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ARTICLE

The distinction of CPR bacteria from other bacteria
based on protein family content
Raphaël Méheust 1,2, David Burstein 1,3,8, Cindy J. Castelle1,2,4 & Jillian F. Banfield 1,2,4,5,6,7

Candidate phyla radiation (CPR) bacteria separate phylogenetically from other bacteria, but

the organismal distribution of their protein families remains unclear. Here, we leveraged

sequences from thousands of uncultivated organisms and identified protein families that co-

occur in genomes, thus are likely foundational for lineage capacities. Protein family presence/

absence patterns cluster CPR bacteria together, and away from all other bacteria and

archaea, partly due to proteins without recognizable homology to proteins in other bacteria.

Some are likely involved in cell-cell interactions and potentially important for episymbiotic

lifestyles. The diversity of protein family combinations in CPR may exceed that of all other

bacteria. Over the bacterial tree, protein family presence/absence patterns broadly recapi-

tulate phylogenetic structure, suggesting persistence of core sets of proteins since lineage

divergence. The CPR could have arisen in an episode of dramatic but heterogeneous genome

reduction or from a protogenote community and co-evolved with other bacteria.
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M
etagenomic investigations of microbial communities
have generated genomes for a huge diversity of bacteria
and archaea, many from little studied or previously

unknown phyla1. For example, a study of an aquifer near the
town of Rifle, Colorado generated 49 draft genomes for several
groups of bacteria, some of which were previously known only
based on 16S rRNA gene surveys and others that were previously
unknown2. Draft genomes for bacteria from related lineages were
obtained in a single cell sequencing study that targeted samples
from a broader variety of environment types3. Based on the
consistently small predicted genome sizes for bacteria from these
groups, groundwater filtration experiments targeting ultra-small
organisms were conducted to provide cells for imaging4 and DNA
for increased genomic sampling. The approach yielded almost
800 genomes from a remarkable variety of lineages that were
placed together phylogenetically. This monophyletic group was
described as the candidate phyla radiation (CPR)5. CPR bacterial
genomes have since been recovered from the human micro-
biome6, drinking water7, marine sediment8, deep subsurface
sediments9, soil10, the dolphin mouth11 and other environ-
ments12. Thus, it appears that CPR bacteria are both hugely
diverse and widespread across earth’s environments.

Metabolic analyses of CPR genomes consistently highlight
major deficits in biosynthetic potential, leading to the prediction
that most of these bacteria live as symbionts. Cultivation from
human oral samples highlighted the attachment of a CPR
member of the lineage Saccharibacteria (TM7) to the surface of
an Actinomyces odontolyticus bacteria6. Another episymbiotic
association has been described between a CPR organism from the
Parcubacteria superphylum and an eukaryotic host13. However,
most CPR organisms are likely symbionts of bacteria or archaea,
given their abundance and diversity in samples that have few, if
any, eukaryotes1.

When first described, the CPR was suggested to comprise at
least 15% of all bacteria5. Subsequently, Hug et al.14 placed a
larger group of CPR genome sequences in context via construc-
tion of a three-domain tree and noted that the CPR could com-
prise as much as 50% of all bacterial diversity. The CPR was
placed as the basal group in the bacterial domain in a con-
catenated ribosomal protein tree, but the deep branch positions
were not sufficiently well supported to enable a conclusion
regarding the point of divergence of CPR from other bacteria. The
scale of the CPR is also controversial. For example, Parks et al.15

suggested that the group comprises no more than 26.3% of bac-
terial phylum-level lineages.

To date, most studies have predicted CPR metabolic traits
using one or a few genomes. Lacking are studies that look
radiation-wide at the distribution of capacities that are wide-
spread and thus likely contribute core functions, including those
encoded by hypothetical proteins. Moreover, examination of
genetic potential across the CPR and general comparisons of CPR
and non-CPR bacteria have been very limited. Here, we leverage a
large set of publicly available, good-quality genomes of CPR and
non-CPR bacteria to address these questions. We clustered pro-
tein sequences from 3598 genomes into families and evaluated the
distribution of these protein families over genomes. Given the
large extent of divergence over the history of the bacterial domain
and difficulties with accurately distinguishing orthologs from
homologs, our approach considers homologous protein famil-
ies16. By focusing only on protein families that are common in
CPR bacteria and/or non-CPR bacteria, we demonstrate a major
subdivision within the bacterial domain without reliance on gene
or protein sequence phylogenies. The separation is, in part, due to
proteins missing in CPR. However, we also characterize a set of
106 proteins ubiquitous in CPR while less abundant in other
bacteria. Some of these are likely involved in cell–cell interactions

and potentially important for episymbiotic lifestyles. The diversity
of combinations of protein families in CPR may exceed that of all
other bacteria. Based on the present results and results from
previous studies, we propose a scenario where the CPR have
arisen from a protogenote community and co-evolved with other
bacteria.

Results
Clustering of proteins and assessment of cluster quality. We
collected 3598 genomes from four published datasets5,9,17,18. The
dataset includes 2321 CPR genomes from 65 distinct phyla
(1,953,651 proteins), 1198 non-CPR bacterial genomes from 50
distinct phyla (3,018,597 proteins) and 79 archaeal genomes
(89,709 proteins) (Fig. 1). Note that this huge sampling of Can-
didate Phyla was only possible due to genomes reconstructed in
the last few years (Fig. 1). We clustered the 5,061,957 protein
sequences in a two-step procedure (see Methods and Supple-
mentary Fig. 1) to generate groups of homologous proteins. The
objective was to convert amino acid sequences into units of a
common language, allowing us to compare the proteomes across
a huge diversity of genomes. This resulted in 22,977 clusters
(representing 4,449,296 sequences) that were present in at least
five distinct non-redundant and draft-quality genomes. These
clusters are henceforth referred to as protein families.

To assess the extent to which the protein clusters group
together proteins with shared functions, we analyzed some
families with well-known functions, such as the 16 ribosomal
proteins that are commonly used in phylogeny19. Because these
proteins are highly conserved, we expect one protein family per
ribosomal subunit. For instance, we expected to have all proteins
annotated as the large subunit 3 (RPL3) be clustered into the
same family. For 15 out 16 subunits, all proteins clustered into
one single family (Supplementary Table 1). Only the large
ribosomal subunit 2 clustered into two large families (fam004931
and fam006844). Close inspection showed that the two families
were not merged because their corresponding HMMs matched
only partly (based on the thresholds used, Supplementary
Fig. 3A). The ribosomal proteins are among the slowest-
evolving proteins, so one may expect that they easily cluster
together. In order to assess the quality of the protein clustering on
faster-evolving proteins, we performed the same analysis on non-
ribosomal proteins. We annotated our protein dataset using the
KEGG annotations20 and systematically verified that the protein
family groupings approximate functional annotations. The KEGG
annotations in our dataset encompass 7700 unique annotations of
various biological processes, including the fast-evolving defense
mechanisms. For each of these 7700 annotations, we reported the
family that contains the highest percentage of protein members
annotated with that KEGG annotation. Most clusters were of
good quality. For 89.2% of the annotations (6872 out of 7700) one
family always contained >80% of the proteins (Supplementary
Fig. 3B).

For each protein family with a KEGG annotation, we assessed
the contamination of the protein family by computing the
percentage of the proteins with KEGG annotations that differ
from the dominant annotation (percentage annotation admix-
ture). Most of the families contain only proteins with the same
annotation, and 3608 families (78.7%) have <20% annotation
admixture (Supplementary Fig. 3C). Although this metric is
useful, we note that it is imperfect because two homologous
proteins can have different KEGG annotations and thus cluster
into the same protein family, increasing the apparent percentage
of annotation admixture. For instance, the phenylalanyl-tRNA
synthetase possesses two subunits alpha (K01889) and beta
(K01890) that are homologous21 and thus their protein sequences
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clustered into the same protein family (fam000662). This family
shows a high annotation admixture of 45% because nearly half of
their proteins members are annotated as alpha subunits (K01889)
and half as beta subunits (K01890).

Although we used sensitive sequence-comparison methods and
assessed the quality of the protein clustering, we cannot
completely rule out the possibility that our pipeline failed to
retrieve distant homology for highly divergent proteins. Small
proteins and fast-evolving proteins are more likely to be
affected22. This lack of sensitivity would result on the separation
of homologous proteins into distinct families and would affect the
results.

Widespread proteins subdivide CPR from all other bacteria.
For definition of protein families, we chose a dataset that includes
sequences from a huge diversity of uncultivated lineages and
(unlike most reference genome datasets), genomes from the
majority of all bacterial phyla (Fig. 1). We constructed an array of
the 2890 non-redundant and draft-quality genomes (rows) vs.
22,977 protein families (columns) and hierarchically clustered the
genomes based on profiles of protein family presence/absence.
The families were also hierarchically clustered based on profiles of
genome presence/absence (Fig. 2a). The distinct pattern of pro-
tein family presence/absence in CPR genomes separates them
from almost all non-CPR bacteria and from archaea regardless

the methods of agglomerative hierarchical clustering used (Fig. 2a
and Supplementary Fig. 4).

Most protein families cluster together due to co-existence in
multiple genomes (blocks of black and orange dots in Fig. 2a).
Strikingly, some blocks with numerous families are widespread in
non-CPR bacteria while mostly absent in CPR (Fig. 2a), which
may explain the observed separation of the CPR from the non-
CPR bacteria.

We identified co-occurring blocks of protein families (sharing
similar patterns of presence/absence across the genomes) using
the Louvain algorithm23. We defined modules as blocks of co-
occurring protein families containing at least 10 families. In all
15,137 protein families could be assigned to 236 modules. The
remaining 7840 protein families were not assigned to a module
with >10 families, and thus were not considered further. As the
majority of protein families are fairly lineage specific (232 of the
236 modules are sparsely distributed among the 115 bacterial
phyla; blue dots in Fig. 2b), they were excluded from further
analysis so that we could focus on families that are widespread
(orange dots in Fig. 2b). Ultimately, we analyzed four modules
comprising 921 families and over three million protein sequences.
Some of these modules also occur in archaeal genomes, so
archaeal genomes were retained in the study.

Given their widespread distribution it is unsurprising that most
the 921 families are involved in well-known functions, including
replication, transcription and translation, basic metabolism
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(energy, nucleotides, amino acids, cofactors and vitamins) and
environmental interactions (membrane transport such as the Sec
pathway) (Supplementary Data 1). One of the four modules is
essentially ubiquitous across the dataset (orange dot #1 in
Fig. 2b), two are present in at least 10 non-CPR bacterial phyla
(orange dots #2 and 3 in Fig. 2b) but are mostly absent in CPR
bacteria, and the fourth occurs in more than 10 CPR bacterial
phyla (orange dot #4 in Fig. 2b).

We conducted an unsupervised clustering of the genomes
based on the presence/absence profiles of the 921 families. Using
the complete-linkage method to create the hierarchical clustering,
the results clearly distinguish the CPR bacteria from other
bacteria and archaea (Fig. 3a, b), as seen in Fig. 2. Using different
methods of agglomerative hierarchical clustering, the separation
is still apparent (Supplementary Fig. 5) and the genome
clusterings obtained with the profiles of the 22,977 families
(Supplementary Fig. 4) and with the 921 widely distributed
families (Supplementary Fig. 5) are correlated (complete-linkage:
0.88, average-linkage: 0.92, single-linkage: 0.84, Supplementary
Fig. 6). Thus, the 921 families may alone explain the separation
between the CPR and the non-CPR bacteria. The interesting
exception in the separation is the Dependentiae phylum (TM6),
which is nested in the CPR group between Microgenomates and
Parcubacteria (Fig. 3b) although phylogenetic trees based on core
genes clearly place Dependentiae outside of the CPR5. Their
nesting within the CPR occurs with both average-linkage and
complete-linkage methods (although the Dependentiae phylum is
more basal in the clusterings based on average linkage;
Supplementary Figs. 4 and 5). Dependentiae were placed with
the non-CPR bacteria only in clusterings based on single linkage.
However, of all clustering methods, this showed the poorest
congruence between phylogenetic and protein family trees
(Supplementary Figs. 4–6). We discuss the placement of the
Dependentiae phylum further below from the perspective of their
gene content.

When the hierarchical clustering pattern from the y axis of
Fig. 3a is rendered in a radial tree format (Fig. 3b) the
correspondence between clusters based on the distribution of
core protein families and phylogeny (Fig. 3c) is apparent

consistent with previous studies24,25. Based on complete-linkage,
the cophenetic correlation between a maximum-likelihood
phylogenetic tree is 0.70, based on average-linkage 0.67, and
based on single-linkage, 0.54 (Supplementary Fig. 6). Within the
CPR, clustering of genomes based on the protein family
distribution patterns (Fig. 3b) is generally consistent with their
clustering in the 14-ribosomal-protein phylogeny (Fig. 3c). The
Microgenomates and Parcubacteria superphyla form two distinct
groups, with the exception of Woykebacteria, which is expected to
be within the Microgenomates (Fig. 3b). Doudnabacteria,
Berkelbacteria, Kazan and the Peregrinibacteria are sibling to,
or nested in, Parcubacteria, but it should be noted that ordering
of deep branches is difficult using gene phylogenies. Sacchar-
ibacteria clusters with Dojkabacteria, Katanobacteria, and Woy-
kebacteria, although it is normally sibling to the Parcubacteria
superphylum.

The analysis was made using draft-quality genomes (>70%
completeness). It is expected that such content-based analyses are
affected by genome completeness. We analyzed if using high-
quality genomes improved the congruence between the phyloge-
netic tree and the families-content tree. We re-analyzed the data
using only high-quality genomes (1966 genomes with >90%
completeness)26 (Supplementary Fig. 7). Based on complete
linkage, the cophenetic correlation between a maximum-
likelihood phylogenetic tree is 0.70, based on average linkage
0.74, and based on single linkage, 0.67. Of note, the Dependentiae
phylum is still nested within the CPR (Supplementary Fig. 7). The
results are similar to those obtained using the >70% complete
genomes (Fig. 3).

The analysis present in Figs. 2 and 3 used a genomic dataset
that was notably enriched in CPR bacteria. To test whether the
clear separation of CPR and non-CPR bacteria is an artifact of the
choice of genomes, we created a second dataset of 2729 of
publicly available NCBI genomes sampled approximately at the
level of one per genus (see Methods). Out of 22,977 protein
families, 15,305 were identified in this dataset and arrayed
using the same approach as in Fig. 2a (Supplementary Fig. 8). The
921 widespread protein families were arrayed using the same
approach as in Fig. 3a (Fig. 4a). As observed with the first dataset,
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the genome clusterings obtained with the profiles of the 15,305
families and with the 921 widely distributed families are
correlated (Supplementary Fig. 8). The diagrams clearly separate
CPR from non-CPR bacteria and from archaea, except in the
diagram based on the profiles of the 921 families and the single-
linkage clustering. Thus, we conclude that the major subdivision
within the first dataset was not due to our choice of genomes or
the environments they came from. Importantly, this NCBI
genome dataset includes many genomes from symbionts with
reduced genomes27. In no case could these genomes be placed
within the CPR although several highly reduced genomes are

basal to the CPR group (discussed further in the manuscript with
regard to their gene content as for TM6).

From the hierarchical clustering of the genomes in Fig. 4 we
generated a tree representation analogous to that in Fig. 3b
(Fig. 4b). Again, the correspondence between genome clusters
based on protein family distribution and phylogeny is striking
although several phyla are split into several groups. This is
particularly apparent for highly diverse phyla such as Actino-
bacteria, Firmicutes and Proteobacteria (Fig. 4b). These incon-
gruences are due to differences in the sets of families (Fig. 4a).
Interestingly, the groups are not correlated with particular
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subclades of Actinobacteria, Firmicutes or Proteobacteria. Other
phyla, such as Cyanobacteria (bright green in Fig. 4a), have more
consistent patterns of presence/absence of core protein families.
This is reflected in the comparatively short branch lengths in
Fig. 4b. In contrast, the branch lengths associated with the CPR
bacteria are very long.

To evaluate branch length patterns through Fig. 4b, we collapsed
all branches that represented less than 0.25 of the maximum branch
length (Fig. 4c). In this rendering, 84 out of 85 of the Cyanobacteria
collapse into a single wedge. The CPR bacteria comprise 89 wedges,
non-CPR bacteria 71 wedges and Archaea, 24 wedges. Notably,
DPANN archaea cluster separately from other archaea, consistent
with their phylogenetic separation in some analyses28. The high
representation of wedges of CPR relative to non-CPR bacteria is
striking, given that CPR genomes represent only 11% of all
genomes used in this analysis. Similar results were found when
comparing the distributions of the similarities of the protein sets
within the CPR and within the non-CPR bacteria (Supplementary
Fig. 9) (Mann–Whitney–Wilcoxon test, P= 0.0). We attribute these
results to high diversity in the subsets of core protein families
present in genomes of organisms from across the CPR.

To test whether the protein clustering cutoffs strongly affected
our results we performed another protein clustering without
using cut-offs set during the HMM–HMM comparison (see
Methods). We retrieved 1216 protein clusters that correspond to

the 921 widespread families. Using this distinct clustering, the
CPR still separate from non-CPR bacteria and archaea in analyses
that used both genome datasets (Supplementary Figs. 10 and 11).
Thus, we conclude that, our results are robust regarding both
genome selection (as tested using the NCBI genome dataset) and
the protein clustering parameters.

Biological capacities explain the singularity of CPR. To explore
the reasons for the genetic distinction of CPR from non-CPR
bacteria and archaea we divided the 921 protein families into
three sets based on their abundances in CPR and in non-CPR
bacteria (Supplementary Fig. 12A). A set of 233 families are
equally distributed across the bacteria and 688 families are either
depleted or enriched in CPR bacteria. The set equally distributed
in CPR and non-CPR bacteria contains families mostly involved
in informational processes, primarily in translation (Supple-
mentary Fig. 12A).

Of the 688 families, 582 families are rare in CPR yet very
common in other bacteria (Fig. 3a and Supplementary Fig. 12A).
As expected based on prior work, this set is enriched in families
involved in metabolism (Fig. 3a and Supplementary Fig. 12A).
Although the CPR bacteria are distinct from non-CPR bacteria
due to their sparse metabolism and the presence of CPR-specific
genes, they are not monolithic in terms of their metabolism12
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(Supplementary Fig. 12B). For example, the genomes of the
Peregrinibacteria encode far more metabolic families than
Shapirobacteria (Microgenomates), Dojkabacteria and Gracili-
bacteria. Despite the comparatively high metabolic gene inven-
tory of the Peregrinibacteria, they have far fewer capacities than,
for example, Alphaproteobacteria (Supplementary Fig. 12B).

The set also contains families involved in informational
systems, including RNA polymerase σ54 sigma factor
(fam001584), the GTPase Der (fam002205) and ribosomal
protein L30 (fam003736)5. The 16S rRNA processing protein
RimM (fam001806) is also missing in most CPR genomes and the
ribosome-binding factor A (RbfA, fam000917) was found in 969
out of 2177 CPR genomes (Fig. 5). In Escherichia coli, mutants
lacking RimM or RbfA showed a reduced efficiency in the
processing of the 16S rRNA29. RimP (fam001726) is also
essentially missing in CPR, and is important for the maturation
of the 30S ribosomal subunits in E. coli30. Almost all bacteria and
Eukarya have RsfS/RfsA (fam001828), which encodes a ribosomal
silencing factor31, but this is absent in CPR. In E. coli, RsfS/RfsA
interacts with ribosomal protein RPL14 and inhibits translation
when nutrients are depleted32 (Fig. 5).

Interestingly, 44 depleted CPR families are annotated as
involved in membrane transport, many of them are almost
absent in CPR while widespread in non-CPR bacteria (Supple-
mentary Data 1). One of these families is the fluoride exporter
Fluc family (also named crcB, fam003329)33. Fluoride is pervasive
in the environment and is toxic for single-cell organisms as it
inhibits two enzymes involved in nucleotide biosynthesis and
glycolysis34. The Fluc family has been described as widespread in
the bacteria but is almost absent in CPR (detected in one CPR
genome)33. The fluoride exporter is not the only transporter
involved in detoxification, few CPR genomes encode the cation
diffusion facilitator family (fam000411, detected in 320 CPR
genomes), the arsenical resistance-3 (acr3) family (fam000792,
detected in 58 CPR genomes) or the chromate transporter
(fam001093, detected in one CPR genome). This raises the
possibility of the existence of an alternative system to remove
these toxic ions. Several uptake systems are also depleted. The
potassium uptake system (trk system) found in a large number of
bacterial species is also almost completely absent in CPR
(fam000602 and fam001673, detected in 28 and 7 genomes,
respectively) as well as the ammonium transporter Amt
(fam001162), the ferrous transport Feo system (fam000582 and
fam001321), and the CorA magnesium transporter family
(fam000804, detected in CPR 919 genomes). The three inner
membrane proteins TonB-ExbB-ExbD (fam000056, fam000382,
and fam000368) are also missing in CPR. The complex interacts
with the outer membrane proteins that bind and transport
siderophores as well as vitamin B12, nickel chelates, and
carbohydrates in Gram-negative bacteria35. This observation is
consistent with the proposed absence of an outer membrane in
CPR bacteria.

Finally, 106 protein families are enriched in CPR, rare in non-
CPR bacteria, and are discussed in detail in the next session.
Importantly, when these 106 protein families are removed from
the set of widespread families and the analysis re-performed, the
CPR bacteria are still different from all other bacteria regarding
both genome datasets (Supplementary Figs. 13 and 14).

CPR families are linked to pili and cell–cell interactions. As
noted above, 106 protein families are enriched in CPR relative to
non-CPR bacteria (Fig. 6 and Supplementary Data 1). The
majority of the 106 families have poor functional annotations
(Supplementary Fig. 12A and Supplementary Data 1). However,
76 families are comprised of proteins with at least one predicted

transmembrane helix (Supplementary Data 1), and many are
predicted to have membrane or extracellular localizations (Sup-
plementary Fig. 12C and Supplementary Data 1). Eight have
more than four transmembrane helices, and may be involved in
transport (Supplementary Data 1). For instance, the family
fam001364 has five transmembrane helices predicted and is
annotated as a mechanosensitive ion channel according to the
transporter database TCDB36 (Supplementary Data 1).

Interestingly, 51 of the 106 protein families are widespread in
all CPR bacteria; the others are enriched in either Microgeno-
mates (35 families, center, left side of Fig. 6) or Parcubacteria (20
families, center top in Fig. 6). Those associated with Micro-
genomates or Parcubacteria are primarily hypothetical proteins.
However, 14 of 35 protein families enriched in Microgenomates
and 12 of 20 protein families enriched in Parcubacteria are
predicted to be localized in the membrane (Supplementary
Data 1).

Given that most CPR bacteria lack the ability to de novo
synthesize nucleotides, it is anticipated that their cells scavenge
DNA37. The DNA processing protein A (DprA) and protein
competence protein EC (ComEC) are essential components of
the DNA uptake machinery38,39. The DprA component
(fam000839) is widespread and equally distributed in both
CPR and non-CPR bacteria (Supplementary Data 1). We
identified one family (fam000603) annotated as ComEC in
51% of genomes of the non-CPR bacteria, but it is more
abundant in the CPR bacteria (detected in 86% of the CPR
genomes, Supplementary Data 1). Interestingly, 29% of the
genomes of non-CPR bacteria have a different version of ComEC
fused with a metallo-beta-lactamase domain, and are thus
clustered into a distinct family that is related to the metallo-
beta-lactamase (fam000058). This protein fusion is essentially
absent in CPR bacteria (found in only six CPR genomes). Two
other components, ComFC/comFA (fam000096) and ComEA
(fam000152), are present, although they are not essential to the
natural transformation machinery38. ComFC/comFA is slightly
depleted in CPR based on statistical testing, although the protein
family is quite widespread in the CPR genomes (detected in 2068
genomes). ComEA is involved in DNA binding and clusters with
the protein sequences homologous to the RuvA domain
(fam000152). The ComEA KEGG annotation (K02237; one of
the two KEGG annotations in fam000152) is detected in only
31% CPR genomes and in 67% non-CPR bacterial genomes,
suggesting that some CPR genoms may possess an alternative
mechanism for DNA binding (Fig. 5).

In competent bacteria, a correlation has been shown between
the ability to take up exogenous DNA and the presence of pili on
the cell surface40,41. We found that one family (fam000005)
enriched and widespread in CPR is a cluster of pilin proteins, the
subunits of pili. These typically have a single-transmembrane
domain in their first 50 amino -acids42. These pilin proteins are
part a type IV pili (T4P) system that includes other components
that are enriched in the genomes of CPR bacteria but are also
present in non-CPR bacteria43 (Fig. 6). These components
comprise both the ATPase assembly PilB and the ATPase
twitching motility PilT (both present in fam000300), the three
membrane platform components PilC, PilO and PilN
(fam000383, fam000067, and fam000103), and, finally, the GspL
domain PilM (fam000148). The prepilin peptidase PilD
(fam000587) is evenly distributed and widespread in bacteria
and in CPR. All of these components co-localize in numerous
CPR genomes. Importantly, we did not find the PilQ component,
which is required to extrude the pilus filament across the outer
membrane of gram-negative bacteria39 (Fig. 5), consistent with
the observations from microscopy that suggest CPR do not have a
gram negative cell envelope4.
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Full-length type IV pilin precursors are secreted by the Sec
pathway in unfolded states in gram-positive bacteria42. A thiol-
disulfide oxidoreductase (fam000318) is one of the protein
families enriched in CPR bacteria (Fig. 6) and may be involved
in ensuring correct folding of the pilins. These proteins show

similarity to membrane-bound oxidoreductase MdbA, which is
found in the gram-positive Actinomyces oris44 and Corynebacter-
ium diphtheriae45. In these organisms, MdbA catalyzes disulfide
bond formation in secreted proteins, a reaction that is important
for protein stability and function46. In Actinomyces oris, one of
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these secreted proteins is the FimA pilin44. Similarly to MdbA,
45% of the proteins from the family fam000318 are predicted to
be anchored in the cell wall (Supplementary Data 1) and the
catalytic CxxC motif required for disulfide bond formation is
conserved in 89% CPR proteins. Interestingly, the third family of
proteins most frequently found in CPR genomes adjacent to
proteins of fam000318 is the Vitamin K epoxide reductase
(fam000898, VKOR, adjacent in 88 out of 750 CPR genomes that
have both families). VKOR re-oxidizes MdbA in Actinomyces
oris47.

More than half of all CPR have fam000526, a sortase, whereas
this is detected in less than 10% of non-CPR bacteria in the first
dataset and 30% in the more taxonomically balanced second
dataset (Supplementary Data 1). The family is near ubiquitous in
Microgenomates but patchily detected in other CPR groups
(Fig. 6). The low incidence in non-CPR is expected, given the
association of this function with gram-positive bacteria (Firmi-
cutes and Actinobacteria, as well as Chloroflexi). Seven other
families are enriched in Gram-positive bacteria but also in
Cyanobacteria and Chloroflexi, where they define a conserved
pattern of presence/absence (Fig. 6, the red box). The family
fam000574 contains a domain of unknown function (DUF4012).
However, a gene annotated as DUF4012 has been localized in the
capsular polysaccharides/exopolysaccharides gene cluster in the
gram-positive bacteria Bifidobacterium longum 105A48. Conse-
quently, the gene has been proposed to encode an auxiliary
protein for envelope protein48. Interestingly, another family,
fam000680, is annotated as a putative regulatory protein involved
in exocellular polysaccharide biosynthesis (Supplementary
Data 1). Capsular polysaccharides/exopolysaccharides are
thought to be critical in host–microbe interactions48. Family
fam000706 seems also to be involved in cell envelope function as
it contains a putative peptidoglycan binding domain and the
vancomycin resistance domain W (vanW). Glycopeptide anti-
biotic vancomycin inhibits the extracellular steps of bacterial
peptidoglycan synthesis. Although the function of vanW is
unknown, it has been found in the VanB-type glycopeptide
resistance gene cluster in the Gram-positive Enterococcus faecalis
V583. These observations strengthen the prediction that the cell
envelope of CPR bacteria is likely more similar to that of gram-
positive compared to Gram-negative bacteria. The remaining
families fam000442, fam000682, fam001505 and fam000479 have
no predicted annotations. Given that the three previous families
(fam000574, fam000680, and fam000706) are involved in
functions related to cell envelope, we hypothesize they are
involved in similar functions.

Distinction between the CPR and other bacterial symbionts.
Dependentiae are placed within the CPR bacteria in the first
dataset (Fig. 3b). In the second dataset, bacteria with highly
reduced genomes and Tenericutes are basal to the CPR (Fig. 4b).
The clustering of CPR with Dependentiae and bacteria with
highly reduced genomes likely occurs because they share the low
incidence of many protein families (Supplementary Fig. 15).
However, CPR-enriched families are rare in the Dependentiae
(average ~10%, but some genomes have none), bacteria with
highly reduced genomes, and the Tenericutes (average ~2%;
Supplementary Fig. 15).

Discussion
Genome-resolved metagenomics studies have greatly expanded
our understanding of microbial life, particularly through dis-
covery of new bacterial lineages. Lacking have been studies that
investigate these genomes from the perspective of the diversity
and distribution patterns of homologous proteins. To begin

comparing protein sequence inventories, we clustered the amino
acid sequences into families that approximate homologous
groups. These families serve as a common language that enables
comparison of gene inventories within and among lineages.
Strikingly, the combinations of protein families associated with
widespread biological functions separate the CPR from all other
bacteria. In other words, the pattern of presence/absence of
relatively widely distributed protein families highlights a major
dichotomy within Domain Bacteria that corresponds almost
exactly to the subdivide inferred based on phylogenetic analyses
(both rRNA and concatenations of ribosomal proteins)14.

CPR bacteria can be differentiated from other bacteria,
including other bacterial symbionts (Supplementary Fig. 15),
based on 106 genes that are absent or less abundant in other
bacteria. The near ubiquity of these families across the CPR
radiation is most readily explained by early acquisition at the time
of the origin of CPR, with persistence via vertical inheritance.
Based on the functional predictions, the protein families that are
enriched in CPR and absent or less abundant in other bacteria
may be important for interaction between CPR and their hosts.
Among them, the type IV pili may be central to CPR associations
with other organisms (Fig. 6). These molecular machines confer a
broad range of functions from locomotion, adherence to host
cells, DNA uptake, protein secretion and environmental sen-
sing49. Notably, several other groups of CPR-enriched genes are
also predicted to function in DNA uptake and maintenance of
pilin structure. Given the overall small genome size, these find-
ings reinforce the conclusion that genes for organism–organism
interaction are central to the lifestyles of CPR bacteria. Future
work would help to refine the set of CPR enriched genes thanks to
the addition of new genomes and the use of statistical tests that
take account of phylogeny.

Within the CPR we identified many clusters of genomes that
share similar core metabolic platforms (Supplementary Fig. 12B).
Some CPR bacterial phyla have extensive biosynthetic capacities,
whereas others have minimal sets of core protein families (Sup-
plementary Fig. 12B)12. This may indicate extensive gene loss in
some groups. Given the overall phylum-level consistency of the
protein family sets, we suspect that major genome reduction
events were ancient.

Looking across the entire analysis, the broad consistency in
combinations of core protein families within lineages strongly
suggests that the distribution of these families is primarily the
result of vertical inheritance. Specifically, the patterns of protein
family distribution reproduce the subdivision of Bacteria from
Archaea and essentially recapitulate many phylum and sub-
phylum groupings.

Collapsing the branches in the cladogram formed from the
hierarchical clustering of protein families revealed enormous branch
length in the CPR. We interpret this to indicate huge variation in
the sets of core protein families across the CPR (Fig. 4c and Sup-
plementary Fig. 9). This could be due to genetic drift that resulted in
pseudogene formation and gene loss that erased the phylogenetic
signal between distant families. Alternatively, the large scale of the
CPR may be the consequence of its long evolutionary history.
Arguing for the first case, CPR have small genomes and probable
symbiotic lifestyles. Thus, they may be analogous to obligate
endosymbionts of Eukaryotes, whose reduced genomes are due to
genetic drift and small effective population sizes. Counter to this,
CPR bacteria are not known to be common endosymbionts and
small population sizes for CPR are unlikely, as they are abundant
members of microbial communities from diverse environments12.
In the second case, diversity in the core protein family platform may
have arisen because symbiotic associations with different groups of
bacteria selected for larger or smaller requirements for core bio-
synthetic capacities in the symbiont.
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We envision two different scenarios that might explain our
observations (Fig. 7). In the first case (Fig. 7a), we imagine that
both CPR and non-CPR bacteria emerged from a protogenote
community that preceded cellular lineages50. In this case, CPR
may have arisen and diversified in parallel with non-CPR bac-
terial groups. Evolutionary innovations that generated new
lineages of potential bacterial hosts could have stimulated major
divergences within the CPR, essentially the rise of new CPR
phyla. Our analyses suggest that this was coupled to selection of a
set of core protein families that persisted within phyla. Evidence
that would be consistent with this would be the finding that, in
most cases, bacteria of a specific CPR phylum associates with the
bacteria of the same non-CPR phylum. At this time, there is only
one case in which the host of a CPR bacterium is well estab-
lished6, so testing this hypothesis will require new data. In the
second scenario (Fig. 7b), CPR arose from within a bacterial
lineage and this ancestor underwent rapid but heterogeneous
patterns of gene loss (examples of two timings are shown). In this
case, a huge diversity of potential hosts would exist as CPR
diverged, making symbiont-host associations less likely to be
phylum specific (as phylum specificity would require that sym-
bioses are linked to a phylum-wide trait). In the extreme case of
very recent appearance of CPR from within a relatively modern
lineage, followed by extensive gene loss, the CPR protein core
protein family sets should be clearly a subset of those from one
phylum, class or order. This does not appear to be the case, as we
did not observe a set of gene families in CPR that is shared with a
single non-CPR phylum. A third possibility in which different
CPR phyla arose from different non-CPR bacterial phyla via rapid
genome reduction was not considered because of the clear
monophyly of the radiation5,14,15.

The relative magnitude of diversity of distinct core gene sets in
the CPR compared to non-CPR bacteria is consistent in scale with
the relative magnitude of phylogenetic diversity of these groups,
as rendered in ribosomal RNA and protein trees14. It is inter-
esting to note that symbiotic associations involving bacterial hosts
could have evolved as far back in time as the emergence of bac-
terial cells, potentially around 3.7 billion years ago51. This con-
trasts with the well-studied symbioses involving eukaryotic hosts,
such as insects, which evolved only around 0.5 billion years ago52.
Thus, we should consider the possibility of a very long evolu-
tionary history for CPR bacteria in symbiotic associations with
bacterial hosts.

Methods
Dataset construction. The initial dataset contains 3,598 prokaryotic genomes
(5,061,957 proteins) that were retrieved from four published datasets5,9,17,18. The
dataset encompasses 2321 CPR (1,953,651 proteins); 1198 non-CPR bacteria
(3,018,597 proteins) and 79 Archaea (89,709 proteins) (Supplementary Data 2).
The second ‘NCBI’ dataset contains 2729 genomes (8,425,478 proteins). Genomes
were chosen based on the taxonomy provided by the NCBI. Briefly, for each
prokaryotic phylum, one genome per genus was randomly selected from the NCBI
genome database (last accessed in December 2017). Some genomes do not have
genus assignment although they have a phylum assignment. In those cases, five
genomes per phylum were randomly selected. Refseq were preferred to non-refseq
genomes as these are generally better annotated. The NCBI dataset encompasses
282 CPR (217,728 proteins); 2278 non-CPR bacteria (7,811,207 proteins) and 169
Archaea (396,543 proteins) (Supplementary Data 2).

Protein clustering. Protein clustering into families was achieved using a two-step
procedure (Supplementary Fig. 1). A first protein clustering was done using the fast
and sensitive protein sequence searching software MMseqs2 (version
9f493f538d28b1412a2d124614e9d6ee27a55f45)53. An all-vs.-all search was per-
formed using e-value: 0.001, sensitivity: 7.5, and cover: 0.5. A sequence similarity
network was built based on the pairwise similarities and the greedy set cover
algorithm from MMseqs2 was performed to define protein subclusters. The
resulting subclusters were defined as subfamilies. In order to test for distant
homology, we grouped subfamilies into protein families using an HMM–HMM
comparison procedure as follows. The proteins of each subfamily with at least two
protein members were aligned using the result2msa parameter of mmseqs2, and

from the multiple sequence alignments HMM profiles were built using the HHpred
suite (version 3.0.3)54. The subfamilies were then compared to each other using
hhblits55 from the HHpred suite (with parameters -v 0 -p 50 -z 4 -Z 32000 -B 0 -b
0). For subfamilies with probability scores of ≥95% and coverage ≥0.50, a similarity
score (probability × coverage) was used as weights of the input network in the final
clustering using the Markov CLustering algorithm56, with 2.0 as the inflation
parameter. These clusters were defined as the protein families.

Selection of widespread families. Examining the distribution of the protein
families across the genomes, a clear modular organization emerged (Fig. 2a). We
used the Louvain algorithm23 to detect modules of proteins that share similar
patterns of presence/absence across the genomes. Briefly, the Louvain algorithm
seeks a partition of a network that maximizes the modularity index Q. The algo-
rithm was performed on a weighted network that was built by connecting family
nodes sharing a Jaccard index >0.4. For each pair of protein families, the Jaccard
index was calculated based on their profiles of presence/absence across the gen-
omes. The 0.4 threshold was empirically chosen because it defined three distinct
modules for widespread proteins in Archaea, non-CPR bacteria and bacteria (see
Fig. 2a) whereas lower thresholds merged families having distinct presence/absence
patterns across the genomes. This procedure defined modules with more than 10
proteins.

A Phyla distribution was assigned to each module. Because modules contain
genomes that carry only few families of the modules, we designed a procedure to
only identify genomes that carry most of the families of the modules. For each
module, the median number of genomes per family (m) was calculated. The
genomes were ranked by the number of families they carry. The m genomes that
carry the most of families were retained; their phyla distribution defines the
taxonomic assignment of the module.

Hierarchical clustering of the genomes and the families. The genomes were
hierarchically clustered using the Jaccard distance that was calculated based on
profiles of protein family presence/absence. The families were also hierarchically
clustered based on profiles of presence/absence in genomes. We used an
agglomerative (also called bottom-up) method for the hierarchical clustering. In
agglomerative clustering, we assign each observation to its own cluster (step 1).

Host-symbiont

association

a

b

Protogenote?

CPR bacteria

Phyla

Current

lineages

Non-CPR bacteria

Non-CPR bacteria

CPR bacteria

Phyla

Current

lineages

P
e

rs
is

te
n
c
e
 o

f th
e

c
o

re
 p

ro
te

in
s
 s

e
ts

P
e

rs
is

te
n

c
e

 o
f th

e

c
o

re
 p

ro
te

in
s
 s

e
ts

Core proteins

Lineage-specific

core proteins

CPR-specific core

proteins

Fig. 7 Two scenarios for the origin and the evolution of the CPR. a In the

first scenario, CPR and non-CPR bacteria emerged from the protogenote

community and co-evolved. In this case, major divergences within the CPR,

essentially the rise of new CPR phyla, may have been stimulated by

evolutionary innovations that generated new lineages of potential bacterial

hosts. b In the second scenario, CPR evolved from within the non-CPR

bacteria and experienced a huge genome reduction

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12171-z

10 NATURE COMMUNICATIONS |         (2019) 10:4173 | https://doi.org/10.1038/s41467-019-12171-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Then, we compute the similarity (e.g., distance) between each of the clusters
(step 2) and then join the two most similar clusters (step 3). Steps 2 and 3 are
repeated until there is only a single cluster left. Agglomerative clustering can use
various measures to calculate the distance between two clusters. Three different
measures were used: single linkage, complete linkage, and average linkage. In
single-linkage hierarchical clustering, the distance between two clusters is
defined as the shortest distance between two points in each cluster. In complete-
linkage hierarchical clustering, the distance between two clusters is defined as
the longest distance between two points in each cluster. In average-linkage
hierarchical clustering, the distance between two clusters is defined as the
average distance between each point in one cluster to every point in the other
cluster.

Genome completeness assessment and de-replication. Genome completeness
and contamination were estimated based on the presence of single-copy genes
(SCGs) as described in ref. 9. For CPR, 43 universal SCGs were used, following9. In
non-CPR bacteria, genome completeness was estimated using 51 SCGs, following9.
For archaea, 38 SCGs were used, following ref. 9. Genomes with completeness
>70% and contamination <10% (based on duplicated copies of the SCGs) were
considered as draft-quality genomes. Genomes were de-replicated using dRep57

(version v2.0.5 with ANI >95%). The most complete genome per cluster was used
in downstream analyses.

Functional annotation. Protein sequences were functionally annotated based on
the accession of their best Hmmsearch match (version 3.1) (E-value cut-off 0.001)58

against an HMM database constructed based on ortholog groups defined by the
KEGG20 (downloaded on June 10, 2015). Domains were predicted using the same
Hmmsearch procedure against the Pfam database (version 31.0)59. The domain
architecture of each protein sequence was predicted using the DAMA software
(version 1.0) (default parameters)60. SIGNALP (version 4.1) (parameters: -f short -t
gram+)61 and PSORT (version 3.0) (parameters:–long–positive)61 were used to
predict the putative cellular localization of the proteins. Prediction of transmem-
brane helices in proteins was performed using TMHMM (version 2.0) (default
parameters)62. The transporters were predicted using BLASTP (version 2.6.0)63

against the TCDB database (downloaded on February 2019) (keeping the best hit, e-
value cut-off 1e-20)36.

Phylogenetic tree reconstruction. The two maximum-likelihood trees were cal-
culated based on the concatenation of 14 ribosomal proteins (L2, L3, L4, L5, L6,
L14, L15, L18, L22, L24, S3, S8, S17, and S19) using RAxML (version 8.2.10)64 (as
implemented on the CIPRES web server65), under the LG plus gamma model of
evolution (PROTGAMMALG in the RAxML model section), and with the number
of bootstraps automatically determined.

Detection of the families in the second ‘NCBI’ dataset. For the second ‘NCBI’
dataset, a database of all HMMs of the subfamilies was created to identify members
of each family in the second ‘NCBI’ dataset. Protein sequences were annotated
based on the subfamily of their best HMM score using Hmmsearch (version 3.1)
(E-value cut-off 0.001, coverage threshold of the HMM >0.5) against the HMM
database of subfamilies.

Enrichment analysis. Enrichment/depletion of protein families was calculated
based on the frequency of the computed protein families in the first and second
‘NCBI’ datasets. The enrichment of each family in CPR vs. non-CPR bacteria was
computed using a Fisher’s exact test on a contingency table of presence/absence in
CPR and non-CPR bacteria genomes. Families were considered enriched or
depleted if their p-values, after correction for false detection rate (Benjamini-
Hochberg), were significant (<10−5) in both datasets. The remaining families were
assigned as equally distributed.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All genomes used in the analysis are publicly available (see Supplementary Data 2). The

fasta sequences of the 921 families and the binary matrices used to create Figs. 2–4 are

available from figshare at https://doi.org/10.6084/m9.figshare.6296987.

Code availability
Scripts used to perform the protein clustering are available at https://github.com/raphael-

upmc/proteinClusteringPipeline.
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