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Background

In pattern classification, its goal is to allocate an object represented by a number of 

measurements (i.e. feature vectors) into one of a finite set of classes. �e k-nearest 

neighbor (k-NN) algorithm is one of the most widely used classification algorithms since 

it is simple and easy to implement. Moreover, it is usually used as the baseline classifier 

in many domain problems (Jain et al. 2000).

�e k-NN algorithm is a non-parametric method, which is usually used for classifica-

tion and regression problems. It is a type of lazy learning algorithms that off-line train-

ing is not needed. During the classification stage for a given testing example, the k-NN 

algorithm directly searches through all the training examples by calculating the distances 
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between the testing example and all of the training data in order to identify its nearest 

neighbors and produce the classification output (Mitchell 1997).

Particularly, the distance between two data points is decided by a similarity measure 

(or distance function) where the Euclidean distance is the most widely used distance 

function. In literature, there are several other types of distance functions, such as cosine 

similarity measure (Manning et al. 2008), Minkowsky (Batchelor 1978), correlation, and 

Chi square (Michalski et al. 1981). However, there is no a comparative study of examin-

ing the distance function effect on the performance of k-NN.

Moreover, since the real world datasets of medical domain problems can contain cat-

egorical (i.e. discrete), numerical (i.e. continuous), or both types of data, we believe that 

different distance functions should perform differently over different types of datasets. 

�is is very important for relevant decision makers to identify the ‘best’ k-NN classifier 

for medical related problems. �erefore, the aim of this paper is to provide some guide-

lines about which distance function used in k-NN is the better choice for what type of 

medical datasets?

�e rest of this paper is organized as follows. “Literature review” section defines the 

pattern classification problems, overviews the idea of k-NN classification, and briefly 

describes the five well known distance functions used in this paper. “Experiments” sec-

tion presents the experimental setup and results. Finally, “Conclusion” section concludes 

this paper.

Literature review

Pattern classi�cation

�e goal of pattern classification is to allocate an object represented by a number of 

measurements (i.e. feature vectors) into one of a finite set of classes. Supervised learn-

ing can be thought as learning by examples or learning with a teacher. �e teacher has 

knowledge of the environment which is represented by a set of input–output examples. 

In order to classify unknown patterns, a certain number of training samples are available 

for each class, and they are used to train the classifier (Mitchell 1997).

�e problem of supervised pattern recognition can be stated as follows. Given a train-

ing dataset where each training example is composed of a number of input feature var-

iables and their corresponding class labels. An unknown function is learned over the 

training dataset to approximate the mapping between the input–output examples, which 

is able to correctly classify as many of the training data as possible.

k-Nearest neighbor classi�cation

�e k-nearest neighbour (k-NN) classifier is a conventional non-parametric classi-

fier (Cover and Hart 1967). To classify an unknown instance represented by some fea-

ture vectors as a point in the feature space, the k-NN classifier calculates the distances 

between the point and points in the training data set. Usually, the Euclidean distance is 

used as the distance metric. �en, it assigns the point to the class among its k nearest 

neighbours (where k is an integer). Figure 1 illustrates this concept where * represents 

the point. If k = 1, the point belongs to the dark square class; if k = 5, the small circle 

class which are the majority class of the five nearest points.
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As k-NN does not require the off-line training stage, it main computation is the on-

line ‘searching’ for the k nearest neighbours of a given testing example. Although using 

different k values are likely to produce different classification results, 1-NN is usually 

used as a benchmark for the other classifiers since it can provide reasonable classifica-

tion performances in many pattern classification problems (Jain et al. 2000).

Distance functions

To measure the distance between points A and B in a feature space, various distance 

functions have been used in the literature, in which the Euclidean distance func-

tion is the most widely used one. Let A and B are represented by feature vectors 

A = (x1, x2, . . . , xm) and B = (y1, y2, . . . , ym), where m is the dimensionality of the fea-

ture space. To calculate the distance between A and B, the normalized Euclidean metric 

is generally used by

On the other hand, cosine similarity measure is typically used to calculate similarity 

values between documents in text retrieval (Manning et al. 2008) by

where the numerator represents the dot product of the vectors 
−→

A  and 
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B , while the 

denominator is the product of their Euclidean lengths.

Some other distance functions are also available for k-NN classification, such as 

Minkowsky1 (Batchelor 1978), correlation, and Chi square (Michalski et al. 1981).
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Fig. 1 k-Nearest neighbor classification
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Experiments

Experimental setup

�ree different attribute types of datasets are chosen from the UCI machine learning 

repository.2 �ey are categorical, numerical, and mixed attribute types of data, which 

contain 10, 17, and 10 datasets respectively. Moreover, each type of datasets contains dif-

ferent numbers of attributes, samples, and classes in order to figure out the effect of using 

different types of datasets with different missing rates on the final classification accuracy.

Particularly, in the categorical attribute type of datasets, the number of attributes, 

samples, and classes range from 4 to 857, 106 to 12,960, and 2 to 11 respectively. For the 

numerical attribute type of datasets, they range from 4 to 64, 150 to 45,211, and 2 to 10 

respectively. On the other hand, for the mixed attribute type of datasets the number of 

attributes, samples, and classes range from 6 to 20, 101 to 30,161, and 2 to 29 respec-

tively. �e detailed information of these datasets is shown in Table 1.

On the other hand, for k-NN classifier design, the k values are set from 1 to 15 for com-

parison. In addition, tenfold cross validation is used to divide each dataset into 90 % train-

ing and 10  % testing sets to train and test the k-NN classifier respectively. Specifically, 

four different distance functions, which are Euclidean distance, cosine similarity measure, 

Minkowsky, correlation, and Chi square, are used in the k-NN classifier respectively.

Experimental results

Results on categorical datasets

Figure 2 shows the classification accuracy of k-NN over categorical datasets. For the dis-

tance function, there is no exact winner for all of the datasets. However, overall speaking, 

(5)dist_Chi-square(A,B) =

m
∑

i=1

1

sumi

(

xi

sizeQ
−

yi

sizeI

)2

2 http://archive.ics.uci.edu/ml/.

Table 1 Dataset information

Dataset No. of instances No. of attributes No. of classes

Categorical datasets

 Lymphograph 148 18 4

 Nursery 12,960 8 11

 Promoters 106 58 2

 SPECT 267 22 2

Numerical datasets

 Blood 748 5 2

 Breast cancer 286 9 2

 Ecoli 336 8 8

 Pima 768 8 2

Mixed datasets

 Acute 120 6 2

 Contraceptive 1473 9 3

 Liver_disorders 345 7 2

 Statlog 270 13 2

http://archive.ics.uci.edu/ml/
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using the Euclidean distance function is not the best metric for k-NN for two out of the 

four datasets, except for Nursery and SPECT. �e classification accuracy by Euclidean 

and Minkowsky distance functions are almost the same, which means that using 1 or 

2 for r does not affect the k-NN performance (c.f. Eq. 3). On the other hand, k-NN by 

the Chi square distance function performs best over the Lymphograph and Promoters 

datasets.

Figure  3 shows the average classification accuracy of k-NN over the attribute num-

bers of the four categorical datasets. As we can see that when the number of attributes 

increases, using the Chi square distance function can make the k-NN classifier performs 

similar or slightly better than the other functions.

Results on numerical datasets

Figure 4 shows the classification accuracy of k-NN over numerical datasets. �e results 

are opposed to the ones over the categorical datasets that k-NN by the Euclidean (and 

Minkowsky) distance function performs the best over most of the datasets, which are 

breast cancer, Ecoli, and Pima. On the other hand, k-NN by the cosine distance function 

only performs better than the others over the blood dataset.

Figure  5 shows the average classification accuracy of k-NN over the attribute num-

bers of the four numerical datasets. For most cases or larger numbers of attributes, the 
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Fig. 2 Classification accuracy of k-NN over categorical datasets. a Lymphograph, b nursery, c promoters and 

d SPECT

Fig. 3 The average classification of k-NN over the attribute numbers of the four categorical datasets
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Euclidean (and Minkowski) and Chi square distance functions allow the k-NN classifier 

to perform very similar and better than the one using the cosine distance function.

Results on mixed types of datasets

Figure 6 shows the classification accuracy of k-NN over the mixed types of datasets. We 

can see that using the Chi square distance function is the best distance metric for k-NN 
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Fig. 4 Classification accuracy of k-NN over numerical datasets. a Blood, b breast cancer, c Ecoli and d Pima

Fig. 5 The average classification of k-NN over the attribute numbers of the four numerical datasets
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Fig. 6 Classification accuracy of k-NN over mixed types of datasets. a Acute, b contraceptive, c Liver_disor-

ders and d Statlog
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over most of the datasets, which are contraceptive, Liver_disorders, and Stalog. On the 

other hand, k-NN by the Euclidean (and Minkowsky) distance function does not outper-

form k-NN by the other distance functions for these four datasets.

Figure 7 shows the average classification accuracy of k-NN over the attribute numbers 

of the four mixed types of datasets. When the number of attributes increases, using the 

Chi square distance function is the better choice for k-NN.

Further comparisons

Figure 8 shows the average classification accuracy of k-NN over categorical, numerical, 

and mixed types of datasets respectively. Overall speaking, we can observe that using the 

Chi square distance function is the best choice for the categorical, numerical, and mixed 

types of datasets whereas k-NN by the cosine and Euclidean (and Minkowsky) distance 

function perform the worst over the mixed type of datasets.

Conclusions

In this paper, we hypothesize that since k-NN classification is based on measur-

ing the distance between the test data and each of the training data, the chosen dis-

tance function can affect the classification accuracy. In addition, as different medical 

domain problem datasets usually contain different types of data, such as the categori-

cal, numerical, and mixed types of data, these three types of data are considered in this 

paper.

By using four different distance functions, which are Euclidean, cosine, Chi square, 

and Minkowsky, our experimental results show that k-NN by the Chi square distance 

function can make the k-NN classifier perform the best over the three different types 

Fig. 7 The average classification of k-NN over the attribute numbers of the four mixed types of datasets
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of datasets. On the other hand, using the Euclidean distance function performs rea-

sonably well over the categorical and numerical datasets, but not for the mixed type of 

datasets.
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