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Abstract. The results of Hakimi and Yau and others in the realization of a distance
matrix are generalized to graphs (digraphs) whose branches (arcs) may have negative
weights. Conditions under which such matrices have a tree, hypertree or directed tree
realization are given, uniqueness of these realizations is discussed and algorithms for
their construction are indicated.

1. Notation. A number of definitions are given so that results will be presented in
a self-contained manner. A graph G = (V, B) consists of a finite non-empty set V =

••• , vn\ of vertices and a set 5 = {bt ,b2, • ■ ■ ,bm} of unordered pairs of distinct
vertices of V. Each such pair bk = e(i\ , v,) of vertices is a branch of G and is said to be
incident at both v{ and y,- . A directed graph or digraph G = (F, A) consists of a finite
non-empty set V = {f'i , v2 , • • • , vn] of vertices and a set A = {al , a2 , ■ ■ ■ , am] of
ordered pairs of distinct vertices of V. Each such pair ak — e(v< , v,) of vertices is an
arc of G, is directed from v{ to v, and is incident at both v, and v, . A subgraph of a graph
(digraph) G is a graph (digraph) which has all its vertices and branches (arcs) in G.

The degree of a vertex Vi in G, denoted deg (y, , G), is the number of branches (arcs)
incident at i>, in G. The outdegree of a vertex v{ in digraph G, denoted outdeg(y, , G),
is equal to the number of arcs incident at v, in G and directed away from v{. The indegree
of Vi, denoted indeg(z\-, G), is equal to the number of arcs incident at v{ in G and directed
towards v{ . A weighted graph (digraph) is a graph (digraph) together with a function
which assigns a real number wx to each branch h, (arc a,). All graphs (digraphs) presented
here are weighted.

An edge-sequence in a graph (digraph) between two vertices v, and vf is an alternating
sequence of vertices and branches (arcs) • • • M,- beginning and ending with
Vi and Vj , in which each branch (arc) is incident at the vertex preceding and the vertex
following it. A path from to v,- is the set of all branches (arcs) in an edge-sequence
between v{ and v, . A directed path in a digraph is a path in which each arc is directed
from the vertex preceding it to the vertex following it in the corresponding edge-sequence.
A path or directed path is called elementary if all vertices in the edge-sequence are
distinct. A path (directed path) is a circuit {cycle) if the first and last vertex in the edge-
sequence are the same and all others distinct. The length of a path (directed path) is the
sum of the weights of the branches (arcs) in it. A connected graph (digraph) is a graph
(digraph) in which every pair of vertices is joined by a path.
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A tree (directed, tree) is a connected graph (digraph) containing no circuits and thus
any two vertices are joined by a unique elementary path. In directed trees not all vertices
are joined by a directed path. In fact, if a directed path exists from t>< to , there is no
directed path from i», to v, . In a tree, if each branch is replaced by two oppositely directed
arcs, the digraph so constructed is a hypertree. Two such arcs in the hypertree form an
elementary -pair, and the sum of the weights of the two arcs is the weight of the elementary
pair. In a hypertree there is a unique elementary directed path between any pair of
vertices.

The distance d(v{ , y,-) of vertex t>,- from vertex vt in a graph (digraph) is the length
of a shortest (i.e. minimum sum of weights) elementary path (directed path) from v{ to v,-.
Clearly d(v{ , vf) = d(Vj , i\) in graphs while in general d(v> , vf) ^ d{pi , v{) in digraphs.
We also have d(v{ ,v{)=0 and d(v{, v,) = if there is no (directed) path from v{ to v,- .
A distance matrix D(V0 = [djy] of a graph (digraph) G = (F, B), Vi = [vkl , vk%, ■ ■ • ,
C7,isannXn matrix in which entry rf,-, (i, j = 1,2, , n) is the distance of vertex
vkj from vertex vki(vti , vkj £ Fj). If v £ Fi then v is an external vertex, otherwise an
internal vertex. Any vertex of degree one in a graph (digraph) is a terminal vertex. By a
realization of an n X n matrix I) = [d,,] we mean a graph (digraph) G — (F, B), |F| > n,
such that for some Fi Q V, |F,| = n, we shall have D(V,) = D. All graphs (digraphs)
have distance matrices, graphs having symmetric ones and digraphs, in general, asym-
metric ones. All entries in the distance matrix of a connected graph are finite. Connected
digraphs may have infinite entries. A branch (arc) in a graph (digraph) is redundant
if its removal results in a graph (digraph) with the same distance matrix. An internal
vertex v in a graph (digraph) is redundant if it has deg (v, G) < 3 (indeg (v, G) < 2 or
outdeg (v, G) < 2). The nullity of a connected graph (digraph) is equal to \B\ — |F| + 1
(|A| — |F| + 1) and thus is zero if the graph (digraph) is a (directed) tree.

2. Introduction. Given a weighted graph (digraph), algorithms are available for
computing the distance matrix D of (a subset of) its vertices. Of these, the most efficient
is due to Floyd [1], The algorithms fail, in general, if the graph has a branch with a
negative weight or if the digraph has a cycle whose length is a negative number.

A number of papers have also been published on the realizabilitv of a given n X n
matrix D by a graph (digraph). Hakimi and Yau [2] gave necessary and sufficient
conditions for an»X» symmetric matrix D with non-negative entries to be the distance
matrix of a graph. They defined as 'optimum' that realization which has a minimum total
sum of weights and proved that a tree realization, if one exists, is the unique optimum
realization. Goldman [3] and Murchland [41 extended some of these results to digraphs.
Generalizing the above results, we have proved that any (symmetric) square matrix
with zero diagonal elements is the distance matrix of some (graph) digraph.

Zaretskii [5, 6] gave necessary and sufficient conditions for the existence of a unique
unweighted tree with n terminal vertices whose distance matrix equals a given matrix
of order n. Simoes-Pereira [7] gave, without proof, a weaker statement of Theorem 2
presented in this work. Theorem 2 also provides a generalization of Zaretskii's results
to the weighted case. Boesch [8], considering strictly non-negative weighted graphs, gave
some properties of the distance matrix of a tree and suggested two algorithms for a tree
realization. We indicate here that one of these algorithms (the one derived from theorem
II of his work) can be successfully used in the general case. Shay [9] introduced the
'hypertree' and gave a necessary condition for its realization. We have completed his
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work on the hvpertree. Finally, we attacked the case of the distance matrix and its
realization as a directed tree.

Almost all previous work restricted itself to nou-negative entries in the given matrix D
and non-negative weights in its realization. We have placed no such restriction in this
work and admitted negative weights. Further, we introduce non-redundant internal
vertices if they permit a realization which could not have been achieved otherwise. With
these considerations in mind, the objectives of this paper are:

1. to find necessary and sufficient conditions for a given matrix to have a tree, hyper-
tree or directed tree realization,

2. to find whether the above realizations are unique,
3. to indicate algorithms for construction of the tree, hypertree or directed tree if

such realizations exist.
3. The distance matrix and its realizability. Given an n X n symmetric matrix

D = [tZ,,], necessary and sufficient conditions for the existence of an ?;-vertex graph G
with non-negative weights having D as its distance matrix were given by Hakimi and
Yau [2], Specifically:

1) da = 0 for all i,
2) da + djk > dik for all i, j and k.

The ?i-vertex graph G realizing I) can be constructed as follows: pick n vertices, labeling
them Vi ,v2, ■ ■ ■ ,vn, and for every entry diS (i ^ j) of D draw a branch e(v{ , Vj) assigning
to it the weight .

Since du + dik > dik and dki + d,, > dki for any i, j and k we have du > 0. This
implies that D must contain strictly non-negative entries. If no restriction is placed on
the type of weights in a realization of D then we can state:

Theorem 1: Any n X n symmetric matrix D = [fi,,] with zero diagonal elements is
a distance matrix of some graph G.

Proof: Consider the n X n matrix D' = [(/',], where

d'a = dtj + a,- + a,- if i ^ j
= 0 if i = j

and

ak = max (max \{d,, — (drk + dk.)),
\r, s = 1, 2, n

If drk + dk, > dr, for some r, k and s then clearly d'rk + d'k, > d'r, . If drk + dk, < dr,
for some r, k and s then 0 < §(c/r. — (dTk + dk,)) < ak , or (dr, + ar + a.) < (drk +
ar + ak) + (dk, + ak + a,), or d'r, < d'rk + d'k, . Thus there exists an n-vertex graph G'
which has D' as its distance matrix. Let G' be such a graph and v[ , v'2 , • • • , v'n be its
vertices. To construct a graph G with distance matrix D add to G' vertex v, and connect
it with v'i through a branch e(v,-, v[) of weight —a,- (for all i). We have in G: d{v{ , v,) =
d(vi , v') + d(v'{ , v'^ + d(v\ , = — a{ + d'f — a, = du (for all i and j). This proves
the theorem.

4. The distance matrix and the tree realization. By virtue of Theorem 1 let us call
a symmetric matrix D with zero diagonal elements a 'distance matrix'. We have proved
that there exists at least one graph G realizing distance matrix D. If G[D] is the set of all
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graphs realizing D we would like to know if there exists a tree I such that I £ G[D\.
The following theorem provides an answer to this question. It was given by Simoes-
Pereira [7] in a slightly weaker form. The interested reader should also consult Zaretskii
[5, 6] for the unweighted case. Let us set <p(x, y, z) = 1 if at least two of the numbers x,
y and z are equal. Since any 3X3 distance matrix is tree-realizable we shall assume
that n > 4.

Theorem 2: Given an n X n (n > 4) distance matrix D = [d,-,-], a necessary and
sufficient condition for D to be tree-realizable is that <p(dik + dit , dit + d,-», d^ + dkl) = 1
jor all distinct i, j, k, I.

Proof: Necessity. Assume matrix D is tree-realizable. Let t be some such tree. Pick
any four external vertices vt, v, , vk, v, in t and consider the subtree connecting these four
vertices. This subtree necessarily corresponds to at least one of the trees illustrated in
Fig. 1. In all three cases we have

+ d mam«

where mi , m2, m3 and m4 is some permutation of i, j, h and I. Thus <p(dik + du , dit +
djk , da + dki) = 1; hence the theorem's necessity conditions follow. Sufficiency. Let
n = 4 and di±i, + d,,,-, = dilit + diaU , where z, , i2 , i3 and it is a permutation of 1,
2, 3 and 4. The tree realizing D is shown in Fig. 2.

Let us assume that the theorem is correct if the order of D is n — 1. Consider an
n X n distance matrix D satisfying the theorem's conditions. Let D' be the (n — 1) X
(n — 1) leading principal submatrix of D. According to the induction hypothesis the
theorem is true for D' and let Tn.l be some such tree with (n — 1) external vertices
realizing D'. In let all external vertices be made terminal vertices by using branches
of weight zero, and let all branches of weight zero joining two internal vertices be shorted
(i.e. eliminate the branch by identifying the two vertices by a single internal vertex).
Assume further that all internal vertices in 7\,_, are non-redundant.

\vi v. «v. v, _

/ 1 \ XX'
\ / \ / \ /Y Y

' !
A A A,\ ' » . \/ » I % / *

\ / \. I \,*vj I J *

Fig. 1.



THE DISTANCE MATRIX OF A GRAPH 259

^(d. , + d. . - d. . )1112 1l3 1213

^(d + d i - d )
3 4 14 13

^(d. ,+d. . - d. .)
1314 1113 1114

Fig. 2.

Let u be an internal vertex in !Fb_i (clearly such a vertex always exists since n > 4
and all external vertices are terminal vertices in Since deg iu, Tn-0 > 3, T„_i can
be divided as shown in Fig. 3, where external vertices Vi , v2 and v3 are assumed to be,
without loss in generality, in the subtrees indicated. Define L(vt , u) as the maximal
subtree of Tn-t containing vertex f, and having u as a terminal vertex. L(vt , u) and
L(v2 , u) are indicated in Fig. 3.

Case A: dln + d23 = dl3 + d2n ^ d12 + d3n . Insert vertex v„ as shown in Fig. 4,
with w = d„i — d(u, v^. Clearly d{v„ , v^) = dnl and

T ,n-l

<v2. u>

Tn-1 " CKVj.u) U L(v U)J

Fig. 3.
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Fig. 4.

d(v„ ,v2) = w + d(u, v2) = dnl — d(u, vj + d(u, v2) = dnl — [d(u, v^) + d(u, i>3)]

+ [d(u, v2) + d(u, v3)] = dni — d13 + d23 = dn2 .

If Vi is the only external vertex in L(v, , u) then vx = u' and we have shown that d(vn , v<)
= dni for all Vi £ L(vt , a). Assume, therefore, that L(vl , u) contains more than one
external vertex. Then u' is an internal vertex and hence Wi ̂  0. Since deg (V, T„_i) >[3
there exists at least one external vertex vv in L(vi , u) — [L(vx , u') W e(u', u)\ — L(vv).
If vm is an arbitrary external vertex in L(vv) then, since w, ^ 0, we have

d]2 + d3m — d13 -f- d2m dIm + d23 ■

The above relation, together with

d13 + d2n = dln + d23 ^ dl2 + d3n ,

<p(dl2 + dmn , din + d2m , dlm + rf2„) = 1,

<p(d13 + dmn , dln + d3m , dlm + d3n) = 1,

<p(d23 + dmn , d2n + d3m , d2m + d3„) = 1,

yield for all possible cases: dnm = din + d2m — di2 . However, in the graph of Fig. 4,
d(vn , vm) = w + d(u, vm) = dnl - d(u, i>,) + d(u, vm) = dnl - [d(w, t>i) + d(u, t>2)] +
[d(u, v„) + d(u, v2)] — dnl di2 "I- d2m . Thus d(vn , — dnm foi all external vertices
v„ £ L(v„). Since by assumption

dm + d2n — di„ + d23 9^ dl2 + d3n

and by induction hypothesis

d\2 + d3m = dn ■+- 9^ dIm -J- d23 ,
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then

d.3 + d 2n ^13 I ^2m ^3» dzn

or

+ <*3m ̂  + d3„ .

But in the graph of Fig. -1 we have

d(v2, i>3) + tZ(ym , vn) = d(v2, vn) + d(v3, vm) or d23 + dmn = d2n + d3m .

Hence

chz + dmn = d2n + d3m ^ d2m + d3n .

Then if vk v,) is an arbitrary external vertex in L(vx, u'), the previous relation together
with

d2k + d3m = d2m + d3k dmk + c?23 (since Wi ^ 0),

<p(.d2k + dmn , dkn + d2m , dkm + d2„) = 1,

<p(d3k + dmn , dkn + d3m , dkm + d3„) = 1,

<p(d23 + dkn , d2n + d3k , d2k + d3n) = 1

yields, for all possible cases, dnl = dnm + d2k — d2m . But in the graph of Fig. 4,

d(vn ,vk)=w + d(u, vk) = dnl — d{u, vj + d(u, vk) = dnl — [d(u, vj + d{u, i>2)]

+ [d(u, vk) + d(u, i>2)] = d„i — d12 + d2k = d„m + d2k — d2m .

This proves that for any external vertex v, £ L(vi, u) we have d(v„ , v,) = dni. Similarly
we can prove that for any external vertex t>,- in L(v2 , u) we have d(v„ , v,) = dni .

Let S = {fi, , Vi, , ■ • ■ , vu j be the set of all external vertices in T„-t — [L(vi, u) U
L(v2 , «)]. Clearly 5 < n — 3. Construct an (5 + 2) X (5 + 2) distance matrix D* =
[d*] as follows: set

dfm = dilim for all vit , t>,„ £

rf*s+i = diln for all vit (E S,

df+18+2 = W,

rffa+2 = , u) forallfti £ S.

In D* rows and columns 5+1 and 5 + 2 correspond to vertices v„ and u respectively.
Clearly

<p(d* + d,*t , d* + d*t , d*, + d*) = 1,
<p(d* + d*,+1 , d* + d*s+i , d*j+i + d*) = 1

for all i\, , t>ir , i>,, , t;i( in £ by the theorem's conditions. We also have <p(d* + d*i+2 ,
d* + d*s+a , d*s+2 + d*) = 1 for all vit , vir , vit in S by the fact that these distances
are distances in a subtree of T„-1 . Since

<p{dn, + dnir , dUt + dnil , dln + ditir) = 1
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for all vif , v„ in wo can write

<p(du, + dnir - d{u, v0, dlir + dni, - d(u, vt), dln + d,„-r - d(u, vj) = 1

or

or

<p(d(u, i',,) + dni, , d(u, vir) + dni, , w + dilir) = 1

<p(d*s+2 + d*S + 1 , rf*J+2 + , df+18+2 + d*) = 1.

Thus the distance matrix D* satisfies the theorem's conditions and is of order at most
n — 1. Hence D* is tree-realizable and so is D.

The cases:

di2 d3n = din -f- d23 di3 4- d2n >

d\2 "I- d3n — d13 -f- d2n 9^ dln -f- d23

can be treated similarly by considering L(vx , u), L(v3, u) and L(v2, u), L(v3 , u) respec-
tively.

Case B: dln + d23 = d13 + d2n = dl2 + d3„ , diin + diliy — d,-,,-, + di%n = dilim +
di,„ for all vit £ L(vl , u), vit £ L(v2, u) and vit £ Tn-X — [L(vi , w) VJ L(w2 , w)] (other-
wise reduce to case A). Then, setting vn as before in 7'„_i with w = din — d(u,v1),we have

d(vn , vj = dnl , d(vn , v2) = d„2 , d(y„, t'3) = d„3

and for any external vertex vk in T„-1 we can immediately show that d(yn , vt) = dnk .
Thus D has a tree realization. This completes the proof of the theorem.

Define an elementary contraction in a graph G by:
a) shorting a branch of weight zero joining two internal vertices, or
b) shorting a branch of weight zero joining an external vertex with an internal vertex.

The tree Th in Fig. 5 is obtained from tree Ta by an elementary contraction of type a,
while Tc is obtained from Ta by an elementary contraction of type b.

Fia. 5.
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Define an elementary expansion in a graph G by:
a) replacing an internal vertex by two internal vertices joined by a branch of weight

zero, or
b) replacing an external vertex of degree > 2 in G by an internal vertex and joining

it to the external vertex with a branch of weight zero.
Thus in Fig. 5 tree T„ is obtained from Tb by an elementary expansion of type a, while
T. is obtained from Tc by an elementary expansion of type b.

For the purpose of the following theorem, if graph G2 is obtained from G\ by a sequence
of elementary contractions and expansions it will be considered 'identical' to Gi . In
that sense trees Ta, 1\ and Tc of Fig. 5 are considered identical. For the proof, the reader
is referred to [12].

Theorem 3: I] distance matrix D = [d,-,] is realizable as a tree t, then I is the unique
circuitless realization of D (without redundant internal vertices).

There are some elegant methods of constructing the tree if the given matrix is tree-
realizable. Although these were designed primarily for non-negative weight realizations,
the following algorithm (derived from Boesch [8, theorem II]) equally applies for the
general case.

Given an n X n distance matrix D = [di(-] which is tree-realizable, choose a reference
vertex, say vn , and construct the (n — 1) X (n — 1) matrix Q = [<?,,] where:

?.,• = \{din + din — da), i, j ^ n.

The reader can easily verify that: q,, = length of the elementary path between vertex
Vi and vertex v„ (= din), and qit = length of the path that is common to the elementary
paths from v< to vn and from vf to v„ . Having Q, the reader can convince himself that it
is simple to draw the tree [12].

5. The distance matrix and the hypertree realization. Given an n X n matrix
D = [d{i], necessary and sufficient conditions for the existence of an n-vertex digraph G
having D as its distance matrix are:

1) dti = 0
2) da + dik > dik for all i, j and k.

The n-vertex digraph G realizing D can be constructed as follows: pick n vertices, labeling
them i>i , t>2 , • • • , vn , and for every finite entry d,,- {i ^ j) of D draw an arc e(i\ , vt)
assigning to it the weight d,; . The construction shows that G has no cycles of negative
length. The condition da > 0 for all i and j is necessary only if a non-negative weight
realization is required. If no such restriction is placed on the type of weights in a realiza-
tion of D then, we can state the following theorem [12].

Theorem 4: Any n X n matrix D — [d,-,] with zero diagonal elements is the distance
matrix of some digraph G.

Let us define a strongly connected digraph G as a digraph in which for every two
vertices v< and u,-, d(y{, Vj) and d(Vj, v<) are finite. Thus the distance matrix D = [<i.-/] of
a strongly connected digraph is asymmetric, has zero diagonal elements and finite
entries. By Theorem 4 any square matrix D = [d,,] with zero diagonal elements and
finite entries is the distance matrix of some strongly connected digraph G. Hence such
a matrix may be called 'distance matrix' (in this section not necessarily symmetric)
and G its realization.
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Let D = [dif] be the distance matrix of a hypertree h. Consider four external vertices
Vi , vk , Vj and v, in h. A check will reveal that d+ d,.,-. = dilt-. + dilt-, and d,-,,-, +
diii, = ditil + di,i, for some permutation i\ , i2 , i3 , U of i, j, k and I. By adding the
two equations we obtain

+ d,-,,-,) + (di.i. + d,•,,•,) = (d<,<. + di4il) + (d,-,;, + d,

By Theorem 2, this proves that D + D' is the distance matrix of a tree, where D' is
the transpose of D. Let h be the tree realizing D + D'. Construct a tree t2 from h by
replacing each elementary pair in h by a branch of weight equal to the weight of the
elementary pair. If v,- and vf are two external vertices in t2, then by construction
dt,(vi > vi) ~ da + dH . Hence the distance matrix of the external vertices of l2 is D + I)'.
Since D + D' must have a unique circuitless realization (Theorem 3) ti and t2 are identical.

Theorem 5: Necessary and sufficient conditions for a distance matrix D = [d,-,] to be
realizable as a hypertree are:

1) that D + D' be the distance matrix oj a tree,
2) that da + dik + dki — dik + dkl + di{ for all distinct i, j, k.

Proof: The necessity of condition 1 has been proven above. The necessity of condi-
tion 2 should be clear. The sufficiency will be proved by induction on the order of D.
The case n = 3 is illustrated in Fig. 6. Suppose the theorem is true if D is of order n — 1.
Consider a distance matrix D of order n satisfying the theorem's conditions and let t be
the tree realization of D' = D + D'. Make external vertex vn a terminal vertex in t
(if it is not one already) by an elementary expansion in t. Let u be the vertex adjacent
to vn in t. We shall assume for the moment that u is either an external vertex or an internal
vertex with deg (u, t) > 4, with the weight of branch e(u, vn) equal to w„ . Construct the
hypertree hn-i whose distance matrix is the (n — 1) X (n — 1) leading principal sub-
matrix of D. Add vertex v„ to h„-i , connecting it with u through the elementary pair

d13"d23+d2l"x

d23-d2i+x

x is an arbitrary
finite real number

Fig. 6.
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with weights as shown in Fig. 7. Call h„ the resulting hypertree. Let us denote by d'(vt, i>,)
the distance between vertices v{, Vj in t and by d(vx , v,) their distance in hn. By construc-
tion d(yn , vt) = dnl. We also have d(v,_, vn) = d(wi ,u)+wn — dni + d(u, vt) = , u)
+ wn + d(u, Vj)] — dnl = (dlH + d„i) — d„, = d,„. Let vk be an arbitrary external vertex
in h„ . We must show that d(yk , vn) = dk„ and d(vn , vk) = . By construction we have
in t

d'(yn , v,) + d'(u, v„) = d'(vn , vk) + d'(u, vt)

or, since D' — D + D',

dnl + dln + d(u, vk) + d(vk , u) = dnk + dkn + d(u, vt) + d(vt , u). (1)

Since u, Vi , vt are vertices of a hypertree hn ,

d(u, v,) + d(Vi , vk) + d{vk , u) = d(u, vk) + d(vk , vj + d(vx , u)

and by the induction hypothesis this can be written

d(u, Vi) + dlk + d(vk , u) = d(u, vk) + dkl + d{vi , u). (2)

By condition 2 of the theorem,

dni + dlk + dkn = dnk + dkl + din • (3)

Eqs. (1), (2) and (3) give

dnk = dnl + d(u, vk) - d(u, v,).

But in h„ , d(vn, vk) = d(v„, u) + d(u, vk) = dnl + d(u, vk) — d{u, v,) = dnk . Similarly

w^d\+ ^(u, vt>

Fig. 7.
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d(vk , v„) = dt„ . Hence the theorem follows. The case where u is an internal vertex of
degree 3 in t is treated similarly as illustrated in Fig. 8, where a is an arbirtary weight.

Corollary: All hypertrees realizing a given distance matrix D have the same total
weight.

Theorem 6 [12]: // D is realizable as a hypertree h which has no redundant internal
vertices the?i h is geometrically unique (only tlie weights oj the corresponding arcs may differ).

The proof of Theorem 5 suggests an algorithm for constructing the hypertree h„ given
its distance matrix D. The algorithm is simple once the undirected tree with distance
matrix D + D' has been drawn.

6. The distance matrix and the directed tree realization. Given a digraph G with
m vertices, the reachability matrix R = [r,-,] between vertices vk, , vk, , • • • , vt. of G is
an n X n matrix (n < m) defined as follows:

r;i = 1 for all i,
r,j = 1 if there exists a directed path from vertex vki to vertex vtj ,
r i j = 0 otherwise (i ^ j).

Note that R does not depend on the weights of G. Define the incidence set of a vertex u
in digraph G as the set of all vertices w, in G such that e(u, u,) is an arc of G, and the
external incidence set of u in G as the set of all external vertices v, in G such that a directed
path exists from u to i\ in G. Define a block in G as a maximal subgraph B of G such that
every two arcs in B lie on a common circuit.

= w1+w2
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Given an n X n binary matrix R = [r<,] with unity diagonal elements, we would like
to determine whether there exists a directed tree having R as its reachability matrix.
A necessary and sufficient condition for R to be the reachability matrix of some digraph
G is r,,- . r,k < r,k for all i, j and k. Such a digraph can be constructed as follows: pick n
vertices, labeling them vx , v2, • • • ,vn, and connect vertices v{ and v,- (i -A j) with an arc
directed from r, to v, if and only if r,,- = 1. Clearly, the resulting digraph GR is an n-vertex
realization of the reachability matrix R. To avoid unnecessary complications we shall
assume that GR is a connected digraph.

Remove all redundant arcs from GR (an arc being redundant if its removal results in
a digraph with the same reachability matrix). If the resulting digraph GR is circuitless,
then R is the reachability matrix of the directed tree GR . Otherwise let Z?i be a block
in GR and v, , v2 , • • ■ , v, be vertices in Bl having the same incidence set in Bj , say
{v[ , v2 , ••• , v[ | (r, s > 2). Apply the following nullity reduction cycle: remove all
arcs e(pk , v'), k = 1, 2, • • • , r, j = 1, 2, • • • , s, add an internal vertex ii and draw
arcs e(vk , i{), e(ii , v') k = 1, 2, • • • , r, j = 1, 2, • • • , s. The resulting digraph GR has
the same reachability matrix as GR between external vertices but the nullity has been
reduced by r-s — (r + s) + 1. If GR is circuitless then we are finished. Otherwise a new
block B2 can be located and the above cycle repeated. We can now state the main theorem.

Theorem 7: If R is an n X n binary matrix with unity diagonal elements, then R is
the reachability matrix of a directed tree if and only if:

1) ru + Th < 1 i j
2) < r,k for all i, j and k
3) in a block Bi + l of GR containing no redundant elements there exist at least two

vertices with the same incidence set in Bi+1 .

Proof: The necessity of conditions 1 and 2 should be clear. The necessity of condi-
tion 3 is proved as follows. Let Bi+1 be a block in GR such that there exist no two vertices
in Bi+1 with the same incidence set in Bi+1 . Further, let TR be a directed tree realization
of the reachability matrix R. We first claim that if u is a vertex in Bi+1 then we shall
have either indeg (u, Bi+1) = 0 or outdeg (u, B,+1) = 0, We prove the claim as follows.
If u is an external vertex, the claim is obvious since R has a directed tree realization
Tr and GR has no redundant elements. Let u be an internal vertex in Bi+1 with indeg,
outdeg (u, Bi+i) > 1 and u, , u[ be vertices in Bi+l such that e(ul , u), e(u, u[) £ Bi+1
(see Fig. 9). Since Bi+1 is a block, there exists a circuit Cu in Bi+1 containing the above
two arcs. Also, the arc in Cu incident at Ui other than e(ui , u) is directed towards ux ,
since u has been introduced by a nullity reduction cycle. Thus indeg, outdeg (ui , Bi+1)
> 1. Hence uk must be an internal vertex. If the same reasoning is repeated with ux
using the same circuit C„ , etc., we conclude that C„ is a cycle. Thus in Bi+J we have
a cycle Cu containing only internal vertices. Since originally, in GR , no such cycle existed,
it must have been introduced by a sequence of nullity reduction cycles, which is a con-
tradiction. This proves the claim.

Let S, = {vi , v2, • ■ ■ , vr], S> = {ii, i2, • • • , i,} be the sets of external and internal
vertices in Bi+l respectively. Since, by hypothesis, GR contains no redundant elements,
the previous claim tells us that we can find for every ik £ Si an external vertex vik not
in Bi+1 such that a directed path exists from vik to ik. Let S„ = {v,-, , f,■,,••• , *>.-.} be
the set of such external vertices corresponding to St . Consider now the set of external
vertices S = {vx , v2, • • • , vr , v, v} in TR and let TR be the subtree of TR
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Fig. 9.

joining the vertices in S. If !T| contains no internal vertices, the block Bi+l in G% necessar-
ily contains redundant elements, which is a contradiction. Thus contains at least one
internal vertex and, therefore there exist at least two vertices in S of the same external
incidence set in T'l . Without loss of generality, let us assume that v, and vit are two
such vertices having v2 , v3 as their external incidence set in Tr . This implies that in
Gr we have directed paths from and i\. to v2 and v3 . Since by the previous Claim the
only directed path in Bi+l is an arc, the two vertices and i, in Bi+j have the same
incidence set v2 , v3 in Bi+1 , a contradiction. This proves the necessity of condition 3.
Sufficiency: using condition 2 we can always construct an n-vertex digraph G£ without
redundant arcs having reachability matrix R. Condition 3 gives a means of successively
reducing the nullity of the digraph. Since the graph is finite and the nullity reduction
cycle can always be applied as long as blocks exist in the digraph, the result will be a
directed tree with reachability matrix R. This completes the proof of Theorem 7.

Corollary: If R has a directed tree realization and uk in Bi+1 is the vertex of maximum
incidence set in Bi+1 then there exists at least one other vertex it, in Bi+1 of the same incidence
set as uk in Bi+1 .

Given an n X n matrix D — [d,-,] construct an n X n binary matrix RD = [r,-,] as
follows: set r,-,- = 1 if dif is finite and r,-,- = 0 otherwise.

Theorem 8: Given an n X n matrix D = [c?,,], necessary and sufficient conditions
for D to be the distance matrix of a directed tree are that:

1) Rd be the reachability matrix of a directed tree,
2) dik = da + dik if dik , da and dik are finite (i, j, k distinct),
3) dik + dn = dit + dik if dik , dit , dit and dik are finite (i, j, k, I distinct).
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Proof: The necessity of the above conditions should be obvious. The sufficiency is
proved as follows. If G% is the n-vertex digraph without redundant arcs realizing RD ,
set the weight of arc e(v,, y,) equal to d,,, for all i and j By condition 2, D(Gr) = D.
Then if Ui , u2 , ■ • • , ur are the vertices of the same incidence set u[ , u'2 , • • • , u', in
Bk of GkR~l and ik is the internal vertex introduced by the nullity reduction cycle, assign
weights to the arcs incident at ik as follows: set weight of arc e{ui , ik) = a (where a is an
arbitrary finite number), weight of e(ik, u') = weight of e(ut , u') in GkRx — a, and weight
of e(y,i, ik) — weight of e(w, , u[) in G1^1 — weight of e(ik , u[) for I — 2, 3, • • • , r and
j = 1, 2, • • • , s. Clearly the distance matrix between the external vertices of G'Jf1 equals
the distance matrix between the external vertices of G£ by construction and condition 3.

Theorem 7, its corollary, and Theorem 8 suggest an algorithm for constructing a
directed tree realization of D, if one exists.

It can be shown [12] that if T is a directed tree realization of the n X n matrix D,
without redundant internal vertices, then T is geometrically unique.

7. Conclusion. Necessary and sufficient conditions for realizing a distance matrix
as a tree, hypertree and directed tree were given and proved. Algorithms for their realiza-
tion were suggested and the uniqueness of these realizations was discussed. It was found
that the tree realization of a distance matrix is unique, the hypertree realization is
geometrically unique with a constant total sum of weights and the directed tree realize
tion is only geometrically unique.

The basic problem of finding the 'optimum' realization (i.e. the realization with the
minumum total sum of weights) of a distance matrix as an undirected graph or digraph
continues to be unsolved in the general case. The problem of finding distances in graphs
with negative weight branches and in digraphs with negative weight cycles is also
unsolved.
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