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Abstract. A controllability measure Ln terms of the distance between a 

system and the set of uncontrollable systems LS developed. Some properties 

of a minimal disturbance, rendering a system noncontrollable, are given. 
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I. Introduction 

In [ 1 ] Paige argues that the traditional methods for testing the controll-

, l' f () nXn nxm , f abl. l.ty 0 a system A,B where A € lR ,B € lR are not satl.S actory 

in the sense thay they may provide the wrong answer and furthermore they do 

agt give au answer to the question: !lis a system well/badly controllable?" 

Using unitary state space transformations one can obtain a block Hessenberg 

form for a system (A,B). This Hessenberg form allows one to give a reliable 

answer to the ques tion concerning controllability of (A, B). However, this 

algorithm only provides a "yes/no answer';. From a practical point of view 

it is more important to have some quantitative answer to the issue of 

controllability of a system in the sense that one would like to know how 

close a given system is to an uncontrollable system. This is important when-

ever (A,B) has been obtained on the basis of measurements. 

Paige proposes in [ 1 ] to use "distance to an uncontrollable system" as a 

controllability measure. In fact he proposes "minimum" (oA,oB)112 such that 

(A + oA, B + oB) is uncontrollable" as such a measure ("·"2 is the spectral 

norm). 

This paper is also concerned with controllability measures. We will provide 

an answer to 

(I) IIWbat is the distance between a system (A,B) and the set of 

uncontrollable systems?" 

Of course the set of uncontrollable systems consists of systems with the 

same dimension (n) as (A,B). 
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The distance b between (A,B) and (A + oA, B + oB) is defined as 

The weighting factors dA and dB' both positive, have been introduced, in 

order to be able to deal with cases where for instance the confidence in 

the A-measurements differs from the confidence in the B-measurements. 

We use the Frobenius norm II • II : II M 112 := trace Ml\i for a (possibly complex) 

matrix M. Here'MH denotes the conjugate transpose of M. In the first 

part of this paper the Frobenius norm coincides with the spectral norm: 

II M II; == maximum eigenvalue of h. We will use the following characterization 

of controllability of (A,B) 

(3) rank[AI - A,B] = n for all A ~ a: . 

2. Main results 

The answer to (I) is provided by the solution of the following minimization 

problem (for a given system (A,B». 

with respect .. to. (oA,oB) and such that (A + oA, B + oB) LS uncontrollable. 

The minimum distance in (4) will denoted as d{(A,B),UNCO} (here UNCO denotes 

the set of uncontrollable systems). We use A2 instead of ~ because ~2 is 

easier to handle. 

Diiect"m:i.iiIiiilzation of -(4) is almost always impossible so we have to exploit 

the information which is in the uncontrollability of (A + oA, B + oB) for 

any disturbance (oA,oB) of the system.~,B). If (A + oA, B + oB) is not 

controllable then there exists a nonzero, possibly complex, row vector xH 
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such that 

H Here x denotes the conjugate transpose of a vector x and A is an eigen-

value of A + cA. 

We will now take a different point of view with respect to (5): 

Given A € JRnxn , B € JRnxm , x € (Cn, x :f O. Determine cA E (Cnxtl, oB £ (Cnxm 

such that (5) is satisfied for some A E (C. 

Observe that we allow complex disturbances. here. Later on we will deal with 

the strictly real case. 

The fact that we will allow complex disturbances may seem to be unattractive 

but in a number of cases, for instance if we use our measure of controll~ . 

ability as a condition number for pole assignability, this may not be unreason-

n nxn able. Let x € a: , A € JR • Then we have 

(6) X
HA xHAx H (H xHAx H) H = -H-x + x A - -H- x = )I.x X 

xx xx 

H H H Observe that x and xb are orthogonal (we use x y as the inner product 

(x,y) in (Cn). Because we want (5) to hold we have to satisfy 

(7) = 'xH H H~A ,H AX + Xo + x v = AX 

for some A E a:. Thus we must have 

for some p € (C. 
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The smallest oA (II oAU2 minimal), satisfying (8), is (see [2 J) 

with 

H H H oA = x(-x + px ) / x x o 

Because we still may choose p we take p = a in order to minimize ileA 112. 

The disturbance SB on B has to be taken such that 

H 
x (B + oB) = a • 

Therefore the smallest tiB (II SB 112 minimal), satisfying (5), is 

with 

Here ~_T stands for transposition. 

Now we have obtained 

nxn nxm n 
THEOREM. Le t A € lR ,B E lR ,x € IC , x '" 0, d A > a , dB > O. Then the 

(possibly'complex) disturbance (&A,oB) such that 

(i) H H H x (A + 8A) = AX for some A € IC, x (B + oB) = 0 

is given by 

( 
H xHAx H\ H 

oA = x -x A + -H- x ) / x x 
x x 

oB = -xx~ / 
H x x 
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the minimal value in (ii) is 

(9) 

and 

PROOF. Using the arguments above and the fact that we may minimize 

lIoAII2 and lIoBII2 separately, because both dA and dB are positive, the proof 

is complete. 0 

H From now on we will suppose that x x = 1 because oA and oB do not depend 

on II x II (as was to be expected). 

Using this theorem it is immediately clear how to compute the distance 

d{(A,B),UNCa} between (A,B) and the set of uncontrollable systems. 

(10) 2 H H T H T d{ (A,B) ,UNCO} = minimum dA x ACI - xx )A x + dB x B B x 
x€(Cn,1I x 11=1 

Observe that the gradient and the Hessian of the object function in (10) 

can easily be derived. This is advantageous for the actual computation of 

d{ (A, B), UNCa}. Of course we can also compute d { (A, B) ,UNCO} using uncon-

strained minimization of (9). However, this gives rise to a number of pro-

blems because (9) does not depend on II x II. (Up to now the spectral norm and 

the Frobenius norm coincide because the disturbances turned out to be 

rank-one matrices.) 

Next we consider the case of real disturbances (oA,oB). We also start with (8) 

H H H x (SA = -xo + px 
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Let x ::: xr + ix., Xo = x. + ix . where x , x., x ,x. are real vectors. J. or oJ. r J. or oJ. 

Let p ::: a + i~. Because we want oA to be real we must have 

(11 ) 

r ax; + "xq = 

TTl L ~xr - aXi J 

r ...... T -
-x or 

""T 

L X. oJ. 

Using the Moore Penrose inverse we obtain as minimum norm solution for oA 

(the Moore Penrose inverse of a matrix M is denoted as M+) 

I -+ r _~ -xT .... 
'r or 

(12) oA ::: 

bxd ""T x . oJ. 

Straightforward calculation of lloAU2 gives 

(13) 

T -T - T -T,... T ...... T .... 
2 X.X.X x - 2x x.x.x + x x x .x . J. J. or or r J. oJ. or r r oJ. oJ. II ;SA II = --=--...;..",,---=-~=----..;;.....---T T T T x x x.x. - x x.x.x r r J. J. r J. J. r 

~ T T T whenever x x x.x. - x x.x.x = det ~ O. 
r r J. J. r J. l. r 

Observe that if det , 0 

T -x. 
l. 

= [x ,-x. ] 
r l. 

T xx 
r r 

T -x.X J. r 

T -x x. 
r l. 

T x.x. 
l. 1. 

-) 

If det ::: 0 then xr and Xi are dependent. Suppose that xr = txi , Then we also 

have x ::: tx .• In order t'o be able to satisfy (8) with a real ;SA we must or oJ. 

have that p E: JR. A minimum norm solution (12) now satisfies 
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(15) 

11 oAlI 2 = xT x / xTx + p 2 
or or r r 

T 2 x.x. + p 
~ ~ 
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(x :f 0) 
r 

(x. :f 0) • 
~ 

If x. :f 0 and x :f 0 and xr = tx. (tE~) then (14) and (15) are the same 
~ r ~ 

because x = tx .• or o~ 

We still have to choose p in (8) such that oA becomes a minimal distu~bance 

satisfying 

A Ea:. 

This ~s obtained by taking p = 0 in (14) and (15) and by minimizing (13) 

with respect to.; cr and ]..1. 

A straightforward calculation of cr and ]..1, minimizing (13), gives 

T T T T T T T T x.x.x x + x x x .x. - x x.x.x - x x.x .x 
~ ~ or r r r o~ ~ r ~ ~ or r ~ o~ r cr = ~-------------~~~~~--~~~~-------~~--

2 det 
(16) 

T T T T T T T T 
X~X.x. x. + x x.x x - x x.x .x. - x x x .x 
~ ~ or ~ r ~ or r r ~ O~ ~ r r O~ r 

]..1 = ---------=---~----~---~----~~~-----------
(x:x.)2 + (xTx )2 + 2(xTx.)2 

~ ~ r r r ~ 

for the disturbance oB we have 

B . 

The minimum norm solution for oB is 

-1+ T T . 
xr I 

-x. r 

oB = B 

T T -x. xiJ ~ 
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with 

T T T T T T 
2 x.x.x BB x - 2x x.x.BB x T T T + x x x.BB x. 

(17) II oB II == 1. 1. r r r 1. 1. r r r 1. 1. 

whenever det ~ O. 

The analogues of (14) and (IS} are 

(18) 

(19) 

T xx 
r r 

T x. x. . 
1. 1. 

det 

T T Now we could minimize (for x x 
r r 

+ X.X. l. 1. 
== 1) 

in order to find a minimal real disturbance (oA,oB) where II 6A 112 is gl.ven 

by (13), (14) on (15) depending upon det being zero or not. In (13) we have 

2 to substitute (16) and in (14) and (15) we have to take p == O. For II oB II 

we take (17), (18) or (19) whichever. appropriate. 

2 However, II 6A II is not a continuous function when xr and x. tend to dependency. 
1. 

This can be seen as follows. Suppose that x. ~ 0 (x ~ 0 can be handled 
1. r 

T 
analogously). Let xr == t~i + Ep where p ~ 0 and xiP = O. Then we let £ tend 

to zero~ and; (13) together with (16) generally will not tend to (15) with 

p = O. This can be seen as follows. 

T T T We substitute x == tx. + Ep in (11) and (16) and we obtain 
r 1. 

Here 

-T 
x or 

U ::: a + (J, V 
xHAx 

= a + ~, a + is = ~ 
xx 

""'T T 
= tx . + Eq 

01. 



Now (13) becomes 

Using 

T 
l~oA 112 = q q + 

T 
P P 

-T~ 
x .x . 
o~ Ol. 

T X.x. 
~ l. 

T 
limu=~+ 
e:-l>() 2pTp 

T x.Ax. 
l. l. 

T 2x.x. 
l. 1. 

lim y _"i;,\ 
e:+O € (I+t )x.x. 

l. l. 

TA 
T x.Ax. 
l. l. 
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lim;(J =.L:e.- -= (JO T T e:+O 2p p 2x.x. 

we have 

1 • ....T 
l.m x. (> = 

e:+O Ol. 

Therefore we obtain 

-T x.A -
l. 

1. l. 

T 
x.Ax. T 

1. l. 
TXi 

x.x. 
1. l. 

T x .X.,. 
Ol. Dl. 

T 
X.X. 

l. l. 

Thereby proving the possible discontinuity of II oAI12 if xr an xi tend 

to dependency. 
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It is easily seen that II oB 112 is a continuous function for xr and xi 

tending to dependency. 

Because 8A is not continuous we have that the noncontrollable e~genvalue 

of (A + oA,B + oB) is also not continuous. This can be seen as follows. 

For (oA,oB) computed as above (based on x) we have 

T T T T In the open region x x x.x. - x.x x x. f 0 u + iv is the noncontrollable r r ~ ~ 1 r r ~ 

eigenvalue. If xr and xi tend 

T for x = tx. we have x.Ax. / r ~ 1 1 

to dependency u + iv tends to Uo whereas 

T x.x. as the noncontrollable eigenvalue. 
~ ~ 

This possible discontinuity in the, to be minimized, object function (20) 

may present serious problems. 

Therefore (10) is to be preferred whenever possible. 

3. Comparison of real and complex controllability measures 

Up to now we have obtained two controllability measures characterized by 

(c) complex disturbances are allowed 

(r) only real disturbances are allowed. 

Obviously, we have that case (c) generally gives a smaller controllability 

measure than case (r) (the distance between a system (A,B) and the set of 

uncontrollable systems UNCO, measured using only real disturbances, gene-

rally is larger than the distance between (A,B) and UNCO measured in terms 

of complex disturbances). The difference between case (c) and case (r) may 
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be investigated as follows. The vectors xr and x. may be taken to be 
~ 

orthogonal because instead of the vector x in (5) we may take e icpx • 

Such a factor e icp does not affect (the norm of) the dis turbances oA and 

oB. Furthermore it can easily be seen that cp may be taken such that the 

real part and the imaginary part of e i<px are orthogonal vectors. 

Suppose that x. :f 0, x :f O. Then lIoAII2 is given by (13). We have 
~ r 

or ""T"" T -T .... "'T ..... ""T '" "'H-x.x.x x +x x x .. x·. x. x + x .x. x x 
~ lor_or r r o~ o~ or or o~ o~ 0 0 

T T ;:: -.....,T=---·-=T~- = -H-
xxx.x. xx'+x.x. xx r r ~ ~ r r ~ ~ 

Because (see (11» we have 

Thereby showing that the real disturbance on A generally is larger than 

the corresponding complex disturbance. An analogous result can be proven 

for (14), (15), (17), (18), (19). Thus we have shown that in order to 

measure the distance between (A,B) and UNCO we generally find that case (c) 

gives a smaller distance than case (r). 

4. Special cases 

In this section we consider two special cases 

(a) only disturbances on A are allowed (oB = 0) 

(b) only distu~bances on B are allowed (6A = 0) 
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Case (a) can be handled easily because we only have to restrict x in (10) 

such that x~ = O. 

Case (b) forces one to compute the eigenvectors of A. Then the minimal 

disturbance oB on B~ such that (A, B + oB) is. controllable, is 

where v is an eigenvector of A such that 

is minimal. 

If computation of the eigenvectors of A presents problems one might 

approximate case (b) by taking dA and dB in (10) such that dA / dB is 

"large". 

- 5. Discussion 

A method to compute the distance between a system and the set of uncon-

trollable systems has been described. A disadvantage of this method is 

that one still needs to minimize a function of 2n variables (where n is 

n the dimension of the system) on the hypersphere in ~ • The extra freedom, 

which exists for this minimization problem because e iqlx ~orl7esponds to a 

minimizing-',ector of (10) for any ql € ]R whenever x is such a vector, 

may ~Q delt with by requiring that the real and imaginary parts of x are 

orthogonal vectorS!. A vector e iqlx gives rise to the same disturbance 

(cA,cB) for any cp € ]R. 
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If one considers the case of real disturbances, then a serious difficulty 

appears because the, to be minimized, object function is not continuous 

anymore • Therefore computation of the controllability measure using com-

plex disturbances seems to be more attractive. 

A nice property of a minimal complex disturbance (oA,oB) is that both SA 

and oB are rank one matrices. 

While controllability of a system ~s neither affected by state space trans-

formation nor by feedback we generally have for the controllability measure 

as described in this paper 

d{(A,B),UNCO} ~ d{(TAT- 1 ,TB),UNCO} 

d{(A,B),UNCO} ~ d{(A+BF,B),UNCO} • 

If T is unitary then the controllability measure is the same for (A,B) and 

-} 
(TAT ,TB). 

It is easily seen from examples that feedback may enlarge the distance 

between a system and UNCO but that it also may reduce this distance con-

siderably. In order to illustrate this we consider the following situation. 

Let (A,B) be a controllable system. Let cr. be the smallest singular value 
m~n . 

of B. If m < n we may take cr. to be zero because we may add columns 
m~n 

(to B) consisting only of zeroes. 

Consider a sequence (~, k = 0,1,2, .•• ) such that 

",n 
~ € \II 

II xk II = I 

~B ~ 0 

lim ~BBT~ 
k..;.oo 

k == 0,1,2, •.. 

2 = a . 
m~n 
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Let the sequence of m x n-matrices (Fk , k=O, 1,2, ••• ) be defined by 

where (Ak , , k=O, 1,2, ..• ) is a sequence of (complex) numbers. 

Then 

d{(A + BFk , B),UNGO} ~ X:BBT~ k = 0,1,2, ••. 

because 

This shows that the distance to UNGO may be reduced considerably using 

feedback. If 0, :f: 0 then the minimal distance which can be ob.tained 
m~n 

in this sense is 0
2 , . If 0, = 0 (for instance if m < n) then UNGO may 
m~n m~n 

be approached arbitrarily close using feedback matrices (whose norms tend 

.to. infinity). 

The codnro11abi1ity measure as described in this paper is not directly 

related to the singular values of the controllability matrix 

[B AB An-1B] • , ,. .. , 

In order to show this we consider systems (A ,B ) with dimension n where n n 

r r 0. 
:, -· .. 

L . . o ~ . . .. 0 

. . 

l 
: . ... ...... 0 
· '., . 
• •• " "'..··-1 · . · . · . 
o •••.•••••.•• ' :. 0 

for n = 1,2,3,4,5,10,15,20. 

o 

o 



- 16 -

The singular values of the controllability matrix of (A ,B ) all are 1 
n n 

for each n. 

However,d{(An,Bn),UNCO} (with dA = dB = 1) depends on n as is shown Ln the 

following table 

n 

1 

2 

3 

4 

5 

10 

15 

20 

d{ (A ,B ) ,_UNCO} 
n n 

1.00 

0.75 

0.50 

0.35 

0.25 

0.08 

0.04 

0.02 

controllability measures of (A ,B ) 
n n 

This table indicates that large systems tend to be close to UNCO. This holds 

if one permits disturbances on each element of a system. 

Consider also the system 

Again the singular values of the controllability matrix all are 1 for any ~. 

On the other hand 
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is not controllable. Therefore (A ,B) is close to UNCO.if a is large. a ... ,. 

Often a system has many fixed zeroes and / or ones. The method in this paper 

does not allow for fixed elements in the A-matrix or the B-matrix. Therefore 

a different method has to be used in order to compute the controllability measure for 

such cases. 
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