The Distance Spectrum of a Tree

Russell Merris

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CALIFORNIA STATE UNIVERSITY HAYWARD, CALIFORNIA

ABSTRACT

Let *T* be a tree with line graph T^* . Define $K = 2I + A(T^*)$, where *A* denotes the adjacency matrix. Then the eigenvalues of $-2K^{-1}$ interlace the eigenvalues of the distance matrix *D*. This permits numerous results about the spectrum of *K* to be transcribed for the less tractable *D*.

Let T = (V, E) be a tree with vertex set $V = \{1, 2, ..., n\}$ and edge set $E = \{e_1, e_2, ..., e_m\}$, m = n - 1. The distance matrix $D = D(T) = (d_{ij})$ is the *n*-by-*n* matrix in which d_{ij} is the number of edges in the unique path from vertex *i* to vertex *j*. In 1971, R. L. Graham and H. O. Pollak showed that det $(D) = (-1)^{n-1}(n-1)2^{n-2}$, a formula depending only on *n*. It follows that *D* is an invertible matrix with exactly one positive eigenvalue. In spite of this elegant beginning, results on the spectrum of *D* have been few and far between.

Since any bipartite graph is 2-colorable, we may assume each vertex of T has been given one of the "colors," plus and minus, in such a way that each edge has a positive end and a negative end. The corresponding vertex-edge *incidence* matrix is the n-by-m matrix $Q = Q(T) = (q_{ij})$, where $q_{ij} = 1$ if vertex *i* is the positive end of e_j , -1 if it is the negative end, and 0 otherwise. Define $K = K(T) = Q^{T}Q$. Then $K = 2I_m + A(T^*)$, where $A(T^*)$ is the 0-1 adjacency matrix of the line graph of T. Like D, the determinant of K is a function only of n. Indeed, det(K) = n. In contrast to D, however, all the eigenvalues of K are positive. (It follows, as first observed by A. J. Hoffman, that the minimum eigenvalue of $A(T^*)$ is greater than -2. This has led to the notion of a "generalized line graph" and to an interesting connection with root systems [2, Section 1.1].)

A close relation of K is the so-called Laplacian matrix L(T) = QQ'. It turns out that $L(T) = \Delta(T) - A(T)$, where $\Delta(T)$ is the diagonal matrix of vertex degrees. The Laplacian first occurred in the Matrix-Tree Theorem of Kirchhoff. More recently, its spectrum has been the object of intense study stimulated in

Journal of Graph Theory, Vol. 14, No. 3, 365–369 (1990) © 1990 by John Wiley & Sons, Inc. CCC 0364-9024/90/030365-05\$04.00 part by chemical applications [5, 9, 19] and in part by M. Fiedler's notion of "algebraic connectivity" [10]. Of course, the *m* eigenvalues of *K* are precisely the nonzero eigenvalues of L(T).

Theorem. Let T be a tree. Then the eigenvalues of $-2K^{-1}$ interlace the eigenvalues of D.

The key to the proof is an elementary observation implicit in [7, 8] and first proved explicitly by William Watkins [22].

Lemma. If T is a tree on n vertices and m = n - 1 edges, then $Q'DQ = -2I_m$.

Proof. $q_{is}d_{ij}q_{jt} = 0$ unless *i* is an end vertex of the *s*th edge e_s and *j* is an end vertex of e_t . Let $e_s = \{w, x\}$ and $e_t = \{y, z\}$, where *x* and *z* are the positive end vertices. Then $\sum_{i,j\in v} q_{is}d_{ij}q_{jt} = d_{wy} - d_{wz} - d_{xy} + d_{xz}$.

If s = t, then $d_{wy} = d_{xz} = 0$ while $d_{wz} = d_{xy} = 1$, so the sum is -2. If $s \neq t$, it may still happen that w = y or x = z. If w = y, then $d_{wy} = 0$, $d_{xz} = 2$, and $d_{wz} = d_{xy} = 1$, so the sum is zero. The case x = z is handled similarly. If w, x, y, and z are four distinct vertices then either x is on the (unique) path from w to e_t or w is on the path from x to e_t . These cases are similar. We argue the first, i.e., $d_{wy} = d_{xy} + 1$ and $d_{wz} = d_{xz} + 1$. In this case, the sum is

$$d_{xx} + 1 - (d_{xz} + 1) - d_{xy} + d_{xz} = 0$$
.

To prove the theorem, note first that, as K has rank m, the m columns of Q are linearly independent. We wish to perform a Gram-Schmidt orthonormalization process on these columns. Noting that this can be accomplished by a sequence of elementary column operations, we establish the existence of a nonsingular m-by-m matrix M (depending on T) such that the columns of the n-by-m matrix QM are orthonormal.

Recall that the column spaces of Q and QM are the same. Now, each column of Q contains exactly 2 nonzero entries, one 1 and one -1. Denote by F the *n*-by-1 column matrix, each of whose entries is equal to 1. Then F is orthogonal to every column of Q, and hence to every column of QM. In particular, the *n*-by-*n* partitioned matrix $U = (QM|F/\sqrt{n})$ is orthogonal.

Now,

$$U'DU = \begin{pmatrix} M'Q'DQM & M'Q'R/\sqrt{n} \\ R'QM/\sqrt{n} & 2W/n \end{pmatrix},$$
 (1)

where R = DF is the column vector of row sums of D, and W = F'DF/2 is the so-called Wiener Index from chemistry [16, 20, 21]. Of course, the orthogonal similarity has preserved the spectrum of D. By the lemma, the leading *m*-by-*m* principal submatrix of U'DU is -2M'M. If we could show that M'M and K^{-1} have the same spectrum, we could apply Cauchy interlacing and be done. Now,

recall that K = Q'Q and that M was chosen so that the columns of QM are orthonormal. Thus, $M'KM = M'Q'QM = I_m$. But then $M^{-1}K^{-1}(M')^{-1} = I_m$, i.e., $K^{-1} = MM'$. So, K^{-1} and M'M do have the same spectrum.

Before applying the results, we note some applications of the technique. Returning to (1), a new proof that $W = n(\text{trace}(K^{-1}))$ emerges from the fact that trace (D) = 0. (B. McKay seems to have been the first to notice this formula for the Wiener Index. Previous proofs have appeared in [16] and [18]. The first of these is based on an explicit graph-theoretic interpretation for the entries of K^{-1} .) Second, it follows from the lemma that D has at least m = n - 1 negative eigenvalues. Since its Perron root is positive, we have a new proof that the inertia of D is (1, m, 0). (Similar arguments could be based on the observation that $Q'(xD + yI_n)Q = -2xI_m + yK$.) Finally, since Q'DQ and DQQ' have the same nonzero eigenvalues, the characteristic polynomial of DL(T) is $x(x + 2)^{n-1}$.

To illustrate the theorem itself, let $d_1 > 0 > d_2 \ge \cdots \ge d_n$ be the eigenvalues of D = D(T) and $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{n-1} > 0$ be the eigenvalues of K = K(T). Then $\lambda_{n-1} = a(T)$ is Fiedler's algebraic connectivity, and $1/\lambda_i, l \le i \le n$, are the eigenvalues of K^{-1} . Our theorem becomes

$$0 > \frac{-2}{\lambda_1} \ge d_2 \ge \frac{-2}{\lambda_2} \ge \cdots \ge \frac{-2}{\lambda_{n-1}} \ge d_n.$$
 (2)

A pendant vertex of T is a vertex of degree 1. A pendant neighbor is a vertex adjacent to a pendant vertex. Suppose T has p pendant vertices and q pendant neighbors.

Corollary 1. Let d be an eigenvalue of D(T) of multiplicity k. Then $k \le p$.

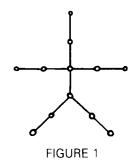
Proof. By [15, Theorem 2.3], p - 1 is an upper bound on the multiplicity of any eigenvalue of K(T).

More information is available for certain specific eigenvalues. In [12], for example, the exact multiplicity of λ_{n-1} was determined for "Type I" trees. It was shown in [15, Theorem 2.1 (ii)] that, apart from 1, K(T) has no multiple integer eigenvalue. Thus, no eigenvalue of D(T) of the form -2/t, $t = 2, 3, \ldots$, can have multiplicity greater than 2.

Corollary 2. Among the eigenvalues of D(T), d = -2 occurs with multiplicity at least p - q - 1.

Proof. Isabel Faria [6] showed that the multiplicity of $\lambda = 1$ as an eigenvalue of K(T) is at least p - q.

Let s(T) be the number of times $\lambda = 1$ occurs as an eigenvalue of K(T), in excess of Faria's bound. Section III of [15] establishes various bounds for s(T) in terms of the structure of T. It is proved, for example, that s(T) is at most



the covering number of the forest induced by T on the vertices left after the pendants and their neighbors are removed. In [13], Faria-type bounds are obtained for other eigenvalues. Transcribing those for the distance matrix, it is clear from a glance at the tree in Figure 1 that $(x^2 - 6x + 4)^2$ exactly divides the characteristic polynomial of its distance matrix. (What is not clear is why $(x^2 - 6x + 4)^3$ should be a factor!)

Corollary 3. Let δ be the diameter of *T*. Then

$$d_n \leq \frac{-1}{1 - \cos(\pi/(\delta + 1))}.$$

Proof. M. Doob [3] showed that the right hand side is an upper bound for -2/a(T).

Many results are available in the literature concerning the algebraic connectivity $a(T) = \lambda_{n-1}$. See, e.g., [1, 10–12, 14, 18, 19].

Corollary 4. Let T be a tree with diameter δ and denote the greatest integer in $\delta/2$ by k. Then

(i) $d_k > -1$; (ii) $d_q > -1$ (provided n > 2q); (iii) $d_{n-q+2} < -2$; (iv) $d_p \ge -2$; and (v) $d_{n-p+2} \le -2$.

Proof. It is proved in [15, Corollary 4.3] that $\lambda_k > 2$, in [17, Theorem 2] that $\lambda_q > 2$, and in [15, Theorem 3.11] that $\lambda_{n-q+1} < 1$. To prove (iv) and (v), note that I_p is a principal submatrix of L(T). By interlacing, $\lambda_p \ge 1$ and $\lambda_{n-p+1} \le 1$.

In the exceptional case n = 2q, it turns out that $\lambda_q = 2$. If n > 2q, it may still happen that $\lambda_t = 2$ for some (at most 1) value of t. If so, Fiedler [11, p. 612] has shown how to determine t: Let u be an eigenvector of L(T) affording 2. Then the number of eigenvalues of L(T) greater than 2 is equal to the number of edges $\{i, j\} \in E$ such that $u_i u_j > 0$.

References

- F. Bien, Constructions of telephone networks by group representations, AMS Notices 36 (1989), 5-22.
- [2] D. Cvetković, M. Doob, I. Gutman, and A. Torĝasev, Recent Results in the Theory of Graph Spectra. North-Holland, Amsterdam (1988).
- [3] M. Doob, An interrelationship between line graphs, eigenvalues, and matroids. J. Combinat. Theory B 15 (1973) 40-50.
- [4] M. Edelberg, M. R. Garey, and R. L. Graham, On the distance matrix of a tree. Discrete Math. 14 (1976) 23-39.
- [5] B. Eichinger, Configuration statistics of Gaussian molecules. *Macro-molecules* 13 (1980) 1-11.
- [6] I. Faria, Permanental roots and the star degree of a graph. *Linear Algebra Appl.* 64 (1985) 255-265.
- [7] R. L. Graham and L. Lovász, Distance matrix polynomials of trees. Adv. Math. 29 (1978) 60-88.
- [8] R.L. Graham and H.O. Pollak, On the addressing problem for loop switching. *Bell System Tech. J.* 50 (1971) 2495-2519.
- [9] I. Gutman, Graph-theoretical formulation of Forsman's equations. J. Chem. Phys. 68 (1978) 1321-1322.
- [10] M. Fiedler, Algebraic connectivity of graphs. Czech. Math. J. 23 (1973) 298-305.
- [11] M. Fiedler, Eigenvectors of acyclic matrices. Czech. Math. J. 25 (1975) 607-618.
- [12] R. Grone and R. Merris, Algebraic connectivity of trees. Czech. Math. J. 37 (1987) 660–670.
- [13] R. Grone and R. Merris, Cutpoints, lobes and the spectra of graphs. Port. Math. 45 (1988) 181-188.
- [14] R. Grone and R. Merris, Ordering trees by algebraic connectivity. *Graphs* and *Combinat.*, to appear.
- [15] R. Grone, R. Merris, and V. S. Sunder, The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl., 11 (1990) 218–238.
- [16] R. Merris, An edge version of the matrix-tree theorem and the Wiener index. Linear and Multilinear Algebra, 25 (1989) 291-296.
- [17] R. Merris, The number of eigenvalues greater than two in the Laplacian spectrum of a graph. Submitted.
- [18] B. Mohar, Eigenvalues, diameter, and mean distance in graphs. Preprint.
- [19] B. Mohar, The Laplacian spectrum of graphs. Preprint.
- [20] D. H. Rouvray, Predicting chemistry from topology. Sci. Am. 255 (1986) 40-47.
- [21] D. H. Rouvray, The role of the topological distance matrix in chemistry. Mathematics and Computational Concepts in Chemistry. Ellis Horwood, Chichester (1986) 295-306.
- [22] W. Watkins, unpublished.