymed 
Laboratories), anti-ADAM10 (ProSci), anti-ADAM17 (Chemicon), and 
antiactin, anti-TβRII, anti–bone morphogenetic protein RII, anti-Smad7, 
anti–PAI-1, and anti-JunB (Santa Cruz Biotechnology, Inc.).

Immunolocalization
Cells were fi xed in 3% PFA, permeabilized with 0.1% Triton X-100, and 
incubated for 60 min at room temperature with the appropriate primary 
antibody followed by the appropriate secondary antibody. The coverslips 
were washed, mounted in PBS containing 50% glycerol and 1 mg/ml 1,4-
diazabicyclo[2.2.2]octane, and viewed on an automated microscope 
(DMRXA2; Leica) equipped with a camera (CoolSNAP ES N&B; Roper 
 Scientifi c) and a 63× Hcx Pl Apo NA 1.32 oil objective (Leica). Z steps were 
submitted to deconvolution (nearest neighbor method) by using MetaMorph 
software (Universal Imaging Corp.).

Real-time PCR
Total RNA were extracted by the guanidinium thiocianate/cesium chloride 
method, and real-time quantitative PCR was performed by the fl uorescent 
dye SYBR green methodology as previously described (Le Pabic et al., 
2003). Primer pairs for target genes were as follows: PAI-1, sense (5′-G T C-
T T T C C G A C C A A G A G C A G -3′) and antisense (5′-C G A T C C T G A C C T T T T G C-
A G T -3′); ADAM12, sense (5′-G T T T G G C T T T G G A G G A A G C A C A G -3′) and 

antisense (5′-T G C A G G C A G A G G C T T C T G A G G -3′); COL1A2, sense 
(5′-G G T G G T G G T T A T G A C T T T G -3′) and antisense (5′-A T A C A G G T T T C G C-
C G G T A G -3′); and 18S, sense (5′-C G C C G C T A G A G G T G A A A T T C -3′) and 
antisense (5′-T T G G C A A A T G C T T T C G C T C -3′).

Online supplemental material
Fig. S1 A shows the effect of increasing amounts of ADAM12 on expres-
sion of the TGF-β–responsive gene PAI-1. Fig. S1 B shows the TGF-β–
 dependent expression of endogenous ADAM12 or COL1A2 in cells 
treated with ADAM12 antisense or control oligonucleotides. Fig. S2 shows 
the colocalization of ADAM12 with EEA1 or TβRII in Mv1Lu cells. Fig. S3 
shows the association of TβRII with several transmembrane proteins as 
indicated by labeling with a membrane-impermeable biotinylation re-
agent. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200612046/DC1.
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