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The Distance–Similarity Metaphor in Network-
Display Spatializations

Sara Irina Fabrikant, Daniel R. Montello, 
Marco Ruocco, and Richard S. Middleton

ABSTRACT: Dimensionality reduction algorithms are applied in the field of information visualization 
to generate low-dimensional, visuo-spatial displays of complex, multivariate databases—spatializa-
tions. Most popular dimensionality reduction algorithms project relatedness in data content among 
entities in an information space (e.g., semantic similarity) onto some form of distance among the 
entities, such that semantically similar documents are placed closer to one another than less similar 
ones. In previous studies of point-display spatializations we have shown that people indeed associ-
ate metric straight-line inter-point distances with the semantic dissimilarity of documents depicted 
as points in two-dimensional space. In this paper we investigate the strategies viewers employ when 
conflicting notions of distance (straight-line metric vs. network metric vs. topological proximity) are 
jointly shown in a spatialized network display of Reuters news articles depicted as points connected 
by links.  We report empirical results of an experiment where viewers are asked to assess document 
similarity, depending on various distance types. We also investigate how cartographic symbolization 
principles (the use of visual variables, such as size, color hue, and value) influence similarity judgments. 
These findings provide rare empirical evidence for generally accepted design practices within the 
cartographic community (e.g., the effects of visual variables). In addition, empirical results from this 
and related studies can be used to develop design guidelines for constructing cognitively adequate 
spatializations for knowledge discovery in very large databases. We conclude by presenting design 
guidelines for network spatializations within the context of cartographic practice and theory. 
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Introduction

Spatialization is the process of generating 
an information display of non-spatial data.  
Information spatialization is inspired by 

the intuition that spatial or graphical displays (e.g., 
maps, charts, photographs, diagrams) can help to 
amplify cognition (Tversky 2000), whether or not 
viewers are familiar with the construction details 
of the viewed display (Card et al. 1999).  Generally, 
non-expert viewers do not know how spatializa-
tions are created and are not told through legends 
or other traditional map marginalia how to inter-
pret the displays.  

Spatializations typically rely on dimension reduc-
tion techniques (e.g., multidimensional scaling, 
self-organizing maps) and layout algorithms (e.g., 
energy minimization/force-feedback models) to 
project relatedness (e.g., similarity) in non-spatial 
data content onto distance, such that semantically 
similar documents are placed closer to one another 
than are less similar ones in an information space 
(Börner et al. 2003). We have coined this widely 
applied design principle the “distance–similarity 
metaphor” (Montello et al. 2003). In information 

visualizations (Chen 1999), especially those depicting 
knowledge-domains (Chen 2003), node-link displays 
are popular graphical devices for expressing the 
distance–similarity metaphor. A good example is 
the TouchGraph Google Browser1, which provides 
a node-link display as a graphical user interface to 
Google’s “what’s related” search option, used to find 
web pages similar to a queried page.

Figure 1 depicts a network of web pages related to 
the highlighted web page labeled “Saraland” in the 
center of the display (the web page belongs to the 
first author). The placement of the nodes is achieved 
with a force-feedback graph-layout algorithm (e.g., 
Kamada and Kawai 1989). Nodes are re-arranged 
in a spring-like fashion, so that connected web sites 
not only get linked, but more strongly connected web 
sites contract towards each other in the spatialization. 
The resulting configuration is modified aesthetically, 
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including reducing edge crossings to a minimum and 
evening edge lengths to achieve a balanced and visu-
ally pleasing layout.

Especially popular as a way to depict semantic related-
ness has been the Pathfinder Network Scaling (PFNET) 
approach, derived from author co-citation analyses or 
word co-occurrences in text documents. Dominant rela-
tionships in proximity data are represented as a 2D or 
a 3D graph in PFNETs, and when depicted in 2D, the 
PFNET looks like a network map, similar to the one 
depicted in Figure 1. PFNET computes a pattern of 
links based on pair-wise assessment of proximity infor-
mation associated with nodes in the graph. Although 
all the nodes are included in the PFNET, the network 
is typically computed with a minimum of links, such 
that only the strongest proximity relationships between 
nodes are depicted, as shown in Figure 2.  

Figure 2 depicts a subset of a larger PFNET of Reuters 
news articles. The whole network contains 504 docu-

ments of randomly selected news stories, collected during 
February 9-10, 2000 (Fabrikant 2001). The nodes rep-
resent individual news articles and the links represent 
semantic relationships between the articles based on an 
analysis of word co-occurrence computed by the latent 
semantic analysis techniques (LSI) (Deerwester et al. 
1990). The labels were extracted automatically from the 
article to indicate the main themes of the documents2. 
In essence, a PFNET graph is akin to a minimum span-
ning tree. Which nodes get linked is determined by a 
chosen direct-distance metric, but unlike the minimum 
spanning tree, the triangle inequality requirement for 
metric spaces is relaxed (Schvaneveldt 1990).

Background 

Point-display spatializations (e.g., multidimen-
sional scaling plots) depict documents as unlinked 
points in space, semantic relatedness being reflected 

2 We would like to thank Dr. Bruce Rex at the Pacific Northwest National Laboratory for providing us with the Reuters news database.

Figure 1. Network spatialization display depicting linkage relationships between the first author’s web site and other sites 

on the web.
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in the proximity relationships of the points 
(Montello et al. 2003). The distance–similarity 
metaphor on a Pathfinder Network map, how-
ever, may operate at a variety of conceptual 
levels besides just straight-line or direct distance.  
Consider a geographic network transportation 
map such as the famous London Underground 
chart shown below in Figure 3 (network maps 
are discussed by Ruggles and Armstrong 1997).  
This network map depicts underground stops as 
nodes and the connections between them as links. 
Several distance types are jointly shown on one 
map display: 
• Physical separation between locations mea-

sured along a straight-line, across the network 
(direct metric distance);

• Physical separation between locations mea-
sured along the network links (network metric 
distance); and

• Nonmetric measures of proximity, such as the 
number of nodes or stops between source and 
destination along the links (network topology).

When inspecting the map in Figure 3 it may not 
be obvious to a first-time visitor to London which 
Tube stop is closest to Cannon Street (labeled A in 
Figure 3)—Blackfriars (1) because it is closer when 
traveling on the network, or St. Paul’s (2) because 
it is closer in direct distance? If direct distance is 
not considered at all, do people use the number of 
stops between source and destination as a distance 
measure, or do they use the metric length on the 
map of the route between source and destination?

The London Underground map is a noteworthy 
example in the context of our study on network 
spatializations in many respects.  First, it is consid-
ered a classic in information design history (Garland 

1995). Mass transit maps depict a geographic net-
work, but one in which the locations and distances 
between real-world places are typically systematically 
distorted, and are thus geographically inaccurate. 
Distance relationships on transportation maps are 
often distorted by the graphic designer in order 
to improve legibility of the graphic layout. The 
design emphasis is on the topology of the network, 
not the accuracy of the metric space. Often, angles 
are re-aligned to the cardinal directions (N-S-E-W), 
resulting in easily perceivable edge orientations of 
0°, 45°, and 90° angles3. Transportation charts are 
a good example of attempts to achieve cognitive 
adequacy in graphic design. Their design reflects an 
implicit cognitive theory that travelers only need or 
want information about topology in order to get to 
destinations efficiently on subways.  Also, cognitive 
research has confirmed that people tend to align 
the true orientation of geographic features along 
the orthogonal axes in their mental maps of real 
places (Montello 1991; Tversky 1981) .

One of the tenets of information visualization is 
that spatialized displays work because they can be 
intuitively explored as if they represent real-world 
space (Wise 1999). Considering issues of cognitive 
adequacy in real-world network maps (e.g., the 
London Tube map), the research question arises 
as to whether the interpretation of metaphorical 
networks (such as Figures 1 and 2) may be differ-
ent from the interpretation of real-world networks, 
more variable and less tied to assumptions about real 
space. Considering how plausible it is that people 
make judgment errors about the closeness of places 
depicted on subway maps—due to erroneous distance 
relationships introduced by the graphic designer to 
make a nice looking layout—how do people perceive 
semantic similarity expressed via graphic distance on 
network-display spatializations? As mentioned above, 
designers also systematically distort network spatial-
izations, such as those shown in Figures 1 and 2, in 
order to generate what they believe to be cognitively 
adequate and aesthetically pleasing displays.

In previous studies, we have shown how the dis-
tance–similarity metaphor works in point- and sur-
face-display spatializations (Fabrikant and Buttenfield 
2001; Montello et al. 2003). People indeed associ-
ate metric graphical interpoint distances with the 
semantic similarity of text documents depicted in 
2D and 3D. However, these studies also show that 
non-spatial visual variables, such as color hue and 
value, affect test outcomes for surface and point 
spatializations (Fabrikant 2003). 

Figure 2. A force-directed graph depicting a Pathfinder Network 

of Reuters news stories. 

3 An excellent map animation (Macromedia Flash) showing the distortion of the 2003 Tube map compared to the actual layout of the London 

underground is provided at http://tube.tfl.gov.uk/content/tubemap/default.asp#flash.

http://tube.tfl.gov.uk/content/tubemap/default.asp#flash
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Presence of color improves the number of cor-
rect responses and can enhance or confuse the 
distance–similarity metaphor. Response times 
increased when the two Gestalt grouping principles 
of similarity and proximity were displayed jointly in 
a conflicting manner. Participants took additional 
time to decide how to resolve the visual conflict. If 
the color of the closest point/area is the same as of 
the reference point/area, response times are shorter 
and accuracy is increased. For surface spatializations, 
for example, applying color progressions based 
on the cartographic convention “darker is more” 
seems to increase the accuracy of responses and 
reduce response times. Interestingly, this provides 
an example where cartographic conventions even 
supersede environmental perceptual cues. When 
evaluating the metaphorical mapping of informa-
tion density onto the spatial metaphor of clustering 
(as suggested by Wise 1999), surfaces in 2D and 3D 
that were rendered with a color range simulating 
natural terrain with “snow capped mountains” (white 
at the top of the color range) yielded less accurate 
responses than surfaces rendered with the inverted 
color range (Fabrikant 2003).

We are motivated by the general research ques-
tion of how people decode the distance–similarity 
information embedded in network spatializations, 
and specifically what type of distance is equated with 
similarity, how it is equated, and how non-spatial 
visual variables (e.g., color, texture, and size) might 
influence people’s similarity judgments.

Experiments

In the present research, we conduct two experi-
ments with non-expert users on the interpretation 
of the distance–similarity metaphor in node-link 
displays, similar to those shown in Figures 1 and 
2. We call such information visualizations network-
display spatializations. Each node represents an 
information-bearing entity such as a book, web 
site, or news story, and the links reveal the under-
lying semantic similarity between the information 
entities. In our experiments, we investigate how 
users interpret network-display spatializations to 
infer similarity relationships. 
 In different trials, participants make similarity 
judgments while viewing network displays that 
vary the spatial relationship between two pairs of 
comparison points (documents), the context pro-
vided by the network structure in the display, and 
the visual characteristics of the network links. We 
are specifically interested in the distance interpre-
tation strategies viewers employ when conflicting 
notions of distance (e.g., direct distance vs. net-

work distance) are jointly shown in a spatialized 
network layout of information documents such as 
news articles. Our work also investigates how non-
distance factors (i.e., non-spatial visual variables) 
may influence people’s similarity assessments. A 
third research question we pursue is how various 
types of distances may interact with non-distance 
factors such as the visual variables of size, color value, 
and hue that are commonly employed on maps. Our 
research is guided by geographic information theory, 
including cartographic design principles, and by psy-
chological research on the perception and cognition 
of distance and similarity. 

Experiment 1

In Experiment 1, we investigated how non-expert 
users interpret simple network spatializations, like 
those in PFNET maps. In addition to an initial 
exploration of how users interpret such displays, 
we wanted to test our data-collection methods, 
including our similarity comparison request and 
rating scale. We showed research participants 
computer displays of simple networks, explaining 
that the points at the nodes represented docu-
ments. Three of the document points were labeled 
‘A,’ ‘1,’ and ‘2’; participants were asked to compare 
the similarity of A and 1 to the similarity of A 
and 2. A 9-point scale was provided for them to 
express their judgments of similarity on an inter-
val scale. For the purpose of statistical analysis, we 
treated these scales as interval-level data so we 
could apply parametric techniques that are more 
powerful and flexible.  This is commonly done in 
the psychometric literature, and it is justified in as 
much as such scales have been shown to approxi-
mate interval measurement rather than mere ordi-
nal ranks (e.g., Howell 2002), even though they do 
not produce exactly equal intervals.

Figure 3. A subset of the London Underground Map (© Transport 

for London).
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Thus, the main task of the experiment required 
participants to compare the relative similarity of two 
pairs of document points, interconnected by network 
links. We varied the network displays across trials 
with respect to the distances between comparison 
points in three ways:
1. Direct—direct (or straight-line) metric distance 

between points, ignoring the network structure; 
2. Network—network metric distance between 

points, measured along network links; and
3. Node—the number of nodes intervening between 

points, essentially a qualitative expression of 
proximity. 

In addition to the network trials, this first experiment 
also tested other spatialization metaphors, namely 
points without networks and points within regions. 
Results from trials involving point spatializations are 
reported in Montello et al. (2003); results involving 
regions will be reported in a forthcoming paper. In 
the present paper, we focus exclusively on reporting 
results from the network displays.

Methods

Participants. Forty-four students (25 males and 19 
females with a mean age of 21.0 years) from an 
undergraduate regional geography class took part 
in the experiment. They received a small amount 
of course credit in return for their participation. 
Given the background data collected in the pre-
test questionnaire, the test population for both 
experiments was judged to be a good sample of the 
desired novice user population. The vast majority 
of the participants rated their map reading ability 
as average, have used maps only occasionally, and 
have never had training in cartography, GIS, com-
puter graphics, or graphic design. 

Materials. Participants viewed computer dis-
plays created using the Environmental Systems 
Research Institute’s (ESRI) ArcMap and composed 
of black points connected by blue network links 
(all points were on the network). The displays were 
inspired by PFNET displays such as that in Figure 
2 but were not actual PFNET outputs. Each point 
was intended to represent a single document in a 
digital database. In each display, three points to be 
compared for similarity were labeled with red text 
as ‘A,’ ‘1,’ and ‘2’ (see Figure 4). Participants were 
prompted to “compare the similarity between 
document A and document 1 with the similar-
ity between document A and document 2.” They 
rated similarity on a 9-point scale ranging left to 
right from ‘5’ to ‘1’ and then back up to ‘5.’ On the 
left, ‘5’ was labeled “Documents A and 1 are much 
more similar to each other.” In the middle, ‘1’ was 
labeled “1 and 2 are equally similar to A.” On the 
right, ‘5’ was labeled “Documents A and 2 are 
much more similar to each other.” In this paper, 
we refer to the pair of documents A and 1 as ‘A:1’ 
and A and 2 as ‘A:2.’

Participants viewed 10 different network trials in 
a block (as mentioned above, they also viewed 30 
additional trials involving other display metaphors). 
The network displays were varied to allow comparisons 
of the effects of different distance relationships on 
judged similarity. Three different distance relation-
ships were available in each display: Direct, Network, 
and Node. These were varied across trials in order 
to allow comparisons of the relative importance of 
each in judgments of similarity. Graphical elements 
that we did not expect to affect similarity judgments 
(such as the absolute location of the point on the 
screen) were varied non-systematically.

Participants were introduced to the concept of 
similarity, the style of the trials, and the format of 
the response scale through three practice trials at 
the beginning of the test. To avoid priming any par-
ticular equivalence between distance and similarity, 
the practice trials prompted judgments of non-dis-
tance similarity (by asking for a comparison of the 
similarity of images of, e.g., a pet dog, a domestic 
cat, and a tiger). Participants also responded to 11 
pre-test questions about their personal backgrounds, 
including questions on age, gender, the presence 
of visual impairments (including specifically color 
blindness), as well as their formal experiences in 
such areas as cartography and GIS. After the main 
test questions, participants responded to 28 post-test 
questions that asked, for example, how useful they 
thought each display type was for rating similarity 
and how easy it was to judge similarities for each 
display type. Participants also indicated how they 

Figure 4. Sample screenshot from an Experiment 1 trial, 

showing display, similarity question, and rating scale as 

they appeared to participants.
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had judged similarity and whether the displays 
reminded them of anything.

The experiment was administered using a Windows 
2000 Pentium III personal computer. The interface 
was programmed with Microsoft Visual Basic 6.0. 
Images were projected onto a back-projection screen 
using an RGB color projector, generating an image 
size of 1.8 meters wide and 1.4 meters high, at 0.6 
meters above the floor. Participants sat at a viewing 
table 2.7 meters in front of the screen, which enabled 
a horizontal viewing angle of slightly less than 40°. 
A standard mouse and keyboard were used to answer 
questions. Answers were recorded automatically and 
stored digitally, including the time required to make 
similarity judgments. Response time was measured 
as the elapsed time in milliseconds between the trial 
display appearing on the screen and the participant 
proceeding to the next trial.
Procedure. Participants were first told they would 
be presented with a series of trials about “diagrams 
that show an information collection from our com-
puter database. The database contains documents 
such as news stories, books, and journal articles.” 
Participants were told that each document would 
be shown as a single point.  No information was 
provided on how to judge similarity and no mean-
ing was attached to the graphical elements other 
than the points. Participants were assured that 
there were no right or wrong answers, and they 
were asked not to waste time, as their answers 
would be timed.

Participants then answered the pre-test questions 
and performed the practice trials.  The practice 
trials allowed participants to get comfortable with 
the test environment and gave them the opportunity 
to practice answering the questions by clicking on 
the desired number on the rating scale. Following 
that, participants responded to the main test trials 
organized into separate blocks (the block of network 
displays plus blocks of the other display types), so 
that participants rated all trials of one display type 
before turning to another type. Trials within each 
block were presented in a different randomized order 
for each participant. After completing the main test 
trials, participants answered the post-test questions, 
were marked down for credit, and thanked for their 
participation.

Results and Discussion

Similarity ratings were treated as 9-point interval 
scales, by scoring a response of ‘5’ to the far left (“A 
and 1 much more similar”) as a ‘1,’ a response of 
‘5’ to the far right (“A and 2 much more similar”) 
as a ‘9,’ and a response of ‘1’ in the middle (“1 and 
2 equally similar to A”) as a ‘5’ (see Figure 4). Thus 

a mean rating less than 5.0 indicates that partici-
pants saw A:1 as more similar, while a mean rating 
greater than 5.0 indicates they saw A:2 as more 
similar. Differences from equal similarity between 
A:1 and A:2 were thus tested with t-scores based 
on the difference of the mean similarity rating 
from 5.0.

An examination of similarity ratings for specific 
trials suggests the relevance of Network distance 
over Direct and Node distances. Figure 5 depicts 
a trial in which all three types of distance (Direct, 
Network, Node) were equal between A:1 and A:2. 
As expected, the mean similarity rating of 5.2 (sd = 
1.6) was not significantly different from 5.0 for this 
trial (t[43]  = 0.75). 

Figure 6 depicts a trial in which Direct and Network 
distance were equal between A:1 and A:2, but Node 

Figure 5. Sample display and similarity rating for trial of 

Experiment 1.  All three types of distance are equal for A:

1 and A:2 in this trial; consequently, the two pairs of com-

parison documents were rated as equally similar.

Figure 6. Sample display and similarity rating for trial of 

Experiment 1.  Direct and Network distances are equal for 

A:1 and A:2 in this trial, while Node distance is much greater 

for A:2 than A:1.  The two pairs of comparison documents 

were again rated as equally similar.



D
el

iv
er

ed
 b

y 
P

ub
lis

hi
ng

 T
ec

hn
ol

og
y 

to
: U

ni
ve

rs
itÃ

¤t
 Z

Ã
¼

ric
h 

IP
: 1

30
.6

0.
16

.1
08

 o
n:

 W
ed

, 0
8 

D
ec

 2
01

0 
16

:3
5:

41
C

op
yr

ig
ht

 (
c)

 C
ar

to
gr

ap
hy

 a
nd

 G
eo

gr
ap

hi
c 

In
fo

rm
at

io
n 

S
oc

ie
ty

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Vol. 31, No. 4 243 

distance was much greater for A:2 (four interven-
ing nodes) than A:1 (one intervening node). Again, 
however, the mean similarity rating of 5.0 (sd = 2.0) 
was not significantly different from 5.0 for this trial 
(t[43] = 0.16). This suggests that participants did not 
interpret Node distance as relevant to similarity. 

Finally, Figure 7 depicts a trial in which Direct 
distance was much greater (about twice) between 
A:2 than between A:1, but Network distance was 
greater for A:1 than A:2 (again about twice). The 
mean similarity rating of 6.5 (sd = 2.1) was signifi-
cantly greater than 5.0 for this trial (t[43] = 4.82, 
p<.001). This shows that participants interpreted 
Network distance, and not Direct distance, as relevant 
to similarity. The pattern of results suggested by 
these three example trials—the influence of Network 
distance on similarity, and the lack of influence of 
Direct and Node distances—was supported by the 
results of all 10 trials of Experiment 1.

To interpret these data more systematically, we 
aggregated mean similarity judgments for each type 
of distance across trials that displayed the relation-
ship of the distances A:1 and A:2 in the same way. 
That is, for each of the three types of distance, we 
compared the subset of trials (of 10) that equated 
the distances between A:1 and A:2 to the remaining 
subset of trials, in which the distance between A:1 
was either less or greater than the distance between 
A:2. Similarity ratings for trials in which A:2 were 
closer were reverse-scored to allow aggregation with 
trials in which A:1 were closer. Table 1 presents mean 
similarity ratings for the trials aggregated into these 
two subsets, for each type of distance. 

When A:1 and A:2 were the same distance apart for 
all three types of distance, mean similarity ratings 
for A:1 and A:2 were very close to a neutral rating of 
exactly 5.0. In the case of Direct distance, the mean 

similarity of 5.3 was significantly different from 5.0, 
given the small standard deviation of this aggregated 
test, but this can be explained by the fact that in a 
couple of trials in which Direct distance was equal, 
Network distance was unequal. Conversely, in trials 
in which the Network distances between A:1 and A:
2 were different, mean similarity was significantly 
greater for the closer pair of documents (by over 
a full scale point of similarity). No such difference 
for trials differing in Direct Distance was found. In 
trials in which A:1 and A:2 differed in Node distance, 
mean similarity was again significantly greater for 
the closer pair of documents (by just over a half-scale 
point of similarity). This apparently reflects the fact 
that Node distance was strongly correlated (>.80) 
with Network distance in our stimulus set. In trials 
where the Network and Node distance diverged 
(Figure 6 provides a good example), Network dis-
tance rather than Node distance clearly determined 
rated similarity.

We took another systematic approach to interpret-
ing our data. The aggregated means presented above 
only address whether the three types of distance 
had any relation to similarity judgments. But one 
might expect the distance–similarity metaphor to 
imply that viewers of spatializations will quantita-
tively equate map distance with similarity (actually 
dissimilarity), at least approximately. If so, the 
degree of distance separation will be equivalent to 
the degree of similarity (i.e., twice a difference in 
distance will be interpreted as twice a difference in 
similarity). To evaluate this in the data, we calcu-
lated mean correlations of each of the three types 
of distance with rated similarity. Three Pearson’s 
correlation coefficients were calculated separately 
for each participant, with the number of pairs of 
data points equal to the number of network trials 
(10 in this case). These correlations were strongest 
for Network distances: They were positive for 36 
of the 44 participants, and averaged .49 across all 
participants (after transformation by Fisher’s r-to-
z). Based on a t-test calculated on the z-scores, this 

Figure 7. Sample display and similarity rating for trial of 

Experiment 1.  Network and Node distances are greater for 

A:1 than for A:2, while Direct distance is greater for A:2.  A:

2 is rated as significantly more similar than A:1.

Type of Distance
Relationship of Distances A:1 and A:2

A:1=A:2 A:1<A:2

Networka   5.0      3.8***

Directb    5.3**              5.1

 Nodec 5.2 6.1***  

Table 1. Mean similarity ratings for trials in which network, 

direct, and node distances A:1 and A:2 equaled or differed, 

Experiment 1.

Notes. N=44 participants. aA:1=A:2 for 6 trials, A:1<A:2 for 4 trials. bA:

1=A:2 for 7 trials, A:1<A:2 for 3 trials. cA:1=A:2 for 2 trials, A:1<A:2 

for 8 trials. *p < .05, **p < .01, ***p < .001, significance of difference 

from neutral similarity 5.0.
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correlation is significantly greater than 0, t(43) = 
6.76, p<.001. The correlation of rated similarity with 
Direct distance was weak (.14).  The correlation of 
rated similarity with Node distance was strong (.40), 
but this again reflects the fact that Node distance 
was inadvertently correlated with Network distance 
in our stimulus set.

Participants took a mean of 13.4 seconds (SD = 9.1 
s) to respond to each network-display trial (the fastest 
mean response over all network trials was 5.3 s, the 
slowest was 56.8 s). Response-time varied significantly 
as a function of the order in which participants saw the 
block of network-display trials, F(2, 41) = 4.79, p<.05. 
Participants got faster as the experiment proceeded: 
Mean time-to-rate similarity for network displays in 
the first, second, and third block of trials was 17.9 s, 
11.9 s, and 9.3 s, respectively.

Experiment 2

In our second experiment, we attempted to rep-
licate and extend the results we obtained with 
network-display spatializations in our first experi-
ment. First, we wanted to find out if our conclusion 
from Experiment 1 about the important role of 
Network distance (metric distance along network 
links) in similarity judgments, over Direct and 
Node distance, would be replicated with a new 
set of displays viewed by a new set of participants. 
Our comparison of Network-to-Node distances 
in Experiment 1, in particular, was confounded 
somewhat by the fact that these two types of dis-
tance were strongly correlated in our stimulus set.
    We also wanted to examine the way three non-
spatial visual variables might affect judgments of 
similarity in network displays, namely the width, 
value (lightness), and hue of links connecting 
comparison documents. These link variables may 
affect judgments of similarity in at least three, 

nonexclusive, ways. First, the absolute or rela-
tive level of the link variable may be semantically 
mapped onto similarity (e.g., dark or darker may 
be interpreted as more similar). A second possibil-
ity is that the level of the link variable may connote 
similarity, depending on the levels of other links 
or the surrounding context (e.g., darker may mean 
more similar only when it is embedded in a field 
of lighter links). A third possibility is that homoge-
neous link structures will connote greater similar-
ity than heterogeneous link structures, no matter 
their absolute or relative levels (e.g., all light links 
connecting two documents indicates greater simi-
larity than do links mixed in value).

Methods

Participants. Thirty-five students (18 males and 17 
females with a mean age of 19.8 years) from an 
undergraduate introductory human geography 
class took part in the experiment. They received a 
small amount of course credit in return for their par-
ticipation. None had participated in Experiment 1.
Materials. As in Experiment 1, participants viewed 
computer displays composed of different graphi-
cal elements. However, only network displays 
were tested in this experiment. All displays again 
included black points, with three points to be 
compared for similarity labeled as ‘A,’ ‘1,’ and 
‘2.’ Participants again judged similarity, using the 
same scale as in Experiment 1. There were 65 net-
work trials in this experiment, which were again 
varied systematically to allow comparisons of the 
effects of different visual variables on judgments 
of similarity.

Because only Network distance had been found 
relevant in Experiment 1, all trials in Experiment 2 
varied Network distances between A:1 and A:2 but 
maintained equal Direct distances. Node distances 

Figure 8. Sample display for a width trial of Experiment 2.  

A:1 is connected by mixed width links; A:2 is connected 

by all thick links.

Figure 9. Sample display for a value trial of Experiment 2.  

A:1 is connected by all dark links; A:2 is connected by all 

light links.
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were also varied in 17 of the 65 trials that were 
essentially replications of the trials in Experiment 
1. Because Network and Node distances were so 
strongly correlated in Experiment 1, we included 
these trials in order to more clearly establish whether 
Network distance rather than Node distance would 
be interpreted as indicating similarity relationships.  
The remaining 48 trials varied not only Network 
distances, but also a non-spatial visual variable.  Of 
these trials, 15 varied the width of the blue network 
links. 

Three levels of width were used: thin, medium, and 
thick (links in the replication trials were thick). Various 
trials displayed comparison links differing in width 
(all thick compared to all thin or all medium) or they 
were mixed in width (all thick compared to some 
mixture of the three widths) (Figure 8). Surrounding 
links (those not connecting the comparison docu-
ments) were mixed in width. In addition to the 
replication and width trials, another 15 trials kept 
the widths equal (thick) but varied the value of the 
blue network links. Three levels of value were used: 
light, medium, and dark (links in the replication trials 
were dark). Various trials displayed comparison links 
differing in value (all dark compared to all light or 
all medium) or mixed in value (all dark compared 
to some mixture of the three values) (e.g., Figure 9). 
Surrounding links were mixed in value. Finally, 18 
trials kept the values and widths of the links equal 
(dark and thick) but varied the hue of the links. Blue 
and green links were used. Various trials displayed 
comparison links of the same hue (both all green), 
differing in hue (all blue compared to all green), or 
mixed in hue (all green compared to blue-green) (e.g., 
Figure 10). Surrounding links were mixed blue and 
green. The color schemes utilized for all displays in 
this experiment were selected using ©ColorBrewer, 
an online tool to help designers select perceptually 

sound color schemes for maps and graphics (Brewer 
and Harrower 2002).

As in Experiment 1, participants first responded 
to five practice trials that did not involve distance 
comparisons. Participants also responded to 10 

“warm-up” trials that introduced them to network 
displays varying in value, width, and hue. Participants 
answered 45 post-test questions after the main test 
trials, including the same 11 questions used in 
Experiment 1 about their personal backgrounds 
(however, they were administered before the main 
test trials in Experiment 1). The additional post-
test questions were adapted from Experiment 1 to 
account for the new display types.
Procedure. Participants were tested as in Experiment 
1. However, the 65 experimental trials in this 
experiment were not grouped into blocks; rather, 
they were presented in completely randomized 
orders to each participant.

Results and Discussion

Two participants, one female and one male, were 
excluded from the analyses because they answered 
‘5’ (“A:1 and A:2 are equally similar”) to all trials 
of a given type (e.g., they rated all replication trials 
as ‘5’); this left a total of 33 participants.  As in 
Experiment 1, similarity ratings were scored so 
that a mean rating less than 5 indicates that par-
ticipants saw A:1 as more similar, while a mean 
rating greater than 5 indicates that participants 
saw A:2 as more similar.
Replication trials. Turning first to the replication 
trials, we find that the importance of Network 
distance over Node distance is clearly established. 
For example, Figure 11 depicts a trial in which 
Network distance is much greater (about three 
times) between A:1 than between A:2, but Node 

Figure 10. Sample display for a hue trial of Experiment 2.  

A:1 is connected by mixed hue links; A:2 is connected by 

all green links.

Figure 11. Sample display and similarity rating for replication 

trial of Experiment 2.  Network distance is greater for A:1 

than for A:2, while Node distance is greater for A:2.  A:2 is 

rated as significantly more similar than A:1.
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distance is greater for A:2 than A:1 (three vs. two 
intervening nodes). A:2 were rated as significantly 
more similar than A:1 for this trial (mean = 6.6, 
sd = 2.3, t[32]  = 4.00, p<.001).  This shows that 
participants interpreted Network distance, and 
not Node distance, as relevant to similarity. Table 
2 presents mean similarity ratings aggregated over 
trials that displayed the Network and Node dis-
tances A:1 and A:2 as equal or different.  

The table shows that documents connected by 
links shorter in Network distance are rated as 
more similar, while documents connected by links 
equal in Network distance are rated as equally 
similar (not significantly different from 5.0).  In 
contrast, documents connected by links equal in 
Node distance are rated as more similar if Network 
distances differ accordingly, while documents con-
nected by links shorter in Node distance are rated 
as equally similar if Network distances do not differ. 
As further evidence of the importance of Network 
distance (rather than Node distance) in the replica-
tion trials, we examined the mean correlations of 
Network and Node distance with rated similarity 
for 17 trials. These correlations are moderate for 
Network distances: they are positive for 25 of the 
33 participants, and average 0.38 across all partici-
pants. Based on a t-test calculated on the z-scores, 
this correlation is significantly greater than 0, t(32) 

= 4.03, p<.001.  The correlation of rated similarity 
with Node distance is very weak and non-significant 
(-.07); the fact that it is negative again reflects that 
in some trials in which Node distance was equal, 
Network distance was unequal. 
Width trials. In trials that varied link width, we 
found that this non-spatial visual variable greatly 
moderates the influence of Network distance. 
For example, Figure 12 depicts a trial in which 
Network distance is much greater (about three 
times) between A:2 than between A:1, but A:2 are 
connected by thick links while A:1 are connected 
by thin links. A:2 are rated as more similar than A:
1 (mean = 5.9, sd = 2.3, t[32] = 2.21, p<.05). In 
these trials, participants did not equate Network 
distance with similarity; most interpreted thicker 
links as indicating greater similarity.  Table 3 pres-
ents mean similarity ratings aggregated over trials 
that displayed the Network distances A:1 and A:2 
as equal or different, and contrasted thicker links 
to thinner links or to links mixed in width.  

The table shows that documents connected by 
links shorter in Network distance are not rated as 
being significantly more similar when the links differ 
in width, either homogeneously (e.g., all thick vs. 
all medium) or heterogeneously (e.g., all thick vs. 
mixed thick and medium).  Documents connected 

by links equal in Network distance but different 
in width are rated as being different in similarity; 
thicker links connote greater similarity than do 
thinner links, by over a full scale-point of similar-
ity. The non-visual variable of link width essentially 
eliminated the relationship of Network distance to 
similarity judgments. Thicker was interpreted as 
more similar than thinner. As would be expected, 
the mean correlation of Network distance with rated 
similarity for the 15 width trials is close to 0 (.05) 
and non-significant. The correlations were positive 
for only 15 of the 33 participants.
Value trials. With regard to trials that varied link 
value, we found that this non-spatial visual vari-
able also moderates the influence of Network 
distance, but not as strongly as does width. For 
example, Figure 13 depicts a trial in which 
Network distance is much greater (about three 
times) between A:1 than between A:2, but A:1 are 
connected by dark links while A:2 are connected 
by light links. The mean similarity rating of 5.4 
(sd = 2.5) is not significantly greater than 5.0 for 
this trial. This shows that participants no longer 

Type of Distance         

Relationship of Distances A:1 and 

A:2

A:1=A:2 A:1<A:2

Networka  5.3              4.0***

 Nodeb    5.2 6.1***        

Notes. N=33 participants, total #trials=17. aA:1=A:2 for 5 trials, A:1<A:

2 for 12 trials. bA:1=A:2 for 5 trials, A:1<A:2 for 12 trials. *p < .05, **p < 

.01, ***p < .001, significance of difference from neutral similarity 5.0.

Table 2. Mean similarity ratings for replication trials in 

which network and node distances A:1 and A:2 equaled or 

differed, Experiment 2.

Figure 12. Sample display and similarity rating for width trial 

of Experiment 2.  Network distance is greater for A:2 than 

for A:1, but A:2 is connected by thick links and A:1 by thin 

links.  A:2 is rated as significantly more similar than A:1.
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simply equated Network distance with similarity; 
darker links were apparently interpreted by many 
participants as indicating greater similarity than 
did lighter links. Table 4 presents mean similarity 
ratings aggregated over trials that displayed the 
Network distances A:1 and A:2 as equal or differ-
ent and contrasted darker links to lighter links or 
to links mixed in value.  

The table shows that documents connected by 
links shorter in Network distance are not rated as 
being significantly more similar when the links differ 
in value, either homogeneously (e.g., all dark vs. 
all medium) or heterogeneously (e.g., all dark vs. 
mixed dark and medium). Documents connected 
by links equal in Network distance but different in 
value are rated as being a bit different in similar-
ity; darker links connote greater similarity than 
do lighter or mixed links, though by only about 
a half scale point of similarity. This conclusion is 
bolstered by an examination of the mean correlation 
of Network distance with rated similarity for the 
15 value trials. This correlation is quite small (.14) 
and non-significant. The correlations were positive 
for only 16 of the 33 participants. The non-visual 
variable of value weakened the effect of Network 
distance on similarity judgments, but unlike width, 
to a less consensual degree across participants. 
Darker tended to be interpreted as more similar 
than lighter, though several participants saw it the 
other way around.
Hue trials. Turning to the trials that varied link 
hue, we find that this non-spatial visual variable 
also moderates the influence of Network distance, 
but in a much less consistent way than does width 
or value. Figure 14 depicts four trials that dem-
onstrate this. In (a), Network distance is greater 
for A:1 than for A:2, and both are connected by 
homogenously green links. The fact that A:2 is 
rated as significantly more similar than A:1 (mean 

= 6.3, sd = 2.0, t[32]  = 3.83, p<.001) suggests 
that Network distance is important to similarity 
judgments when hues are homogeneous, like the 
replication trials and the trials of Experiment 1. 

In (b), Network distance is again greater for A:1 
than for A:2, but the connecting link structures are 
green for A:1 and blue for A:2. The fact that A:1 and 
A:2 are rated as equally similar (mean = 4.6, sd = 
2.8, t[32] = 0.82, ns) suggests the moderating influ-
ence of hue on the relationship of Network distance 
to similarity; green is not preferred over blue, but 
the use of the two hues leads many participants to 
downplay the relevance of Network distance.

 In (c), Network distance is equal for A:1 and A:2, 
but the connecting link structures are homogenously 
green for A:1, and heterogeneously mixed green and 
blue for A:2. The fact that A:1 is rated as significantly 
more similar than A:2 (mean = 3.8, sd = 2.1, t[32]  

= 3.25, p<.01) suggests that homogeneous hues are 
interpreted as indicating greater similarity than are 
heterogeneously mixed links.  

Finally, in (d), Network distance is greater for 
A:2 than for A:1, but A:2 are again connected by 
homogenously green links while A:1 are connected 
by heterogeneous links that mix green and blue. 
The fact that A:1 is rated as significantly more 
similar than A:2 (mean = 4.1, sd = 2.4, t[32]  = 
2.13, p<.05) suggests the complex interrelationship 
of hue and distance to similarity; when Network 
distances differ, contrasts of hue homogeneity are 
ignored in favor of equating Network distance to 
similarity (although less strongly than when hues 
do not contrast).

Table 5 presents mean similarity ratings aggregated 
over trials that displayed the Network distances A:1 
and A:2 as equal or different, and contrasted green 
links to green links, to blue links, or to links mixed 
in hue.

The table shows that documents connected by 
links shorter in Network distance are rated as sig-
nificantly more similar when the links are the same 
hue. When links of one hue are compared to links 
of another hue, Network distance is ignored as a 
basis for similarity, but neither hue is interpreted 
consistently as reflecting greater similarity (at least 
when green is compared to blue).  Finally, when 
the links differ heterogeneously (all green is com-
pared to mixed green and blue), a more complex 

Width Relations

  of A:1, A:2   

Relationship of Network

 Distances A:1 and A:2

  A:1=A:2                     A:1<A:2

A:1 thicker, A:2 thinnera       3.9***             5.2  

A:1 thicker, A:2 mixedb        3.8***       5.5

Notes. N=33 participants, total #trials=15. a2 trials for =, 4 trials for <. b3 

trials for =, 6 trials for <.*p < .05, **p < .01, ***p < .001, significance 

of difference from neutral similarity 5.0.

Table 3. Mean similarity ratings for width trials in which network 

distances A:1 and A:2 equaled or differed, Experiment 2.

Value Relations

 of A:1, A:2           

Relationship of Network

Distances A:1 and A:2

A:1=A:2                     A:1<A:2

A:1 darker, A:2 lightera       4.4*           4.9  

 A:1 darker, A:2 mixedb       4.6*         4.6

Notes. N=33 participants, total #trials=15. a2 trials for =, 4 trials for <. b3 

trials for =, 6 trials for <.*p < .05, **p < .01, ***p < .001, significance 

of difference from neutral similarity 5.0.

Table 4. Mean similarity ratings for value trials in which network 

distances A:1 and A:2 equaled or differed, Experiment 2.
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pattern of similarity judgments results. Given 
equal Network distances, participants inter-
pret homogeneous links as connecting more 
similar documents than do heterogeneous 
links. However, when Network distances are 
unequal, participants judge similarity rather 
inconsistently:  Some base it on the distance 
relationships, others on the hue homogene-
ity.  As a result, there is no consistent effect of 
Network distance or hue variations in such cases.  
Given the undeniable moderating influence of 
hue, albeit of a somewhat complex nature, it 
is not surprising that the mean correlation of 
Network distance with rated similarity for the 
18 hue trials is small (.15) and non-significant. 
The correlations were positive for only 16 of 
the 33 participants.

Overall, participants in this experiment took 
a mean of 9.0 seconds (SD = 3.1 s) to respond 
to each network-display trial (the fastest mean 
response over all trials was 4.6 s, the slowest 
was 20.1 s). Responses differed somewhat as a func-
tion of the type of trials. They were fastest for the 
replication trials (8.5 s), slowest for the hue trials (9.5 
s), and intermediate for the width and value trials 
(9.0 s and 9.1 s, respectively). Responses differed 
significantly in a repeated-measures MANOVA, F(3, 
30) = 6.14, p<.01. This result corresponds well to 
the apparent complexity of similarity judgments 
participants had to make in the different trials, in 
particular the role the non-spatial visual variables 
played in moderating Network distance. Similarity 
in the replication trials depended only on Network 
distance. Similarity in the width and value trials 
depended on non-spatial visual variables in additive 
combinations with Network distance. Similarity in 
the hue trials depended on a complex combination 
of hue and Network distance.

Discussion

The results of the studies reported in this paper 
are consistent with findings from previous studies 
in that, all else being equal, participants indeed 
equate graphical inter-point distances with simi-
larity in spatialized displays; in other words, we 
find empirical support for the operation of the 
distance–similarity metaphor in network spatial-
izations (Fabrikant 2003; Montello et al. 2003). 
In addition, the outcomes of this research extend 
previous findings in several important ways. First, 
when viewing network spatializations, participants’ 
default tendency is to equate metric distance along 
network links with similarity, rather than direct 

distance across links or a topological measure of 
proximity such as the number of nodes.

 Second, the magnitude of judged similarity is 
directly (negatively) correlated with network dis-
tance. That is, participants tend to linearly decrease 
their ratings of similarity between documents as the 
metric distance along the network between them 
increases. This finding provides support and a novel 
wrinkle to the hypothesized principle we called the 

“First Law of Cognitive Geography” (Montello et al. 
2003), as expressed in the context of information 
visualization. By analogy to the well known First Law 
of Geography (Tobler 1970), the cognitive version 
states that people believe closer things to be more 
similar than distant things. For network spatializa-
tions, the First Law of Cognitive Geography appar-
ently manifests along the links of the network rather 
than uniformly across 2D metric space.

Our finding that metric distance along links is the 
visual variable that denotes similarity in network dis-
plays has important design implications for network 
spatializations that are treated with graph layout 
algorithms, as well as for real-world transportation 
charts that are systematically distorted for legibility 
and efficiency reasons, such as many urban mass 
transit maps. If cognitive adequacy is one of the 
desired goals for designing network spatializations, 
then our findings suggest that link lengths should 
not be distorted purely for aesthetic reasons, as is 
the case with graph layout algorithms. People utilize 
the length of the links to assess similarity between 
information bearing items on a network spatialization. 
We may even speculate that if people explore maps 
of abstract spaces as if they explored maps of the 
real world, systematic distance judgment errors may 

Figure 13. Sample display and similarity rating for value trial of 

Experiment 2.  Network distance is greater for A:1 than for A:2, but 

A:1 is connected by dark links and A:2 by light links.  A:1 and A:2 are 

rated as equally similar. 
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occur in transportation charts that distort network 
distance for legibility. Underground stations that 
are closer on the network would be seen closer, 
even if the map designer did not intend network 
distances to accurately portray relationships due to 
layout reasons. Very little research (see Berendt et al. 
1998) has tested people’s spatial knowledge from 
studying transportation maps where link lengths 
have been purposefully distorted, and thus are not 
true to real-world network distance. Given the wide-
spread use of such network maps in cities around 
the world, more empirical research on this topic is 
clearly needed.

Other major findings of our second experiment 
concern the effects of the non-distance visual variables 
of size (line width), color value (e.g., light blue vs. 
dark blue lines) and color hue (e.g., green vs. blue 
lines). These visual variables significantly moderate 
the distance–similarity metaphor in network spa-
tializations. Our findings are gratifying in that they 
provide empirical support for certain cartographic 
design conventions for geographic maps that have 
been practiced for hundreds of years, and that were 
more recently explicitly formalized in the seminal 
writings of French cartographer Jacques Bertin 

(1967; 1983); other cartographers have continued 
to update and revise these principles (Morrison 
1974; MacEachren 1995).

Although often forgotten, the first of Bertin’s 
seven visual variables is location—the location of 
the graphic mark with respect to the locations of 
other symbols on the map plane. In other words, 
the relative location of symbols in a graphic dis-
play is perceptually and thematically meaningful. 
This is in accordance with the Gestalt psycholo-
gists Wertheimer and Koffka (reviewed by Gregory 
(1987) and Goldstein (1989)) who posited that the 
arrangement of features in a picture or graphical 
image will influence the perceived thematic or group 
membership relations of elements. Our empirical 
results support these contentions in the context of 
information spatializations. The network emerges as 
a coherent feature from the background.  Network 
structures become visually more salient (i.e., emerge 
as figure), which makes distances along them the-
matically more relevant for judging similarities than 
are direct distances across the open space between 
network structures (i.e., ground). In our work on 
point-display spatializations reviewed above (Montello 
et al. 2003), we also found an emergent feature effect: 

Figure 14. Sample display and similarity rating for hue trials of Experiment 2.  The four panels depict the complex moderating 

effect of link hue on the relationship of network distance and similarity ratings.

(a) (b)

(c) (d)
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when the background points against which people 
view comparison points is suitably non-uniform (i.e., 
has uneven groupings), people perceive linear and 
cluster features of points that modify the operation 
of the distance–similarity metaphor.

Visual variables are used in cartography to pur-
posefully create figure-ground relationships, such 
that thematically relevant items become perceptu-
ally more salient. Bertin (1967; 1983) orders his 
remaining six variables according to the number of 
perceptual properties they carry.  The visual variables 
of size and color value are the second and third most 
important variables in his list, and this is one reason 
we chose them in our research. Bertin contended 
that only symbols varying in size can be (approxi-
mately) perceived quantitatively. He thus claimed 
that size is the only appropriate visual variable to 
numerically depict ratios between signs according 
to their associated attribute magnitudes.

The direct perceptual association of size with 
magnitude is so strong, according to Bertin, that 
no recourse to a legend would be necessary to convey 
this. Furthermore, Imhof (1972) recommends that 
only line width should be used for quantitative 
network maps. Our findings do support the car-
tographic design principle that size is a powerful 
quantitative visual variable for designing cognitively 
adequate network spatializations. When available, 
and without recourse to a legend, participants used 
the visual variable of link width (e.g., size) to assess 
the magnitude of similarity between documents in 
network spatializations, essentially ignoring the 
visual variable of network distance. 

When network links vary in width, the First Law 
of Cognitive Geography fails. It is notable, however, 
that the spatial metaphor of distance is supplanted 
by another spatial metaphor, in this case size. A 
variety of behavioral and cognitive scientists have 
discussed the cognitive and cross-cultural associa-
tion of size and magnitude (Gattis 2001; Keating 
1995; Lakoff 1987). For instance, the “larger/higher 
is more” metaphor is commonly found in everyday 
language, as in “the bank account is shrinking” or 

“the stock market is rising.” This spatial metaphor 
is one example of a set of image schemas that have 
been hypothesized to be at the core of human cogni-
tion (Lakoff, 1987).

Color value is the second dissociative visual vari-
able in Bertin’s set. Dissociative variables cause the 
visibility of the sign on the visual plane to vary. For 
example, differently sized symbols take more or less 
white space on the visual plane, or different shades 
of gray cover more or less white space of the visual 
plane. Unlike size, Bertin (1967; 1983) claimed that 
value cannot be used to quantify variations in attribute 

magnitude. It is an ordered visual variable, that is, 
items can be logically ordered without recourse to 
a legend, but differences in magnitude cannot be 
measured visually, according to Bertin. We did not 
design our experiments to directly evaluate whether 
this is true. As a cartographer would expect, however, 
the variable of value did weaken the operation of 
the network distance–similarity metaphor, but not 
as much as line width did.

In essence, while most participants in our second 
experiment saw thicker to mean more similar, they 
were of less consensus in their opinion as to whether 
darker or lighter meant more similar. We interpret 
this finding to mean that even if value does not 
require a legend to establish ranks or intervals, a 
legend is still necessary to provide semantic con-
text—to establish direction for the meaning of value. 
We contend that the “darker is more” or “lighter 
is more” principles are not uniformly self-evident 
in network spatializations; the maximum and the 
minimum values must be fixed in the legend to 
provide the direction (in a related vein, MacEachren 
and Mistrick 1992 found that whether a darker or 
lighter polygon is seen as figure or ground is rather 
inconsistent).

Although cartographers have often claimed that 
darker should be used for more (Brewer 1994; Dent 
1999), we believe this should not be considered a 
consistent general principle. As an example of a 
strong exception, if one were designing a thematic 
map to show the magnitude of sunshine in a given 
area, it would surely be cognitively inadequate design 
to depict more days of sunshine by darkening a 
cartographic symbol. The ambiguity of semantic 
direction in most contexts, however, makes color 
value a weaker visual variable than size, and its 
moderation of the distance–similarity metaphor 
is in fact weaker.

The third non-distance visual variable we tested, 
color hue, is neither quantitative nor ordered, accord-
ing to Bertin  (1967; 1983). He considered it to be 
one of the strongest selective visual variables. Color 
may act as a simplifying or clarifying agent in map 

Table 5. Mean similarity ratings for hue trials in which network 

distances A:1 and A:2 equaled or differed, Experiment 2.

Hue Relations

 of A:1, A:2 

Relationship of Network 

Distances A:1 and A:2

A:1=A:2                     A:1<A:2

Both greena             5.5        3.6***  

Green vs. blueb      4.8 5.0

Green vs. mixedc      3.8***               5.0                  

Notes. N=33 participants, total #trials=18. a1 trial for =, 2 trials for <. b1 

trial for =, 2 trials for <. c4 trials for =, 8 trials for <.*p < .05, **p < .01, 

***p < .001, significance of difference from neutral similarity 5.0.
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design, affecting the perceptibility of a map (Dent 
1999).  Cartographers use color hue to denote asso-
ciations in kinds of things (i.e., different groups or 
categories) for data collected at the nominal scale of 
measurement (e.g., land-use classes, language groups, 
soil types). Color has strong perceptual (harmonies, 
apparent advance or recede) as well as connotative 
effects (e.g., water is not red, fire is not blue) on the 
way maps are viewed and interpreted (Dent 1999). 
Not surprisingly for a cartographer, similar color 
hues strongly signal similar class membership, but 
the particular hue of a link connecting document 
points has no consistent moderating effect on the 
distance–similarity metaphor. This is because hue 
cannot be logically ordered or quantified visually. 
When available, participants used color hue to make 
similarity judgments, but due to the lack of a legend, 
they could not map particular hues onto similarity 
ratings in a consistent manner.

Design Implications for Network 

Spatializations

Elsewhere we have proposed a theoretical frame-
work for cognitively adequate information spaces, 
grounded on GIScience as well as on cognitive, 
perceptual, and experiential principles. (Fabrikant 
and Skupin, in press). In this article, we elaborate 
on the importance of cartographic design prin-
ciples (e.g., generalization, visual variables) for 
spatialization. Our current results provide empiri-
cal justification for this framework. According to 
MacEachren (1995), cartographic design theory 
has been subjected to only limited empirical veri-
fication.

As discussed above, graph layout algorithms such 
as Force-Directed Placement (FDP) are typically used 
to visualize Pathfinder Networks as shown in Figure 
2 (e.g., Kamada and Kawai 1989). These algorithms 
are employed to identify node locations in a typically 
2D Euclidean space by taking pair-wise proximity 
information as input. FDP algorithms optimize the 
visual output topologically by manipulating node 
placement, edge length, and node spacing based 
on quantifiable aesthetic criteria, for example, by 
minimizing edge crossings and striving for even-
ness of edge lengths so as to generate a visually 
pleasing layout.  

In Figure 2 one can see how the edge length 
between some nodes of the force-directed graph 
contradicts the similarity strength computed 
between nodes by the Pathfinder Network Scaling 
algorithm (Schvaneveldt 1990), which is depicted 
using color value. The node placement is derived 

from an FDP algorithm (i.e., Kamada and Kawai 
1989) available in ©Interlink’s KNOT software.  The 
darker the blue edge color, the higher the similarity 
value according to the Pathfinder Network algo-
rithm, but edge lengths produced by the FDP are 
not rendered accordingly.  However, according to 
the distance–similarity metaphor, and confirmed 
by our experimental results, high similarity values 
should have shorter edges between nodes. If it is 
not possible to modify the algorithm, our results 
suggest that the spatialization designer could use 
line width to communicate similarity strength, or 
color value, provided there is a legend.  

Conclusions and Prospects

Our empirical results suggest that the distance–
similarity metaphor that has been found to work 
for point- and surface-display spatializations also 
applies to network spatializations, but in a differ-
ent way. In the case of network displays, the dis-
tance–similarity metaphor operates by equating 
metric distance along network links to similarity. 
We find a negative correlation between network 
distance and similarity. The further away two 
points are on the network (in terms of distance, 
not node count), the less similar they are inter-
preted to be. Additionally, our results provide rare 
empirical evidence concerning how three visual 
variables that are widely used by cartographers on 
geographic maps, and generally in graphic design, 
are interpreted in network spatializations. We find 
that line size (width), value, and hue modify the 
distance–similarity metaphor in network-display 
spatializations in subtle yet logical ways. Our 
empirical findings thus extend initial findings 
for the application of sound cartographic design 
principles for point and surface displays to net-
work-display spatializations.  

By providing design guidelines to information 
visualization developers based on empirical data 
and theories about people’s similarity perceptions in 
network displays and other types of spatializations, 
we can ensure that cognitively adequate 2D and 3D 
information spatializations can be constructed.
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