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Abstract

Nowadays, manufacturing systems meet different new global challenges and

the existence of a collaborative manufacturing environment is essential to face

with. Distributed manufacturing and assembly systems are two manufacturing

systems which allow industries to deal with some of these challenges. This

thesis studies a production problem in which both distributed manufacturing

and assembly systems are considered. Although distributed manufacturing

systems and assembly systems are well-known problems and have been ex-

tensively studied in the literature, to the best of our knowledge, considering

these two systems together as in this thesis is the first effort in the literature.

Due to the importance of scheduling optimization on production performance,

some different ways to optimize the scheduling of the considered problem are

discussed in this thesis.

The studied scheduling setting consists of two stages: A production and an

assembly stage. Various production centers make the first stage. Each of these

centers consists of several machines which are dedicated to manufacture jobs.

A single assembly machine is considered for the second stage. The produced

jobs are assembled on the assembly machine to form final products through a

defined assembly program.

In this thesis, two different problems regarding two different production

configurations for the production centers of the first stage are considered.

The first configuration is a flowshop that results in what we refer to as the

Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP).
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The second problem is referred to as the Distributed Parallel Machine and

Assembly Scheduling Problem (DPMASP), where unrelated parallel machines

configure the production centers. Makespan minimization of the product on the

assembly machine located in the assembly stage is considered as the objective

function for all considered problems.

In this thesis some extensions are considered for the studied problems

so as to bring them as close as possible to the reality of production shops.

In the DAPFSP, sequence dependent setup times are added for machines in

both production and assembly stages. Similarly, in the DPMASP, due to

technological constraints, some defined jobs can be processed only in certain

factories.

Mathematical models are presented as an exact solution for some of the

presented problems and two state-of-art solvers, CPLEX and GUROBI are

used to solve them. Since these solvers are not able to solve large sized

problems, we design and develop heuristic methods to solve the problems. In

addition to heuristics, some metaheuristics are also designed and proposed to

improve the solutions obtained by heuristics. Finally, for each proposed prob-

lem, the performance of the proposed solution methods is compared through

extensive computational and comprehensive ANOVA statistical analysis.



Resumen

Los sistemas de producción se enfrentan a retos globales en los que el concepto

de fabricación colaborativa es crucial para poder tener éxito en el entorno

cambiante y complejo en el que nos encontramos. Una característica de los sis-

temas productivos que puede ayudar a lograr este objetivo consiste en disponer

de una red de fabricación distribuida en la que los productos se fabriquen en

localizaciones diferentes y se vayan ensamblando para obtener el producto

final. En estos casos, disponer de modelos y herramientas para mejorar el

rendimiento de sistemas de producción distribuidos con ensamblajes es una

manera de asegurar la eficiencia de los mismos.

En esta tesis doctoral se estudian los sistemas de fabricación distribuidos

con operaciones de ensamblaje. Los sistemas distribuidos y los sistemas con

operaciones de ensamblaje han sido estudiados por separado en la literatura.

De hecho, no se han encontrado estudios de sistemas con ambas características

consideradas de forma conjunta.

Dada la complejidad de considerar conjuntamente ambos tipos de sistemas

a la hora de realizar la programación de la producción en los mismos, se ha

abordado su estudio considerando un modelo bietápico en la que en la primera

etapa se consideran las operaciones de producción y en la segunda se plantean

las operaciones de ensamblaje.

Dependiendo de la configuración de la primera etapa se han estudiado dos

variantes. En la primera variante se asume que la etapa de producción está

compuesta por sendos sistemas tipo flowshop en los que se fabrican los com-
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ponentes que se ensamblan en la segunda etapa (Distributed Assembly Per-

mutation Flowshop Scheduling Problem o DAPFSP). En la segunda variante

se considera un sistema de máquinas en paralelo no relacionadas (Distributed

Parallel Machine and Assembly Scheduling Problem o DPMASP). En ambas

variantes se optimiza la fecha de finalización del último trabajo secuenciado

(Cmax) y se contempla la posibilidad que existan tiempos de cambio (setup)

dependientes de la secuencia de trabajos fabricada. También, en el caso

DPMASP se estudia la posibilidad de prohibir o no el uso de determinadas

máquinas de la etapa de producción.

Se han desarrollado modelos matemáticos para resolver algunas de las

variantes anteriores. Estos modelos se han resuelto mediante los programas

CPLEX y GUROBI en aquellos casos que ha sido posible. Para las instancias

en los que el modelo matemático no ofrecía una solución al problema se han

desarrollado heurísticas y metaheurísticas para ello.

Todos los procedimientos anteriores han sido estudiados para determinar

el rendimiento de los diferentes algoritmos planteados. Para ello se ha real-

izado un exhaustivo estudio computacional en el que se han aplicado técnicas

ANOVA.

Los resultados obtenidos en la tesis permiten avanzar en la comprensión

del comportamiento de los sistemas productivos distribuidos con ensamblajes,

definiendo algoritmos que permiten obtener buenas soluciones a este tipo de

problemas tan complejos que aparecen tantas veces en la realidad industrial.



Resum

Els sistemes de producció s’enfronten a reptes globals en què el concepte de

fabricació col.laborativa és crucial per a poder tindre èxit en l’entorn canviant

i complex en què ens trobem. Una característica dels sistemes productius

que pot ajudar a aconseguir este objectiu consistix a disposar d’una xarxa de

fabricació distribuïda en la que els productes es fabriquen en localitzacions

diferents i es vagen acoblant per a obtindre el producte final. En estos casos,

disposar de models i ferramentes per a millorar el rendiment de sistemes de

producció distribuïts amb acoblaments és una manera d’assegurar l’eficiència

dels mateixos.

En esta tesi doctoral s’estudien els sistemes de fabricació distribuïts amb

operacions d’acoblament. Els sistemes distribuïts i els sistemes amb opera-

cions d’acoblament han sigut estudiats per separat en la literatura però, en allò

que es coneix, no s’han trobat estudis de sistemes amb ambdós característiques

conjuntament. Donada la complexitat de considerar conjuntament ambdós

tipus de sistemes a l’hora de realitzar la programació de la producció en els

mateixos, s’ha abordat el seu estudi considerant un model bietàpic en la que

en la primera etapa es consideren les operacions de producció i en la segona es

plantegen les operacions d’acoblament.

Depenent de la configuració de la primera etapa s’han estudiat dos variants.

En la primera variant s’assumix que l’etapa de producció està composta per

sengles sistemes tipus flowshop en els que es fabriquen els components que

s’acoblen en la segona etapa (Distributed Assembly Permutation Flowshop

v
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Scheduling Problem o DAPFSP). En la segona variant es considera un sistema

de màquines en paral.lel no relacionades (Distributed Parallel Machine and

Assembly Scheduling Problem o DPMASP). En ambdós variants s’optimitza

la data de finalització de l’últim treball seqüenciat (Cmax) i es contempla la

possibilitat que existisquen temps de canvi (setup) dependents de la seqüència

de treballs fabricada. També, en el cas DPMASP s’estudia la possibilitat de

prohibir o no l’ús de determinades màquines de l’etapa de producció.

S’han desenvolupat models matemàtics per a resoldre algunes de les vari-

ants anteriors. Estos models s’han resolt per mitjà dels programes CPLEX

i GUROBI en aquells casos que ha sigut possible. Per a les instàncies en

què el model matemàtic no oferia una solució al problema s’han desenrotllat

heurístiques i metaheurísticas per a això. Tots els procediments anteriors han

sigut estudiats per a determinar el rendiment dels diferents algoritmes plante-

jats. Per a això s’ha realitzat un exhaustiu estudi computacional en què s’han

aplicat tècniques ANOVA.

Els resultats obtinguts en la tesi permeten avançar en la comprensió del

comportament dels sistemes productius distribuïts amb acoblaments, definint

algoritmes que permeten obtindre bones solucions a este tipus de problemes

tan complexos que apareixen tantes vegades en la realitat industrial.
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CHAPTER 1
INTRODUCTION

Nowadays, manufacturing enterprises struggle to achieve competitive manu-

facturing systems to be able to meet new global challenges like market glob-

alization, increasing product varieties, higher product customization, shorter

lead-times, reduced product life cycles, etc. Therefore, the necessity of a

collaborative manufacturing environment has become more sensible. Con-

structing a new manufacturing environment through a wisely composition of

appropriate manufacturing systems is an efficient way to face the challenges.

On the other hand, optimizing these manufacturing systems is a complex task

that can significantly affect production performance. As a result, optimizing

these production systems has received considerable attention and has become

an active research topic in the recent years. Therefore, in this thesis we propose

new methods to manage a manufacturing system able to tackle these recent

global challenges and try to present different ways to find optimum or near

optimum solutions.

In the remainder of this chapter, we briefly mention the motivation of the

thesis, present the addressed problem and highlight the main contributions of

1
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our work.

1.1 Motivation for the thesis

Today, more than ever the manufacturing industry is faced with challenges like

a tremendous competition and a rapidly changing environment. Market glob-

alization, aggressive competition at a global scale, product life cycle reduction,

increasing market demands for more innovation and demand variability, faster

delivery, higher quality products, customers’ push for higher product varieties

and increased productivity through highly optimized production processes are

some of the challenges faced by the manufacturing industry today.

Traditional manufacturing systems do not adequately face these chal-

lenges. For example, they are not flexible enough and cannot cope with

market requirements due to being too slow and in most cases too costly in

time response to predominantly random excitations of the markets (Butala and

Sluga, 2002). Most of the information in traditional manufacturing systems is

incomplete, incorrect and unreliable. Therefore, decision makers act more or

less based on guessing and usually using the rule of thumb (Peklenik, 1997).

The organizational structures of these systems are predetermined and rigid,

because they are based on labor division and the optimization of performance is

based on central planing and control (Westkaemper, 1997). Therefore, in order

to meet these challenges, the manufacturing system has to be able to respond

to the dynamic changes in the environment, capable of producing large prod-

uct variants, increased levels of flexibility, responsiveness, reconfigurability,

robustness and intelligence into manufacturing systems.

In order to face these new challenges, a shift of the manufacturing

paradigm from traditional into new manufacturing prospects considering nat-

ural understanding is needed. Novel manufacturing control systems that are

able to manage production changes and disturbances, both effectively and

efficiently (Brussel et al., 1998) are needed to meet these challenges. Several
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effective approaches arise to incorporate increasing levels of flexibility, recon-

figurability, and intelligence into manufacturing systems in order to meet chal-

lenges such as “flexible manufacturing” (Jha, 1991), “holonic manufacturing”

(Brussel et al., 1999; Brussel, 2014), “agile manufacturing” (Goldman et al.,

1994), “reconfigurable manufacturing” (Koren et al., 1999; Mehrabi et al.,

2000), “fractal factory” (Warnecke, 1993), “bionic manufacturing systems”

(Ueda, 1992), “distributed manufacturing systems” (Peklenik, 1992), etc.

A Flexible Manufacturing System (FMS)(Jha, 1991) is a manufacturing

system in which there is some amount of flexibility that allows the system to

react in case of changes, whether predicted or unpredicted. A FMS consists

of several machine tools along with part and tool handling devices such as

robots, arranged so that it can handle any family of parts for which it has been

designed and developed. It can be changed or adapted rapidly to manufacture

different products or components at different volumes of production. Flexible

manufacturing systems are usually seen at their most when manufacturing

components rather than finished products.

The Holonic Manufacturing System (HMS)(Brussel et al., 1999; Brussel,

2014) presents a new paradigm for next-generation manufacturing systems.

HMS brings a different perspective, as it introduces a method for meeting

the challenges of manufacturing environments for mass customization or low-

volume and high-variety products. It also satisfies customers’ requirements

according to the concept of Holon. Holons in HMS refer to key elements

like machines, work centres, plants, parts, products, persons, departments.

Furthermore, a Holon is autonomous, co-operative and sometimes intelligent.

The interaction of holons determines the activity of each Holon in the system

and there is no need to have a centralized mechanism. The theory of HMS

focuses particularly on manufacturing control and manufacturing information

technology. This system aims to provide a dynamic and decentralized manu-

facturing process and also effectively integrated with the human, therefore the

changes can be made dynamically and continuously.
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Agile manufacturing (Goldman et al., 1994) is a term applied to an or-

ganization. The aim of this system is to create the needed processes, tools,

and to train the system so to have a strong focus on rapid response to the

customer needs and market changes while maintaining standards of quality and

controlling the overall costs involved in the production. In fact, this is a union

of the organization, people and technology all together, which are integrated

and coordinated. Agile production processes are designed flexible so they can

change rapidly to create new or custom products using existing equipment,

tools, labor and raw materials. Agile manufacturers can brace themselves for

dramatic performance improvements in competitive market of these days.

A Reconfigurable Manufacturing System (RMS) (Koren et al., 1999) is a

new manufacturing system model which gives the ability to adjust the pro-

duction capacity and practically satisfy new market conditions and require-

ments. This system helps being cost-effective and very reactive to all the

changes in market, product and system failures. RMS allows to be flexible

in both producing varied parts and changing the system itself. The system

can continuously improve itself and this improvement comes from adapting

to modern technology, changing rapidly to host innovations and changes in

product demand, not being throw away or replaced.

The concept of fractal factories (Warnecke, 1993) comes out of fractal

features such as self-organization, dynamics and self-similarity. These fac-

tories are manufacturing companies made-up of small parts or fractal entities.

In this system, consistency of system goals is ensured by participation and

coordination. This process is applied through an inheritance mechanism to the

system. A flexible and efficient information and navigation system constantly

check target areas, reassess their position and progress and correct them if

necessary, in order to support the system. Anyway, there still is lack of much

study and effort to coordinate the each fractal’s activity and run mechanisms

that permit self-organization and dynamic restructuring.

The bionic manufacturing system (Ueda, 1992) is inspired of biological
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metaphors that focus on the self-organizing nature of element in the manufac-

turing system. Noticeable characteristic of these systems are autonomous and

spontaneous behavior, harmony within hierarchically ordered relationships,

self-recognition, self-growth and self-recovery. These features are integrated

intelligently together to create a new manufacturing system to respond fu-

ture manufacturing needs. The basic unit of these structure, is a cell which

comprises all other parts. These similar cells have different functions and do

multiple operations. Production units on the shop floor resemble biological

cells.

In a Distributed Manufacturing System (DMS) (Peklenik, 1992) factories

of various levels of manufacturing capabilities are equipped with diverse types

of machines and, tools run in parallel and are scattered around many geograph-

ically different locations. This system also can be viewed as a multi agent

system in which each manufacturing center is an agent to produce the whole

or part of the ordered products by the customers. Studies and investigations

(Rosenau, 1996; Wang, 1997) has proven that distributed manufacturing en-

ables enterprises to achieve better product quality, lower production costs and

reduced management risks. Studies show that the manufacturing costs (single

location) are more costly than outsourced (multiple off-shore location) produc-

tion (Mahdavi et al., 2008). For example, during the late 1980s, many Japanese

manufacturers aggressively distributed shops into several Asian countries due

to the sharp increase in domestic labor costs. Distributed workloads across

multiple suppliers in comparison of only one supplier, significantly reduce

management risks.

As mentioned before, nowadays one of the main challenges that each

manufacturing system faces with is diversification of consumer needs (Hu

et al., 2011). The manufacturing system should be able to adapt itself to

unstable market situations quickly (Manzini et al., 2004). Increasing variety of

products is one key method for the systems to deal with this type of challenges

and to remain in the competitive market. Product variety has been recognized
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as an important source for manufacturers to increase their profits as well as

the competitiveness in the market (Wang et al., 2013a). Product variety can

satisfy customer requirements in two ways, either collectively through a family

of product variants, or individually through a configurable product design

(ElMaraghy et al., 2013). Products can be configured to satisfy individual

customer requirements. Product variety is achieved through combinational

assembly of different variants of modules (Wang et al., 2013a).

Assembly systems have been employed in recent years to provide flexible

and quickly deployable solutions in order to deal with unpredictable changes

following market trends (Ferreira et al., 2014). These systems are mostly used

in mass production. Assembly systems are one of the key elements of effective

mass production system (Chutima and Chimklai, 2012), and as such it has

acquired great importance and is of considerable interest for many industries.

As mentioned before, the ability of distributed manufacturing and as-

sembly systems to overcome recent challenges is clear. The idea is to use

both of these systems together in a same manufacturing system. Each of

the distributed manufacturing and assembly systems has their own advantages

to face challenges and to help industries remain competitive. The combined

advantages can make industries stronger, more flexible and bring more efficient

and effective solution ways to deal with the challenges.

On the other hand, optimizing these complex systems consisting of more

than one manufacturing system that can significantly affect production per-

formance is more complex than considering just one of them. Scheduling

the system can lead to an improved production performance. Scheduling is

the process of arranging, controlling and optimizing work and workloads in

a production or manufacturing process. It is an important tool for manufac-

turing, where it can have a major impact on the productivity of a process.

Production scheduling aims to maximize the efficiency of the operation and to

reduce costs. Given such circumstance, optimizing the manufacturing prob-

lems through scheduling has received considerable attention and has become
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an active research topic in recent years (T’Kindt and Billaut (2006); Pinedo

(2009, 2012); Framinan et al. (2014), among others). Therefore, this thesis is

focused on studying the scheduling problem through modeling and on propos-

ing solution procedures to schedule these kind of systems.

1.2 Statement of the problem

In this thesis, a new model composed of distributed manufacturing and assem-

bly system as two basic keys facing new challenges is studied. The studied

model consists of two stages: the first is composed of various identical man-

ufacturing factories which produce different components. The second stage

is an assembly stage where these previously manufactured components are

assembled into complete products via given assembly programs. To the best

of our knowledge, this thesis is the first attempt to combine the distributed

manufacturing and assembly systems.

Minimizing the makespan of the products in the assembly stage is consid-

ered as the objective function. Makespan is one of the most important criteria

in every production system. The practical implication is obvious: minimizing

the makespan leads to the minimization of the total production run (Framinan

et al., 2002). Therefore, how to schedule to obtain the minimum makespan and

enhance the overall performance is an important issue for the industries (Low

et al., 2010). In the literature, special attention has been paid to makespan

minimization and this criterion has been studied extensively in the scheduling

literature. Some reviews are Lee et al. (1993); Framinan et al. (2002); Ruiz

and Maroto (2005); Zobolas et al. (2009) and Low et al. (2010).

1.3 Thesis objectives

The main objective of this thesis is to schedule the presented production mod-

els by considering makespan minimization of the products that are assembled

in the assembly stage. This criterion focuses on completing the last job/product
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as soon as possible which leads to the minimization of the total production

run. Therefore production scheduling, with the objective of minimizing the

makespan, is an important task in manufacturing systems. Two different

problems are presented in this thesis. All problems consist of two stages:

production and assembly. In the first problem, the shop configuration of all

production factories in the first stage is modeled as a flowshop. Jobs are

produced on the first stage and assembled into final products through a defined

assembly program in a second assembly stage. This problem is referred to

as the Distributed Assembly Permutation Flowshop Scheduling Problem or

DAPFSP. A MILP is provided to solve the problem. Since, this is a NP-

Hard problem, some simple algorithms and heuristics in order to minimize the

makespan of the products on the assembly stage are presented. The criteria of

minimizing the makespan is considered only for the assembled products on the

assembly stage. A schematic diagram of this problem is shown in Figure 1.1.

The first problem is modified by adding sequence dependent setup time

(SDST) on the production and assembly machines. Logically, the complex-

ity of the new problem is greater than the previous one after adding SDST

into both stages. Therefore, some efficient heuristics and metaheuristics

are introduced to solve it. The objective is the same as in the previous

model. A schematic diagram of this problem considering SDST on both stages

(DAPFSP-SDST) is shown in Figure 1.2.

In the second problem, all factories on the first stage consist of a set of

unrelated parallel machines and a single assembly machine in the assembly

stage. Jobs are processed on the first stage and assembled into final products

through a defined assembly program in the assembly stage. This problem is

referred to as the Distributed Parallel Machine Assembly Scheduling Prob-

lem or DPMASP. This third problem is studied in two different conditions:

allowing and not allowing the production machines being left empty. The

aim is to present MILP models for both problem conditions and to propose

efficient constructive heuristics to report good results in order to minimize
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Figure 1.1: A schematic diagram of DAPFSP.

the makespan of products on the second stage. Figure 1.3 shows a schematic

diagram of the problem.

1.4 Summary of contributions

Our contributions can be described as follows:

1. Introducing the Distributed Assembly Permutation Flowshop Schedul-

ing Problem (DAPFSP). In the DAPFSP, the first stage consists of f

identical production factories with a flowshop configuration each and

the second stage is a single assembly machine.

• A Mixed Integer Linear Programming model (MILP) is presented.

• Three constructive algorithms are proposed.
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Figure 1.2: A schematic diagram of DAPFSP-SDST.

• A Variable Neighborhood Descent (VND) algorithm also has been

designed.

• A large variety of instances in two different sizes (small and large)

by considering several instance factors are generated to test the

MILP and proposed algorithms.

• Two state-of-the-art commercial solvers, CPLEX and GUROBI

are used to solve the MILP model for the small set of instances.

Various test factors are considered to study the solution procedures.

• An exhaustive Chi-squared Automatic Interaction Detection tool

(CHAID) is used to draw a decision tree to analyze the effect and

interactions of the tested factors for CPLEX and GUROBI results.

• Both sets of instances, small and large, are used to test the con-

structive and VND algorithms. The results are analyzed through a
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comprehensive ANOVA statistical analysis.

2. We also add Sequence Dependent Setup Times (SDST) for all produc-

tion and assembly machines in both stages of the DAPFSP.

• Two simple constructive heuristics and two different metaheuris-

tics VND and Iterated Greedy (IG) are proposed.

• Two different solution representations are used in both simple

constructive heuristics and metaheuristics.

• A complete calibration and analydsis through a Design of Experi-

ments (DOE) approach is carried out to select the best levels of the

factors for the IG.

• In the process, important knowledge of the studied problem is ob-
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tained as well as some simplifications for the powerful IG method-

ology which results in a simpler approach with less parameters.

• The performance of the proposed methods is compared through

extensive computational and statistical experiments.

3. We also study the Distributed Parallel Machine and Assembly Schedul-

ing Problem (DPMASP) which consists of two stages, production and

assembly. There is a set of distributed identical factories, each one with

a set of unrelated parallel machines at the production stage and a single

assembly machine in the assembly stage.

• Two assumptions are considered for the problem: a) due to tech-

nical constraints, machines can not be left empty and b) empty

machines at factories are permitted.

• Two MILP models by considering each mentioned assumptions are

presented for the problem and two state-of-the-art solvers CPLEX

and GUROBI are used to solve them.

• Different fast and high-performing heuristics are proposed for the

problems.

• Different sized instances are designed to test the MILP and pro-

posed heuristics and the results are analyzed through a compre-

hensive ANOVA statistical analysis.

1.5 Outline of the thesis

The remainder of the thesis is organized as follows:

Chapter 2: Presents the necessary background for the thesis. Notions of

scheduling are introduced, followed by an overview of scheduling problems.

Some concepts of the distributed manufacturing and assembly systems are

presented. A brief introduction of optimization and finally some solution

methods for the scheduling problems are enumerated and explained.
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Chapter 3: A detailed explanation of Distributed Assembly Permutation

Flowshop Scheduling Problem (DAPFSP) is presented. A literature review on

problems close to the DAPFSP is provided. A Mixed Integer Linear Program-

ming model is presented along with three constructive heuristics and a Variable

Neighborhood Descent (VND) algorithm. The MILP, simple constructive

heuristics and the VND are tested.

Chapter 4: An extension of the problem studied at Chapter 3 is presented

by adding sequence dependent setup times to production machines on the

first stage and to assembly machine on the second stage. The problem is

discussed in detail and a literature review is provided. Two simple constructive

heuristics and two different metaheuristics, VND and Iterated Greedy (IG) are

designed for the problem. Two different solution representations are applied

to all solution methods. A Design Of Experiments (DOE) approach is carried

out for calibration. The algorithms are tested through a set of computational

experiments.

Chapter 5: A new problem is presented. In this case, in the first stage in-

stead of a flowshop configuration, we have a set of unrelated parallel machines

in all production factories. Due to technological constraints, machines cannot

be idle and some jobs can be processed only in certain factories. A literature

review of related problems is presented. A mathematical model is developed

and also two different constructive heuristics are proposed to solve this setting.

Chapter 6: studies the presented model in Chapter 5 by relaxing the

special constraint that no machine at any factory might be empty due to

technological or economical constraints. A mathematical model is presented

and four simple, fast and high performing heuristics are proposed.

Chapter 7: This chapter presents a general discussion on the all obtained

results in this thesis.

Chapter 8: A general conclusion that includes the description of the

search findings, a discussion of the results and possible future work are pre-

sented in this final chapter.





CHAPTER 2
BACKGROUND

In today’s complex manufacturing reality, there are multiple product lines and

complex products consisting of various components or sub-assembled parts.

Each product requires many different steps and machines for its manufacturing

and sometimes there is an economic justification to operate multiple plants

and to collaborate with partners across the country and around the globe.

Therefore, there is a need to find a way to successfully manage resources in

order to produce products in the most efficient possible way. For this purpose,

to design a production schedule is strongly recommended. Most of these

problems are hard to solve and many different techniques have been developed

for tackling them.

In this chapter we review the scheduling methods and manufacturing sys-

tems used in the thesis and some of the scheduling problem solution tech-

niques. It is not possible to cover, in this chapter, the huge research effort car-

ried out so far in the scheduling area, therefore, a brief introduction overview

is considered instead. The chapter starts by presenting a short history of

scheduling and a brief survey on scheduling problems classification. Next,

15
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the two manufacturing systems in which our studied problems are based:

distributed and assembly are described in detail. The chapter is followed by a

short overview of some optimization techniques and methods for scheduling

problems.

2.1 Scheduling

Scheduling deals with the problem of allocating one or several limited re-

sources to activities over a certain time period, subject to specific constraints

(Pinedo, 2012). The idea of resources and activities takes many forms. Typ-

ically, resources can be machines or raw materials for the manufacturing or

stretches of a track in the train scheduling or the date and the venue in a sport

context. Activities may be operations or processing to be carried out in a

production process, the train running from a point to another on a track, or

a game to be played in a football competition.

The goal of scheduling is to optimize some objective function depending

on the application domain at hand. For example in manufacturing environ-

ments the function to optimize is usually the maximum completion time, i.e.,

the time elapsed since the beginning of the first task till the end of the last one.

This is commonly referred to as makespan. Other possibilities are to minimize

the tardiness of jobs, total flowtime, etc.

Scheduling problems appear in several different domains such as produc-

tion planning, timetabling, product configuration, transportation, distribution,

information processing and communications. Scheduling and sequencing

problems have been studied for many decades. The pioneering works of Henry

Gantt (1861-1919) were the starting point of scheduling in manufacturing,

after the theory of scientific management of Frederick Winslow Taylor. Since

the early 1950s (Johnson, 1954; Jackson, 1956; Smith, 1956), the theory and

application of scheduling has grown into an important field of research. Naval

Research Logistic Quarterly published the first scientific paper on scheduling
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in the early 50s (Johnson, 1954). Later, in the 1960s and 1970s a sharp

growth occurred in the area and has retained the momentum ever since. With

computing development automated scheduling tools are used for scheduling

systems from the 80s (Pinedo, 2012).

Scheduling covers a very wide family of problems and has been a large

research area for decades. A lot of work has been done to model, introduce,

classify, and solve scheduling problems. In the next section an overview of

scheduling classification is presented.

2.2 Classification of scheduling problems

Basically there are three class as of scheduling problems with respect to

the structure or configuration of the machines in the manufacturing shop,

which are: single-machine problems, single-stage multi-machine problems

and multi-stage multi-machine problems.

2.2.1 Single-machine problems

In a single-machine scheduling problem, a group of tasks have to be scheduled

into a single machine or resource. It has attained most attention in theoretical

scheduling studies. Understanding existing rules and theories in this area paves

the way for a better analysis of the multi-machine systems.

In a single machine scheduling problem the following assumptions gen-

erally have been applied in order to simplify, formulate and solve scheduling

problems:

1. The machine is continuously available during the scheduling period.

2. The machine can process one job at the same time.

3. The processing time of the job on the machine is a positive integer value,

known in advance, deterministic and independent.
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4. In non-preemptive scheduling, jobs have to finish processing without

interruption. Otherwise, in preemptive scheduling, jobs may be removed

from the machine before completion to be finished at a later time.

2.2.2 Single-stage multi-machine problems

Parallel machine scheduling problems (PMSP) are a type of problems which

consist of a single production stage with multiple machines disposed in par-

allel. It has wide applications on manufacturing systems in the real world.

It has been broadly studied during the last decades, mainly because of the

aforementioned real world applications (Lin et al., 2011a; Ying, 2012).

In the parallel machine scheduling problem multiple machines are avail-

able. In this problem the aim is to schedule a set N of n jobs on a set M

of m machines. These machines are disposed in parallel and jobs have to

be assigned and scheduled in these machines. Jobs have to be assigned and

processed by exactly one out of the m parallel machines. A job cannot be pro-

cessed on more than one machine at the same time. Therefore, the processing

of the jobs has to start and finish on a given machine (non-preemption). A

machine cannot process more than one job at the same time. The processing

time, pij , is the time required for machine i to process job j. This time is a

known, deterministic and positive. There are three different types of PMSP:

• Parallel identical machines (P ): where jobs are scheduled on multiple

identical machines. The processing time of each job is the same on any

machine, so that for a set M of m machines, p1j=p2j= . . . = pmj= pj .

When the machines are not equal, then we face to the non-identical parallel

machine scheduling problems, which can be divided into two cases:

• Uniform related machines (Q): Machines that work with different

speeds and the processing time of a job j on machine i follows the rela-

tionship pij = pj/si, where si represents a different speed for machine i
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when processing the jobs. In other words, a job processing time depends

on the machine speed factor.

• Unrelated machines (R): machines have different characteristics and are

unrelated to each other. Therefore, the processing time of each job j on

each machine i is different and denoted by pij (Allahverdi et al., 2008;

Lin et al., 2011b).

2.2.3 Multi-stage multi-machine problems

This type of scheduling problem is a vast and applicable topic in the litera-

ture. These problems are divided into four groups of scheduling problems as

described bellow:

• Flowshop problems: A typical scheduling problem which contains m

different machines arranged in series where a set of n jobs has to be

processed. Each job needs m operations and each operation must be

performed on a separate machine. Therefore, each of the jobs has to

go through each machine on the shop floor. The flow of the work is

unidirectional; every job has to be processed on each machine in a given

prescribed order. All jobs are available at time zero. Each operation is

to be performed on a specific machine. Each machine can process at

most one job at the same time and each job can be processed by at most

one machine at a time. Jobs have different processing times for each

machine.

If an arbitrary sequence of jobs on each machine is considered, then

there are (n!)m possible schedules for the problem. Finding the best

schedule in a problem with such a high amount of feasible schedules is

difficult. Therefore, researchers have focused on reducing this number

of feasible schedules as much as possible without compromising the

final solutions. Therefore, it is assumed that the order in which a job

passes through the machines is the same for all the machines in most
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of the flowshop scheduling literature. In the other words, each machine

has the same sequence of jobs. Considering this assumption, the number

of feasible schedules is now n!. This type of flowshop scheduling

problem by considering the reduction of feasible schedules is known

as permutation flowshop problem.

• Jobshop problems: Each job consists of a chain of operations and

has a specified machine visitation order, which determines the required

machine for the tasks and the processing times. Each operation has a

single predecessor and requires a certain machine. In the jobshop the

visitation order for the machines depends on each job and it is not the

same for all jobs like in a flowshop. Some constraints are considered on

jobs and machines. For example, there are no precedence constraints

among operations of different jobs; interruption of operations is not

allowed (non-preemption); each machine can process only one job at

a time and also each job can be performed only on one machine at a

time.

• Openshop problems: A given set of jobs must be processed by a given

set of machines where there is no ordering constraints. There are m

machines that perform different operations and n jobs which consist of

m operations. At any time each machine may process at most one job at

a time and one job may be processed by at most one machine at a time.

In openshop problems there are no precedence relations between the

operations of each job and there is no restriction on the order in which

the operations for a job are to be processed (Coffman, 1976; Conway

et al., 1968). Therefore, the order of operations is immaterial and no

order is given at all in the openshop problem.

• Group shop environments: It is a generalization of the classical jobshop

and openshop scheduling problems. In Group Shop Scheduling Prob-

lems (GSP) there are m machines and n jobs where each job consists
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of a set of operations that must be processed on specified machines

without interruption. The operations of each job are partitioned into

g groups G = {G1, . . . , Gg} on which a total precedence order is given.

The operations in the same group are unrestricted while operations in

two distinct groups most satisfy the precedence relationship between

the groups. There is a given total order on the groups of each job. For

example, the operations of the first group of a job have to be processed

before the operations of the second group.

Assembly systems and distributed manufacturing systems are two power-

ful manufacturing systems that consist of different compositions of the previ-

ously reviewed scheduling problems. These two manufacturing systems are

used in the studied problems of this thesis. Therefore, an introduction to each

system is provided in the following sections.

2.3 Assembly scheduling problems

In the recent years, assembly systems have been profusely employed in mass

production. They have been widely deployed in various manufacturing sys-

tems to increase the flexibility and the capability of producing a larger variant

of products in order to meet a wider array of market demands. These types of

problems are referred to as Assembly Scheduling Problems (ASP).

An assembly system is a flow oriented manufacturing system. Various op-

erations are performed independently to produce different components, where

these components and the bill-of-material parts are attached one-by-one to a

unit in a sequential way by a series of workers or machines to manufacture

a finished product. All the operations and the assembly program to fully

produce the product are identified and the processing times are evenly assigned

to workers/machines. Normally, a high variety of finished products are made

from different combinations of produced components which are produced in

assembly systems.
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There are several types of assembly systems such as: Single model assem-

bly, batch assembly, mixed model assembly for make-to-stock, mixed model

assembly for make-to-order, postponement assembly and one station assembly

(Thomopoulos, 2014). In a single model assembly, the assembly line is dedi-

cated to assemble just one model. In batch assembly, the models are assigned

to the line in pre-assigned sizes, where each model is run until its inventory is

at a specified level. Mixed model assembly for make-to-stock occurs when

more than one model of a product is assigned to the same assembly line

at the same time. Mixed model assembly for a make-to-order manufacturer

occurs when the manufacturer's product is offered with a series of features and

options. Postponement assembly is a supply chain strategy that could apply

to manufacturers that fabricate products with a series of features and options.

This assembly strategy is applied for manufactures where the customer orders

are for a particular combination of the options. One station assembly is applied

when all needed assembly work to complete a unit is assigned to one person in

one station.

In this thesis we work with the mixed model assembly for make-to-order

which is carried out in one station assembly. In this assembly system, each

customer order specifies the option for each feature of the product. This way,

every customer order is unique and often no two orders are the same. The

customer order is called a product. In the studied problems in this thesis, the

assembly operations are performed at a single location on a single machine.

The typical operation in the single-station assembly machine involves the

placement of the base part at the workstation where various components are

added to the base.

For manufacturers, the benefits of assembly line production are enormous

such as producing diverse products, reducing the skill requirements for line

workers, increasing production and better uniformity. Additionally, scheduling

in distributed manufacturing systems is studied in this thesis and a brief

introduction is presented in the next section.
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2.4 Distributed manufacturing systems

On today’s global and highly competitive market, enterprises must be aware

of current market opportunities and react to customers’ demands quickly and

properly. Increasing product diversity over time expands associated risks and

costs, which are sometimes prohibitive. Therefore, the existence of multiple

entities for distributing responsibilities, results in a scenario in which risks

and costs become acceptable and market opportunities can be reaped. In most

of the cases, a single production center cannot adequately answer the market

requirements such as a rising variety and complexity of products or product

individualization because of the structural rigidity, deterministic approach to

decision making and hierarchical allocation of competencies (Sluga et al.,

1998).

In order to face the mentioned challenges Distributed Manufacturing Sys-

tems (DMS) is one of the possible alternatives. The DMS environments are

constructed based on the new organizational structures. These new structures

are mostly geographically distributed, composed by several independent com-

mercial partners or production centers with various machines and tools running

in parallel so that each of them works with its own specialization and resources

dedicated to specific functions in the product life cycle (Mishra and Shah,

2009; Chan and Chan, 2010; Mikos et al., 2011). As for the benefits of DMS

we can mention higher product quality, lower production costs, reduced risks

and offshore outsourcing (Wang, 1997; Kahn et al., 2004; Chan et al., 2005b;

Mahdavi et al., 2008).

Scheduling in DMS is more complicated than scheduling single manufac-

turing systems. In a single manufacturing system, only job schedules for each

set of machines has to be defined. In DMS, factory selection (process plan)

for each job is also added as an important decision. Therefore in a DMS, two

decisions have to be taken: 1) Allocation of jobs to factories, 2) Scheduling of

the jobs allocated to each factory.
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2.5 Optimization

An optimization problem consists of finding the solution or solutions which

are optimal or near-optimal among all feasible solutions with respect to some

goals and constraints.

Scheduling problems are a type of combinatorial optimization problems. A

combinatorial optimization problem is either a minimization or a maximization

problem over a discrete combinatorial structure. These problems are defined

by decision variables, constraints and objective functions. A domain of defined

set of values is determined for decision variables that are the unknowns of the

problem and must be fixed. Through the constraints, assignments of the vari-

ables are defined and the optimization function decides the best assignments.

To find high-quality solutions for a problem is the purpose of optimization

algorithms. In an optimization problem, the objective is, identifying either

optimal solutions x⇤, near-optimal solutions x 2 X , where f(x) � f(x⇤) is

small (in the case of minimization).

Most scheduling problems are computationally difficult and hard to solve

optimally and need complex algorithms. The complexity of the problem is of

great interest. Computational complexity theory deals with the time require-

ments to solve a given problem. In terms of scheduling problems, we are

concerned with the time required to solve the problem to optimality. The run-

ning time of the algorithms developed to solve these problems is considered.

The running time describes the number of operations that must be performed

as a function of the number of input variables to the algorithm. A problem

is polynomial (class P), if the algorithm to solve it can be run in polynomial

time on a deterministic Turing machine. The problem is considered NP (Non-

deterministic Polynomial) if its solution can be found in polynomial time on a

non-deterministic Turing machine.

The hardest class of problems to solve in NP are known as NP-complete

problems. Cook (1971) defines a problem as NP-complete if it is NP , and ev-
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ery other problem in NP is reducible to it in polynomial time. NP-complete

problems are considered to be harder than other problems in NP because,

presently, all known NP-complete problems have exponential running times

with respect to the problem size, and are therefore likely not to be in P .

An NP-hard problem is a combinatorial problem whose decision version

in NP-complete. It has been proven that most classes of scheduling problems,

even greatly simplified ones, belong to NP-hard class (Karp, 1972; Engels

et al., 2001). There are currently no polynomial time algorithms known

to solve most scheduling problems to optimality. Therefore many different

techniques have been developed for tackling them. Many researchers have

instead focused on developing heuristics or approximation techniques that lead

to sub-optimal solutions but in shorter CPU times (Ng et al., 2010; Zachariadis

and Kiranoudis, 2010; Rudek, 2011; Lee et al., 2014).

2.6 Solution methods

There are various methods proposed for solving scheduling problems. In the

following sections, some of the methods of interest in this thesis are briefly

reviewed.

2.6.1 Exact solution procedures

Exact methods are guaranteed to find an optimal solution, but typically become

impractical when faced with problems of any significant size or large sets

of constraints. There are several types of exact methods and tools such

as, Mathematical Programming (MP), Bounded Enumeration (BE), Branch

and Bound (B&B), etc. In this thesis we are interested in mathematical

programming.

Mathematical programming is a very useful tool for solving complex prob-

lem such as these than can be modeled as an objective function with a set of

mathematical constraints. A wide variety of research disciplines currently use
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MP techniques to aid in complicated decision-making. Because mathemat-

ical programming is concerned with finding optimal ways of using limited

resources to achieve an objective, it is often simply referred to as optimization.

Scheduling problems may be solved using Mathematical Programming, in

particular Linear Programming (LP) or Mixed Integer-Linear Programming

(MILP).

Linear Programming (LP) problems are MP formulations where the objec-

tive function and constraints are linear functions.

There are MP problems where it is necessary to restrict the decision

variables to integer or binary values. These problems are called Mixed Integer-

Linear Programming (MILP), and are often much harder to solve than LP

problems. This is because instead of having feasible solution points at the

easily computed extreme points of the feasible region, they are instead usually

internal and more difficult to locate. In most cases the Branch and Bound

technique is used to find the integer solution in MILP. Using MILP technique

has several advantages. First of all MILP produces exact optimal solutions

instead of approximate ones. Second, being a general-purpose optimization

method, software solver tools such as CPLEX (cpl, 2014) or GUROBI (gur,

2015) are available to efficiently solve an MILP problem once it has been

formulated. The disadvantage of using MILP techniques is that they are NP-

hard, and therefore may be infeasible to use for solving larger scheduling

problems.

2.6.2 Heuristics

Whereas exact solution methods are guaranteed to find the optimal solution,

heuristic methods sometimes find optimal solutions, but more often find simply

“good” solutions. Heuristic methods typically require far less time and/or

space than exact methods. Heuristics are rules for deciding which action has

to be taken at any step.

Heuristics in scheduling are often referred to as scheduling rules or dis-
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patch rules (Pinedo, 2012). The definition of these rules is often quite complex,

and most are tailored for a specific type of problem with a very specific set

of constraints and assumptions. Heuristics may be deterministic (they end

up with the same result every time) (Johnson, 1954; Palmer, 1965; Campbell

et al., 1970; Gupta, 1971, 1972; Nawaz et al., 1983) or they may be stochastic

(each time they are run they may produce a different result)(Dresbach, 1994;

Ciuprina et al., 2002; Boardman and Trappenberg, 2006). They may execute

one rule at a time, or they may be capable of parallel decisions. Hybrid

algorithms may combine multiple heuristics (Williams, 1983; Prosser, 1993;

Atighehchian et al., 2009).

Scheduling heuristics operate on a set of tasks and determine when each

task should be executed. If a task may be executed in more than one execution

mode or on any one of a set of resources, the heuristic must also determine

which resources and/or execution mode to use.

2.6.3 Metaheuristics

As mentioned before, there is no guarantee to find an optimal solution or

any guaranteed bound through any exact solution method (deterministic) in

a “reasonable” time limit for larger problems. Among the methods to find

solutions for many hard optimization problems, metaheuristics are widely

recognized as efficient procedures and can be used to find satisfactory solutions

for such problems. A metaheuristic is an algorithm which is designed to find

solution for approximately a wide range of hard optimization problems. The

algorithm of the metaheuristic does not require problem specific knowledge.

“Meta”, the greek prefix which is presented in the name, indicates that these

types of algorithms are “higher level” heuristics, in contrast with the heuristics

designed for specific problems. Complex problems in a wide range of settings

from industry, services, finance, transportation to production management, etc,

can be solved with metaheuristics.

There are some shared characteristics for most the metaheuristics such



28 CHAPTER 2. BACKGROUND

as: They might be inspired from nature or physical processes; stochastic

components involving random variables; the gradient or Hessian matrix of

the objective function is not usually applied; there are several parameters in

the metaheuristic algorithms that need to be calibrated to the problem at hand

(Glover and Kochenberger, 2003; Dréo et al., 2006; Siarry and Michalewicz,

2008; Gendreau and Potvin, 2010).

There is a great interest on using metaheuristics in the last thirty years. We

can try to point out some of the steps that have marked the history of meta-

heuristics. Kirkpatrick et al. (1983) was one of the pioneers in the proposition

of the Simulated Annealing method (SA) as a metaheuristic. Glover (1986)

and Farmer et al. (1986) proposed Tabu Search (TS) and the artificial immune

system, respectively. The first patent on genetic programming was presented

by Koza, in 1988 and then published in 1992. A well known genetic algorithm

book is published by Goldberg (1989). The innovative work on ant colony

optimization was presented by Dorigo (1992). Walker et al. (1993) proposed

a algorithm based on bee colonies for the first time also the particle swarm

optimization by Kennedy and Eberhart (1995). Iterated Greedy (IG) a very

simple and effective metaheuristic is proposed by Jacobs and Brusco (1995). In

1997, Mladenović and Hansen proposed Variable neighborhood search (VNS).

The development of metaheuristics has been fostered by the increasing

processing power of computers, the development of parallel architectures and

hardware improvements (Boussaïd et al., 2013). Metaheuristics might be di-

vided in to two groups: Single-Solution Based Metaheuristics and Population-

Based Metaheuristics.

Single-solution based metaheuristics, sometimes also called trajectory

based methods, start with a single initial solution and move in the search space

by describing a trajectory to improve the objective value. Some of them can be

seen as “intelligent” extensions of local search algorithms. For example we can

mention Simulated Annealing, Tabu Search, Greedy Randomized Adaptive

Search Procedure (GRASP), Variable Neighborhood Search, Guided Local



2.7. Conclusions 29

Search and Iterated Local Search, and their variants.

Population-based metaheuristics deal with more than one solution (i.e.,

a population). Most used methods in population-based metaheuristics are

related to Evolutionary Computation (EC) and Swarm Intelligence (SI). EC

algorithms are inspired by Darwin’s evolutionary theory, where a population

of solutions change through mutation and crossover operators. The idea of SI

is to generate computational intelligence through exploiting simple analogies

of social interaction, rather than purely individual cognitive abilities.

2.7 Conclusions

The concepts and the related issues to the considered problems are reviewed

in this chapter. This serves as a reduced basic background on the concepts

and features of the presented models. The chapter starts with an explanation

on the concept of scheduling and the classification of scheduling problems.

The concept of assembly scheduling and distributed manufacturing systems are

explained. A brief explanation on optimization is presented. A brief discussion

on the existing solution methods to solve problems has been presented.





CHAPTER 3
THE DISTRIBUTED ASSEMBLY PERMUTATION

FLOWSHOP SCHEDULING PROBLEM

“ The contents of this chapter are taken from the publication: Hatami, S., Ruiz,

R., and Andrés-Romano, C. (2013). The distributed assembly permutation

flowshop scheduling problem. International Journal of Production Research,

51(17):5292–5308.”

Nowadays, improving the management of complex supply chains is key to

become competitive in the twenty-first century global market. Supply chains

are composed of multi-plant facilities that must be coordinated and synchro-

nized to cut waste and lead times. This chapter proposes a Distributed Assem-

bly Permutation Flowshop Scheduling Problem (DAPFSP) with two stages to

model and study complex supply chains. This problem is a generalization of

the Distributed Permutation Flowshop Scheduling Problem (DPFSP). The first

stage of the DAPFSP is composed of f identical production factories. Each

one is a flowshop that produces jobs to be assembled into final products in a

second assembly stage. The objective is to minimize the makespan. We present

first a Mixed Integer Linear Programming model (MILP). Three constructive

31
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algorithms are proposed. Finally, a Variable Neighborhood Descent (VND)

algorithm has been designed and tested by a comprehensive ANOVA statistical

analysis. The results show that the VND algorithm offers good performance

to solve this scheduling problem.

3.1 Introduction

Assembly systems have been widely studied in the last decade given their

practical interest and applications. An assembly flowshop is a hybrid pro-

duction system where various production operations are independently and

concurrently performed to make parts that are delivered to an assembly line

(Koulamas and Kyparisis, 2001). In assembly systems, a wide variety of

final products can be made from a given number of different assembled parts.

Assembly programs represent relationships between the different parts which

must be assembled from a set of suppliers.

Nowadays a single supplier or production factory is rare. As a matter

of fact, production systems with more than one production center (named

distributed manufacturing systems) are quite usual as they play an important

role in practice (Moon et al., 2002). The benefits of distributed manufacturing

systems include achieving higher product quality, lower production costs and

fewer management risks (Wang, 1997; Kahn et al., 2004; Chan et al., 2005b).

From a manager’s point of view, scheduling in distributed systems is more

complicated than in single-factory scheduling problems. In single-factory

problems, the only objective is to find a job schedule for a set of machines,

while an important additional decision in the distributed problem is allocating

jobs to suitable factories. Therefore, two decisions have to be made; job alloca-

tion to factories and job scheduling at each factory. Different job allocations to

different factories result in different production schedules, which consequently

affects supply chain performance (Chan et al., 2005b).

This chapter contemplates flowshop scheduling as a production system for
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each factory or supplier in the distributed problem. The flowshop scheduling

problem (FSP) is composed of a set of M of m machines where each job of a

set N of n jobs must be processed in each machine. The number of operations

per job is equal to the number of machines. The ith operation of each job is

processed in machine i. Therefore, one job can start in machine i only after it

has been completed in machine i� 1, and if machine i is free. The processing

times of each job in the machines are known in advance, non negative and

deterministic.

In FSPs, a number of assumptions are made (Baker, 1974): all jobs are

available for processing at time 0; machines are continuously available (no

breakdowns); each machine can process only one job at a time; each job can be

processed in only one machine at a time; once the processing of a given job has

started in a given machine, it cannot be interrupted and processing continues

until completion (no preemption); set-up times are sequence independent and

are either included in the processing times or ignored; infinite in-process

storage is allowed. In the FSP, there are n! possible job permutations for each

machine. Therefore, the total number of solutions for a flowshop problem with

m machines is (n!)m. To simplify the problem, it is assumed that all machines

have the same job permutation. In other words, if one job is at the jth position

on machine 1, then this job has to be at the jth position on all other machines

as well. With this simplifying assumption the FSP is referred to as Permutation

Flowshop Scheduling Problem (PFSP) with n! possible solutions.

This chapter studies the Distributed Assembly Flowshop Scheduling Prob-

lem (DAPFSP). It is a combination of the DPFSP and the Assembly Flowshop

Scheduling Problem (AFSP), and consists of two stages: production and as-

sembly. The first stage consists of a set F of f identical factories or production

centers where a set N of n jobs have to be scheduled. All factories are capable

of processing all jobs and each factory is a PFSP with a set M of m machines.

Factories are assumed to be identical. Processing times are denoted by pij ,

i 2 M , j 2 N . The second stage is a single assembly factory with an assembly
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machine, MA, which assembles jobs by using a defined assembly program to

make a set T of t different final products. Each product has a defined assembly

program; in other words, each product consists of some defined jobs. Nh and

Jj are used, respectively, to represent product h assembly program and the

jobs that belong to the product h assembly program, Nh : {Jj}, j 2 Nh.

Each product h has |Nh| jobs and job j is needed for the assembly of one

product. Therefore,
Pt

h=1 |Nh| = n. Product h assembly can start only when

all jobs that belong to Nh have been completed in the factories. The considered

objective is to minimize the makespan at the assembly factory.

The next section presents a short literature review. Section 3.3 provides

a Mixed Integer Linear Programming (MILP) model to solve the considered

problem. Section 3.4 introduces three constructive heuristics, while Sec-

tion 3.5 presents an iterative method based on Variable Neighborhood Descent

(VND) to improve results further. Section 3.6 describes a complete compu-

tational evaluation of the MILP model and proposed algorithms, where the

performance of the proposed approaches is discussed in order to assess the

influence of the number of jobs, machines, factories, products and some solver

options on the results. Finally, Section 3.7 offers conclusions and remarks for

this chapter.

3.2 Literature review

The DPFSP can be viewed as a generalized version of the PFSP. This problem

is one of the most researched topics in the scheduling literature (Dong et al.,

2009; Zobolas et al., 2009; Laha and Sarin, 2009; Vallada and Ruiz, 2010;

Xu et al., 2011; Zhang and Li, 2011; Chen et al., 2012; Pan and Ruiz, 2012;

Pinedo, 2012).

In the PFSP, more attention has been paid to makespan minimization.

The practical implication is obvious: minimizing the makespan leads to the

minimization of the total production run (Framinan et al., 2002). There are
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some proposed effective rules and algorithms for the PFSP (Johnson, 1954;

Nawaz et al., 1983). A comprehensive review and evaluation has been made

by Ruiz and Maroto (2005), Vallada et al. (2008) and Pan and Ruiz (2013).

Regarding the assembly scheduling problem, Lee et al. (1993) presented

a three-machine assembly-type flowshop scheduling problem by considering

makespan minimization as the objective function. In their considered model,

each product is composed of two types of jobs, where type a and b are pro-

cessed by machine Ma and Mb, respectively, and machine M2 assembles the

two jobs into a product. These authors also present a branch-and-bound solu-

tion scheme and an approximate solution procedure. Later, Potts et al. (1995)

extended the model of Lee et al. (1993) by considering m parallel production

machines instead of the first two production machines. They apply the compact

vector summation technique to find approximated solutions with worse-case

absolute performance guarantees. Hariri and Potts (1997) developed a branch-

and-bound algorithm for the same model as Potts et al. (1995). Moreover,

Tozkapan et al. (2003) considered a two-stage assembly scheduling problem

by minimizing the total weighted flow time as an objective function. They

developed a lower bound and a dominance criterion, and incorporated them

into a branch-and-bound procedure. They also presented a heuristic procedure

to find an initial upper bound. Al-Anzi and Allahverdi (2006) addressed the

model presented by Tozkapan et al. (2003) and minimized the total comple-

tion time of all the jobs. They used metaheuristics to solve their model and

proposed simulated annealing (SA), tabu search (TS), and hybrid tabu search

heuristics for general cases.

Despite the innumerable literature related to PFSP and AFSP, there are few

studies about the distributed problems. Jia et al. (2002) reported a web-based

system to enable production scheduling (a job shop problem) for the distributed

manufacturing environment and a Genetic Algorithm (GA) was adopted to

solve the problem. Jia et al. (2003) presented a modified GA to deal with

distributed job shop scheduling problems. Later, Jia et al. (2007) proposed
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a new approach to determine good combinations of factories to manufacture

jobs. An adaptive GA for distributed scheduling problems was proposed

by Chan et al. (2005b). The same authors proposed a GA with dominant

genes for solving distributed scheduling problems in an FMS environment

in Chan et al. (2006a). Furthermore, Chan et al. (2006b) proposed a GA to

deal with distributed flexible manufacturing system (FMS) subject to machine

maintenance constraints. Naderi and Ruiz (2010) introduced the DPFSP

for the first time. They developed six different MILPs for the considered

problem and proposed two simple factory assignment rules and 14 heuristics

based on dispatching rules, effective constructive heuristics and VND methods.

Liu and Gao (2010) proposed an electromagnetism-like mechanism (EM)

algorithm for the same problem. The same authors, in Gao and Chen (2011a)

proposed a GA-based algorithm, denoted by GA-LS, Gao and Chen (2011b)

a constructive heuristic algorithm enhanced with a dispatching rule, Gao et al.

(2012b) a knowledge-based genetic algorithm and Gao et al. (2012a) a Variable

Neighborhood Descent (VND) algorithm. Later, Naderi and Ruiz (2014)

presented a scatter search (SS) method for the DPFSP. This SS was shown

to outperform existing methods.

To the best of our knowledge, no further literature exists on DAPFSP,

so this is the first effort that considers the assembly flowshop problem in a

distributed manufacturing setting.

3.3 Mixed Integer Linear Programming model

A mathematical model is an abstract and good approach that uses mathematical

language to describe in detail a problem. There are many papers related to

the flowshop problem which use MILP modeling; for example, we can cite

Stafford et al. (2005); Tseng and Stafford (2008); Ching-Jong and Li-Man

(2008) and Naderi and Ruiz (2010), to name just a few.

We first define the model indexes, parameters and variables in Table 3.1,
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and present the MILP afterwards. The proposed MILP model is inspired by

the fifth mathematical model that is presented in Naderi and Ruiz (2010) for

the DPFSP that was shown to outperform the other models tested in that paper.

Index Description

k, j denotes jobs, k, j = 0, 1, . . . , n, where 0 presents a dummy job
i denotes machines at each factory, i = 1, . . . ,m
l, s denotes products, l, s = 0, 1, . . . , t, where 0 presents a dummy product
M A sufficiently large positive number, M = 100000

Parameters Description

n number of jobs
m number of machines
f number of factories
t number of products
pij processing time of job j on machine i

pps processing time of product s at the assembly stage
Gjs Binary parameter equal to 1 if job j belongs to product s, and 0 otherwise

Variable Description

Xkj binary variable equal to 1 if job k is an immediate predecesor of job j

Yls binary variable equal to 1 if product l is an immediate predecesor of product s
Cij completion time of job j on machine i

CAs completion time of product s on assembly stage
Cmax makespan

Table 3.1: indexes, parameters and variables used in MILP
mathematical model.

The objective function of the model is to minimize a makespan: Min Cmax

and the constraints of the model are:

n
X

k=0,k 6=j

Xkj = 1 8j (3.1)

n
X

j=0,k 6=j

Xkj  1 8k (3.2)

n
X

j=1

X0j = f (3.3)
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n
X

k=1

Xk0 = f � 1 (3.4)

Xkj +Xjk  1 8j 2 {1, . . . , n� 1}, j > k (3.5)

Cij � Ci�1j + pij 8i, j (3.6)

Cij � Cik + pij + (Xkj � 1) ·M 8k, j 6= k, i (3.7)
t

X

l=0,l 6=s

Yls = 1 8s (3.8)

t
X

s=1,l 6=s

Yls  1 8l (3.9)

Yls + Ysl  1 8l 2 {1, . . . , t� 1}, s > l (3.10)

CAs � (Cmj ·Gjs) + pps 8j, s (3.11)

CAs � CAl + pps + (Yls � 1) ·M 8l, s (3.12)

Cmax � CAs 8s (3.13)

Xkj 2 {0, 1} 8k, j, k 6= j (3.14)

Yls 2 {0, 1} 8l, s, l 6= s (3.15)

Cij � 0 8i, j (3.16)

CAs � 0 8s (3.17)

Note that C0j = CA0 = 0, 8j. Constraint set (3.1) controls and ensures

that each job must have exactly one predecessor. Constraint set (3.2) indicates

that each job has one succeeding job at the most. Constraint set (3.3) enforces

that dummy job 0 has to have f predecessor in the final sequence. Constraint

set (3.4) also enforces that dummy job 0 must be a successor f � 1 times

(there is no dummy job at the end of the sequence). Constraint set (3.5)

controls and ensures that a job cannot be both a predecessor and successor

of another job at the same time. Constraint set (3.6) enforces the processing

of job j in machine i when the processing at machine i � 1 is completed.

Constraint set (3.7) determines that if job j is placed immediately after job
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k, its processing at machine i cannot start before the processing of job k in

machine i finishes. Constraints (3.8) and (3.9) force that each product should

have one predecessor and at most one succeeding product in the assembly

factory, respectively, constraint (3.10) controls that a product cannot be both a

predecessor and a successor of another product at the same time. Constraint

(3.11) implies that each product h cannot begin its assembly before all the jobs

in its assembly program are completed in the last machine m. Constraint set

(3.12) determines that if product s is placed immediately after product l, its

processing on assembly machine cannot start before the processing of product

l in assembly machine finishes. Constraint (3.13) defines the makespan, while

constraints (3.14)-(3.17) define the domain of the decision variables.

The significant point of this model is that there is no index for facto-

ries. Sequence-based variables are hence used with a set of f dummy jobs.

These dummy jobs divide all the jobs into subsequences and assign them

to each factory (i.e., all jobs placed between the first dummy job and the

second dummy job belong to the first factory, and so on). For example,

if one of the possible solutions for a problem with n = 8 and f = 3 is

X0,2 =X2,3 =X3,5 =X5,0 =X0,6 =X6,1 =X1,4 =X4,0 =X0,7 =X7,8 = 1,

then the sequence is {0, 2, 3, 5, 0, 6, 1, 4, 0, 7, 8}, where partial job sequences

{2, 3, 5}, {6, 1, 4} and {7, 8} are assigned to factories 1, 2 and 3, respectively.

3.4 Heuristic methods

As mentioned in the paper of Naderi and Ruiz (2010), the DPFSP is an NP-

Complete problem (if n > f ); accordingly, the DAPFSP with an additional as-

sembly stage as a further stage is certainly a NP-Complete problem. Therefore,

it is necessary to develop a heuristic approach to solve large-sized problems.

In order to solve instances of realistic size in this problem, three constructive

simple heuristics are proposed.

For the assignment of jobs to factories, the two rules, of Naderi and Ruiz
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(2010) are used.

1. Assign job j to the factory which has the lowest current Cmax, (NR1).

2. Assign job j to the factory which has the lowest Cmax after including

job j, (NR2).

Using these two factory allocation rules, three heuristics are presented to

schedule jobs.

3.4.1 Heuristic 1

We first introduce some necessary notation. An example with n = 9, m = 2,

f = 2 and t = 3, this is, 9 jobs, 2 factories with a flowshop of two machines

each and three products to assemble, is employed to explain expressions and

heuristics in detail. Table 3.2 shows the processing times of the jobs and

assembly processing times of products. The products’ assembly programs

are: N1 = {3, 4, 6}, N2 = {1, 2, 8, 9} and N3 = {5, 7}. π represents a

product sequence, e.g., π : {1, 3, 2} is a possible product sequence for the

given example. As mentioned before, each product h is made up of |Nh|

jobs and πh is the partial job sequence of product h, e.g., π1 : {6, 4, 3},

π2 : {1, 9, 8, 2} and π3 : {7, 5}. A complete job sequence, πT , is constructed

by putting together all partial job sequences, following the product sequence

π, e.g., πT : {6, 4, 3, 7, 5, 1, 9, 8, 2}.

The shortest processing time (SPT) is a well-known dispatching rule for the

PFSP. In the SPT, the job with the shortest processing time is processed first.

This rule tends to reduce the work-in-process inventory, the average throughput

time, and average job lateness (Vollmann et al., 2005). Hence the SPT is used

to determine the product sequence in the assembly machine.

Heuristic 1 begins by applying the SPT rule for the assembly operation

times to obtain π. A heuristic which is based on Framinan and Leisten

(2003) heuristic (FL) is applied on the jobs that belong to a given product,
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to obtain a good partial job sequence for each product. The heuristic evaluates

the completion times of the jobs that belong to product h. Set Rh is made

by sorting jobs in ascending order of completion times. The first two jobs

of Rh are selected and inserted into Sh. When there are only two jobs in

Sh, all pairwise exchanges are checked and Sh is updated with the one that

results in the best makespan. The next step is removing the third job in Rh

and inserting it in all possible positions of Sh. The sequence with the best

makespan will be selected. All possible sequences by carrying out pairwise

exchanges between jobs are evaluated again. The process continues until all

jobs have been considered. Sh is the partial job sequence for product h, (πh).

πT is constructed by putting together all πh and jobs are assigned to factories

from πT by using NR1 or NR2, which respectively result in the H11 or H12

heuristics.

Pseudocode 1 explains heuristics H11 and H12 in detail:

Pseudocode 1 Outline of the H11/H12 heuristic.

- Obtain product sequence π after applying the SPT rule on product assem-

bly processing times, π = {π(1),π(2), . . . ,π(t)}; (π(1): The first product

in product sequence)

- Determine partial job sequence for all products using the proposed algo-

rithm based on FL heuristic (πh: partial job sequence for product h)

- Construct complete job sequence (πT ) by putting together all partial job

sequences (πh), following the product sequence, π

- Assign all jobs in πT to factories using NR1 to make H11 and using NR2

to make H12

Let us now apply proposed heuristics to the example. π : {1, 3, 2} is

the product sequence obtained after applying the SPT rule to the assembly

processing times of the products. The next step is to find a good partial job

sequence for each product. As mentioned before, each product has a defined

assembly program that includes a defined set of |Nh| jobs. Completion time
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Jobs

Machines 1 2 3 4 5 6 7 8 9

M1 1 5 7 9 9 3 8 4 2

M2 3 8 5 7 3 4 1 3 5

Product 1 Product 2 Product 3

MA 6 19 12

Table 3.2: Processing times of the jobs and assembly
processing times of the products for the example.

for each job at the production stage is the summation of each job processing

times on all machines,
Pm

i=1 pij . Therefore, completion times for set of jobs

of the product 1, N1 = {3, 4, 6} are C23 = 12, C24 = 16, C26 = 7. Set

R1 is obtained by arranging jobs in an increasing completion time order;

R1 = {6, 3, 4}. The first two jobs of R1 are selected and included into S1.

All possible sequences resulting from pairwise exchanges of the first two jobs

in S1 are calculated: {6, 3} and {3, 6} which result in makespans values of 15

and 16, respectively. The sequence with the minimum makespan is S1 : {6, 3}.

The third job in R1, (4) is inserted into all possible positions of S1. The

obtained partial job sequences are: {4, 6, 3}, {6, 4, 3} and {6, 3, 4} and their

makespans in the production stage are: 25, 24, 26, respectively. As a result, the

second is the best position for job 4 and S1 is updated to {6, 4, 3}. In the next

step, general pairwise exchanges are carried out on the updated S1; hence, the

partial job sequences are: {4, 6, 3}, {6, 3, 4} and {3, 4, 6} and, subsequently,

their makespans in the production stage are, 25, 26, 27, respectively. If a better

makespan is obtained, then S1 is updated. This process continues until all

jobs have been inserted into S1. π1 is the final updated S1, which is equal

to {6, 4, 3}. By following the same method, the partial job sequences for the

other products are: π2 = {1, 9, 8, 2} and π3 = {5, 7} with partial makespans

of 20 and 18, respectively. Hence πT is {6, 4, 3, 5, 7, 1, 9, 8, 2}. The final step

is to assign jobs in πT to factories by using NR1/NR2 to obtain H11/H12. Cmax
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Figure 3.1: Gantt chart of H11 for the example.

of H11 and H12 are 55 and 53, respectively. The Gantt chart of the considered

example after applying H11 is shown in Figure 3.1.

3.4.2 Heuristic 2

The idea of the second heuristic is to give priority to products whose jobs are

completed in the production stage sooner. This concept is noted as the earliest

start time to assemble product h, Eh. The procedure that is used in H11 and H12

to find partial job sequences of products (πh) also is used in heuristic 2. Eh, is

calculated by using NR1 or NR2 to assign jobs in each partial job sequence to

factories. π is built by sorting Eh in ascending order. A detailed explanation

is shown in Pseudocode 2.

The last example data is also used to clarify the second proposed heuristic.

Eh is calculated by applying job assignment rules (NR1 for the H21 and NR2

for the H22) for the partial job sequence of product h. Therefore, the earliest

start times for assembling products by considering NR2 are E1 = 15, E2 = 15

and E3 = 12. The product sequence π is obtained by sorting Eh in ascending

order, π :{3, 2, 1}. As a result, the complete job sequence, πT , will be:

{5, 7, 1, 9, 8, 2, 6, 4, 3}. The final results of Cmax for H21 and H22 are equal

to 51 and 50, respectively.
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Pseudocode 2 Outline of the H21/H22 heuristic.

- Determine partial job sequences of products using proposed algorithm
based on FL heuristic (πh: partial job sequence for product h)
- Calculate the earliest start time to assemble each product h, Eh, using NR1

and NR2 to assign jobs of the partial job sequences, respectively for H21 and
H22

- Sort Eh in ascending order for all the products to obtain product sequence,
π: {π(1),π(2), . . . ,π(t)}
- Construct complete job sequence (πT ) by putting together all partial job
sequences (πh), following the product sequence, π
- Assign all jobs of πT to factories using NR1 to make H21 and using NR2

to make H22

3.4.3 Heuristic 3

The third proposed heuristic is similar to the second one. The difference is

in the construction of the partial job sequences of each product (πh). While

heuristic 2 uses a heuristic based on FL, heuristic 3 employs the more simple

SPT rule. Our intention is to test if a simpler constructive heuristic gives

similar results.

Table 3.3 shows the Cmj of the jobs, the partial job sequence for each

product, after applying the SPT rule and Eh of product h in the columns for

the example.

Product sequence π is {3, 2, 1} after sorting Eh in ascending order. The

complete sequence πT after putting together the partial jobs sequences of each

product is: {7, 5, 1, 9, 8, 2, 6, 3, 4}. After applying NR1 to this sequence we

obtain a Cmax of 51. The Cmax for NR2 is 50.

3.5 Variable Neighborhood Descent (VND)

We now present a Variable Neighborhood Descent (VND) method (Hansen and

Mladenović, 2001). VND is an enhanced local improvement strategy based on
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Product (h) Job (j) C2j πh Eh

1
3 12
4 16 6, 3, 4 19
6 7

2
1 4
2 13 1, 9, 8, 2 15
8 7
9 7

3
5 12 7, 5 12
7 9

Table 3.3: Job completion times on the last machine of
production stage, products partial job sequence and earliest

start time for assembling each product for the example.

the systematic exploration of different neighborhood structures N1, . . . , Nq.

A VND starts with the first structure N1 by performing a local search until

no further improvements are possible. From this local optimum, it continues

the local search with neighborhood structure N2. If an improved solution is

found with this structure, the VND goes back to N1; otherwise, it continues

with N3, and so forth. If the last structure Nq has been applied and no

further improvements are possible, the solution represents a local optimum

with respect to all neighborhood structures and the VND terminates.

3.5.1 Solution representation and VND initialization

In order to represent a solution, a complete sequence of all jobs πT is con-

sidered, like in the PFSP. We limit the representation so that all jobs from a

product are never separated. The jobs in the complete sequence are assigned

to factories using NR1 or NR2. An example of a solution representation can

be: {6, 4, 3, 1, 9, 8, 2, 5, 7} which is a equal to product sequence of {1, 2, 3}

with respect to the last example.

The VND approach needs an initial solution. Although a random solution

can be used as an initial solution, it is better to use heuristics (Ruiz and Stützle,
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2007; Naderi and Ruiz, 2010; Vallada and Ruiz, 2010). Our approach uses the

six proposed constructive heuristics to obtain the initial solution. Later we will

test six VND versions, each one starting from the result of each heuristic.

3.5.2 Neighborhoods and acceptance criterion

Our proposed VND heuristic employs two neighborhood structures, and both

are applied to the complete sequence πT .

The first is referred to as LSP and is a product local search. It attempts

to improve the objective function by examining different product sequences.

LSP works as follows: (1) It provides a list of product sequences by removing

a single product from π and inserting it in all the possible t � 1 positions of

current π; (2) It evaluates the list of obtained product sequences by converting

them into πT and assigning the jobs of πT to factories via NR1 or NR2; (3)

If one of the obtained π in the list has a better Cmax, then π is updated to the

better product sequence and all the products are reinserted again (a local search

until a local optimum), otherwise the search continues with the next product.

The second neighborhood is LSJ , tries to find different partial job se-

quences for each product to improve the objective function. LSJ works as

follows: (1) LSJ starts with the first product h, then the local search starts by

removing the first job of πh and inserting it in all the possible |Nh|�1 positions

of πh; (2) Evaluate πT with all the newly obtained partial job sequences for

product h; (3) If a better objective function is obtained, then πh is updated and

all jobs in πh are reinserted again until a local optimum is found. Otherwise,

the search continues with the next job in πh; (4) LSJ will continue with the

next product until all products have been considered.

Pseudocodes 3 and 4 show the product and the job local search, respec-

tively.
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Pseudocode 3 Product Local Search, LSP .

l = 1
while l  t do

- Remove product a which is placed in position l of π
- Insert a into all t� 1 possible positions of π
- Evaluate all obtained π by converting them into πT
if a better Cmax is obtained then

- update π

else

l = l + 1
end if

end while

Pseudocode 4 Job Local Search, LSJ .

h = 1
while h  t do

j = 1
while j  Nh do

- Remove job b which is placed at position j of πh
- Insert b into all |Nh|� 1 possible positions of current πh
- using the new πh, convert it to πT
if a better Cmax is obtained then

- Select the partial job sequence with the best result as the new πh
else

j = j + 1
end if

end while

h = h+ 1
end while

3.6 Computational evaluation

Two complete sets of instances have been generated to test the MILP model

and the proposed heuristics. Due to the complexity of the problem, and given
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the number of different characteristics considered, four instance factors and

three test factors are combined at the levels provided in Table 3.4 for small

instances. The test factors are: two commercial solver packages (Solver) are

used as solving tools, the number of CPU threads (Thread), where we have

tested 1 thread (serial computing) and 2 threads (parallel computing) and a time

limitation TimeLimit for the stopping criterion. The heuristics are also tested

in a set of larger instances, which differ in the factors as listed in Table 3.5.

Instance factor Symbol Number of levels Values

Number of jobs n 5 8, 12, 16, 20, 24
Number of machines m 4 2, 3, 4, 5
Number of factories f 3 2, 3, 4
Number of products t 3 2, 3, 4

Test factor Symbol Number of levels Values

Solver Solver 2 CPLEX 12.3, GUROBI
4.6.1

Thread Thread 2 Serial computing (1),
Parallel computing (2)

Time limitation T imeLimit 2 900s, 3600s

Table 3.4: Instance and test factors for the small instances.

Instance factor Symbol Number of levels Values

Number of jobs n 3 100, 200, 500
Number of machines m 3 5, 10, 20
Number of factories f 3 4, 6, 8
Number of products t 3 30, 40, 50

Table 3.5: Instance factors for the large instances.

Processing times in the production stage are fixed to U [1, 99] as it is usual

in the scheduling literature. The assembly processing times depend on the

number of jobs assigned to each product h as U [1⇥ |Nh|, 99⇥ |Nh|]. The total

number of combinations in the small and large instances are 5⇥ 4⇥ 32 = 180

and 34 = 81, respectively. There are 5 replications per combination for

small instances and 10 replications for every large combination. Therefore,
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the total number of instances is 900 and 810, respectively. All the instances

are available at http://soa.iti.es.

3.6.1 MILP model evaluation

A linear programming model has been constructed for each small instance. It

is solved with all the combinations of the test factors, using CPLEX 12.3 and

GUROBI 4.6.1 solvers, serial and parallel computing and two time limits (900s

and 3600s). All the tests are carried out in a high performance computing

cluster with 30 blades, each one containing 16 GBytes of RAM memory

and two Intel XEON E5420 processors running at 2.5 GHz. Note that each

processor has 4 physical computing cores (8 per blade). The 30 blade servers

are used only to divide the workload and experimentations. Experiments are

carried out in virtualized Windows XP machines, each with one virtualized

processor with two cores and 2 GB of RAM memory.

A categorical variable named “response type” with two values, 0 and 1,

is reported. Value 0 means that an optimum solution is found in the given

time with Cmax value as a result, and 1 means that in 900s or 3600s, a feasible

integer solution is found and reported, but it has not been proven to be optimal.

Moreover, the gap between this solution and the best MILP bound is also

reported. In the CPU time allowed, the LP model with all 900 small instances

is able to find 516 optimum solutions (57.33 %). Table 3.6 summarizes the

results, which are categorized by factors of solver, threads and time limit. The

comparison criteria are: the percentage of optimum solutions found (%opt),

the average gap as a percentage for the cases in which the optimum solution

is not found (GAP%) and the average time required in seconds. Later we

will carry out statistical testing to ascertain the significance of the observed

differences.

It is clear that GUROBI is able to find more optimal solutions than

CPLEX, and its average gap and average CPU time consumption are smaller
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than CPLEX. Overall, time limit of 3600 seconds and parallel computing (2

threads) results in a larger number of optimal solutions, in comparison with

time limit of 900 seconds and serial computing (1 thread). CPLEX with

parallel computing (2 threads) results in a greater average gap in comparison

with serial computing, but this trend is reversed with GUROBI. Among all

the eight combinations of test factors, GUROBI with two threads and 3600

seconds time limitation finds more optimum solutions than the others.

Solver
Time Limit 900s 3600s

Thread 1 2 1 2

CPLEX
% opt 59.44 61.22 63.11 61.89

GAP% 29.62 30.77 32.23 36.46

Av Time (s) 390.41 380.69 1426.53 1441.80

GUROBI
% opt 66.89 68.33 70.78 73.00

GAP% 2.19 2.04 1.81 1.70

Av Time (s) 328.15 315.57 1152.36 1089.00

Table 3.6: Performance results for solvers, threads and
time limit for the small instances.

Automatic Interaction Detection (AID) is an advanced statistical tech-

nique for multivariate analysis, which was developed by Morgan and Sonquist

(1963). It seeks to find explanatory variables and combinations of these vari-

ables which are important for lowering variance in the dependent variables.

AID is a stepwise procedure that subdivides experimental data according to

one factor through a series of dichotomous splits into a number of mutually ex-

clusive subgroups. The initial AID was improved by Kass (1980) by including

statistical significance testing in the partition process and by allowing multi-

way splits of data resulting in the so-called Chi-squared Automatic Interaction

Detection (CHAID). A modification to the basic CHAID algorithm, called

an exhaustive CHAID, introduced by Biggs et al. (1991), performs a more

thorough merging and testing of factor variables.

An exhaustive CHAID is used to draw a decision tree to analyze the effect
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and interactions of the factors for the averages observed in Table 3.6. AID

techniques are used in different areas like market research, psychology, edu-

cation, scheduling, etc. Recently, CHAID was employed by Ruiz et al. (2008)

to analyze a complex non distributed scheduling problem MILP model. Also,

Ruiz and Andrés-Romano (2011) employed CHAID to analyse a MILP in a

problem with unrelated parallel machines with resource-assignable sequence-

dependent setup times. Naderi and Ruiz (2010) also used CHAID to analyze

several models for the distributed permutation flowshop scheduling problem.

The exhaustive CHAID method is used to analyze the MILP results, which

were previously presented. The factors, either serial computing or parallel

computing (Threads), solver, n, m, f and t, are controlled. We introduce all

the data of both stopping CPU time criteria so the factor time is controlled as

well. The response variable is the type of solution reached by CPLEX and

GUROBI with two possible values (0 and 1). We use the PASW statistics

version 18 software and set a high confidence level for splitting of 99.9%, as

well as a Bonferroni adjustment for the multi-way splits, which compensates

the statistical bias in multi-way paired tests.

In Figure 3.2, the root node contains the total percentage of the cases were

instances were solved optimally (type 0) and the total number of cases. The

most significant factor is the number of jobs or n, and the next level is divided

into one node for each possible n value. The p-value obtained for this split

comes very close to 0 and the result of the χ2 statistic is very high, meaning

that the split is done with a very high level of confidence; i.e., n is the most

influential factor on the response variable with a very statistically significant

effect.

Among the resulting five nodes, as the n value increases, the number of

cases for which an optimal solution is found decreases. As a matter of fact, for

n = 20 and 24, only 35.6% of the instances are optimally solved. After this

first multi-way split, nodes are split into the number of factories factor, except

for n =8. It is logical that when there is a larger amount of factories, jobs have
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more options for allocations, and the completion time of jobs also shortens.

Hence, the earliest possible time to start product assembly also shortens, and

the possibility of finding a better solution increases. The number of products

t is the third next important factor, except for node n = 12 / f = 3, where

number of machines is a significant factor. No further statistically significant

divisions are found and the stopping criterion for branching is met for nodes

n = 12 / f = 4 and n = 24 / f = 2. The number of products factor shows

the same trend as the second important factor (number of factories); that is, a

higher percentage of optimal solutions is found when there is a larger number

of products. If the number of jobs is constant and the number of products

increases, fewer jobs will be dedicated to each product on average, so finding

a better partial job sequence for each product is easier.

As seen, apart from a few isolated cases, the effect of type of solver, one

thread (serial computing) and two threads (parallel computing) and time limit

(900s and 3600s) are not statistically significant.

3.6.2 Heuristics evaluation

The twelve proposed methods (H11, H12, H21, H22, H31, H32, VNDH11 ,

VNDH12 , VNDH21 , VNDH22 , VNDH31 and VNDH32) are now tested. As the

proposed heuristics are not expected to find an optimal solution, the Relative

percentage deviation (RPD), is measured for comparisons. We measure RPD

as follows: using the optimal solution or the best known solution, which is

found through all heuristics and the MILP model (OPTbest) and ALGSOL,

which reports the makespan obtained by a given algorithm for a given instance:

RPD = ALGSOL�OPTbest
OPTbest

⇥ 100

Table 3.7 provides the summarized results of the MILP and the average

algorithm deviations from the best known solution for the small instances.

They are categorized by n and f .
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Figure 3.2: Decision tree for the MILP model evaluation.
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Algorithms
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2⇥ 8 0.00 14.62 13.61 6.91 5.99 13.55 12.17 1.00 0.76 1.00 0.76 1.02 0.78
2⇥ 12 0.02 13.70 12.78 5.74 5.17 11.58 11.05 0.93 0.87 0.93 0.87 0.93 0.87
2⇥ 16 0.45 12.52 11.40 5.77 5.10 10.00 9.16 0.73 0.55 0.72 0.53 1.09 0.53
2⇥ 20 1.55 10.23 9.59 4.55 3.78 8.96 8.46 0.53 0.36 0.51 0.37 0.57 0.37
2⇥ 24 3.42 8.71 8.34 5.00 4.74 7.54 7.15 0.54 0.21 0.54 0.21 0.54 0.21

3⇥ 8 0.00 11.35 9.96 4.57 3.15 8.92 7.79 1.09 0.70 1.15 0.76 1.15 0.76
3⇥ 12 0.02 9.96 9.13 3.03 2.55 8.72 7.50 0.44 0.28 0.44 0.28 0.44 0.28
3⇥ 16 0.05 10.10 9.16 3.77 3.14 9.59 8.73 0.86 0.56 0.91 0.56 0.91 0.56
3⇥ 20 0.40 9.86 8.93 2.72 2.19 8.53 7.84 0.43 0.43 0.43 0.43 0.43 0.43
3⇥ 24 1.16 7.77 6.48 3.11 2.52 7.24 6.32 0.64 0.33 0.64 0.33 0.64 0.33

4⇥ 8 0.00 9.03 8.01 2.16 1.25 6.41 5.25 1.08 0.63 0.99 0.63 0.99 0.63
4⇥ 12 0.00 5.63 4.53 1.82 1.38 4.58 3.58 0.74 0.47 0.74 0.47 0.74 0.56
4⇥ 16 0.03 7.21 6.34 2.86 2.27 6.14 5.18 0.59 0.28 0.59 0.28 0.59 0.28
4⇥ 20 0.21 6.80 6.00 2.96 2.61 5.66 5.04 1.10 0.63 1.10 0.63 1.10 0.63
4⇥ 24 0.40 5.14 4.43 2.02 1.60 4.87 4.19 0.57 0.26 0.57 0.26 0.57 0.26

Average 0.51 9.51 8.58 3.80 3.16 8.15 7.29 0.75 0.49 0.75 0.49 0.78 0.50

Table 3.7: Relative Percentage Deviation (RPD) of MILP
and proposed algorithms over the best known solution for

the small instances.

As we can see in Table 3.7, it is clear that the mathematical model is unable

to find an optimum or best solution for all the small instances considered. By

increasing the number of jobs (n) and by decreasing the number of factories

(f ), the problem becomes harder for the MILP to solve. All VND algorithms

perform better than the constructive algorithms. NR2 works better than the

first one as a rule to assign jobs to factories. In order to know if the differences

observed in Table 3.7 are statistically significant, a multifactor ANOVA of

the results of the VND algorithms has to be done. The average RPD value

for all the simple constructive heuristics is 6.75%, and this amount lowers

to 0.63% for the VND methods. The RPD factor difference between simple

constructive heuristics and VND heuristics is very high. For this reason, we

separated the statistical analysis in two ANOVAs: one for the simple heuristics
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and the other one for the VND methods. As explained before, there are 900

small instances, and each ANOVA considers six simple constructive heuristics

or six VND methods with 6⇥ 900 = 5400 data.

As with all parametric analyses, ANOVA requires some assumptions to

be met. These are normality, homocedasticity and independence of residuals.

While a slightly strong tailed normal distribution of the residuals is observed,

residuals are clearly homoscedastic and independent, and according to the

recent results of Basso et al. (2007) and Rasch and Guiard (2004), this is not

a major problem. The response factor is again the RPD and the controlled

factors are n, m, f , t and algorithms. All the controlled factors in the ANOVA

analysis, except m and t in six simple constructive heuristics, and except f

factor in six VND methods result in strong statistically significant differences

in the RPD response variable, with p-values coming very close to zero. The

results are not shown here due to reasons of space. In order to identify the best

algorithm, the means plot and Tukey’s Honest Significant Difference (HSD)

intervals (99% confidence) for the six simple constructive heuristics and VND

methods are shown in Figures 3.3 and 3.4, respectively.

As it is clear in Figure 3.3, the second heuristic performs better in com-

parison with the other simple constructive heuristics and there is no significant

differences between the rules used to assign jobs to factories. However, it

is obvious in Figure 3.4 that the rules for allocating jobs to factories are

important, and NR2 is statistically different from NR1. It is clear that the VND

algorithm almost improves all the initial solutions equally and that the kind

of initial solution to start the VND is not important for algorithms with the

same job assignment rule. No significant differences between the three VND

considered algorithms using NR2 is found.

The CPU times to solve small instances with the considered algorithms are

negligible; for example, the VNDH32 algorithm with 0.004693 seconds, has

the largest average consumed CPU time for the small instances.
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Figure 3.3: Means plot and 99% confidence level Tukey’s
HSD intervals for simple constructive heuristic methods
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Figure 3.4: Means plot and 99% confidence level Tukey’s
HSD intervals for VND methods and small instances.
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3.6.3 Heuristics evaluation on large instances

In this case, for calculating the RPD, the best solution (OPTbest) is the best

solution found among all twelve algorithms because, in large instances, good

MILP bounds are not known. A summarized result of the average RPD,

considering number of factories, number of products and number of jobs, is

shown in Table 3.8. Algorithms can be categorized into two groups: VND

algorithms, H21 and H22, in one group, which perform better, and the rest in

another group. On the other hand, algorithms with NR2 work better than those

with NR1.

Algorithms
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e
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ev
ia

ti
on Factories 4 5.57 5.09 0.32 0.19 2.96 2.56 0.06 0.03 0.05 0.01 0.05 0.01

(f ) 6 3.77 3.29 0.11 0.06 1.64 1.31 0.03 0.01 0.02 0.00 0.02 0.00
8 3.09 2.66 0.04 0.02 1.21 0.93 0.02 0.00 0.01 0.00 0.01 0.00

Products 30 3.78 3.34 0.21 0.11 2.23 1.86 0.03 0.01 0.04 0.01 0.04 0.01
(t) 40 4.30 3.85 0.15 0.10 1.94 1.62 0.04 0.02 0.02 0.01 0.02 0.01

50 4.36 3.85 0.11 0.05 1.65 1.32 0.04 0.01 0.02 0.00 0.02 0.00

Jobs 100 6.30 5.61 0.17 0.08 2.02 1.58 0.05 0.02 0.03 0.01 0.03 0.01
(n) 200 3.76 3.28 0.15 0.07 1.92 1.55 0.03 0.01 0.02 0.00 0.02 0.00

500 2.37 2.16 0.14 0.10 1.87 1.67 0.03 0.01 0.03 0.01 0.03 0.01

Aver 4.14 3.68 0.16 0.09 1.94 1.60 0.04 0.01 0.03 0.01 0.03 0.01

C
P

U
ti

m
e

(s
ec

.)

Factories 4 0.01 0.01 0.01 0.01 0.01 0.01 4.39 6.79 2.90 7.67 2.55 42.87
(f ) 6 0.01 0.01 0.01 0.01 0.01 0.01 3.49 7.73 2.85 8.94 1.95 6.11

8 0.01 0.01 0.01 0.01 0.01 0.01 3.26 9.56 1.86 10.21 1.83 20.64

Products 30 0.01 0.01 0.02 0.02 0.01 0.01 3.64 8.05 3.14 11.00 2.70 45.20
(t) 40 0.01 0.01 0.01 0.01 0.01 0.01 3.59 7.12 2.45 8.05 1.96 5.54

50 0.01 0.01 0.01 0.01 0.01 0.01 3.91 8.91 2.02 7.77 1.66 18.88

Jobs 100 0.00 0.00 0.00 0.00 0.00 0.00 1.09 2.84 0.27 0.72 0.24 0.43
(n) 200 0.00 0.00 0.00 0.00 0.00 0.00 2.02 3.85 0.58 2.22 0.66 1.37

500 0.03 0.02 0.03 0.04 0.03 0.02 8.03 17.39 6.76 23.88 5.41 67.81

Aver 0.01 0.01 0.01 0.01 0.01 0.01 3.71 8.03 2.54 8.94 2.11 23.20

Table 3.8: Relative Percentage Deviation (RPD) and CPU
times of proposed algorithms for the large instances.
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The second group does not report good results if compared to the first

one, so it has been eliminated from the statistical analysis. A multifactorial

ANOVA has been carried out with only the first group to know if there are any

significant differences between results. Figure 3.5 shows a means plot (99%

confidence level Tukey’s HSD intervals) for the first group of algorithms. It is

clear that the algorithms which use NR2 as a job assignment rule, report better

results. Moreover, the type of initial solution for the VND algorithms does not

play an important role. Finally, there is no significant difference between the

VND algorithms that use the same job allocation rule.

It is obvious that heuristic 2 performs better than heuristic 3 in both small

and large instances.

The interaction between algorithms and n has no significant effect on the

response variable. An increase in the number of machines always complicates

problems, thus there is no interest in showing these interactions. Interaction

between algorithms and the number of factories f is interesting. By increas-

ing the number of factories, the problem becomes easier, as it is shown in

Figure 3.6.

Neither the number of products nor the number of jobs factors have a

significant effect, and only an increase in either makes the problem easier

to solve for simple constructive algorithms. However, neither one has a

significant effect on the VND algorithms.

In all the results, the RPD of VNDH22 is consistently lower than that

of the other algorithms. Thus with more samples, it is expected that it will

eventually become statistically better than the others. VNDH22 is better than

VNDH21 because NR2 checks all the factories when assigning a job and finally

chooses the best one. It takes longer than NR1, which just places the job at the

first available factory. However, when the number of factories increases, the

algorithms that use NR1 do not report good results.
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Figure 3.5: Means plot and 99% confidence level Tukey’s
HSD intervals for algorithms and large instances.
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HSD intervals for interaction between algorithms and num-

ber of factories f and large instances.

The algorithms’ CPU time consumption is summarized in Table 3.8. Sim-
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ple constructive algorithms use a very short time in order to solve problems,

while, as expected, the VND algorithms use more time compared to simple

constructive algorithms. VNDH32 consumes an average of 23.20 seconds, the

longest CPU time consumption compared to other algorithms. As Table 3.8

shows, in the VNDH32 algorithm, factors n = 500, t = 30 and f = 4 are the

most CPU time consuming.

The VND methods try to improve the output of simple constructive algo-

rithms and it is logical that take more time than simple constructive algorithms

to solve problems. To compensate, VND algorithms report smaller RPD values

than simple constructive algorithms. As Table 3.8 shows, the minimum RPD

reported by a simple constructive algorithm is nine times larger than the largest

reported RPD by VND algorithms that use NR2.

If the quality of the solution is more important than CPU time consump-

tion, then VND algorithms are the best options. Otherwise, a simple construc-

tive algorithm can be a good choice when only CPU time consumption is more

important. However, it is worth waiting a maximum time of almost 24 seconds

to obtain a good solution. All the experimental results and the best solutions

can be found at http://soa.iti.es.

3.7 Conclusions of this chapter

To the best of our knowledge, the results of this chapter are the first attempt

to generalize the Distributed Permutation Flowshop Scheduling Problem to

the Distributed Assembly Permutation Flowshop Scheduling Problem, where

there is more than one production center to process jobs and a single assembly

center to make final products from produced jobs. A mathematical model is

presented and two solvers are used to solve it. Three constructive algorithms

and three VND algorithms are proposed. Computational evaluations were

performed with two groups of small and large instances, and ANOVAs were

used to analyze results. Results show that the VND algorithms report the best
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results. On the other hand, simple constructive algorithms consume little CPU

time and still produce reasonable solutions.





CHAPTER 4
DISTRIBUTED ASSEMBLY PERMUTATION

FLOWSHOP SCHEDULING PROBLEM WITH

SEQUENCE DEPENDENT SETUP TIMES

“The contents of this chapter are taken from: Hatami, S., Ruiz, R., and Andrés-

Romano, C. (2015). Heuristics and Metaheuristics for the Distributed As-

sembly Permutation Flowshop Scheduling Problem with Sequence Dependent

Setup Times. International Journal of Production Economics (Accepted)”.

In this chapter, we consider a Distributed Assembly Permutation Flowshop

Scheduling Problem with sequence dependent setup times and the objective of

makespan minimization. The problem consists of two stages, production and

assembly. The first stage comprises f identical factories, where each factory

is a flowshop that produces jobs which are later assembled into final products

through an identical assembly program in a second assembly stage made by

a single machine. Both stages have sequence dependent setup times. This

is a realistic and complex problem and therefore, we propose two simple

heuristics and two metaheuristics to solve it. A complete calibration and

analysis through a Design Of Experiments (DOE) approach is carried out. In

63
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the process, important knowledge of the studied problem is obtained as well

as some simplifications for the powerful Iterated Greedy methodology which

results in a simpler approach with less parameters. Finally, the performance

of the proposed methods is compared through extensive computational and

statistical experiments.

4.1 Introduction

An assembly production floor typically contains two differentiated stages; a

production and an assembly section. In this chapter we study a distributed

assembly flowshop with many potential applications. Assembly flowshops

have been widely studied recently and constitute a hot topic for research.

The scheduling setting considered in this chapter is composed of a production

section that is a distributed flowshop problem in itself where jobs are manu-

factured in a set of machines that are disposed in series. After individual jobs

are produced, they are assembled in a single assembly machine to form final

products. These production systems are referred to as Assembly Flowshop

Scheduling Problems (AFSP) according to Koulamas and Kyparisis (2001).

The AFSP applications range from fire engine assembly Lee et al. (1993)

to personal computer manufacturing (Potts et al., 1995). As pointed out in

Koulamas and Kyparisis (2001), AFSP settings are capable of producing large

product varieties by using modular structures at a controlled cost.

We also consider several extensions to the studied problem so as to bring it

as close as possible to the reality of production shops. For example, single

factories are not common in practice and many companies operate several

factories working as distributed production environments (Chan et al., 2005a).

Distributed production is key in modern manufacturing (Moon et al., 2002).

Additionally, distributed manufacturing leads to high quality production and

other benefits such as reduced production costs, decreased management risks

and more (Wang (1997); Jia et al. (2003); Kahn et al. (2004); Chan et al.
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(2005a), among others). As a first extension we consider several distributed

assembly flowshops to reap these benefits.

The second extension considered is the addition of setup times. Unlike

processing times, setups are non-productive periods of time in between the

production of successive jobs in machines where cleaning, configurations,

adjustments and other procedures are carried out. Setups are broadly classified

into Sequence Independent Setup Times (SIST) and Sequence Dependent

Setup Times (SDST). This last category is more realistic and general and

appears when the amount of setup time depends on the job that has been

finished by the machine and the job that is to be produced next. Scheduling

with setup times is a very important area of research and a large number of

review papers have been published, such as Yang and Liao (1999), Allahverdi

et al. (1999, 2008) or Cheng et al. (2000).

More precisely, the flowshop problem consists of scheduling a set N of n

jobs in a set M of m machines. Jobs have to visit a predetermined machine

sequence which is, without loss of generality, {1, 2, . . . ,m}. The machines

are disposed in series and a job is broken down into m tasks, one per machine.

The processing time of a given job at a machine is a known, deterministic and

non-negative quantity referred to as pij , i 2 M, j 2 N , which is furthermore

usually an integer. The objective is to obtain a sequence of the jobs in the

machines so that a criterion is optimized. There are n tasks per machine and

any ordering is possible. Therefore, there are (n!)m possible solutions in this

problem. In order to reduce the search space, the most studied variant of this

problem is the so called Permutation Flowshop Scheduling Problem or PFSP.

In this case, job passing is not allowed and once a production sequence of the

jobs is determined for the first machine, it is maintained for all other machines,

reducing the search space to n! solutions or sequences. The PFSP comes with

some assumptions: A task from a given job can only start at a machine i when

the processing of the task of the same job at the previous machine i � 1 has

finished and also only when machine i is free after processing the previous task
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in the sequence. No breakdowns are experienced by the machines and they are

always available. Each machine can only process one job at a time and each job

can only be processed by one machine at the same time. The first task of each

job on machine 1 is ready for processing at time 0. There is no preemption,

i.e., once a task begins processing in a machine it cannot be stopped until

completion. Finally, jobs can wait indefinitely in between machines and an

infinite storage of in-process products exists (Baker, 1974). If we define by

Cj the time at which job j 2 N is completed at the last machine m, the most

commonly studied criterion is the minimization of the maximum completion

time, commonly referred to as makespan or Cmax. The PFSP with this criterion

has been studied extensively in the scheduling literature. Some reviews are

Framinan et al. (2004), Ruiz and Maroto (2005), Hejazi and Saghafian (2005)

and Gupta and Stafford (2006).

The extension of the PFSP to distributed manufacturing, referred to as

the Distributed Permutation Flowshop Problem (DPFSP) was studied for the

first time in Naderi and Ruiz (2010). In this extension, we have a set F of f

identical factories. Each factory is a PFSP. Each job has to be first assigned

to one of the factories and the problem then consists of solving f PFSPs

while minimizing the maximal Cmax among the f factories. It is assumed

that once a job j 2 N is assigned to a factory f 2 F , it is completed

there and no reassignments are possible. The authors of Hatami et al. (2013)

recently studied the Distributed Assembly Permutation Flowshop Scheduling

Problem or DAPFSP for the first time. In this problem, the first stage is a

distributed flowshop and the second stage is a single assembly machine. The

authors presented a Mixed Integer Linear Programming Model (MILP), several

constructive heuristics and simple local search based Variable Neigborhood

Descent (VND) methods. In this chapter we further generalize the DAPFSP

with the addition of sequence dependent setup times both in the distributed

flowshop production stage as well as in the single machine assembly stage.

We improve on the previous VND and also present an effective Iterated Greedy
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(IG) method. IG has shown excellent performance in the regular PFSP (Ruiz

and Stützle, 2007) and also in the PFSP with SDST (Ruiz and Stützle, 2008)

and hence is chosen as a promising approach.

This DAPFSP with sequence dependent setup times (DAPFSP-SDST) is

now explained in detail. There is a set T of t (unrelated) products that are

manufactured through an assembly of n jobs, each fabricated in the PFSP

factories of the production stage. There is a defined assembly program for

each product h 2 T carried out on a single assembly machine, referred to as

MA. Each product h 2 T is assembled from a subset Nh, Nh ✓ N of jobs

that need to be assembled into product h. Therefore, product h consists of

|Nh| jobs. Each job belongs to a single assembly program of a given product

and therefore we have
Pt

h=1 |Nh| = n. A product h can be assembled at the

single machine assembly stage only after all jobs in Nh have been completed

in the f distributed factories. The assembly processing time in the single

machine assembly stage is referred to as ph. Furthermore, Sijk denotes the

sequence dependent setup time that is needed at machine i of any of the f

factories after having processed job j and before processing job k. This setup

time is separable from the processing time. There is also an initial setup

time. As a result, a (n + 1 ⇥ n) setup time matrix is considered for each

production machine. Setup time matrices do not change from factory to factory

as factories are assumed to be identical. We also consider sequence dependent

setup times in the single machine assembly stage. We denote by SAls the setup

between the assembly of products l and s, l 6= s, l, s 2 T . Note that an initial

setup is also needed to prepare the assembly machine for the assembly of the

first product h 2 T , referred to as SA0h. Again, a (t + 1 ⇥ t) assembly setup

time matrix is required. All setups are non-negative integers that are known in

advance and deterministic.

The chapter is arranged as follows: Section 4.2 presents a brief literature

review on previous and related research. Section 4.3 introduces two sim-

ple constructive heuristic methods for the considered problem. Sections 4.4
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and 4.5 describe the proposed VND and IG methods, respectively. In sec-

tion 4.6, the proposed methods are calibrated. Section 4.7 presents a complete

computational evaluation of the proposed algorithms. Finally, Section 6.5

concludes the chapter and presents some future research questions.

4.2 Literature review

The DAPFSP is a combination of the assembly (AFSP) and distributed

(DPFSP) permutation flowshop problems. Together with the regular flowshop,

the literature is extensive. The reader is again referred to the many existing

reviews (Framinan et al., 2004; Ruiz and Maroto, 2005; Hejazi and Saghafian,

2005; Gupta and Stafford, 2006).

As regards the AFSP, there is also a significant amount of existing results.

In Lee et al. (1993) a three-machine assembly-type flowshop scheduling prob-

lem with makespan minimization is presented. Each product consists of two

jobs, each to be produced in the first and second machine respectively, where

the third machine assembles the two jobs into a product. The authors present

a branch-and-bound exact method and an approximate solution procedure. In

Potts et al. (1995) m parallel production machines in the first stage are consid-

ered. A compact vector summation technique to find approximated solutions

with worse-case absolute performance guarantees is applied. In Hariri and

Potts (1997) a branch-and-bound algorithm for the same model is developed.

A two-stage assembly scheduling problem is considered in Tozkapan et al.

(2003). A lower bound and a dominance criterion are developed and incorpo-

rated into a branch-and-bound procedure, this time with total weighted flow

time minimization as an objective. A heuristic procedure to find an initial

upper bound is also proposed. In Al-Anzi and Allahverdi (2006) the same

model is studied and metaheuristics such as simulated annealing (SA), tabu

search (TS), and hybrid tabu search heuristics to solve the problem are pro-

posed. In Al-Anzi and Allahverdi (2009) a two-stage AFSP is considered and
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TS, particle swarm optimization (PSO), and self-adaptive differential evolution

(SDE) are applied to minimize the weighted sum of makespan and maximum

lateness. In Sun et al. (2003) powerful heuristics for minimizing the makespan

in a fixed three machine assembly-type flowshop problem are presented.

The literature about the distributed permutation flowshop problem is com-

paratively small, especially when compared with that of the AFSP and PFSP.

The DPFSP is introduced in Naderi and Ruiz (2010) for the first time. They

developed six different Mixed Integer Linear Programming (MILP) models

and proposed two simple factory assignment rules and 14 heuristics based on

dispatching rules, effective constructive heuristics and VND methods. More

recently, in Gao et al. (2013) a TS algorithm with a better performance when

compared to previous algorithms presented by the same authors is presented.

The authors of Lin et al. (2013) have proposed an effective Iterated Greedy

method and in Wang et al. (2013b) an Estimation of Distribution algorithm is

proposed. The authors of Hatami et al. (2013) introduced for the first time the

DAPFSP and proposed a MILP, three constructive algorithms and a VND. To

the best of our knowledge, the DAPFSP with a single assembly machine has

not been studied by any other authors in the literature.

Setup times are also considered in the non-distributed assembly flowshop

literature (and much more in the regular flowshop). The authors of Yokoyama

(2004) presented a two-stage production system, where there is a single pro-

duction machine with setup times that produces parts and a single assembly

machine. A near-optimal schedule is obtained by using a pseudo-dynamic

programming method and a tight lower bound is proposed to evaluate its

accuracy. The objective function considered is the minimization of the mean

completion time. The same author built upon the previous model in Yokoyama

(2008) by extending the single machine manufacturing stage to a flowshop

with setup times. A pseudo-dynamic programming method and a branch-and-

bound procedure are presented. The authors of Al-Anzi and Allahverdi (2007)

addressed the two-stage AFSP with sequence independent setup times. They
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derived a dominance relation and applied SDE, PSO, TS and Earliest Due Date

heuristics to minimize the maximum lateness. The same model is considered

in Allahverdi and Al-Anzi (2009), where the authors presented a dominance

relation and proposed three heuristics to minimize the makespan. The authors

of Hatami et al. (2010) presented a three stage AFSP by considering a transfer

stage as a middle stage and SDST in the first stage. They presented a math-

ematical model, a lower bound and two heuristics (TS and SA) to solve the

problem. In Mozdgir et al. (2013) the authors also addressed the two-stage

AFSP by considering multiple non-identical assembly machines and SDST

in the first production stage. They developed a MILP and a hybrid VNS

heuristic to minimize the weighted sum of makespan and mean completion

time. Comprehensive reviews of the state-of the art of scheduling with setup

times are carried out in Yang and Liao (1999), Cheng et al. (2000), Ruiz and

Maroto (2005), Allahverdi et al. (1999, 2008) and Allahverdi (2015). As can

be seen, the DAPFSP with SDST considered in this chapter has not been, to

the best of our knowledge, studied before in the scheduling literature.

4.3 Simple constructive heuristic methods

The DPFSP is an NP-Hard problem if (n > f ) Naderi and Ruiz (2010).

Therefore, the DAPFSP with sequence dependent setups is also NP-Hard

as the DPFSP is a special case. As a result, the design of heuristic methods

for obtaining good solutions in reasonable CPU times is necessary. In the

following we present two simple constructive heuristics.

We first present a simple example problem that will be used to illustrate the

proposed heuristics. The example consists of eight jobs (n = 8), three products

(t = 3), two factories (f = 2) with a two machine flowshop each (m = 2).

The assembly programs of the three products are: N1 = {1, 6, 7}, N2 = {2, 5}

and N3 = {3, 4, 8}. Tables 4.1 to 4.3 present job processing times at factories,

product assembly times at the single machine assembly stage and assembly
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Job

Machine J1 J2 J3 J4 J5 J6 J7 J8

M1 46 48 94 2 4 47 50 33
M2 47 2 83 13 69 42 26 95

Product 1 Product 2 Product 3

MA 30 60 89

Table 4.1: Job and product assembly times for the exam-
ple.

Product
Product

T1 T2 T3

T0 6 3 1
T1 0 4 5
T2 3 0 6
T3 7 2 0

Table 4.2: Assembly stage setup time matrix for the exam-
ple.

and production machine setup matrices, respectively.

We introduce some necessary notation. π represents a product sequence,

that is, a possible sequence for the assembly of the products, e.g., π =

{1, 3, 2}. Each product h is composed of a number of jobs and a possible

sequence for these jobs is referred to as πh, denoting the job sequence for

product h, e.g., π1 = {7, 6, 1}, π2 = {2, 5} and π3 = {8, 3, 4} are possible job

sequences for the three products in the example. A Complete job sequence, πT ,

represents a possible sequence of the all jobs, and is the result of concatenating

all job sequences for the products after the master product sequence π, e.g.,

πT = {7, 6, 1, 8, 3, 4, 2, 5} following the example. To start processing the first

job at each factory and for assembling the first product at the assembly stage,

an initial setup is necessary. We use J0 and T0 to represent the first dummy job

and product, respectively.

To assign jobs to factories, the two job to factory assignment rules pre-
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Job
Machine 1 Machine 2

J1 J2 J3 J4 J5 J6 J7 J8 J1 J2 J3 J4 J5 J6 J7 J8

J0 2 7 3 8 4 1 9 3 8 9 7 1 9 8 7 4
J1 0 5 9 4 9 1 3 2 0 1 8 8 9 2 6 4
J2 3 0 7 3 2 1 6 7 7 0 2 5 2 1 3 6
J3 4 4 0 5 5 8 3 4 5 9 0 4 9 1 6 9
J4 8 2 4 0 2 1 3 3 4 2 5 0 8 8 1 1
J5 5 3 3 4 0 3 7 5 1 4 3 2 0 6 1 5
J6 8 1 8 4 3 0 1 3 1 4 8 2 7 0 6 6
J7 5 5 8 3 7 4 0 3 7 7 5 7 4 2 0 5
J8 9 3 8 2 7 8 7 0 7 7 1 8 1 5 6 0

Table 4.3: Production stage setup time matrix for the
example.

sented in Naderi and Ruiz (2010) are considered in this chapter. The first one,

referred to as (NR1), assigns job j to the factory with the lowest current Cmax,

not considering job j. The second rule (NR2) assigns job j to the factory with

the lowest Cmax after scheduling job j.

4.3.1 Heuristic 1

The first heuristic obtains a complete job sequence πT and consists of three

simple steps. The first obtains a product sequence (π) on the single assembly

machine. The product with the minimum sum of initial setup and assembly

time is scheduled first in π. The remaining h � 1 products are scheduled

one by one, each time selecting the product with the smallest completion time

after being scheduled, considering the sequence dependent setup time. Once

all products are scheduled the second step in the heuristic determines the job

sequence (πh) of each individual product h. The jobs of each product h are

considered one by one. Initially all factories are empty. Therefore, the first f

jobs with the minimum completion times (initial setup plus processing time)

are the first f jobs on πh and occupy the first positions in the f factories. Of

course, if |Nh|  f , πh is equal to the the assembly program of product h,

Nh. Otherwise, after f initial jobs are scheduled, the other |Nh| � f jobs
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from product h are considered. Among the remaining jobs of product h,

the job that is scheduled next is the one resulting in the smallest completion

time after applying either the NR1 or NR2 job to factory assignment rules.

The process continues until all jobs of product h have been considered. This

second step is applied to each product separately to determine the job sequence

for each individual product. After all products have been considered, the

third step constructs the complete job sequence πT by putting together all

obtained πh, following the product order established in π. At this point there

are two possibilities: to assign all jobs in πT to factories using the NR1 or

NR2 rules. Depending on the case we have the proposed heuristic CH11 or

CH12, respectively. The sequence of products in the assembly stage is simply

determined by ordering the products by increasing completion time of all the

jobs in the production stage. To better illustrate the heuristic, all steps are

explained through the previous example.

Product 1 is considered as the first product to be included into π. It is

scheduled first in the single assembly machine which results in a completion

time of 6+30=36 (considering the initial setup and the assembly times). The

same procedure is carried out for the remaining products 2 and 3 which result

in completion times of 3+60=63 and 1+89=90, respectively. Since product

1 results in the shortest completion time, it is scheduled first in π. Now we

have to reconsider products 2 and 3 in the single assembly machine. They

are scheduled now after product 1 which has been already scheduled. The

completion times are 36+4+60=100 (completion time of product 1 plus the

setup time in the assembly stage between products 1 and 2 and processing

time of product 2) for product 2 and 36+5+89=130 for product 3. Therefore,

product 2 is scheduled after product 1. Finally, no additional calculations are

needed for scheduling the last product 3 in the third position. As a result,

the product sequence π is {1, 2, 3}. Note that this first step of the heuristic is

carried out t(t+1)
2 � 1 times and therefore has a computational complexity of

O(t2). The next step is to find a good job sequence for each product h, πh.
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Recall that there are |Nh| jobs that belong to product h. We consider product

1 as an example that consists of jobs {1, 6, 7} in the example.

We begin by calculating the completion times of jobs 1, 6 and 7, separately.

Since the two available factories are empty, we consider the initial setups and

the completion times on the two machines at the flowshop of each factory.

For example, the completion time of job 1 is 2 (initial setup at machine 1)+46

(processing time at machine 1)+47 (processing time at machine 2)=95. Note

that the initial setup of 8 units in machine 2 can be performed before job

1 arrives to that machine. Applying the same procedure we calculate the

completion times for jobs 6 and 7 which are 90 and 85, respectively. Since

we have f = 2 factories, we select the f jobs with smallest completion times

and schedule them. In this case jobs 7 and 6 are scheduled in factories 1

and 2, respectively and occupy the first two positions of the product sequence

for product 1 (π1). To schedule the remaining jobs in πh, each one should

be tested at each factory using either the NR1 rule for CH11 or NR2 for

CH12. The job resulting in the minimum completion time is scheduled next

in πh. This process continues until all jobs in Nh have been scheduled and is

repeated for all the product sequences. In this example only job 1 remains and

therefore occupies the last position in π1. Therefore π1 is {7, 6, 1}. Applying

the same procedure results in the job sequences for products 2 and 3 to be

π2 = {2, 5} and π3 = {4, 8, 3}, respectively. Note that for each product h this

second step requires to first calculate the minimum completion times of all

jobs (|Nh| steps) plus ordering these jobs according to these completion times

(|Nh| log(|Nh|) steps) and assigning them to the first f factories (f steps).

The remaining |Nh| � f jobs are inserted one at a time using NR1 or NR2.

This has (|Nh|�f)(|Nh|�f+1)
2 steps which are multiplied by f if using NR2. It

is difficult to calculate the computational complexity for this step as usually

|Nh| is not expected to be orders of magnitude larger than f and therefore

the term �f in the previous expression is important. However, if we assume

that |Nh| � f and that there is a single product where |Nh| = n then the
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computational complexity of this second step is O(n2) for NR1 and O(n2f)

for NR2. Note however that this is a pathological worst case and the empirical

complexity is expected to be much lower. Finally, in the third step the complete

job sequence πT is completed by concatenating all job sequences following the

product sequence π. This sequence is therefore πT = {7, 6, 1, 2, 5, 4, 8, 3}. In

order to calculate the maximal makespan among the factories, the individual

jobs in πT are assigned to factories in the order they appear in πT , using the

rules NR1 or NR2 for heuristics CH11 and CH12, respectively. This last

step has a computational complexity of O(nf). Therefore, considering that

n � f , the overall worst case computational complexity of this first heuristic

is O(n2) for NR1 or O(n2f) for NR2. In the considered example, we obtain

the makespan value of 386 for CH11 and 387 for CH12. The solution given by

CH11 is represented as a Gantt chart in Figure 4.1. Additionally, a flowchart

of heuristic 1 is given in Figure 4.2.

4.3.2 Heuristic 2

This heuristic is based on the second constructive method presented in Hatami

et al. (2013). The idea is to consider the production stage and to sequence

all jobs of each product and construct the different πh sequences so that

priority is given to products whose jobs have small completion times. In

this way, the single assembly machine is occupied as soon as possible. In

order to obtain good job sequences πh for all products, the second step of the

previous heuristic 1 is used. After all jobs for a given product h are scheduled,

we calculate the earliest assembly start time for product h, denoted by Eh

which is equal to max
|Nh|
j=1 {Cj}. After all individual product job sequences

are determined, the product sequence π, is formed by sorting all t products

according to ascending values of Eh. Finally, the complete sequence πT

is obtained after concatenating all job sequences πh following the product

sequence established in π. Similarly to heuristic 1, jobs in πT are assigned

to factories using NR1 or NR2 which results in heuristics CH21 and CH22,
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Figure 4.1: Gantt chart with the result of CH11 for the
example problem.

respectively. The sequence of products for the assembly stage is obtained

as in heuristic 1. The computational complexity of this second heuristic is

dominated by the second step, which corresponds to the second step of the

previous heuristic 1. Therefore, the computational complexity is the same in

the worst case: O(n2).

Following the job sequences obtained for the three products in the example

of the previous heuristic, the earliest assembly start times of the products are

E1 = 157, E2 = 78 and E3 = 191. Therefore the product sequence π is

{2, 1, 3} by sorting all Eh in ascending order. The complete sequence πT is

therefore {2, 5, 7, 6, 1, 4, 8, 3}. After assigning each job to factories we obtain
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Figure 4.2: Flowchart of Heuristic 1.
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Figure 4.3: Flowchart of Heuristic 2.

makespan values of 387 for heuristic CH21 (NR1 rule) and 391 for heuristic

CH22 (NR2 rule). A flowchart of this heuristic 2 is given in Figure 4.3.

The four proposed heuristics will be tested later on as seed solutions of the

other proposed approaches for solving the DAPFSP-SDST problem.

4.4 A simple Variable Neighborhood Search

Variable Neighborhood Descent (VND) is the simplest variant of the more gen-

eral Variable Neighborhood Search (VNS) of Hansen and Mladenović (2001).

Starting from an initial solution, VND explores different neighborhood struc-

tures, N1, . . . , Nq. These are usually explored in increasing cardinality starting

with the smallest neighborhood N1. The search continues with N2 only after

a local optimum has been obtained in N1. If the local optimum obtained
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after exploring N2 is different from the one obtained after analyzing N1, the

search goes back to exploring N1. The process ends when all neighborhoods,

including Nq, have been searched and the final solution is a local optimum with

respect to all neighborhood structures. VND is very simple yet it performs

well for the distributed flowshop and DAPFSP problems as shown in Naderi

and Ruiz (2010) and in Hatami et al. (2013). In the following we summarize

the proposed VND which employs two different solution representations and

two neighborhood structures.

4.4.1 Solution representation

In this work, and differently from Hatami et al. (2013), we consider two

different solution representations. The base encoding is a permutation of all

jobs, i.e., we work with the complete job sequence πT . Using this encoding we

define the full permutation solution representation or (Pr1) as the ordering of

the n jobs regardless of the products to which they belong. Hence, n! different

job permutations are possible with this representation.

Pr1 is a relaxation of the more restricted representation given in Hatami

et al. (2013). This second representation, referred to as multi-permutation

or Pr2 is also a complete job sequence but the jobs belonging to the same

product are never separated and intermingled with jobs belonging to other

products. Following the previous example, if we have a product sequence

π = {2, 3, 1}, two possible representations could be {2, 5, 8, 3, 4, 7, 6, 1}

or {5, 2, 4, 8, 3, 7, 1, 6}. However, {2, 8, 5, 3, 4, 7, 6, 1} is not valid as job 8,

which belongs to product 3 is scheduled before job 5 which belongs to product

2 and the product sequence π forces all jobs of product 2 to be scheduled before

all jobs of product 3. Note that Pr2 is smaller than Pr1 as in total Pr2 contains

t!⇥
Qt

h=1 |Nh|! possible solutions.
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4.4.2 Pr1 neighborhoods

Two neighborhoods are considered after the work of Naderi and Ruiz (2010),

the first one, referred to as LS1, works at each factory by extracting each job

and reinserting it in all possible positions of the PFSP at that factory. The

process continues until all jobs have been examined with no improvements

in the Cmax for all factories. The second neighborhood, LS2, takes all jobs

assigned to each factory and inserts them at all possible positions in all other

factories looking for a makespan improvement at the involved factories. For

more details, the reader is referred to Naderi and Ruiz (2010).

4.4.3 Pr2 neighborhoods

Again two neighborhoods are employed. These are based on the VND pro-

posed in Hatami et al. (2013). The first neighborhood is referred to as LSP

and works over the product sequence π. It extracts and reinserts each product

into all possible t� 1 positions of π. Note that this is equivalent to extracting

and inserting the block of consecutive jobs that correspond to each product h

in πT . The second neighborhood is referred to as LSJ . It is also an insertion

neighborhood but in this case all jobs that make a product are extracted and

inserted into all possible positions of the job sequence for product h, i.e., all

t products are considered and all of their |Nh| jobs are extracted and inserted

into all job sequences. After each insertion and in both neighborhoods we

obtain a complete job sequence πT , therefore, all jobs need to be assigned to

factories using the NR1 or NR2 assignment rules. More details are given in

Hatami et al. (2013).

4.5 Iterated Greedy algorithm

Iterated Greedy (IG) was first applied to the regular permutation flow-

shop problem by Ruiz and Stützle (2007) with the objective of minimizing

makespan. The good results obtained have encouraged the application of the
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IG methodology to other scheduling problems. Regular flowshops with block-

ing constraints were approached by Ribas et al. (2011). No-wait flowshop

was successfully solved with IG algorithms by Pan et al. (2008). IG showed

excellent performance in no idle and mixed no-idle flowshops recently in Pan

and Ruiz (2014). The SDST PFSP was tackled with IG methods in Ruiz

and Stützle (2008). Also, other objectives apart from makespan have been

considered, like tardiness Framinan and Leisten (2008) and total flowtime Pan

and Ruiz (2012). Multiobjective flowshops have also been adequately solved

with IG techniques in Minella et al. (2011) or even with the addition of setup

times in Ciavotta et al. (2013). Finally, and as commented in Section 4.2, the

DPFSP has been also solved with IG methods by Lin et al. (2013). Given all

these previous successes, applying IG to the DAPFSP-SDST seems promising.

The most relevant characteristic of the IG methodology is its simplicity which

does not preclude obtaining competitive results for most tested scheduling

settings. IG has very few parameters and does not employ specific problem

knowledge. As with most metaheuristics, IG starts from a high-quality initial

solution. This starting solution is initially equal to both the incumbent and the

best solution. Then, usually four phases are iteratively applied to the incum-

bent solution until a user set termination criterion is reached. The first phase is

a partial destruction of the incumbent solution where some elements of it are

(usually randomly) removed. The second phase consists of the reconstruction

of the incumbent solution. The removed elements are reinserted in the solution

following a greedy heuristic. The result is a new complete solution. The third

phase is a local search where the complete solution is improved. The fourth

and last operator is the application of an acceptance criterion to decide if the

new solution replaces the incumbent one.

In the proposed IG we will test which one of the four proposed heuristics

(CH11, CH12, CH21 or CH22) will serve as a method to construct the initial

solution. In the following sections we explain the four phases of the proposed

IG. Note that there are differences depending on the solution representation
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Pr1 or Pr2.

4.5.1 Destruction, reconstruction and local search for Pr1

After the initial solution has been obtained we have a starting complete job

sequence πT along with a list of all jobs assigned to each factory. Let us denote

by πf the sequence of jobs assigned to a factory f 2 F . In the destruction

phase, a percentage of the n jobs (d%) jobs are randomly selected, without

repetition, removed from the factories and inserted into a list in the order in

which they were selected. Note that according to Naderi and Ruiz (2010), no

factory must be left empty when minimizing makespan. Therefore, a selected

job will not be removed from a factory if it is its last job. The destruction

procedure, explained in Pseudocode 5, returns the list of removed jobs D and

all sequences of jobs assigned to factories, after the removal of the jobs.

Pseudocode 5 Destruction_Pr1(d)
i ← 0;
while i < (d · n/100) do

a ← Job randomly selected among the remaining n− i jobs;
f ← Factory where job a is assigned;
if |πf | > 1 then

D ← Insert job a;
πf ← Remove job a from πf ;
i ← i+ 1;

end if

end while

return D and all πf , f ∈ F ;

In the construction phase, jobs in D are selected, one by one, and reinserted

into all possible positions in all factories. Among all positions, the one

resulting in the sequence with the smallest Cmax is chosen for the job. This

process is repeated d ·n/100 times until D is empty. The local search operator

used in the IG is the LS1 procedure explained in section 4.4.2. In this local

search, for each factory f , jobs are removed from πf and reinserted into all

|πf |� 1 possible positions in factory f .
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4.5.2 Destruction, reconstruction and local search for Pr2

The destruction operator is different from Pr1 in a small but important respect.

Each one of the d · n/100 removed jobs belong to a product h and we do not

allow job sequences for any product h (πh) to be empty, so at least one job must

remain in the job sequence of products. In the reconstruction procedure, each

job is inserted into all positions of its corresponding job sequence. To decide

the best placement for each job in D, all job sequences πh are coalesced into

a complete job sequence πT and jobs are assigned to factories following the

NR1 or NR2 job to factory assignment rules. The process is finished when

D is empty and all product job sequences contain all the jobs. For the local

search we use a product inter-exchange variant of the aforementioned LSP

local search of Pr2. We denote this local search by LSPI and all t⇥(t�1) pairs

of products are interchanged in the product sequence π. Duplicate moves are

ignored and the inter-exchange resulting in the best improving Cmax is carried

out. The process is repeated until all movements result in non-improving

makespan values.

4.5.3 Acceptance criteria

Similar to most existing IG literature, including the previously cited papers,

once the first three phases (destruction, reconstruction and local search) are

carried out over the incumbent solution, we obtain a possibly different schedule

and must determine if it replaces the incumbent one. It is known that a

simple descent acceptance criterion, i.e., accepting new solutions only if they

improve the best found Cmax value, results in IG methods that are prone to

stagnation and premature convergence. In the initial work of Ruiz and Stützle

(2007) it was proposed that a simulated annealing-like type of acceptance

criterion with a constant temperature, based on the earlier work of Osman

and Potts (1989) is enough to avoid premature convergence. This acceptance

criterion is as follows. Let us denote by π0
T to the incumbent complete solution

after the first three phases have been applied and by πT to the previous
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solution. Obviously if Cmax(π
0
T ) < Cmax(πT ) then the new solution π0

T is

directly accepted. If this is not the case, then solution π0
T is probabilistically

accepted following the expression random  e
�

Cmax(π
0

T )�Cmax(πT )

Temp where

random is a random number uniformly distributed between 0 and 1. Note

that Temp is another expression that was proposed originally by Osman and

Potts (1989) as Temp = T ·
Pm

i=1

Pn
j=1 pij

n·m·10 where T is a factor that needs

to be calibrated. This constant temperature simulated annealing-like type of

acceptance criterion has been extensively used in the IG literature. For example

Ruiz and Stützle (2008) used the same acceptance criterion albeit their problem

considered sequence dependent setup times. There are at least three potential

improvements to this acceptance criterion when applying it to our DAPFSP-

SDST problem. First, Temp is not correctly calculated as it does not consider

the distributed factories, assembly stage, number of products or setup times.

It is not clear how to extend this calculation to obtain a sensible parameter.

Second, as shown in Ruiz and Stützle (2007), Ruiz and Stützle (2008) and

other authors, the T factor inside the calculation of Temp proved not to

be statistically significant in a wide range of values in extensive calibration

tests. Third, in the temperature calculation of Osman and Potts (1989), the

final probability of accepting a worse solution basically depends only on

the difference Cmax(π
0
T ) � Cmax(πT ). Let us examine this in detail. The

expression Temp = T ·
Pm

i=1

Pn
j=1 pij

n·m·10 can be reduced to just Temp = T · 5, this

is because processing times pij , as we will detail later, are commonly obtained

from a uniform distribution in the range 1, 99 in most of the scheduling

literature. The average of such a uniform distribution is (1 + 99)/2 = 50,

therefore, we have that the numerator of Temp approximates to n · m · 50.

Considering the denominator, Temp = T · n·m·50
n·m·10 reduces to the stated T · 5.

There is a potential problem in this approach. The final probability of accepting

a final solution depends on the size of the instance and on the magnitude of the

Cmax value. Take two instances A and B with corresponding Cmax values of

the incumbent and new solutions as Cmax(πTA
) = 100, Cmax(πT 0

A
) = 110,



4.6. Calibration of the proposed VND and IG methods 85

Cmax(πTB
) = 1000 and Cmax(πT 0

B
) = 1010. Both new solutions for A

and B are worse than the incumbent by 10 units. However, for instance A

these 10 units translate into a 10% solution quality deterioration whereas for

instance B, the same 10 units are only a 1% deterioration. The problem with

the calculation given in Osman and Potts (1989) is that both cases have the

same probability of acceptance.

To remedy these three potential shortcomings, and as an additional contri-

bution of this chapter, we propose two additional acceptance criteria. The first

one, and similarly to the one of Osman and Potts (1989) is very simple. We

basically substitute the difference Cmax(π
0
T )�Cmax(πT ) for the Relative Per-

centage Difference (RPD) between the makespan value of these two solutions

which is calculated as RPD =
Cmax(π0

T )�Cmax(πT )

Cmax(πT ) ⇥ 100. This results in an

acceptance criterion calculation as random  e
�RPD

Temp .

The second proposed acceptance criterion, and in order to avoid the statis-

tically insignificant T factor is further simplified as follows: random 

e�RPD.

In total we will test three different acceptance criteria. The original in

Osman and Potts (1989) as described, denoted as AC1 and the two newly

proposed ones, referred to as AC2 and AC3, respectively. We will later use

sound statistical techniques to test if the two new proposed ones result in better

solutions for the DAPFSP-SDST problem.

4.6 Calibration of the proposed VND and IG methods

For further clarification, a flowchart of the proposed VND and IG is shown

in Figure 4.4.

We proceed with the calibration of the proposed methods. We are not

interested in a high quality and fine tuned process. Instead, we will use some

statistical tools to achieve a coarse calibration. The technique of choice is the
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Figure 4.4: Flowchart of VND (left) and IG (right).

Design Of Experiments (DOE) approach Montgomery (2012) where we will

basically be using screening factorial designs which are sound statistical tech-

niques but still result in an exploratory calibration. The literature on calibration

methodologies for metaheuristic methods is slowly gaining traction. Much

more advanced methods are given in Bartz-Beielstein et al. (2010). We decide

to use simpler approaches in order to have a clearer picture of the performance

of the proposed methods. Should an advanced tuning methodology be used,

it would be difficult to conclude if the proposed methods behave well because

they are good for the problem studied or just because a fine tuning calibration

has been carried out. The results of the experimental designs are examined

by means of the Analysis of Variance technique (ANOVA). ANOVA is a

robust parametric tool and at least three main hypotheses must be checked.

Some are less important but others are crucial. From more to less important
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the hypotheses are; independence of the residuals, homoscesdasticity of the

factor’s levels (homogeneity of variance) and normality in the residuals. All

these hypotheses are satisfied in all the following tests but it must be noted

in any case that ANOVA has been proven to be extremely robust as stated

in Basso et al. (2007). Other authors, like Rasch and Guiard (2004) study

ANOVA in detail and test it against other non-parametric approaches with

data that significantly departs from the three main hypotheses and conclude

that ANOVA is preferable to non-parametric approaches most of the time.

Furthermore, the most important hypothesis, the independence of the residual,

is easy to satisfy in a controlled computational experimentation environment

according to Ridge and Kudenko (2010). Therefore, the calibration methodol-

ogy employed should give us a fair, not over-tuned and at the same time sound

result.

A set of instances is generated to calibrate the proposed VND and IG.

Calibrating methods with the same test instances that will be used in the

computational evaluations is ill-advised. When a given method is calibrated

with the same test instances later used for comparisons there is a big risk

of having a bias in the results (over-fitting). There is no guarantee that

with a different benchmark results will hold. Therefore, we calibrate the

proposed methods with a different calibration benchmark. 60 instances are

generated randomly with the following combinations of number of jobs (n),

machines (m), factories (f ), products (t) and distributions for the setup times

of production and assembly machines. More specifically, n is tested at two

levels (100, 200), m at three (5, 10, 20), f and t are also tested at three

levels each, (4, 6, 8) and (30, 40, 50), respectively. Job processing times

at the distributed flowshops in the production stage are generated according

to a uniform distribution in the range [1, 99] as is common in the scheduling

literature. Finally, the product assembly times in the single machine assembly

stage depend on the number of jobs assigned to each product h and follow

a uniform distribution in the range [1 ⇥ |Nh|, 99 ⇥ |Nh|]. Finally, for the
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setup times we test two uniformly distributed intervals, [1, 50] and [1, 125] for

production and assembly setups. All the calibration instances are available at

http://soa.iti.es.

The response variable studied in the experiments is the Relative Percentage

Deviation (RPD), where RPD = SOLALG�BESTTOTAL
BESTTOTAL

⇥100. BESTTOTAL

is the best known solution obtained over the course of this research for each

calibration instance and SOLALG is the makespan value obtained by any

algorithm tested over the same instance. Experimentation is performed in a sci-

entific computation cluster with 30 blades. Each one with 16 GBytes of RAM

memory and two Intel XEON E5420 2.5 GHz processors. Each processor has 4

physical computing cores (8 per blade) but no parallel computing is employed

in this chapter as the 30 servers are only used to split the experimentation work

and reduce the total time to obtain results. At each blade we use Windows XP

virtual machines with one virtual processor with two cores and 2 GB of RAM

memory.

4.6.1 VND calibration

The proposed VND mainly has three factors or algorithm features that should

be tested. The first is the type of solution representation. This factor will

be referred to as Pr and is tested at two variants, which correspond to the

two different proposed solution representations of Section 4.4.1 (Pr1 and Pr2).

The second factor is the two different job to factory assignment rules (NR)

which is tested at two variants NR1 and NR2. The third and last factor

is the simple constructive heuristic used for initialization (INI), tested at

four variants (CH11, CH12, CH21 and CH22). The response variable is the

RPD and we carry out a multifactor ANOVA to analyze experiments. The

number of treatments is the result of all the combinations of all previous factors

(2⇥ 2⇥ 4 = 16) and each treatment is tested with all 60 calibration instances

so the total number of experiences is 16 ⇥ 60 = 960. There is no need for

replicates as the proposed VND methods are deterministic.



4.6. Calibration of the proposed VND and IG methods 89

1 2

Pr

2.3

2.7

3.1

3.5

3.9

4.3

4.7

R
el

a
ti

v
e
 P

er
ce

n
ta

g
e
 D

ev
ia

ti
o
n
 (
R
P
D

)

1 2

NR

CH11 CH12 CH21 CH22

INI

Figure 4.5: Means plot and 99% confidence level Tukey’s
HSD intervals for the type of solution presentation Pr, job
assignment rules NR, and initial solutions INI for the

proposed VND methods.

The analysis and ANOVA table shows that, all studied factors (Pr, NR and

INI) are statistically significant. The most significant is the representation

(Pr), then job to factory ass ignment rule (NR) and lastly the initial solution

(INI). The means plot and 99% confidence level Tukey’s Honest Significance

Differences (HSD) intervals for all three factors are given in Figure 4.5.

The second solution representation, as well as the second job to factory

assignment rules result in statistically better performance. As regards the

solution representation, the larger cardinality of the solution space in the

first representation deteriorates performance, possibly indicating that more

neighborhoods or larger neighborhoods are needed. Our experiments confirm

that the second job to factory assignment rule works better, which is in line
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with previous findings Naderi and Ruiz (2010), Hatami et al. (2013). However,

this assignment rule does not have an effect on the constructive heuristics

which only depend on the representation. In the end we select Pr= 2, NR = 2

and INI = CH21.

4.6.2 Experimental parameter tuning of the IG

IG has three factors in common with VND to calibrate (Pr, NR and INI).

These are tested at the same variants as before. Furthermore, there are three

additional factors: percentage of jobs to destruct in the destruction phase (d),

type of acceptance criterion (AC) and the value of T used in the calculation of

Temp (T ). As explained in Section 4.5.3, we propose three different accep-

tance criteria. The first two (AC1 and AC2) do depend on the aforementioned

parameter T , whereas the third (AC3) does not have a T factor. As a result,

we have to carry out two different experiments. In the first one we test two

variants for Pr (Pr1 and Pr2), two variants for NR (NR1 and NR2), four

variants for initial solution (CH11, CH12, CH21 and CH22), three levels for d

(5, 10, 15)%⇥n, two levels for acceptance criterion (AC1 and AC2) and three

levels for T : (0.5, 1, 2.5). This results in 2⇥2⇥4⇥3⇥2⇥3 = 288 algorithm

configurations. Each one of the 60 calibration instances is run for five different

replicates in each configuration resulting in 288 ⇥ 5 = 1, 440 treatments

as IG is an stochastic algorithm. Since each treatment is tested with all 60

calibration instances the total number of experiences is 1, 440⇥ 60 = 86, 400.

Additionally, as IG is a metaheuristic with a stopping criterion, we set the

elapsed CPU time as a termination criterion, which is fixed at n · m · f · 45

milliseconds. This way of setting the termination criterion as a function of the

size of the instance helps in decoupling the effect of the instance size in the

results. Additionally, all algorithm configurations have the same CPU budget.

Not doing so would result in a calibration biased for more time consuming

configurations. We employ the same computers for this test as before. With

this first experiment, the idea is to set the value of the parameter T for the first
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Figure 4.6: Means plot and 99% confidence level Tukey’s
HSD intervals for the temperature T parameter and the
interaction between the temperature T parameter and ac-
ceptance criterion (AC) for the first calibration experiment

for the proposed Iterated Greedy methods.

two levels of the acceptance criterion only (AC1 and AC2). Once T is fixed,

we will be able to analyze the three different acceptance criterion together in

a second experiment. The results of the first experiment (not shown here due

to reasons of space) indicate that the only non-significant factor is T with a

p-value very close to 1. However, the interaction between T and the type of

acceptance criterion (AC) is significant with a p-value of 0.0004. Both means

plots, for the single factor as well as for the interaction are given in Figure 4.6.



92 CHAPTER 4. THE DAPFSP-SDST

As we can see, the single factor T is not significant as the three levels in the

means plot completely overlap. The interaction is significant as the behavior

of the T factor greatly depends on the type of acceptance criterion. For

AC1, which recall is the original Ruiz and Stützle (2007) type of acceptance

criterion, increasing the value of T results in better solutions. Originally, Ruiz

and Stützle (2007) tested values of T of 0, 0.1, 0.2, 0.3, 0.4 and 0.5. Here

we have tested larger values but the three intervals overlap, meaning that even

though solutions improve, the improvement is not consistent enough so as to

be statistically significant. The situation is just the opposite for the second

acceptance criterion AC2 as increasing the value of T deteriorates solutions.

This together with the fact that overall T is not significant and the previous

studies into the IG methodology where T has been shown to be statistically

insignificant reinforces our idea that T should be removed from the acceptance

criterion. For the next experiment we set T at 2.5 for AC1 and to 0.5 for AC2.

The second experiment involves all previous factors and all three accep-

tance criteria but having fixed T as mentioned for the first two acceptance cri-

teria. Therefore, the total number of experiences is now 43,200. The ANOVA

results indicate that the interaction between the solution representation (Pr) and

the job to factory assignment rule (NR) factors is the most significant effect.

This interaction is shown in Figure 4.7.

Similar to VND, for the proposed Iterated Greedy method the second

solution representation and the second job to factory assignment rule result in

the best performance by a significant margin. Actually, with the exception of

the percentage of jobs to destruct in the destruction phase (d), all other factors

are not significant. The initial solution INI is not statistically significant

with a p-value close to 0.25. However, this is across all instances. Some

statistically significant differences are found in some instance groups when

using CH21 or CH22. Therefore, and again similar to VND, INI is set

to CH21. Of particular interest is the statistical insignificance of the type

of acceptance criterion factor (AC) with a very large p-value of more than
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Figure 4.7: Means plot and 99% confidence level Tukey’s
HSD intervals for the interaction between the solution rep-
resentation (Pr) and the job to factory assignment rule
(NR) factors in the second calibration experiment for the

proposed Iterated Greedy methods.

0.85. This means that there are very little (if any) differences between the

three proposed acceptance criteria. The third proposed criterion does not

employ a temperature factor. As a result, it is preferable to employ AC3 as

it is equivalent performance wise and at the same time simpler with one less

parameter. In any case, for the final experiments we will also test the original

Ruiz and Stützle (2007) acceptance criterion (AC1) to conclude in a sound

way if our new acceptance criterion is actually equivalent or not. Finally, d is

marginally significant, offering different results when related with the instance
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factors (n, m, f and t). Since we want to avoid an instance-specific factor

level, we finally settle for d = 5% regardless of instance size.

4.7 Computational evaluation

We are now ready to computationally test the proposed approaches. We are

going to compare first the four proposed simple constructive heuristics CH11,

CH12, CH21 and CH22. These are very fast methods and take very little CPU

time. We employ the same computing platform used for the calibration in the

tests.

As mentioned, the benchmark of test instances is different from the pre-

vious calibration instances. Recall that in the calibration instances we have

60 random combinations of number of jobs (n), machines (m), factories (f ),

products (t) and distributions for the setup times of production and assem-

bly machines. In the test instances we consider all possible combinations

(2⇥ 33 ⇥ 2 = 108). For each combination we generate five different instances

resulting in a total of 540 test instances. For all tested methods we calculate

the Relative Percentage Deviation from the best solution known. This solution

is the best obtained throughout the course of this chapter. All instances as well

as the best solutions are available at http://soa.iti.es.

Table 4.4 shows the results of the four tested heuristics. There are 540

instances and four tested heuristics. Therefore, the total number of results is

2,160. We have grouped these by instance characteristics. CPU times are

not reported as they are extremely small. As a matter of fact, among the

2,160 observed CPU times in the results, the maximum reported is just 0.079

seconds. The average observed CPU time in all results is only 0.008 seconds.

It can be concluded that the reported heuristics are almost instantaneous even

for the largest tested instances of 200 jobs, 20 machines, 8 factories and 50

products.

As can be seen, all four heuristics provide similar results. The average
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RPD

CH11 CH12 CH21 CH22

n 100 21.17 20.02 22.36 22.12
200 13.11 12.24 13.22 13.31

5 16.01 14.82 18.04 17.94
m 10 16.95 16.24 18.06 17.94

20 18.46 17.34 17.27 17.25

4 18.69 17.66 18.65 18.41
f 6 16.89 15.47 17.55 17.53

8 15.83 15.27 17.16 17.19

30 15.58 14.58 14.53 14.47
t 40 17.92 16.77 18.37 18.37

50 17.92 17.04 20.47 20.30

Setup U [1, 50] 12.70 12.11 10.43 10.31
interval U [1, 125] 21.58 20.15 25.15 25.11

Average 17.14 16.13 17.79 17.71

Table 4.4: Average Relative Percentage Deviation (RPD)
over the best known solution, grouped by instance charac-

teristics of the proposed constructive heuristics.

deviations are between a little more than 16% and below 18%. Although not

detailed here, there is a large variability in the results as well. The minimum

observed RPD is just 3.59% and the maximum 51.51%. In order to closely

analyze these results, we carry out an ANOVA statistical test on the obtained

results. We consider all instance factors (n, m, f and t) as non-controllable

factors as well as a single factor which is the heuristic, at four variants. The

results of the ANOVA, which are not shown here due to reasons of space,

indicate that three non-controllable factors n, t and f are very significant,

in this order. This is expected as with more jobs and products the instances

are harder to solve. Note, however, that a larger number of factories results

in easier instances as there are less jobs per factory. As for the algorithms,

the result is that CH12 is statistically better than the rest, followed by CH11

which is in turn better than CH21 and CH22. There are no statistically

significant differences between these last two methods. Note that this is not a
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contradictory result. While in the heuristic testing, CH12, is the best heuristic,

the calibration experiments for VND and IG resulted in CH21 being the best

initialization method. We should not assume that the best heuristic should be

used as an initialization for a metaheuristic as the initialization interacts with

all other algorithm parameters.

In a separate experiment we test the more time consuming methods. The

algorithms to compare are the VND with the parameters obtained in the

calibration (Pr= 2, NR = 2 and INI = CH21) and two similarly configured

IG methods also from the calibration result. These differ only in the acceptance

criterion. The common parameters are Pr= 2, NR = 2, INI = CH21 and

d = 5%. In the first tested IG, referred to as IG1, we employ the original

Ruiz and Stützle (2007) acceptance criterion, AC1 (which is, in turn, based

on the criterion of Osman and Potts (1989). Since we need a value for T in

this acceptance criterion, we use T = 2.5 as per the result of the calibration.

The second tested IG, referred to as IG3, uses the third proposed acceptance

criterion AC3 which does not have a T parameter.

The two Iterated Greedy methods need a termination criteria which is

tested at two levels: n ·m · f · 30 and n ·m · f · 60 milliseconds elapsed CPU

time (ρ = 30, 60). Additionally, since IG is stochastic, we run it five times for

each instance and CPU time termination. Conversely, VND is deterministic

and does not have a termination criterion and is therefore run only once with

each instance. In total we have 540 results for the VND and 2,700 for each IG

method and termination criterion (10,800 results). We first present the average

Relative Percentage Deviation over the best solutions known for each instance.

Table 4.5 shows these results, grouped by instance characteristics, among other

information regarding CPU times.

As can be seen, VND results in relatively good solutions which average a

RPD of 5.33% in all tests. The average CPU time needed is a little more than

37 seconds. Note how the CPU times clearly depend on the size of the instance

(number of jobs n, number of machines m and number of products t). The
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RPD CPU times (sec.)

IG1 IG3 IG1/3 IG1/3

ρ = 30 ρ = 60 ρ = 30 ρ = 60 VND ρ = 30 ρ = 60 VND

n 100 2.39 1.33 2.23 1.26 8.02 210 420 18.04
200 0.73 0.43 0.67 0.37 2.64 420 840 56.87

5 1.77 0.97 1.66 0.93 5.35 135 270 23.12
m 10 1.54 0.88 1.44 0.82 5.45 270 540 32.91

20 1.36 0.79 1.26 0.69 5.20 540 1080 56.33

4 1.43 0.77 1.33 0.72 4.37 210 420 37.44
f 6 1.60 0.88 1.50 0.83 5.49 315 630 39.26

8 1.64 0.99 1.52 0.89 6.14 420 840 35.65

30 0.65 0.49 0.58 0.41 3.18 315 630 15.42
t 40 1.41 0.85 1.32 0.79 5.59 315 630 33.11

50 2.61 1.30 2.45 1.24 7.23 315 630 63.82

Setup U [1, 50] 0.93 0.53 0.89 0.49 3.12 315 630 37.55
interval U [1, 125] 2.18 1.23 2.01 1.14 7.55 315 630 37.35

Average 1.56 0.88 1.45 0.81 5.33 315 630 37.45

Table 4.5: Average Relative Percentage Deviation (RPD)
over the best known solution, grouped by instance char-
acteristics and average CPU times of the proposed algo-
rithms. Bold values indicate the best obtained average

relative percentage deviations.

proposed Iterated Greedy methods are tested at two termination criteria and it

is clear that with double the CPU time, the results improve. An interesting

conclusion is that the third acceptance criterion (AC3), albeit simpler and

with one less parameter, gives better results when compared with the regular

acceptance criterion. It is safe to conclude that IG3, a simpler version with

only one main parameter compared to the original version of Ruiz and Stützle

(2007), works better for the studied problem.

We also carry out a multi-factor ANOVA to check if the observed average

differences from Table 4.5 are indeed statistically significant. Once again we

consider all instance characteristics as non-controllable factors. Preliminary

tests indicate that VND is clearly not statistically better than the IG methods.

Therefore, to avoid lack of normality in the residuals and to have a clearer
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picture of the performance of the IG methods, VND is removed from the

final statistical test. We control two factors, the type of IG at two variants

(IG1 and IG3) and the termination time ρ at two levels (30 and 60). The

results of the ANOVA indicate that IG3 is statistically better than IG1, this

is further illustrated in Figure 4.8. Upon a closer analysis we have modified

the chapter. More in detailes, considering the two different stopping times and

five replicates per instance and the 540 test instances we have 5,400 results

for IG1 and another 5,400 results for IG3. Comparing these 10,800 cases we

find that in 2,244 IG1 is better than IG3, in 418 both give the same makespan

and in 2,738 IG3 is better than IG1. The fact that IG3 is statistically better,

on average, than IG1 is because in the cases where IG1 is better than IG3 it is

so by a small margin. However, when IG3 is better than IG1 the difference is

larger. In any case, the differences are not very large. Note that in Table 4.5

for the large CPU time of ρ = 60, the grand average of IG1 is 0.88 whereas for

IG3 the average is 0.81 so the difference is small.

From the results we have shown that the proposed heuristics provide

reasonable results almost instantaneously whereas the presented VND method

gives much better results which deviate, on average, about a 5% from the best

known solutions. When doing so they require a larger, but still acceptable CPU

time. The presented Iterated Greedy algorithms are of a much higher quality

but need more CPU time. This time, however, can be set by the decision

maker. With all these tools, plant managers have a wide range of algorithms

with different CPU time demands and solution qualities to suit the needs of

each moment.

4.8 Conclusions of the chapter

We have addressed the addressed Distributed Assembly Permutation Flowshop

Scheduling Problem with the additional consideration of sequence dependent

setup times at both production and assembly stages. This results in a con-
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Figure 4.8: Means plot and 99% confidence level Tukey’s
HSD intervals for the type of Iterated Greedy method in

the final test experiments.

siderably more realistic and applicable problem setting. The objective is the

minimization of the makespan at the assembly stage.

We have presented two constructive heuristics, which are combined with

two existing job to factory assignment rules. Furthermore, a simple and rel-

atively fast metaheuristic based on Variable Neighborhood Descent (VND) is

proposed, calibrated and analyzed. Additionally, we present an Iterated Greedy

(IG) algorithm that has also been extensively analyzed. While IG is a very

simplistic metaheuristic, we have simplified it further by proposing an accep-

tance criterion that does not consider a simulated annealing-like temperature

as is common in the IG literature Ruiz and Stützle (2007). The result is a

parameter-less acceptance criterion.

Sound and detailed statistical techniques have been employed to calibrate
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and to analyze the performance of all presented methods. The result is a battery

of approaches that range from very fast (almost instantaneous) constructive

heuristics that produce reasonably good results to more time consuming meth-

ods like VND or IG that reach close to optimality performance. Given the

applicability of the researched problem and the range of proposed approaches,

the work carried out in this chapter represents a solid step forward in solving

more realistic distributed scheduling problems.



CHAPTER 5
THE DISTRIBUTED PARALLEL MACHINE AND

ASSEMBLY SCHEDULING PROBLEM WITH

ELIGIBILITY CONSTRAINTS

“The contents of this chapter are taken from the publication: Hatami, S.,

Ruiz, R., and Andrés-Romano, C. (2015). The distributed assembly parallel

machine scheduling problem with eligibility constraints. International Journal

of Production Management and Engineering, 3(1):13–23. ”

In this chapter we jointly consider several realistic scheduling extensions:

First we study the distributed unrelated parallel machines problem where there

is a set of identical factories with parallel machines in the production stage.

Jobs have to be assigned to factories and to machines. Additionally, there is an

assembly stage with a single assembly machine. Finished jobs at the manufac-

turing stage are assembled into final products in this second assembly stage.

These two joint features are referred to as the Distributed Parallel Machine and

Assembly Scheduling Problem or DPMASP. The objective is to minimize the

makespan in the assembly stage. Due to technological constraints, machines

cannot be idle and some jobs can be processed only in certain factories. We

101
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propose a mathematical model and two high-performing heuristics. The model

is tested with two state-of-the-art solvers and, together with the heuristics,

2220 instances are solved in a comprehensive computational experience. Re-

sults show that the proposed model is able to solve moderately-sized instances,

and that one of the heuristics is fast, giving optimal solutions close to optimum

in less than half a second in the worst case.

5.1 Introduction

Nowadays, the manufacturing industry faces many challenges, namely global-

ization, increasing product variety, complexity and customer demands, shorter

product life cycles, higher demand of customized goods instead of mass pro-

duction, uncertain and dynamic global market, etc. Of course, the strong

competition from emerging and established economies has to be considered

as well. One of the many tools to face these challenges and to meet customer’s

demands is to increase the product variety that companies offer. A wide

product portfolio and diversified offer is a key asset to stay competitive in such

an unpredictable and ever evolving market. Product variety has been defined

by many authors as a number or collection of different things of a particular

class of the same general kind (ElMaraghy et al., 2013). In recent years,

assembly systems are such as techniques that are mostly used mass production.

They have been also employed in various manufacturing systems so as to

increase flexibility and the capability to increase product variety. These types

of manufacturing settings are referred to as Assembly Scheduling Problems

(ASP).

In an assembly system, different operations are performed independently,

and potentially in parallel, to produce different components which are later

assembled into finished products in assembly lines. A high variety of finished

products, made from different combinations of produced components, can be

produced in assembly systems.
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Existence of more than one manufacturing facility in different geographi-

cal places may decrease some costs related to the production. To offset these

costs, companies must operate different and specialized factories in what is

known as Distributed Manufacturing Systems (DMS). In a DMS environment,

several independent production centers or factories are run in parallel at poten-

tially different geographical places. Furthermore, distributed manufacturing

allows for greater flexibility and resiliency (Sluga et al., 1998). Other benefits

of DMS are: higher product quality, lower production costs, reduced risks

(Kahn et al., 2004; Chan et al., 2005b; Mahdavi et al., 2008). However,

scheduling in DMS is more complicated than in a single production factory.

In single production centers a job schedule for each set of machines has to

be defined, while in DMSs, there are two interrelated decisions to be made:

factory selection for each job and then scheduling at each factory.

As a conclusion, and in order to reap the benefits of both assembly systems

(ASP) and distributed manufacturing (DMS), both aspects must be jointly

considered.

In the studied problem of this chapter we consider two manufacturing

stages: production and assembly. For production we have a set of distributed

factories and for assembly there is a single assembly facility. Each one of the

f distributed production centers (factories) has unrelated parallel machines as

a shop configuration whereas the assembly stage consists of a single machine.

Transportation time for transferring jobs from production centers to assembly

stage is assumed negligible. By considering the above model we define

the studied problem in this chapter as the Distributed Parallel Machine and

Assembly Scheduling Problem (DPMASP).

More in specifically, in the DPMASP there is a set N of n jobs that has

to be processed on a set F of f identical factories. Note that all factories are

identical and have the same number of machines. Each factory has a set M

of m unrelated parallel machines. Each job has to be processed at exactly

one machine at one factory. Furthermore, there are eligibility constraints.
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LFj ✓ F is the subset of factories where job j can be assigned, where

f � |LFj | � 1, j = 1, . . . , n, job j can only be assigned to an eligible factory.

There is a set T of t independent products. Each product is assembled at the

single assembly machine MA. For the assembly of product h, h = 1, . . . , t a

subset Nh ✓ N of jobs must have been produced at the distributed factories

beforehand. Each job can only belong to an assembly program of a product,

i.e.,
Pt

h=1 |Nh| = n. The assembly of product h can only start when all jobs

in Nh have been completed at the distributed factories. For the processing at

the distributed manufacturing stage, pjk denotes the processing time of job j

at machine k of any factory. Note that all factories are identical and have the

same number of machines. For the assembly stage, ph denotes the assembly

time of product h. All processing times are positive, deterministic and known

integer quantities. The objective in the proposed DPMASP is to assign jobs

to machines at factories in the distributed manufacturing stage, to schedule

all assigned jobs to each machine at each factory and to schedule products

at the single machine assembly stage while minimizing the makespan at this

assembly stage. As regards the computational complexity of the DPMASP we

can conclude that it is an NP-Hard problem if n >> f since the regular

parallel machines problem (even in the case where there are two identical

machines, i.e., the P2//Cmax problem) is already NP-Hard according to the

results of Lenstra et al. (1977).

As we will later show, the DPMASP is an important generalization of

existing problems that has not been studied before to the best of our knowledge.

In this chapter we propose a mathematical model to solve the problem. The

model is solved with two state-of-the-art commercial solvers and results are

compared. Two high performing heuristics are proposed and are shown to

give results that are, in many cases, close to the optimal ones. The rest of

the chapter is organized as follows: In the next section we present a short

literature review on related problems. In Section 5.3 we present a Mixed

Integer Linear Programming (MILP) model to solve the considered problem.
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Section 5.4 describes two simple constructive heuristics. Section 5.5 presents

a comprehensive computational evaluation of the proposed MILP and simple

constructive heuristics. Finally, some concluding remarks are provided in

Section 5.6.

5.2 Literature review

As mentioned, the DPMASP contains parts from distributed manufacturing,

assembly and parallel machines. As such, a complete literature review on

each one of these three topics is clearly outside the scope of this chapter.

Some of the closely related research will be reviewed instead. Regarding the

assembly part of the proposed DPMASP, Lee et al. (1993) considered a three

machine assembly-type flowshop problem (non distributed). The problem

comprises two stages; in the first stage there are two production machines

that produce two components for each single product. The second stage is a

single assembly machine that assembles the two produced components to make

each final product. They present a branch and bound algorithm and also an

approximate procedure. Makespan minimization is considered as an objective

function. Later, Potts et al. (1995) considered m parallel machines instead of

the two production machines in the first stage. They produced approximated

solutions with worse-case absolute performance guarantees. For the same

problem of Lee et al. (1993), Hariri and Potts (1997) proposed a branch-and-

bound algorithm, and Sun et al. (2003) presented different powerful heuristic

algorithms. Also, Sung and Kim (2008) tried to expand the model presented by

Lee et al. (1993) by adding multiple-assembly machines in the second stage.

The objective is to minimize the sum of completion times. They proposed a

lower bound and employed it in a branch-and-bound algorithm. An efficient

and simple heuristic was also proposed. As mentioned, we consider eligibility

constraints for assigning jobs to factories in distributed manufacturing stage.

To the best of our knowledge, Lin and Li (2004) have a similar job to machine
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eligibility constraints. In this paper, the parallel machine scheduling problem

with unit processing times is studied and polynomial algorithms are presented.

For the distributed part of the DPMASP we have to note that DMS is a gen-

eral and broad manufacturing term. Focusing only on distributed scheduling

problems, there are few studies about, distributed flowshops and jobshops. For

example, the distributed permutation flowshop scheduling problem (DPFSP)

was introduced for the first time by Naderi and Ruiz (2010). They proposed

six different alternative MILP models, two simple factory assignment rules,

fourteen heuristics and variable neighborhood descent methods. Later, Lin

et al. (2013) and Wang et al. (2013b) proposed an effective Iterated Greedy

(IG) method and an Estimation of Distribution algorithm on DPFSP, respec-

tively. Later, Naderi and Ruiz (2014) presented a scatter search (SS) method

for the DPFSP. This SS was shown to outperform existing methods. For an

updated literature review on the DPFSP, the reader is referred to this paper

of Naderi and Ruiz (2014). Recently, Fernandez-Viagas and Framinan (2015)

have presented a modified iterated greedy algorithm for the DPFSP, which is

shown to outperform the initial algorithms of Naderi and Ruiz (2010). How-

ever, there is no comparison between the SS of Naderi and Ruiz (2014) and this

modified iterated greedy. The distributed jobshop problem considering two

different criteria is studied first by Jia et al. (2002) and Jia et al. (2003) where

they proposed Genetic Algorithm (GA) to solve the problem. Later, Jia et al.

(2007), refined the previous GA. Chan et al. (2006b) studied the distributed

jobshop with makespan objective, also using GA.

The only papers that we are aware of that jointly consider the assembly

and distributed aspects are Hatami et al. (2013) which recently introduced the

Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP).

In this problem, there are f distributed flowshop production centers and a

single assembly center with a single machine. A MILP, several constructive

heuristics and simple local search based Variable Neigborhood Descent (VND)

methods were proposed. Xiong et al. (2014) presented a distributed two-
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stage assembly system with setup times. The authors considered f distributed

factories where each factory has the same m processing parallel machines at

the first stage and the same assembly machine at the second stage. Each assem-

bled product consists of m components produced by parallel machines. They

developed heuristic methods and three hybrid meta-heuristics to minimize the

total completion time. The problem studied by Xiong et al. (2014) is different

from the studied DPMASP. First, we consider a separated assembly stage, not

an assembly operation at each factory. Second, we allow the different jobs

composing a product to be produced in different factories. Third, each product

might have a number of jobs (components) different from m.

As we can see, and to the best of our knowledge, there is no literature on

the DPMASP.

5.3 Mixed Integer Linear Programming model

We present a mathematical model to solve the proposed DAPMSP. First we

detail the indexes, parameters and variables are used:

Index Description

i, j denotes jobs, i, j = 0, 1, . . . , n, where 0 represents a dummy job

k denotes machines, k = 1, . . . ,m

q denotes factories, q = 1, . . . , f

l, s denotes products, l, s = 0, 1, . . . , t, where 0 represents a dummy product

M a sufficiently large positive number, M = 100000

Parameter Description

n number of jobs

m number of machines

f number of factories

t number of products

pjk processing time of job j on machine k

ps processing time of product s at the assembly stage

Gjs binary parameter equal to 1 if job j belongs to product s, and 0 otherwise
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Variable Description

Xijkq binary variable equal to 1 if job i is an immediate predecessor of job j

on machine k in factory q

Yls binary variable equal to 1 if product l is an immediate predecessor of product s

at the assembly machine

Cj completion time of job j at the production stage

CAs completion time of product s on assembly stage

Cmax makespan

The objective function of the model is to minimize the makespan:

Min Cmax

subject to the following constraints:

n
X

i=0,i 6=j

m
X

k=1

f
X

q=1
q2LFj

q2LFi

Xijkq = 1 8j (5.1)

n
X

j=0,j 6=i

m
X

k=1

f
X

q=1
q2LFi
q2LFj

Xijkq = 1 8i (5.2)

n
X

j=1
q2LFj

X0jkq = 1 8k, q (5.3)

n
X

i=1
q2LFj

Xi0kq = 1 8k, q (5.4)

n
X

j=1,j 6=i
q2LFj

(Xijkq �Xjikq) = 0 8i, k, q, q 2 LFi (5.5)
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m
X

k=1

f
X

q=1
q2LFi
q2LFj

Xijkq +

m
X

k=1

f
X

q=1
q2LFi
q2LFj

Xjikq  1

8i 2 {1, . . . , n� 1}, j > i

(5.6)

Cj � Ci + pjk +M(1�Xijkq) 8i, j, k, q, q 2 LFi, LFj (5.7)
t

X

l=0,l 6=s

Yls = 1 8s (5.8)

t
X

s=1,l 6=s

Yls  1 8l (5.9)

Yls + Ysl  1 8l 2 {1, . . . , t� 1}, s > l (5.10)

CAs � (Cj ·Gjs) + ps 8j, s (5.11)

CAs � CAl + ps +M(1� Yls) 8l, s, l 6= s (5.12)

Cmax � CAs 8s (5.13)

Xijkq 2 {0, 1} 8i, j, k, q, i 6= j, q 2 LFi, q 2 LFj (5.14)

Yls 2 {0, 1} 8l, s, l 6= s (5.15)

Cj � 0 8j (5.16)

CAs � 0 8s (5.17)

Note that C0 = CA0 = 0. Constraint sets (5.1) and (5.2) ensure that each

job must have exactly one preceding and succeeding job, respectively. Sets

(5.3) and (5.4) enforce that each machine at each factory has to have a dummy

job 0 as predecessor and successor, respectively. Note that this is a special

constraint, as we do not allow any machine at any factory to be empty due to

technological or economic constraints. This also requires the total number

of jobs in the shop (n) to be greater or equal than f · m. Constraint set

(5.5) ensures that if a job is sequenced on a machine, then its predecessor

and successor must be processed on the same machine. Constraint set (5.6)

controls that a job cannot be both a predecessor and successor of another
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job at the same time. Constraint set (5.7) determines that if job j is placed

immediately after job i, its processing at machine k cannot start before the

processing of job i in machine k finishes. Constraints (5.8) and (5.9) force

that each product should have one predecessor and at most one succeeding

product in the assembly factory, respectively. Constraint (5.10) controls that a

product cannot be both a predecessor and a successor of another product at the

same time in the assembly machine. Constraint (5.11) determines that each

product h cannot begin to be assembled before all its jobs are completed in

the corresponding machine. Constraint set (5.12) determines that if product s

is placed immediately after product l, it cannot start to be assembled on the

assembly machine before the assembling of product l in assembly machine

has finished. Constraints (5.13) and (5.14)-(5.17) define the makespan and the

domain of the decision variables, respectively. Note that only the necessary

variables are defined, i.e., eligibility constraints are implicitly considered in

the model.

5.4 Constructive heuristic methods

Let us first introduce a DPMASP example that will guide the exposition of

the proposed heuristics. The example consists of fourteen jobs (n = 14),

three products (t = 3), two factories (f = 2) with two unrelated parallel

machines in each factory (m = 2). The assembly programs for each product

are: N1 = {2, 7, 8}, N2 = {1, 3, 4, 10, 12, 13} and N3 = {5, 6, 9, 11, 14},

i.e., jobs 2, 7 and 8 must be finished in order to assemble product 1. Table 5.1

contains the job processing times on each machine at the production stage and

eligibility constraints. Processing times for assembling products 1 to 3 are 3,

12 and 7, respectively.

Some additional notation is the following: A product sequence is repre-

sented by π, e.g., π = {2, 1, 3}. To assign all jobs belonging to the assembly

program of product h to the unrelated parallel machines at the different facto-
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Job

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14

Machine
M1 7 3 4 3 1 3 7 4 9 7 8 3 4 7
M2 1 6 5 4 5 9 2 1 6 8 4 9 1 3

LFj 1,2 1,2 1 2 1,2 2 2 1 2 1 2 1,2 2 1,2

Table 5.1: Job processing times and factory eligibility
constraints for the example.

ries, a job to machine-factory assignment method is needed. After the applica-

tion of this assignment procedure we obtain a job to machine-factory sequence

for product h, referred to πh, e.g., π1 = {0, 8; 7, 2}, π2 = {1 � 10, 3; 12, 4 �

13} and π3 = {14, 5; 6� 9, 11} as a possible job to machine-factory sequence

for products of the example. At each πh, each factory is separated by “;”, each

machine by “,” and the sequence of jobs at each machine is separated by “-”.

A machine that is still empty (which can only occur in a partial solution) is

denoted by “0” in its sequence. Following the previous example for π2 we

have that jobs 1, 10 and 3 are assigned to the first factory. Jobs 1 and 10

are assigned to the first machine in this factory in this order and job 3 to the

second machine. Since πh presents the job to machine-factory sequence of a

single product h, πT , referred to as the final job sequence, is the concatenation

of the different πh following the product sequence π. Following the previous

example, πT = {1�10�14, 3�8�5; 12�7�6�9, 4�13�2�11}. Once all

jobs in the assembly program of a product h are completed in the production

stage, it can be assembled on the assembly stage. Earliest assembling time of

product h is denoted as Eh.

In this chapter two methods are employed to construct the product se-

quence π. The first one uses the Shortest Processing Time heuristic (SPT).

This dispatching rule is known to reduce the average number of jobs in the

system, in-process inventories and average job tardiness (Stafford et al., 2005).

We obtain the SPT order using the product assembly times and refer to this



112 CHAPTER 5. THE DPMASP- ELIG., TECH. CONSTRAINTS

method as PS1. The second method, referred to as PS2, sorts the products in

ascending order of the earliest assembling times (Eh).

In the method to make job to machine-factory assignments for products, we

need first some additional notation. We refer to Uh to the set of unscheduled

jobs of product h assembly program, i.e., those jobs not yet assigned to

machines at factories. Skq is the set of jobs already scheduled at machine k

inside factory q. With this in mind, the job to machine-factory assignment

considers, for a product h, all jobs inside its assembly program, assigning first

the unscheduled job with the earliest completion time at any machine in every

eligible factory. More in details, we assign job j⇤ 2 Uh to machine k⇤ at

factory q⇤ satisfying:

{j⇤, k⇤, q⇤} = argmin
k2m,q2LFj ,j2Uh

8

<

:

X

i2Skq

pik + pjk

9

=

;

The process is applied until all jobs in the assembly program of product h

are scheduled.

Both proposed constructive heuristics consist of three main steps: In the

first step, the product sequence π is constructed. In the second step, the

jobs inside the assembly program of each product are assigned following the

previous job to machine-factory assignment procedure, following the order of

products given in π. Finally, in the third step the sequence of products for the

assembly stage is obtained by sorting products according to Eh in ascending

order. We propose two heuristics with identical second and third steps and

with a different process to build the product sequence π in the first step.

5.4.1 Heuristics PJ1 and PJ2

In heuristic PJ1, PS1 is used to determine the product sequence π. After

processing all jobs in the production stage, Eh for each product h is calculated.
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The product sequence on the assembly machine is updated by sorting Eh in

ascending order and the final makespan is calculated. Pseudocode 6. explains

PJ1 in detail:

Pseudocode 6 Outline of the PJ1 heuristic.

- Obtain product sequence, π, applying PS1

- Use the job to machine-factory assignment procedure to assign all jobs of
each product following the product order in π

- Calculate earliest assembling time of each product h, Eh

- Determine the product sequence π on the assembly stage by sorting Eh in
ascending order

The second heuristic PJ2 needs some careful explanation. It uses method

PS2 in the first step to make the product sequence π. However, PS2 requires

sorting products in increasing order of Eh. To calculate Eh, all jobs must be

assigned to factories and machines. In heuristic PJ2, each product’s Eh is

calculated in isolation. To calculate Eh of each product h, only jobs belong

to product h are considered. Once Eh is calculated for all products, they

are sorted in increasing order to form the product sequence π. This product

sequence π is in turn used to apply again the job to machine-factory assignment

for all products, which in the end gives us the final makespan.

The difference between heuristic PJ2, and the first heuristic PJ1, is just

on the first step. As mentioned before, heuristic PJ2, uses PS2 to construct π.

Therefore, Pseudocode of heuristic PJ2 is not presented due to its similarity

with heuristic PJ1.

Note that if there are ties in the Eh of products, they are broken by taking

the first product. Also the same rule is considered for breaking ties on the

SPT rule which is used in heuristic PJ1 to calculate π. As a final note, and

to enforce the technological constraint that no machine should be left empty,

if after the application of any of the two proposed heuristics, any machine is

left empty, we reassign to it the job with the smallest processing time at that

machine. The two proposed heuristics are applied to the previous example in
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the next section for further clarification.

5.4.2 Heuristic application example

The example of Table 5.1 is used to detail heuristic PJ1 first. Products are

first sorted according to shortest processing assembly times so π = {1, 3, 2}.

In the second step, following the product order in π, first we assign jobs

of product 1, to factories through the job to machine-factory assignment

procedure. N1 = {2, 7, 8} so we first take job 2. The earliest completion

time of this first job in all machines of all factories is 3. For job 7 is 2

(considering that it can only be assigned to factory 2) and for job 8 is 1 and

can only be assigned to factory 1. The minimum is 1, which corresponds to

the assignment of job 8 to the second machine of factory 1. Note that if there

is a tie in the minimum completion time for the jobs, it is broken by taking

the first job. We now have to consider the unscheduled jobs 2 and 7. We now

calculate the earliest completion times of these two jobs at all machines of all

eligible factories considering that job 8 is already assigned. These minimum

completion times are 3 and 2 for jobs 2 and 7, respectively. Therefore job 7 is

scheduled at factory 2 (the only eligible for this job) and to machine 2. Lastly,

job 2 is scheduled with the earliest completion time of 3 at factory 1, machine

1. Note that we could have assigned this job to machine 1 of factory 2 with the

same completion time, so we break ties by assigning jobs to the first machine

and factory with equal completion time. After this procedure π1 = {2, 8; 0, 7}.

Following the same process, the jobs in the assembly programs of products 3

and 2 are assigned to factories one after the other, resulting in the final job

sequence πT = {2 � 12 � 3, 8 � 14 � 1 � 10; 5 � 6 � 4 � 13, 7 � 11 � 9}.

The completion times of all jobs at the production stage are: C1 = 5, C2 = 3,

C3 = 10, C4 = 7, C5 = 1, C6 = 4, C7 = 2, C8 = 1, C9 = 12, C10 = 13,

C11 = 6, C12 = 6, C13 = 11 and C14 = 4. The earliest assembling time

for products 1 to 3, by considering their respective assembly programs are:

E1 = 3, E2 = 13 and E3 = 12, respectively. In the third step, the product
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sequence π on the assembly stage is updated by sorting Eh in ascending order,

i.e., π = {1, 3, 2} and the Cmax of the application of PJ1 to this example is

31.

For the second heuristic PJ2 we calculate the Eh values for all products

one by one with the job to machine-factory assignment procedure, the obtained

sequences are π1 = {2, 8; 0, 7} with E1 = 3, π2 = {12 � 10, 1 � 3; 4, 13}

with E2 = 10 and π3 = {5, 14; 6, 11 � 9} with E3 = 10, so π = {1, 2, 3}.

Note that there is a tie in the Eh of products 2 and 3 so again we break ties by

taking the first product. Using this π we apply again the job to machine-factory

assignment procedure obtaining πT = {2�12�10, 8�1�3; 4�5�6�9, 7�

13�14�11} with completion times for the jobs as: C1 = 2, C2 = 3, C3 = 7,

C4 = 3, C5 = 4, C6 = 7, C7 = 2, C8 = 1, C9 = 16, C10 = 13, C11 = 10,

C12 = 6, C13 = 3 and C14 = 6. In the third step, again products are sorted

in increasing order of their respective Eh which are E1 = 3, E2 = 13 and

E3 = 16. Therefore, the updated product sequence for the assembly stage is

π = {1, 2, 3} with a makespan of 32.

5.5 Computational evaluation

To test the proposed MILP model and constructive heuristics, six complete sets

of instances have been generated. We consider different number of problem

characteristics to comprehensively evaluate and test the proposed approaches:

Number of jobs (n), number of machines (m), number of factories (f ) and

number of products (t) are four controlled instance factors. Depending on the

chosen values we have small, medium and large-sized instances, referred to

as GA, GB and GC, respectively. The processing times of the jobs on each

machine in the production stage, are generated following a random uniform

distribution in the range [1, 99], as it is common in the scheduling literature.

The last instance factor we consider is the distribution of the assembly process-

ing times which are fixed as: U [|Nh|, 49⇥|Nh|] and U [|Nh|, 99⇥|Nh|]. These
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two distributions are referred to in short as 50, and 100, respectively. The

final sets of instances are then denoted as GA50, GA100, . . . , GC100. For each

combination of instance factors we have five replications. The combinations

for each instance size are given in Table 5.2.

Instance factor Symbol Values

GA GB GC

Number of jobs n 10, 12, 14, 16, 18 20, 22, 24 200, 300, 400
Number of machines m 2, 3 2, 3, 4 5, 10, 15
Number of factories f 2, 3 2, 3, 4 4, 6, 8
Number of products t 2, 3, 4 2, 3, 4 20, 30, 40

Table 5.2: Instance and factors for proposed instances.

Therefore, the total number of instances is 300 for GA50 and another 300

for GA100 and 405 for every set in GB50 through GC100 resulting in a grand

total of 2220 instances.

5.5.1 MILP model evaluation

The proposed MILP model is tested only on sets GA and GB given the

impossibility to solve large instances. Two state-of-the-art commercial solvers

are used, namely CPLEX 12.6 and GUROBI 5.6.3, which are, at the time of the

writing of this thesis, the latest versions available. Two different stopping times

are tested with each solver: 900 and 3600 seconds. In total we have obtained

5640 results. All tests are performed in a high performance computing cluster

with 30 blades, each one containing 16 GBytes of RAM memory and two Intel

XEON E5420 processors running at 2.5 GHz. The 30 blade servers are used

only to divide the workload since experiments are performed in virtualized

Windows XP machines, each one with a virtualized processor with two cores

and 2 GB of RAM memory. Therefore, since both CPLEX and GUROBI are
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parallel solvers, the two available threads at each virtual machine are used.

After solving the models with CPLEX and GUROBI, three possible out-

comes are obtained. The first type is “optimal”, which means that an optimal

solution with a given makespan value was obtained in the given maximum

CPU time. The second type is “nonoptimal”, meaning that a feasible integer

solution was obtained within the time limit but it was not possible to demon-

strate its optimality and the gap is reported. The third and last outcome is “out

of memory”, by which the solver had an error and ran out of RAM memory,

reporting a solution and a gap calculated with respect to the best obtained so-

lution for that instance. In general, the solvers were able to find 294 (98.00%)

and 297 (99.00%) optimal solutions in sets GA50 and GA100, respectively.

For GB50 and GB100 the numbers are 338 (83.45%) and 363 (89.63%) for the

405 instances, respectively. The summarized results, according to the instance

factors, type of solver and time limit, are presented in Table 5.3 for sets GA and

GB. The reported values at the tables are the percentage of optimum solutions

found (%opt), the percentage of cases with out of memory error (%outm), the

average gap for non-optimal solution (GAP%) and the average CPU time in

seconds (AvTime).

Solver
Time Limit 900s 3600s

Instance set G
A

5
0

G
A

1
0
0

G
B

5
0

G
B

1
0
0

G
A

5
0

G
A

1
0
0

G
B

5
0

G
B

1
0
0

CPLEX
% opt 96.67 98.00 79.50 87.40 97.00 98.33 81.72 88.39

% outm 0.00 0.00 2.46 1.72 0.00 0.00 12.34 6.41

GAP% 0.18 0.06 0.55 0.23 0.15 0.05 0.32 0.07

Av Time (sec.) 48.92 28.37 201.02 133.95 133.28 79.04 391.35 286.12

GUROBI
% opt 95.67 98.00 74.56 81.97 97.00 98.67 77.03 84.44

GAP% 0.29 0.07 1.15 0.51 0.21 0.05 0.82 0.37

Av Time (sec.) 61.08 36.06 292.75 221.95 159.21 83.35 932.96 658.33

Table 5.3: Performance results for solvers and time limit
for instance sets of GA50, GA100, GB50 and GB100.



118 CHAPTER 5. THE DPMASP- ELIG., TECH. CONSTRAINTS

As we can see, the effect of the distribution of the assembly times at the

assembly stage is much stronger than either the type of solver or CPU time

limit. For group GA, instances with more disperse assembly times are easier

to solve and also need less CPU time. As regards the comparison between

CPLEX and GUROBI, for set GA we see comparable performance with

slightly shorter CPU times for CPLEX. For instance sets GB the differences

between solvers are stronger. We see that GUROBI is much slower than

CPLEX and has higher gap values. However, CPLEX reports out of memory

errors that in some cases average more than 12% (GB50). So it is important

to conclude that there is no clear winner for this problem between these two

solvers. In total, the largest tested instances in sets GB have 24 jobs and

16 machines distributed in 4 factories so we can attest that the proposed

mathematical model has an adequate performance.

5.5.2 Heuristics evaluation

The two proposed heuristics, PJ1 and PJ2, are now tested. The response

variable is the Relative Percentage Deviation (RPD), measured as:

RPD =
Algsol �Bestsol

Bestsol
⇥ 100

Where Bestsol is the best makespan obtained after all experimentation

in this chapter for any instance and Algsol is the makespan obtained by the

heuristic. The heuristics are coded in C# and are compiled under Visual

Studio 2010. The same computing platform used for the MILP evaluation is

employed here. The average RPD values for the proposed heuristics are given

in Tables 5.4, 5.5 and 5.6 for instances sets GA, GB and GC, respectively.

All results are grouped by n and f . The average RPD values of CPLEX and

GUROBI are reported as well for reference.

As can be observed, PJ2 is generally much better than PJ1 in all groups

of instances, although the difference is not very big in the large instances.
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GA50 GA100

f ⇥ n CPLEX GUROBI PJ1 PJ2 CPLEX GUROBI PJ1 PJ2

2⇥ 10 0.00 0.00 9.52 3.26 0.00 0.00 2.21 0.46
2⇥ 12 0.00 0.00 8.24 4.04 0.00 0.00 3.58 1.76
2⇥ 14 0.00 0.00 8.29 3.36 0.00 0.00 4.50 0.62
2⇥ 16 0.00 0.00 9.31 4.59 0.00 0.00 4.30 1.16
2⇥ 18 0.00 0.21 7.27 3.90 0.00 0.00 3.34 1.23

3⇥ 10 0.00 0.00 5.10 2.59 0.00 0.00 1.09 1.24
3⇥ 12 0.00 0.00 4.72 1.43 0.00 0.00 1.85 0.98
3⇥ 14 0.00 0.00 4.51 1.71 0.00 0.00 1.51 0.28
3⇥ 16 0.00 0.00 4.79 1.39 0.00 0.00 2.63 0.72
3⇥ 18 0.00 0.00 4.04 1.34 0.00 0.00 2.15 0.78

Average 0.00 0.02 6.58 2.76 0.00 0.00 2.72 0.92

Table 5.4: Average Relative Percentage Deviation (RPD)
of CPLEX, GUROBI and the proposed heuristics for in-

stance sets GA50 and GA100.

It is important to observe how in the largest instances in set GB of 24 jobs

and 4 factories, PJ2, gives a very small gap of just 0.35% which indicates

that PJ2 is a very capable heuristic with close to optimality performance. On

average, PJ2 is below 1% RPD for instance groups GA and GB. For the

large instances in GC it is not possible to calculate the optimum solution so

we only have an overall picture were PJ2 always obtains the best solution.

As a matter of fact and although not reported in detail here, among the 810

instances in GC50 and GC100, PJ2 is always better or equal than PJ1.

We report now on the CPU times of the proposed heuristics in Table 5.7.

It has to be noted that CPU times are negligible, on the verge of being below

the margin of error in measurements.

As can be seen, the average CPU times are below one tenth of a second for

the largest instances in group GC. On average, PJ2 is relatively slower than

PJ1 but on absolute terms the CPU times are very small. Although not shown
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GB50 GB100

f ⇥ n CPLEX GUROBI PJ1 PJ2 CPLEX GUROBI PJ1 PJ2

2⇥ 20 0.20 0.00 7.03 2.33 0.00 0.00 3.33 1.03
2⇥ 22 0.29 0.03 5.26 2.36 0.05 0.03 2.36 0.87
2⇥ 24 0.13 0.19 4.78 1.89 0.11 0.04 3.33 1.40

3⇥ 20 0.00 0.00 3.21 1.42 0.00 0.00 2.48 1.27
3⇥ 22 0.01 0.01 2.89 1.69 0.04 0.02 1.54 0.47
3⇥ 24 0.10 0.02 3.17 1.25 0.00 0.02 1.38 0.70

4⇥ 20 0.00 0.00 2.31 1.29 0.00 0.00 1.83 0.67
4⇥ 22 0.00 0.00 2.18 0.77 0.00 0.00 1.78 0.75
4⇥ 24 0.00 0.00 2.50 1.12 0.00 0.00 1.82 0.35

Average 0.08 0.03 3.70 1.57 0.02 0.01 2.21 0.84

Table 5.5: Average Relative Percentage Deviation (RPD)
of CPLEX, GUROBI and the proposed heuristics for in-

stance sets GB50 and GB100.

here, the largest measured CPU time corresponds to heuristic PJ2 has been

0.41 seconds. From this final evaluation and considering the relative RPD of

PJ2 we can conclude that it is a capable and very fast heuristic.

Even though the observed differences are large in all cases for the proposed

heuristics and very small for the two solvers, we carry out some statistical

analyzes in order to ascertain if the observed differences are indeed statistically

significant. All results are examined with the Analysis of Variance (ANOVA)

technique. ANOVA is a powerful parametric tool, which has been used in

the last 10 years in the scheduling literature with great success. For the small

instances there is no statistically significant difference in the performance of

CPLEX and GUROBI and PJ2 is statistically better than PJ1. The detailed

data is not reported for space reasons. For the medium sized-instances in

set GB we observe the interaction between the distribution of the assembly

processing times and tested methods in Figure 5.1.
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GC50 GC100

f ⇥ n PJ1 PJ2 PJ1 PJ2

4⇥ 200 0.13 0.00 0.07 0.00
4⇥ 300 0.12 0.00 0.05 0.00
4⇥ 400 0.11 0.00 0.06 0.00

6⇥ 200 0.09 0.00 0.04 0.00
6⇥ 300 0.08 0.00 0.05 0.00
6⇥ 400 0.08 0.00 0.04 0.00

8⇥ 200 0.06 0.00 0.03 0.00
8⇥ 300 0.08 0.00 0.03 0.00
8⇥ 400 0.05 0.00 0.04 0.00

Average 0.09 0.00 0.05 0.00

Table 5.6: Average Relative Percentage Deviation (RPD)
of the proposed heuristics for instance sets GC50 and

GC100.

GA50 GA100 GB50 GB100 GC50 GC100

PJ1 PJ2 PJ1 PJ2 PJ1 PJ2 PJ1 PJ2 PJ1 PJ2 PJ1 PJ2

0.0031 0.0055 0.0049 0.0060 0.0070 0.0069 0.0070 0.0067 0.05 0.09 0.05 0.09

Table 5.7: Heuristic’s CPU time (in seconds) for all in-
stance groups.

As can be seen, the results are similar to those of set GA. The differences

between the proposed heuristics are large enough so as to be statistically

significant whereas the differences in the performance of the solvers are not

statistically relevant. As for the large instances in group GC we can only test

the significance in the observed differences in the average RPD between the

two heuristics. This is given in Figure 5.2.

As can be observed, PJ2 is statistically better than PJ1 even though the

absolute difference between both proposed methods is practically small.
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Figure 5.1: Means plot with the interaction between the
distribution of the assembly processing times and the tested
methods for instances GB. All means have Tukey’s Honest

Significant Difference (HSD) 95% confidence intervals.

5.6 Conclusions of the chapter

In this chapter we have studied an interesting combination of a distributed

manufacturing problem with assembly operations. More specifically, we

have presented a distributed unrelated parallel machines problem by which

a number of factories, each one containing unrelated parallel machines have to

manufacture jobs. All these jobs are later assembled into products in a factory

with a single assembly machine. The objective is to minimize the makespan

in the assembly stage. Such a problem has been motivated and shown not to

have been studied to date. We have presented a mathematical model and two

constructive heuristics. The mathematical model has been comprehensively

evaluated and tested using two state-of-the-art commercial solvers. Results
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Figure 5.2: Means plot for the two heuristics in large in-
stances (GC). All means have Tukey’s Honest Significant

Difference (HSD) 95% confidence intervals.

have shown that we are able to solve optimally problems of up to 24 jobs

and 16 machines distributed in 4 factories. The two proposed heuristics are

inherently simple and at the same time report solutions very close to optimal

in the cases for which the optimal solution has been obtained. Furthermore,

for large instances, the performance is very good, obtaining solutions in less

than half a second.





CHAPTER 6
HEURISTICS FOR A DISTRIBUTED PARALLEL

MACHINE AND ASSEMBLY SCHEDULING

PROBLEM WITH ELIGIBILITY CONSTRAINTS

“The contents of this chapter are submitted to International Conference on

Industrial Engineering and System Management (IESM 2015), Seville, Spain.”

In this chapter we study a production scheduling problem with production

and assembly stages. There is a set of distributed identical factories, each

one with a set of unrelated parallel machines at the production stage and a

single assembly machine in the assembly stage. Jobs have to be assigned to

one of the distributed factories and processed by one of the unrelated parallel

machines. Processed jobs are assembled into final products through a defined

assembly program in the assembly stage. This problem is referred to as the

Distributed Parallel Machine and Assembly Scheduling Problem or DPMASP.

Minimizing the makespan of the products in the assembly stage is considered

as the objective. Because of technological constraints, some factories are bit

able to process some jobs and empty machines at factories are permitted. We

present a mathematical model, four simple, fast and high performing heuristics

125
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to solve the considered problem. CPLEX and GUROBI as two state-of-the-art

commercial solvers are used to solve the mathematical model. Comprehensive

computational experiments and ANOVA statistical analyses are performed to

evaluate the performance of the proposed mathematical model and heuristics.

Our results show that the mathematical model is able to solve moderately-

sized instances and some of the heuristics report solutions that are very close

to optimality in negligible CPU times.

6.1 Introduction

Today, the manufacturing industry faces numerous challenges and is belea-

guered by obstacles in the marketplace. Some of the significant challenges

are: intense global competition, technological changes, product life cycles

reduction, increasing product variety, demand of customized goods instead of

mass production, consumer needs diversity, faster delivery, higher products

quality, cost pressures, uncertain and dynamic global market, etc. In order to

overcome these challenges, the consideration of efficient production strategies

is necessary and essential. One of these strategies is to employ distributed

manufacturing environments able to produce the variety of products that the

customer demands. Presenting diversified product offerings is one of key

advantages for companies to compete in the unpredictable global market. On

the other hand, scheduling and optimizing such systems is a complex task

which directly affects production performance.

Assembly systems have attracted the attention of practitioners and re-

searchers. Different manufacturing systems have adopted them in their pro-

duction structure to meet a high variety of customer demands through an

increase in the flexibility and capability level of the system. Various com-

ponents are produced through different independent operations in parallel.

These components are later assembled into finished products in assembly lines.

Assembly systems are capable of producing a high variety of finished products



6.1. Introduction 127

by assembling different combinations of produced components. These types

of manufacturing settings are referred to as Assembly Scheduling Problems

(ASP). Tozkapan et al. (2003) presented a two-stage assembly scheduling

problem with the objective function of minimizing the total weighted flow

time. Later, Al-Anzi and Allahverdi (2006) addressed the model presented

by Tozkapan et al. (2003) minimizing the total completion time of all the jobs

and proposed metaheuristics to solve it. A small extract of the many existing

papers in this regard are presented here.

Distributed Manufacturing Systems (DMS ,Peklenik (1992)) consist of

several factories with different machines and tools at different geographical

locations. It is one of the effective approaches to improve the levels of

flexibility, reconfigurability and productivity of the manufacturing systems and

to remove the traditional manufacturing systems weakness and bottlenecks in

order to meet the aforementioned challenges (Sluga et al. (1998)). Different

research results (e.g., Wang (1997); Kahn et al. (2004); Chan et al. (2005b);

Mahdavi et al. (2008)) have shown that DMS achieve better product quality,

lower production costs and reduced management risks for the system. From

the viewpoint of the manager, scheduling in DMS is more complicated than

the scheduling of a single manufacturing factory. In DMS, the first decision

that has to be made is to select a factory for each job and then determine a job

schedule for each factory, while for a single manufacturing system only a job

schedule for each set of machines has to be determined.

A Distributed Permutation Flowshop Problem (DPFSP) for the produc-

tion stage was first proposed by Naderi and Ruiz (2010) and has been thor-

oughly studied thereafter, with recent results in Naderi and Ruiz (2014) and

in Fernandez-Viagas and Framinan (2015). Hatami et al. (2013) studied the

Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP)

for the first time. In the DAPFSP, the first stage is a distributed flowshop and

the second stage is a single assembly machine. Later, Hatami et al. (2015)

replaced the flowshop figuration in the production stage with unrelated paral-
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lel machines and presented the Distributed Parallel Machine and Assembly

Scheduling Problem (DPMASP). In this chapter, we extend the DPMASP

presented by Hatami et al. (2015) by relaxing the special constraint that no

machine at any factory might be empty due to technological or economical

constraints. Furthermore, additional heuristics are presented for the studied

problem.

In our considered model, a set N of n jobs has to be assigned to a set

F of f identical factories. Each factory consists of a set M of m unrelated

parallel machines. Each job has to be assigned and processed at exactly

one machine at one factory. Some of the jobs have eligibility constraints

as regards some factories. LFj is a subset of set F with factories where

job j can be assigned to where f � |LFj | � 1, j = 1, . . . , n. A set T

of t independent products, formed by a defined number of jobs, have to be

assembled at the single assembly machine on the assembly stage MA. Product

h, h = 1, . . . , t is made by assembling the subset of jobs Nh ✓ N which are

produced at the distributed factories. Each job belongs to a single product, i.e.,
Pt

h=1 |Nh| = n. The earliest time to start the assembly of product h is when

all jobs in Nh have been produced and completed on the production stage. For

the sake of simplicity, all factories have the same number of unrelated parallel

machines. The processing time of job j at machine k of any factory and the

assembly time of product t on the single assembly machine are denoted by

pjk and ph respectively. These processing times are known, deterministic and

positive. Jobs have to be assigned to factories and then again assigned to and

scheduled on the parallel machines of the distributed factories and the products

have to be scheduled on the single assembly machine. The objective is to

minimize the makespan on the assembly stage. The DPMASP is an extension

of the identical parallel machines problem. According to the results of Lenstra

et al. (1977), the identical parallel machines problem, even in the case of

two identical machines (and a single factory), i.e., the P2//Cmax problem,

is NP-Hard. Therefore, the computational complexity of the DPMASP when
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n >> f is NP-Hard as well.

The chapter is organized as follows: A Mixed Integer Linear Programming

(MILP) model is presented for the considered problem in Section 6.2. Four

simple and high performance heuristics are proposed to obtain solutions in

much shorter CPU times are detailed in Section 6.3. In section 6.4 a com-

prehensive computational and statistical experiment is carried out to evaluate

the proposed MILP and heuristics. Finally, Section 6.5 provides some final

conclusion for the problem considered.

6.2 Mixed Integer Linear Programming model

A mathematical model for the proposed DPMASP is presented. To better

understand this mathematical model, the definition of the used indexes, pa-

Description

in
de

x

i, j denotes jobs, i, j = 0, 1, . . . , n, where 0 presents a dummy job
k denotes machines, k = 1, . . . ,m
q denotes factories, q = 1, . . . , f
l, s denotes products, l, s = 0, 1, . . . , t, where 0 presents a dummy product
M A sufficiently large positive number, M = 100000

Pa
ra

m
et

er
s

n number of jobs
m number of machines
f number of factories
t number of products
pjk processing time of job j on machine k

ps processing time of product s at the assembly stage
Gjs Binary parameter equal to 1 if job j belongs to product s, and 0 otherwise

V
ar

ia
bl

e

Xijkq binary variable equal to 1 if
job i is an immediate predecessor of job j on machine k in factory q

Yls binary variable equal to 1 if product l is an immediate predecessor
of product s at the assembly machine

Cj completion time of job j at the production stage
CAs completion time of product s on assembly stage
Cmax makespan

Table 6.1: indices, parameters and variables used in MILP
mathematical model.
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rameters and variables is given in Table 6.1.

The model minimizes the makespan (Cmax) as the objective function and

the model is subject to the following constraints:

n
X

i=0,i 6=j

m
X

k=1

f
X

q=1
q2LFj

q2LFi

Xijkq = 1 8j (6.1)

n
X

j=0,j 6=i

m
X

k=1

f
X

q=1
q2LFj

q2LFi

Xijkq = 1 8i (6.2)

n
X

j=1
q2LFj

X0jkq  1 8k, q (6.3)

n
X

i=1
q2LFi

Xi0kq  1 8k, q (6.4)

n
X

j=1,j 6=i
q2LFj

(Xijkq �Xjikq) = 0 8i, k, q, q 2 LFi (6.5)

m
X

k=1

f
X

q=1
q2LFi
q2LFj

Xijkq +

m
X

k=1

f
X

q=1
q2LFi
q2LFj

Xjikq  1 8i 2 {1, . . . , n� 1}, j > i

(6.6)
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Cj � Ci + pjk +M(1�Xijkq) 8i, j, k,

8q, q 2 LFi, LFj (6.7)
t

X

l=0,l 6=s

Yls = 1 8s (6.8)

t
X

s=1,l 6=s

Yls  1 8l (6.9)

Yls + Ysl  1 8l 2 {1, . . . , t� 1}, s > l (6.10)

CAs � (Cj ·Gjs) + ps 8j, s (6.11)

CAs � CAl + ps +M(1� Yls) 8l, s, l 6= s (6.12)

Cmax � CAs 8s (6.13)

Xijkq 2 {0, 1} 8i, j, k, q, i 6= j, q 2 LFi, q 2 LFj (6.14)

Yls 2 {0, 1} 8l, s, l 6= s (6.15)

Cj � 0 8j (6.16)

CAs � 0 8s (6.17)

It should be considered that, variables C0 and CA0 are equal to 0. Having

exactly one predecessor and successor for each job is ensured by sets (6.1)

and (6.2), respectively. Constraint sets (6.3) and (6.4) force that each machine

at each factory has a dummy job 0 as predecessor and successor, respectively.

Note that it is possible that one or more machines end up with no jobs assigned.

Constraint set (6.5) ensures that if a job is sequenced on a machine, then its

predecessor and successor must be processed on the same machine. A job

cannot be both a predecessor and successor of another job at the same time and

this is controlled by constraint set (6.6). Constraint set (6.7) ensures that if job

j is placed immediately after job i, job j can start processing at machine k only

when job i is finished at machine k. Each product should have one preceding
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and at most one succeeding product in the assembly machine according to

constraint set (6.8) and (6.9), respectively. Constraint set (6.10) controls that

is not allowed for a product to be being both a predecessor and a successor

of another product at the same time in the assembly machine. Constraint

set (6.11) forces that each product h can start its assembly on the assembly

stage only after all jobs belonging to it are completed at the production stage.

Constraint set (6.12) determines that if product s is placed immediately after

product l, it has to wait until the assembly of product l in the assembly machine

finishes. The makespan and the domain of the decision variables are defined

in constraint set (6.13) and from set (6.14) through (6.17).

6.3 Constructive heuristics

As mentioned in Section 6.1, the DPMASP is an NP-Hard problem if n >> f

(which is, by the way, the most usual case as it makes little sense to have more

factories than jobs to produce). Therefore, the design and development of

heuristic methods to solve large-sized problems is usually unavoidable. To

better explain the proposed heuristics an example with ten jobs (n = 10),

two products (t = 2), three factories (f = 3) and two unrelated parallel

machines in each factory (m = 2) is given. The ten jobs have to be assembled

into the two products with the following program N1 = {3, 5, 6, 7, 10} and

N2 = {1, 2, 4, 8, 9}. Therefore, in order to assemble product 1 the processing

of jobs 3, 5, 6, 7 and 10 must be finished at the production stage. Table 6.2

details the job processing times on each machine at the production stage and

eligibility constraints. The assembly processing times for products 1 and 2 are

6 and 14, respectively.

Some additional notation is now given. A possible sequence of products on

the assembly machine is referred to as a product sequence and is represented

by π, e.g., π = {2, 1}. The jobs belonging to product h have to be assigned to

factories and inside each factory, to the unrelated machines in the production
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Job

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Machine
M1 1 2 2 1 6 9 1 3 1 5
M2 5 3 1 3 3 4 2 1 3 6

LFj 2 1,2 1,2 1,3 3 1,2,3 1,2 2 2 1

Table 6.2: Job processing times and factory eligibility
constraints for the example.

stage. Furthermore, the job sequence at each unrelated machine is needed.

We will propose some job to machine-factory assignment procedures. The

sequence of the jobs of product h on machines at a given factory is referred

to as a job to machine-factory sequence for product h and represented by

πh. For the example one possibility is π1 = {0, 3 � 10; 0, 7; 5 � 6, 0} and

π2 = {0, 0; 2 � 9 � 8, 1; 4, 0}. The sequence of the jobs for each factory

is separated by “;” and for each factory, the job sequence for each machine

is separated by “,”. The sequence of the jobs assigned to a factory and

machine is separated by “-”. Any machine without jobs assigned is indicated

by “0”. In the given example, π1 indicates that the first machine of the first

factory is empty of any jobs belonging to product 1. Jobs 3 and 10 are

assigned, in this sequence, to the second machine of the first factory. The

first machine of the second factory is empty and job 7 is scheduled on the

second machine of the second factory. Finally, jobs 5 and 6 are scheduled

to the first machine of the third factory and the second machine of this last

factory is empty. The final job sequence after assigning all jobs of the products

to the factories is denoted as the final job sequence and referred to as πT , e.g.,

πT = {0, 3� 10; 2� 9� 8, 7� 1; 5� 6� 4, 0}. Note that πT concatenates the

different job to machine-factory sequences of all products (πh) following the

product sequence π. As mentioned before, in the considered problem there is

a restriction of job assignment to factories. The number of factories to which
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job j cannot be assigned is referred to as number of prohibited factories for

job j and noted by NPj , e.g., NP1 = 2, NP3 = 1, NP6 = 0 in the example.

The earliest time at which the assembly of a product in the assembly stage can

start, which corresponds to the maximum completion time of all the jobs in

the production stage that belong to this product is referred to as the product h

earliest assembling time and denoted by Eh.

In this chapter, different methods are proposed to construct the product

sequence, π and the job to machine-factory sequence for product h, πh. In the

following sections, these methods are explained in detail.

6.3.1 Product sequence construction

Two different methods are presented to build a product sequence. This se-

quence determines the sequence of the products on the single assembly ma-

chine at the assembly stage.

• The first method, referred to as PS1 and constructs the product sequence

based on the Shortest Processing Time heuristic (SPT). Products are

sorted in increasing order of their assembly times. This heuristic reduces

the average number of jobs in the system, in-process inventories and

average job tardiness (Stafford et al. (2005)).

• The second method is referred to as PS2 and constructs the product

sequence by sorting products in ascending order of their earliest assem-

bling times (Eh).

6.3.2 Job to machine-factory sequence for products construction

To construct the job to machine-factory sequence for product h, all jobs

belonging to product h need to be considered. Two construction procedures

are considered.

• The first procedure is referred to as JA1. We denote by Uh to the set

of unscheduled jobs of product h, i.e., those jobs not yet assigned to
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factories. The set of scheduled jobs at machine k inside factory q is

referred by Skq. Among all unscheduled jobs belonging to product h,

the job with the earliest completion time at any machine in every eligible

factory is assigned first. More specifically, we assign job j⇤ 2 Uh to

machine k⇤ at factory q⇤ satisfying:

{j⇤, k⇤, q⇤} = argmin
k2m,q2LFj ,j2Uh

n

P

i2Skq
pik + pjk

o

The process is repeated until all jobs in Uh are scheduled.

• In the second procedure, jobs belonging to product h are divided into

two sets. The first set, referred to as Rh, contains the unscheduled jobs

of product h with one or more prohibited factories (NPj > 0). These

jobs are sorted in descending order of NPj , j 2 Nh, NPj > 0. Jobs

in set Rh are further divided into x subsets. The first subset contains

the jobs with the largest number of prohibited factories (L1Rh) and the

last subset of jobs has the least number of prohibited factories (LxNh).

The second set Zh contains the unscheduled jobs of product h with NPj

equal to zero. There are two steps in this procedure for job to machine-

factory assignment. In the first step, all jobs belonging to the first subset

of set Rh, (L1Rh), are assigned to the factories using the previous JA1

procedure. After assigning all jobs in L1Rh, all jobs belonging to the

next subset of Rh, L2Rh, are scheduled. This process is applied to all x

subsets until all jobs in set Rh are assigned. In the second step, all jobs

belonging to the second set Zh are assigned to factories. This procedure

is referred to as JA2.

In this chapter we present four simple constructive heuristics. All of them

consist of three main steps. The product sequence π is determined in the first

step. In the second step, according to the order of products in π, the jobs

belonging to the different products are assigned to factories and machines,

using one of the job to machine-factory assignment methods, presented in

section 6.3.2. Finally, in the last step, and once all jobs are assigned and
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completed at the production stage, the sequence of products on the assembly

stage is updated by sorting the products in ascending order of their earliest

assembly times Eh.

In all simple constructive heuristics, the third step is the same, but the

methods to construct the product π and job to machine-factory assignment are

different. These are all described in the following sections.

6.3.3 Heuristic H1

In heuristic H1, PS1 is used to determine the product sequence π and JA1

is the procedure employed to assign jobs to factories and machines. When all

jobs are completed at the production stage, Eh is calculated for each product

h. Then the product sequence π on the assembly machine is updated by sorting

the products in ascending order of Eh. The makespan of the problem is finally

calculated.

The previous example is used to detail heuristic H1. First, π is determined

according to the SPT rule, sorting the assembly times of the products in

ascending order. The result is π = {1, 2}. The second step starts by assigning

jobs of product 1 as the first product on π to the factories following the JA1

procedure. The jobs of product 1 are 3, 5, 6, 7 and 10. The earliest completion

time of job 3 in the first and second factories is 1 if assigned to the second

machine (it can not be assigned to factory 3). The earliest completion time for

job 5 is 3 in factory 3 as it is the only eligible factory for this job. For job 6,

which can assigned to all factories is 4. Job 7 can be assigned to the first and

second factories with an earliest completion time of 1. For job 10 which can

only be assigned to the first factory is 5. The minimum is 1 which corresponds

to the assignment of two jobs: job 3 to the second machine of factories 1 or

2 and job 7 to the first machine of factories 1 or 2. Note that in the cases

with ties and more than one possibility, ties are broken by assigning the first

job to the first machine and factory with equal completion time. Therefore,

job 3 is selected and assigned to the second machine of factory 1. Now we
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have to assign the remaining unscheduled jobs 5, 6, 7 and 10. The earliest

calculated completion time are calculated considering that job 3 is already

assigned. These minimum completion times are 3, 4, 1 and 5 for jobs 5, 6,

7 and 10, respectively. The minimum is 1 and corresponds to the assignment

of job 7 to first machine of factories 1 and 2. So, we break ties by assigning

job 7 to first machine at factory 1. The process continues for all unscheduled

jobs 5, 6 and 10. The third scheduled job is 5 which is assigned to the second

machine of factory 3 with the earliest completion time of 3. The forth job is

job 6 with the minimum earliest time of 4 which is scheduled on the second

machine of factory 2. Lastly, job 10 is scheduled with the earliest completion

time of 6 at factory 1, machine 1. After applying the JA1 method for assigning

the jobs of product 1, π1 = {7 � 10, 3; 0, 6; 0, 5}. Using the same procedure,

jobs belonging to product 2 are assigned to factories, resulting in the final job

sequence πT = {7 � 10, 3 � 2; 1 � 9 � 8, 6; 4, 5}. The completion time of

all jobs at the production stage are: C1 = 1, C2 = 4, C3 = 1, C4 = 1,

C5 = 3, C6 = 4, C7 = 1, C8 = 5,C9 = 2, C10 = 6. According to the

assembly program of each product, the earliest assembling time for products

are: E1 = 6, E2 = 5. In the third step the product sequence π on the assembly

stage is updated by sorting the obtained earliest assembly time of products Eh

in ascending order. This results in π = {2, 1}. The Cmax after applying the

proposed H1 heuristic for this example is 25. The Gantt chart of the considered

example is shown in Figure 6.1.

6.3.4 Heuristic H2

In heuristic H2, the first and third steps are the same as heuristic H1, and JA2

is employed as job to machine-factory assignment method in the second step.

The obtained product order in the first step is π = {1, 2}. Therefore two

sets R1 and Z1 are determined for the jobs of product 1, R1 = {5, 10, 3, 7}

and Z1 = {6}. Set R1 is sorted in descending order of the prohibited

number of factories and has two subsets (x = 2), L1R1 = {5, 10} and
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Figure 6.1: Gantt chart of H1 for the example.

L2R1 = {3, 7}. First, all jobs in subset L1R1 with a number of prohibited

factories of 2 are assigned to factories according to the JA1. The result is

π1 = {10, 0; 0, 0; 0, 5}. The process continues with the assignment of the jobs

of the next subset and the result is π1 = {10, 3; 7, 0; 0, 5}. Now the jobs in set

Z1 = {6} are assigned to factories and the outcome is π1 = {10, 3; 7, 6; 0, 5}.

Jobs of product 2 are also assigned to factories with the same procedure with

two the sets being R2 = {1, 8, 9, 2, 4} and Z2 = {φ}, where R2 is further

divided into two subsets: L1R2 = {1, 8, 9} and L2R2 = {2, 4}. This results in

the final job sequence, πT = {10, 3�2; 7�1�9, 6�8; 4, 5}. The completion

times of the jobs on the production stage are: C1 = 2, C2 = 4, C3 = 1,

C4 = 1, C5 = 3, C6 = 4, C7 = 1, C8 = 5,C9 = 3 and C10 = 5. Therefore,

the earliest assembling time of the products considering the assembly program

are: E1 = 5 and E2 = 5. In the third step the product sequence π on the

assembly machine is updated by sorting the obtained Eh in ascending order,
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i.e., we obtain π = {1, 2}. The final Cmax for the example using the second

proposed heuristic H2 is also 25.

6.3.5 Heuristic H3

Different from the first and second proposed heuristic, the third heuristic H3

uses the PS2 method in the first step to construct the product sequence π.

The earliest assembling time of the products are sorted in ascending order to

build π. In order to do so, the earliest assembling times of each product (Eh)

are calculated after assigning the jobs of each product to factories using the

JA1 method. This calculation is carried out for each product, separately. In

the second step, the jobs of the products according to the product order π

are assigned to factories, using again the JA1 method. The third updates the

product sequence in the same way as in the previous two heuristics.

Following the example, for the first step, and to determine the product

sequence π, the jobs of the products 1 and 2 are assigned to factories according

to JA1 method, separately. The details of this assignment are explained in

Section 6.3.3. The obtained job to machine-factory sequence for product 1

is π1 = {7 � 10, 3; 0, 6; 0, 5}. Now the jobs of product 2 are assigned to the

factories with the same procedure which result in π2 = {4�2, 0; 1�9, 8; 0, 0}.

The earliest assembling times of products 1 and 2 are 6 and 3, respectively.

Therefore, the product sequence is π = {2, 1}. In the second step, the jobs of

the products are assigned to factories through the JA1 method following the

product order in π, which results in the final job sequence πT = {4 � 2 �

10, 3 � 7; 1 � 9, 8 � 6; 0, 5}. The completion times of the jobs are: C1 = 1,

C2 = 3, C3 = 1, C4 = 1, C5 = 3, C6 = 5, C7 = 3, C8 = 1,C9 = 2

and C10 = 8. In the last step, the earliest assembling times of the products

are obtained by considering the completion times of the jobs as E1 = 8 and

E2 = 3. The product sequence is updated by sorting Eh in ascending order,

giving π = {2, 1} and the Cmax for the example in the case of heuristic H3 is

equal to 23.
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6.3.6 Heuristic H4

In the last proposed heuristic H4, the PS2 and JA2 methods are employed

to construct the product sequence and to carry out the job to machine-factory

assignment in the first and second steps, respectively. Third step is the same as

in the other heuristics.

In the first step and to construct π, the earliest assembling times of all

products (Eh) have to be calculated. Each product is considered separately

and its jobs are assigned to factories using the JA2 method. First, jobs of

product 1 are assigned to factories. The details of this assignments have

been already given in Section 6.3.4. The result was π1 = {10, 3; 7, 6; 0, 5}.

Jobs of product 2 are split into the sets R2 = {1, 8, 9, 2, 4} (divided into

subsets L1R2 = {1, 8, 9} and L2R2 = {2, 4}) and Z2 = {∅}. Jobs

are then assigned to factories using the JA2 method which results in π2 =

{4 � 2, 0; 1 � 9, 8; 0, 0}. The earliest assembling times of the products are

obtained: E1 = 5 and E2 = 3. After this, π is constructed, resulting in

π = {2, 1}. In the next step, according to the product order in π, jobs are

assigned and scheduled to factories using the JA2 procedure, which results in

πT = {4� 2, 10; 1� 9� 7, 8� 3� 6; 0, 5}. The earliest assembling times are

E1 = 6 and E2 = 3 and π on the assembly stage is updated by sorting Eh in

ascending order: π1 = {2, 1}. The Cmax for the example after heuristic H4 is

23.

6.4 Computational evaluation

To test and to evaluate the proposed MILP model and constructive heuristics,

six complete sets of instances with different problem characteristics are gen-

erated. For each instance, there are four controlled instance factors: number

of jobs (n), number of machines (m), number of factories (f ) and number of

products (t). Depending on the values chosen for some of theses factors, we

generate three benchmarks referred to as small (GA), medium (GB) and large
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(GC). For GA, n is set at five levels (10, 12, 14, 16, 18), and both m and f

have two levels each with the same values (2,3) and t is set at three levels (2,

3, 4). For GB all controlled instance factors are set at three levels each; the

values for n are (20, 22, 24) and m, f and t are fixed to the same values of

(2,3,4). For GC the controlled instance factors n, m, f and t are set to three

levels each, (200, 300, 400), (5, 10, 15), (4, 6, 8) and (20, 30, 40), respectively.

The job processing times on each parallel machine in the production stage

are generated from a random uniform distribution in the range [1, 99], as it is

common in the scheduling literature. The last considered instance factor is the

distribution of product assembly times in the single machine on the assembly

stage which depends on the number of jobs that to each product h and are

fixed to U [|Nh|, 49⇥ |Nh|] and U [|Nh|, 99⇥ |Nh|]. For simplicity, these two

distributions are briefly referred to as 50 and 100. The three small, medium and

large-sized sets of instances in combination with these distribution intervals

are denoted as GA50, GA100, . . . , GC100. Five replications are considered for

each combination of instance factors. Therefore, the total number of instances

is 300 for GA50 and GA100 and 405 for every set in GB and GC which results

in a grand total of 2220 instances considering all six instance sets.

6.4.1 MILP model evaluation

Initial tests proved that the MILP is unable to solve the large instances in GC.

Therefore only the instance sets GA and GB are used to test the proposed

MILP model. Two state-of-the-art commercial solvers, CPLEX 12.6 and

GUROBI 5.6.3 are used to solved the MILPs. Two different stopping time

criteria of 900 and 3600 seconds are considered with each solver. Totally,

there are 5640 obtained results. All tests are performed in a high performance

computing cluster with 30 blade servers, each one containing 16 GBytes of

RAM memory and two Intel XEON E5420 processors running at 2.5 GHz.

The 30 blade servers are used only to divide the workload since experiments

are performed in virtualized Windows XP machines, each one with a single
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virtualized processor with two cores and 2 GBytes of RAM memory. Since

both CPLEX and GUROBI are parallel solvers, the two available cores at each

virtual machine are used.

Three types of possible outcomes are obtained after solving the MILPs

with the solvers. In the first outcome type, named “optimal”, an optimal

solution is obtained within the maximum CPU time with a given makespan

value. In the second type, “non-optimal”, a feasible integer solution with a

given makespan value within the time limit is obtained. However, this solution

is not proven to be optimal and the gap with respect to the best non-integer is

reported by the solver. In the last outcome “out of memory”, the solver ran out

of RAM memory. In this type of outcome the best solution and gap up to the

error is reported. Altogether, the solvers were able to find 294 (98.00%) and

298 (99.33%) optimal solutions for the 300 instances in sets GA50 and GA100,

respectively. The number of optimal solutions for sets GB50 and GB100 (405

instances) are 335 (82.72%) and 360 (88.89%), respectively. The summarized

performance results according to the type of solver and time limit for sets GA

and GB, are reported in Table 6.3. The percentage of optimal solutions is

denoted by %opt, the percentage out of memory cases by %outm, the average

reported gap for non-optimal solutions as GAP% and the average CPU time

in seconds as Av. T ime.

The effect of the distribution of the product assembly times at the assembly

stage is stronger than the type of solver or CPU time limit. The problems with

more disperse assembly times appear to be easier to solve and need less CPU

times. CPLEX always uses shorter CPU times in comparison with GUROBI.

The average CPU time difference between the solvers is stronger for instance

sets GB. As it is shown in the table, GUROBI finds less optimal solutions,

results in higher gap values and in larger CPU times. However, GUROBI does

not have memory errors. As a result each solver has its own benefits in this

problem and there is no clear preference.
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Solver
Time Limit 900s 3600s

Instance set G
A

5
0

G
A

1
0
0

G
B

5
0

G
B

1
0
0

G
A

5
0

G
A

1
0
0

G
B

5
0

G
B

1
0
0

CPLEX
% opt 95.33 98.33 79.26 83.70 97.00 98.67 80.74 85.18

% outm 0.00 0.00 1.97 4.44 1.67 0.00 14.57 7.90

GAP% 0.24 0.05 0.57 0.37 0.03 0.05 0.20 0.29

Av. Time (sec.) 50.98 24.68 214.14 137.50 97.77 58.05 345.40 326.98

GUROBI
% opt 95.67 97.33 72.34 80.74 96.67 98.33 76.79 83.21

GAP% 0.27 0.08 1.13 0.85 0.17 0.07 0.75 0.38

Av. Time (sec.) 57.78 45.79 391.83 245.84 156.51 99.62 990.47 720.05

Table 6.3: Results of the MILP solution for the tested
solvers and time limits for instance sets of GA50, GA100,

GB50 and GB100.

6.4.2 Heuristics evaluation

The four proposed heuristics, H1, H2, H3 and H4 are now tested. We measure

the Relative Percentage Deviation (RPD) as:

RPD =
Heusol �Bestsol

Bestsol
⇥ 100

Where Bestsol is the best found solution through all heuristics and the

MILP model for any instance and Heusol is the makespan value obtained by a

given heuristic for a given instance.

Tables 6.4 and 6.5 show the summarized results of the RPD values for

the MILP and heuristics for instance sets GA and GB, respectively. Table 6.6

shows the average RPD values for the proposed heuristics for instance set

GC as there are not solutions for the MILP models in this set. All results in

the tables are categorized by n and f .

As can be observed, H4 provides better results than the other heuristics in

instance sets GA and GB, although this advantage is not as strong in the large
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GA50 GA100

f ⇥ n C
P

G
U

H
1

H
2

H
3

H
4

C
P

G
U

H
1

H
2

H
3

H
4

2⇥ 10 0.00 0.00 9.50 8.43 3.24 2.60 0.00 0.00 2.21 1.74 0.46 0.15
2⇥ 12 0.00 0.00 8.24 7.37 4.04 3.03 0.00 0.00 3.58 3.45 1.76 0.99
2⇥ 14 0.00 0.00 8.29 6.63 3.36 2.15 0.00 0.00 4.50 4.38 0.62 0.63
2⇥ 16 0.08 0.00 9.31 8.51 4.59 4.12 0.00 0.00 4.30 4.08 1.16 1.02
2⇥ 18 0.02 0.00 7.27 6.49 3.90 2.77 0.00 0.72 4.10 3.73 1.97 1.53

3⇥ 10 0.00 0.00 5.55 4.63 2.87 1.88 0.00 0.00 2.31 2.45 1.54 1.34
3⇥ 12 0.00 0.00 4.70 4.89 1.43 1.67 0.00 0.00 1.94 1.32 0.98 0.32
3⇥ 14 0.00 0.00 4.61 3.44 1.81 0.97 0.00 0.00 1.51 1.15 0.28 0.25
3⇥ 16 0.00 0.00 4.79 4.13 1.39 0.59 0.00 0.00 2.63 1.96 0.72 0.31
3⇥ 18 0.00 0.00 4.09 4.19 1.35 0.97 0.00 0.00 2.15 1.68 0.78 0.54

Average 0.01 0.00 6.64 5.87 2.80 2.08 0.00 0.07 2.92 2.59 1.03 0.77

Table 6.4: Average Relative Percentage Deviation (RPD)
of CPLEX (CP), GUROBI (GU) and the proposed heuris-

tics for instance sets GA50 and GA100.

instances. Heuristic H4 can solve the largest instances in set GB of 24 jobs

and 4 factories with a very small optimality gap of only 0.07%, which means

this heuristic is very effective. The results show that the average RPD of H4

is 1.1% for instance groups GA and GB. For the large instance set GC the

best solution is always reported by H4.

The CPU times of the proposed heuristics are reported in Table 6.7. They

are negligible for all instance sets GA, GB and GC. For instance sets GA and

GB, heuristics report solutions with low RPD in very short CPU times, while

the presented MILP needs much more time in comparison.

On average, heuristic H4 is slower than heuristics H1 and H2 but on

absolute terms the CPU times are very small. The largest measured CPU time

corresponds to H4 is 0.18 seconds for one of the largest instances. From this

final evaluation and considering the low RPD of H4 in comparison with the

other heuristics, we can conclude that it is a efficient and effective heuristic.

The observed differences in the performance for the two solvers and the
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GB50 GB100

f ⇥ n C
P

G
U

H
1

H
2

H
3

H
4

C
P

G
U

H
1

H
2

H
3

H
4

2⇥ 20 0.22 0.01 6.95 6.81 2.26 2.27 0.00 0.01 3.32 3.32 1.03 0.58
2⇥ 22 0.18 0.04 5.27 5.28 2.37 1.41 0.06 0.05 2.38 2.16 0.89 0.58
2⇥ 24 0.21 0.19 4.79 4.76 1.90 1.75 0.69 0.00 3.32 2.27 1.39 1.14

3⇥ 20 0.00 0.01 3.21 2.58 1.33 1.13 0.03 0.00 2.48 2.21 1.27 0.50
3⇥ 22 0.00 0.00 2.89 2.34 1.68 0.98 0.00 0.00 1.54 1.37 0.47 0.33
3⇥ 24 0.18 0.04 3.16 2.12 1.25 0.61 0.31 0.00 1.38 1.15 0.72 0.25

4⇥ 20 0.00 0.00 2.26 1.90 1.22 0.44 0.00 0.00 1.58 1.60 0.66 0.50
4⇥ 22 0.00 0.00 2.00 1.36 0.55 0.31 0.00 0.08 1.73 1.41 0.72 0.34
4⇥ 24 0.00 0.00 2.50 2.04 1.12 0.77 0.33 0.05 1.87 1.35 0.35 0.07

Average 0.09 0.03 3.67 3.27 1.52 1.08 0.16 0.02 2.21 1.92 0.83 0.48

Table 6.5: Average Relative Percentage Deviation (RPD)
of CPLEX (CP), GUROBI (GU) and the proposed heuris-

tics for instance sets GB50 and GB100.

GC50 GC100

f ⇥ n H1 H2 H3 H4 H1 H2 H3 H4

4⇥ 200 0.135 0.133 0.004 0.000 0.065 0.001 0.000 0.000
4⇥ 300 0.119 0.114 0.004 0.000 0.053 0.001 0.000 0.000
4⇥ 400 0.115 0.104 0.006 0.000 0.059 0.001 0.002 0.000

6⇥ 200 0.090 0.084 0.000 0.000 0.036 0.000 0.000 0.000
6⇥ 300 0.083 0.083 0.001 0.000 0.054 0.001 0.000 0.000
6⇥ 400 0.080 0.076 0.001 0.000 0.041 0.000 0.002 0.000

8⇥ 200 0.064 0.059 0.000 0.000 0.033 0.000 0.000 0.000
8⇥ 300 0.077 0.079 0.001 0.000 0.031 0.000 0.000 0.000
8⇥ 400 0.054 0.050 0.002 0.000 0.044 0.000 0.000 0.000

Average 0.091 0.087 0.002 0.000 0.046 0.000 0.001 0.000

Table 6.6: Average Relative Percentage Deviation (RPD)
of the proposed heuristics for instance sets GC50 and

GC100.

tested heuristics are small. Therefore, some statistical tests are performed in

order to ascertain if the observed differences are indeed statistically significant.
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H1 H2 H3 H4

GA50 0.0024 0.0004 0.0043 0.0032
GA100 0.0027 0.0004 0.0042 0.0031

GB50 0.0052 0.0006 0.0034 0.0038
GB100 0.0057 0.0006 0.0032 0.0174

GC50 0.0459 0.0152 0.0766 0.0401
GC100 0.0422 0.0147 0.0789 0.0422

Average 0.0174 0.0053 0.0284 0.0183

Table 6.7: Heuristic’s CPU time (in seconds) for all in-
stance groups.

For this reason, the Analysis of Variance (ANOVA) technique, as a powerful

parametric tool, is used to examine the results. For the instance set GA, the

tested methods can be categorized into three groups that have no statistical

significant differences between them: solvers, H1 and H2 in one group, and

H3 and H4 in another group. H4 has the smaller RPD among the other

heuristics and with a very little overlap with H3. The observed differences

between the first and the third group are small. The performance of the

tested methods in set GB are similar to those of set GA. The interaction

between the tested methods and assembly times distribution is interesting. As

shown Figure 6.2, for instance set GB, instances with more disperse assembly

times are easier to solve. The interaction between solvers and assembly times

distribution has no statistically significant effect on the response variable. Less

disperse assembly times always complicate problems when the heuristics are

used and the interaction between them has a significant effect on RPD. With

more disperse assembly times, H4 has no statistical significant differences with

solvers in both instance sets GA and GB.

Figure 6.3 shows a means plot with 99% confidence level Tukey’s HSD

intervals for the heuristics on the large instances set GC. As can be observed,

H3 and H4 are statistically better than the other ones even though the absolute

difference between all proposed methods is practically small.
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Figure 6.2: Means plot with the interaction between the
distribution of the assembly processing times and the tested
methods for instance set GB . All means have Tukey’s Hon-
est Significant Difference (HSD) 99% confidence intervals.

6.5 Conclusions of this chapter

To the best of our knowledge, the studied problem in this chapter is the first

attempt to solve the Distributed Parallel Machine and Assembly Scheduling

Problem or DPMASP with eligibility constraints of factories and allowing

empty machines on factories. In this problem, there is more than one pro-

duction center with unrelated parallel machines to process jobs and a single

assembly center to make final products from produced jobs following a defined

assembly program. The objective is to minimize the makespan of products in

the second assembly stage.

A mathematical model and four simple constructive heuristics are pre-

sented to solve the model. CPLEX and GUROBI are used to solve the mathe-

matical model. Three sets of small, medium and large instances are considered
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Figure 6.3: Means plot and 99% confidence level Tukey’S
HSD intervals for the heuristics in the large instance set

GC.

to test and to evaluate the mathematical model and heuristics. As it is shown by

the obtained results, the mathematical model in conjunction with the solvers

is able to to solve problems of up to 24 jobs and 16 machines distributed in 4

factories. ANOVAs were used to statistically analyze the results. In small and

medium instances, both solvers perform better than the proposed heuristics.

H4 reports a smaller RPD among the presented heuristics, but statistical

analysis shows that there are no statistical significant differences between H4

and H3.

Heuristics H3 and H4 use negligible CPU times and at the same produce

good solutions that are very close to optimality in the cases for which the

optimal solution has been obtained. The largest CPU time corresponds to H4
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and yet it is a very small 0.18 seconds. Still, the deviation from optimality

barely exceeds 1.1%.





CHAPTER 7
GENERAL DISCUSSION OF THE RESULTS

Manufacturing systems have faced a number of significant obstacles recently.

These obstacles are not without solutions. The industry needs to recreate com-

petitive manufacturing systems to meet these recent challenges. Distributed

manufacturing and assembly systems are two useful alternatives which are

used to face these obstacles. In this thesis, both alternatives are considered in

one production problem to increase the ability of such manufacturing systems

to face challenges. The studied problems consist of two stages, production

and assembly. The first stage is dedicated to the production of different jobs

via various production centers (factories) comprising the concept of distributed

manufacturing systems. The second stage is an assembly stage where jobs are

assembled through a defined assembly program on a single assembly machine

to make final products. Two different problems are studied by considering two

different shop configurations for the production stage. Some extensions are

added to both studied problems so as to bring them as close as possible to real

world problems.

In the literature, there is a strong lack of consideration to both distributed

151
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manufacturing and assembly systems together in the same production problem.

To the best of our knowledge, the only research which considers distributed

manufacturing and assembly system together is presented by Xiong et al.

(2014). The authors studied a distributed two-stage assembly system with

setup times. They considered f distributed factories where each factory has

the same m processing parallel machines at the first stage and an assembly

machine at the second stage. Therefore, totally there are f.m parallel machines

and f assembly machines. Each product is made of m components produced

by parallel machines. They developed heuristic methods and three hybrid

meta-heuristics to minimize the total completion time. The problem studied

by Xiong et al. (2014) is different from the problems studied in this thesis.

First, in the problems presented in this thesis a separated assembly stage is

considered, not an assembly operation at each factory. Second, the different

jobs composing a product are allowed to be produced in different factories.

Third, each product might have a number of jobs (components) different from

m.

In the next section a general discussion of the obtained results of the

studied problems in this thesis is provided.

7.1 The Distributed Assembly Permutation Flowshop

Scheduling Problem

The first studied problem in this thesis is the Distributed Assembly Permuta-

tion Flowshop Scheduling Problem (DAPFSP). This model is a generalization

of the Distributed Permutation Flowshop Scheduling Problem (DPFSP) which

was presented for the first time by Naderi and Ruiz (2010). As mentioned

before, all proposed problems in this thesis are composed of two stages,

production and assembly. The first stage of the DAPFSP is composed of f

identical production factories with flowshop configuration that produces jobs

which they have been assembled into final products at the second assembly
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stage through a defined assembly program. The objective function for this

problem is minimization of the makespan of the produced products on the

assembly stage.

A Mixed Integer Linear Programming model (MILP), three heuristics and

a Variable Neighborhood Descent (VND) are presented to solve the problem.

To test the MILP, two commercial solver packages (CPLEX and GUROBI)

are used. These types of problems are NP-Complete and certainly the MILP

solvers cannot solve large-sized problems. Therefore, it is necessary to develop

a heuristic approach to solve them. In this thesis, three simple constructive

heuristics are proposed. These heuristics are the SPT rule, Framinan and

Leisten (2003) and two job assignment rules proposed by Naderi and Ruiz

(2010). In total six proposed simple constructive heuristics are obtained by

using two job assignment rules for each of the three heuristics.

In addition to simple heuristics, a VND method is also proposed to solve

the problem. The VND approach needs an initial solution, therefore the six

proposed constructive heuristics are used to obtain the initial solution instead

of random solutions. Two neighborhood structures are considered for VND.

The first one is a product local search that attempts to improve the objective

function by examining different product sequences. The second neighborhood

tries to find different partial job sequences for each product to improve the

objective function.

To test the MILP model and the heuristics, two complete sets of instances

based on different levels of four instance factors (number of jobs, machines,

products and factories) have been generated. The MILP model is tested in

a set of small instances with all the combinations of the test factors, using

CPLEX and GUROBI solvers (commercial solver packages), serial and par-

allel computing (the number of CPU threads) and two time limits of 900 and

3600 seconds (time limitation for the stopping criterion). The heuristics are

also tested in a set of larger instances.

In total there are 900 small instances and in the allowed CPU time, the LP
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model is able to find 516 optimum solutions (57.33 %).

The results show that GUROBI performs better than CPLEX. It is able to

find more optimal solutions than CPLEX and reports smaller average gap and

smaller average CPU time consumption than CPLEX. Overall, the time limit

of 3600 seconds and parallel computing (2 threads) result in a larger number of

optimal solutions. GUROBI with parallel computing results in a less average

gap in comparison with serial computing, while this trend is reversed with

CPLEX. GUROBI with two threads and 3600 seconds time limitation finds

more optimum solutions.

The MILP results are also analyzed by the exhaustive CHAID method

which is used to draw a decision tree to analyze the effect and interactions of

the factors. The obtained decision tree shows that the most significant factor is

the number of jobs. When this factor increases, the number of cases for which

an optimal solution is found decreases. In the next level, nodes are split into

the number of factories factor, except for the number of jobs equal to 8.

In the problem with larger amount of factories, jobs have more options for

allocations. Therefore, the completion of the jobs is reduced. Consequently,

the earliest possible time to start product assembly also is reduced, and the

possibility of finding a better solution increases. The next significant factor

is the number of products, except for the node with the number of jobs equal

to 12 and the number of factories equal to 3, where in this node number of

machines is a significant factor. The stopping criterion for branching is met for

nodes with the number of jobs equal to 12 and the number of factories equal

to 4 and for the node with the number of jobs equal to 24 and the number of

factories equal to 2. The number of products factor interacts with the number

of factories factor; that is, a higher percentage of optimal solutions is found

when there is a larger number of products. No further statistically significant

divisions are found. And also, the effect of type of solver, thread and time limit

are not statistically significant.

The twelve proposed methods (six simple constructive heuristics and six
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VND which start with six heuristics) are tested with both set of instances.

The Relative percentage deviation (RPD) is measured for comparisons of the

proposed heuristics.

The results show that the mathematical model is unable to find an optimum

or best solution for all the small instances. The problem becomes harder for

the MILP by increasing the number of jobs and by decreasing the number of

factories. All VND algorithms perform better than the constructive algorithms

and significantly improve the initial solutions. The second job assignment rule

works better than the first one. This rule examines a job in all factories to find

the best option for the final assignment.

A multi-factor ANOVA is carried out for the VND results to asses the

statistical significant of the observations. The average RPD value for all the

simple constructive heuristics is 6.75%, and this amount lowers to 0.63%

for the VND methods. The difference in RPD between simple constructive

heuristics and VND is very high. Therefore, two separated ANOVAs for the

simple heuristics and the VND methods are considered. All controlled factors

(number of jobs, machines, products and factories) in the ANOVA analysis,

with some exceptions, result in strong statistically significant differences in

the RPD response variable.

Among all simple constructive heuristics, the second one performs better

than the others and there are no significant differences between the rules used

to assign jobs to factories. In the VND algorithm, the job assignment rules

are important, and the second one statistically outperforms the first. The VND

algorithm improves all the initial solutions. There are no significant differences

between the three VND using the second job assignment rule. The CPU times

used to solve the small instances with the considered algorithms are negligible.

For the large instances, algorithms are separated into two groups: the

VND algorithms and the second simple constructive heuristics with both job

assignment rules with better performance in one group and the rest in another

group. The algorithms which use the second job assignment rule perform
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better than those with the first. Since the second group does not report good

results in comparison with the first one, they are eliminated from the statistical

analysis. The type of initial solution for the VND algorithms does not play

an important role and there is no significant differences between the VND

algorithms that use the same job assignment rule. The number of jobs and

products has no significant effect on the response variable of the algorithms.

An increase in the number of machines always complicates problems, while

this trend for the number of factories is the reverse.

All RPDs of the VND using the second simple constructive heuristic with

the second job assignment rule for initialization are consistently lower than

those of the other algorithms.

The VND algorithms use more CPU time compared to simple constructive

methods. The maximum average CPU time reported by the VND is 23.20

seconds. Although the VND methods consume more CPU time to solve the

problem, they report smaller (almost nine times lower) RPD values than simple

constructive algorithms.

To have better solution quality, VND algorithms are the best options. Oth-

erwise, if the CPU time consumption is more important, a simple constructive

algorithm can be a good choice.

7.2 The Distributed Assembly Permutation Flowshop

Scheduling Problem with Sequence Dependent

Setup Times

In Chapter 4, sequence dependent setup times (SDST) are added to the studied

problem in Chapter 3 so as to bring it as close as possible to the reality of pro-

duction shops. The objective of this problem is also makespan minimization of

the products on the last stage. This problem with an extension of SDST for all

machines is certainly NP-Complete and is more complicated than DAPFSP.

Therefore, two simple heuristics and two metaheuristics (VND and Iterated
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Greedy) are proposed to solve it. A complete parameter calibration through a

Design Of Experiments (DOE) approach is carried out for the metaheuristics.

A series of studies are done to justify the elimination of a parameter in the

Iterated Greedy. Finally, the performance of all proposed methods is compared

through extensive computational and statistical experiments.

Two heuristics are proposed to solve the problem. In total, four heuristics

are obtained after considering the two job assignment rules presented by

Naderi and Ruiz (2010) for each one of the two heuristics.

In addition to heuristics, two metaheuristics are also proposed to solve

the problem. The first suggested metaheuristic is a VND that employs two

different solution representations and two neighborhood structures. The VND

which uses the first representation solution (Pr1), applies LS1 and LS2 as

neighborhoods. LS1 extracts each job at each factory and reinserts it in all

possible positions of the PFSP at that factory. The second neighborhood,

LS2, takes all jobs assigned at each factory and inserts them into all possible

positions in all other factories looking for a makespan improvement at the

involved factories. The VND that employs the second solution representation

(Pr2) also uses two neighborhood structures, LSP and LSJ , respectively.

These neighborhoods are same as the presented neighborhoods in Chapter 3.

The next proposed metaheuristic is the Iterated Greedy (IG) which applies

iteratively four phases (destruction, construction, local search and acceptance

criterion) to the incumbent solution until a termination criterion is reached. A

method which constructs the initial solution for IG is selected among all four

proposed heuristics after testing them. The four phases of the proposed IG are

different depending on the solution representation Pr1 or Pr2.

In most existing IG, once the first three phases are carried out over the

incumbent solution, a possibly different schedule is obtained and must be

determined if it replaces the incumbent one. Usually, a simulated annealing-

like type of acceptance criterion (AC1) with a constant temperature (T ) is

used in most IG algorithms, where T needs to be calibrated. Two additional
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acceptance criteria are proposed. In the first (AC2), instead of the factor T in

the simulated annealing-like type acceptance criterion, the Relative Percentage

Difference (RPD) is used. In the second proposed acceptance criterion (AC3),

the factor T is eliminated and it is further simplified.

Statistical techniques are applied to verify the quality of the results of the

two new proposed acceptance criteria for the DAPFSP-SDST problem. The

Design Of Experiments (DOE) approach is used to calibrate the proposed

methods and a set of instances is generated for this experiment.

Three factors are considered for VND to be calibrated, the type of solution

representation, job assignment rules and simple constructive heuristic used

for initialization. All studied factors are statistically significant according to

the analysis and ANOVA results. The most significant are the representation

(Pr), job assignment rules and the initial solution (INI). The second solution

representation and the second job assignment rule result in statistically better

performance. The second solution representation, second job assignment rule

and the second constructive heuristics which applies the first job assignment

rule (CH21) are selected as running parameters for VND.

For the IG calibration there are three additional factors: percentage of jobs

to destruct in the destruction phase, type of acceptance criterion and the value

of T used in the calculation. The first two acceptance criterion (AC1 and AC2)

depend on the aforementioned parameter T , whereas the third (AC3) does not

have a T factor. Therefore, two different experiments are carried out.

The results of the first experiment show that the only non-significant factor

is T with a p-value very close to 1. For AC1, increasing the value of T results

in better solutions and this situation is just the opposite for AC2. T is not

significant and also the previous studies on the IG methodology show that T is

statistically insignificant. These observations reinforce our idea to remove T

from the acceptance criterion. For the second experiment, T is set at 2.5 and

0.5 for AC1 and AC2, respectively.

In the second experiment all previous factors and all three acceptance
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criteria with fixed T are considered. Results of the ANOVA indicate that the

interaction between the solution representation and job assignment rule factors

have the most significant effect. Similar to the VND, the second solution repre-

sentation and the second job assignment rule results in better performance. The

reported p-values of more than 0.85 for the type of acceptance criterion factor

indicate that there are very little (if any) differences between the three proposed

acceptance criteria. It is preferable to employ the third proposed criterion

with equivalent performance and at the same time with one less parameter.

For the final experiments in addition to (AC3), the original Ruiz and Stützle

(2007) acceptance criterion (AC1) are considered to attest if our new proposed

acceptance criterion is actually equivalent or not.

After, the parameters of VND and IG are calibrated, the proposed ap-

proaches are tested. The four proposed simple constructive heuristics are fast

and take very little CPU time, where the maximum reported CPU time is just

0.079 seconds and the average observed CPU time in all results is only 0.008

seconds. These heuristics are almost instantaneous even for the largest tested

instances. All four heuristics provide similar results and with a average RPD

between a little more than 16% and below 18%.

According to the ANOVA statistical test on the obtained results, three non-

controllable factors, number of job, products and factories are very significant,

in this order. The first simple constructive heuristic using the second job

assignment rule, CH12, is statistically better than the others.

Finally, we test VND and IG . The IG method is tested with two different

acceptance criteria (AC1 and AC3). VND results are relatively good with an

average of 5.33% RPD in all tests with almost 37 seconds of average CPU

time. Two termination criteria are considered for the proposed Iterated Greedy

methods. An interesting conclusion is that AC3, albeit simpler and with one

less parameter, gives better results when compared with the regular acceptance

criterion. ANOVA results indicate that VND is clearly not statistically better

than the IG methods. The results obtained by ANOVA show that, IG3 is
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statistically better than IG1, this is our proposed simpler acceptance criteria

is better.

7.3 The Distributed Parallel Machine and Assembly

Scheduling Problem with Eligibility Constraints

As mentioned before, all considered problems in this thesis consist of two

stages, production and assembly. Chapter 5 presented a new problem where

there is a set of identical factories with parallel machines in the production

stage. This problem is referred to as the Distributed Parallel Machine and

Assembly Scheduling Problem or DPMASP. The objective function of this

problem is still the same as the previous problems. Due to some technological

constraints, at least one job should assigned to each machine and any of them

cannot be idle. Also, some jobs can be processed only in certain factories.

To solve this problem, a mathematical model and two heuristics are proposed.

CPLEX and GUROBI are used to test the mathematical model. Comprehen-

sive computational experiences are carried out to evaluate the performance of

the proposed solution methods.

Two different heuristics based on two different product sequence con-

struction methods and one job to machine-factory assignments for products

ar proposed. To test and evaluate the proposed solution methods, six com-

plete sets of instances considering different number of problem characteristics

such as different number of jobs, machines, factories and products have been

generated. These sets of instances are divided into three size-based groups:

small, medium and large-sized instances, referred to as GA, GB and GC,

respectively. Two distributions of the assembly processing times (referred to

as 50, and 100) are considered for each set of instances. The final sets of

instances are then denoted as GA50, GA100, . . . , GC100. The proposed MILP

model is tested only on small and medium-sized instances sets (GA and GB)

given the impossibility to solve large instances. As the obtained results show,
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generally the solvers are able to find 294 (98.00%) and 297 (99.00%) optimal

solutions in sets GA50 and GA100, respectively. According to the results it is

clear that the effect of the distribution of the assembly times at the assembly

stage is much stronger than either the type of solver or CPU time limit.

The second proposed algorithm is generally much better than the first one

in all groups of instances, although the difference is not very big in the large

instances. It is important to indicate that the second heuristic reports a very

small gap for the instances set of GB which indicates that it is a very capable

heuristic close to optimality in performance. The reported RPD average by

the second heuristic for both instance groups GA and GB is below 1%. Since

it is not possible to calculate the optimum solution for the large instances in

GC, we only have an overall picture were the second heuristic always obtains

the best solution. The consumed CPU times by the heuristics are negligible.

For example, the average CPU times are below one tenth of a second for the

largest instances in group GC. The largest measured CPU time corresponds

to the second heuristic has been 0.41 seconds. From this final evaluation and

considering the relative RPD of the second heuristic we can conclude that it is

a capable and very fast method.

The observed differences are large in all cases for the proposed heuristics

and very small for the two solvers. Therefore, some statistical analyses are car-

ried out in order to ascertain if the observed differences are indeed statistically

significant. For the small instances there are no statistically significant differ-

ence in the performance of CPLEX and GUROBI and the second heuristic is

statistically better than the first one.

The results for the medium sized-instances in set GB are similar to those

of set GA. For the large instances in group GC, the observed differences in

the average RPD between the two heuristics show that the second heuristic is

statistically better than the first one.

In general, results show that the proposed model is able to solve

moderately-sized instances, and the second heuristic is fast, giving optimal
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solutions close to optimum in less than half a second in the worst case.

7.4 Heuristics for a Distributed Parallel Machine

and Assembly Scheduling Problem with Eligibility

Constraints

The difference between the studied model in Chapters 5 and 6 is to remove

the constraint that forces parallel machine to have at least one job. Therefore,

in the studied problem presented in Chapter 6, empty machines at factories

are permitted. A mathematical model, four simple, fast and high-performing

heuristics are proposed to solve the considered problem. Four heuristics

based on two different product sequence construction and two different job

to machine-factory sequence for products construction are proposed.

To test and to evaluate the proposed MILP model and constructive heuris-

tics, six complete sets of instances with different problem characteristics are

generated. Three size-based groups of instances have been generated: small

(GA), medium (GB) and large (GC). Two different distributions of product

assembly times referred to as 50 and 100 are considered for each group of in-

stances. The three small, medium and large-sized sets of instances in combina-

tion with these distribution intervals are denoted as GA50, GA100, . . . , GC100.

Our results show that the mathematical model is able to solve moderately-

sized instances and is unable to solve the large instances in GC. Therefore,

only the instance sets GA and GB are used to test the proposed MILP model.

Two different stopping time criteria of 900 and 3600 seconds are considered

with each solver. In total, the solvers were able to find 294 (98.00%) and 298

(99.33%) optimal solutions for the 300 instances in sets GA50 and GA100,

respectively. The number of optimal solutions for sets GB50 and GB100 (405

instances) decrease to 335 (82.72%) and 360 (88.89%), respectively.

Like in the previous studied problem with the constraint, the effect of the

distribution of the product assembly times at the assembly stage is stronger
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than the type of solver or CPU time limit. The problems with more disperse

assembly times appear to be easier to solve and need less CPU times. CPLEX

always uses less CPU times than GUROBI and this difference between the

solvers is stronger for instance sets GB. GUROBI finds less optimal solutions,

results with higher gap values and in larger CPU times. However, GUROBI

does not have memory errors. As a result each solver has its own benefits in

this problem and there is no clear preference.

The fourth heuristic provides better results than the other ones in both

instance sets GA and GB, although this advantage is not as strong in the large

instances. The fourth heuristic can solve the largest instances in set GB of 24

jobs and 4 factories with a very small optimality gap of only 0.07%, which

means this heuristic is very effective. The results show that the average RPD

of the forth heuristic is 1.1% for instance groups GA and GB.

The CPU times of the proposed heuristics are negligible for all instance

sets. For instance sets GA and GB, heuristics report solutions with low RPD

in very short CPU times, while the presented MILP needs much more time

in comparison. The largest measured CPU time corresponds to the fourth

heuristic is 0.18 seconds for one of the largest instances. From this final

evaluation and considering the low RPD of the fourth heuristic in comparison

with the other heuristics, we can conclude that it is an efficient and effective

method.

The observed differences in the performance for the two solvers and

the tested heuristics are small. Therefore, the ANOVA technique is used

to examine the results in order to ascertain if the observed differences are

indeed statistically significant. For instance set GA, the fourth heuristic has

the smaller RPD among the other heuristics. The performance of the tested

methods in set GB are similar to those of set GA.





CHAPTER 8
CONCLUSIONS AND FUTURE RESEARCH

In this final chapter we draw the general conclusions about the research lines

pursued in this thesis. The thesis focused on solving distributed manufacturing

and single assembly scheduling problems. In the following we outline some

general discussions about the different topics of this work and summarize the

main contributions of this thesis. The contributions are manyfold, presenting

two new methods to manage a manufacturing system to tackle the recent global

challenges and solving them with solution techniques such as mathematical

models, heuristics and metaheuristics. In Section 8.1, the main achievements

of the thesis are recalled. In Section 8.2, the main limitations of the work are

outlined and several possible directions for future research are presented.

8.1 Results

The main contributions of the thesis are combining distributed manufacturing

and assembly systems in a production problem that is able to tackle the recent

global challenges. The problem consists of two stages, distributed manufactur-
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ing and a single assembly centers, respectively. In this new production setting

products composed of many jobs are produced. These jobs are manufactured

on the first stage and according to a defined assembly program constitute

the final products after assembly. In two different production problems, two

different process structures, flowshop and parallel machines are considered for

the distributed manufacturing centers. Also several extensions are studied so

as to bring the problem as close as possible to the reality of production shops.

Different methods such as mathematical models, simple constructive heuristics

and metaheuristics are presented to solve these problems. The objective of

all throughout the thesis is the minimization of the makespan of the products

which are assembled on the last stage.

As presented in Chapter 3, all distributed manufacturing factories in the

first stage of the problem have a flowshop structure. To simplify the problem,

the same job permutation is considered for all machines on each manufacturing

center. This problem is referred to as the Distributed Assembly Permutation

Flowshop Scheduling Problem (DAPFSP). A Mixed Integer Linear Program-

ming model (MILP) is presented for the DAPFSP and two solvers, CPLEX and

GUROBI are used to solve it. Three constructive algorithms and a Variable

Neighborhood Descent (VND) algorithm have been designed for the problem.

The constructive heuristics and VND are tested with two groups of small and

large instances. A comprehensive ANOVA statistical analysis was used to

analyze results. The results show that the VND algorithm performs better than

constructive heuristics. On the other hand, the simple constructive heuristics

consume little CPU time and still produce reasonable solutions.

The results of this work have been presented at national and international

conferences:

• Hatami, S., Ruiz, R., and Andrés-Romano, C. (2013). Two simple con-

structive algorithms for the distributed assembly permutation flowshop

scheduling problem. In Book of Proceedings of the 17th International

Conference on Industrial Engineering and Industrial Management, XVII
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Congreso de Ingeniería de Organizacíon (CIO), pages 245-252, Val-

ladolid, Spain. (This paper received the best paper award at the confer-

ence)

• Hatami, S., Ruiz, R., and Andrés-Romano, C. (2013). A mixed integer

linear programming model for distributed assembly permutation flow-

shop scheduling problem. In IFORS ELAVIO, Valencia, Spain.

Also the results of this chapter have been published as a chapter in a book:

• Hatami, S., Ruiz, R., and Andrés-Romano, C. (2014). Two Sim-

ple Constructive algorithms for the Distributed Assembly Permutation

Flowshop Scheduling Problem. In Iglesias, C. H., López-Paredes, A.,

and Pérez Ríos, J. M., editors. Managing Complexity: Challenges for

Industrial Engineering and Operations Management, chapter 2, pages

139-145. Springer International Publishing.

Finally we have published the results of this chapter as a printed article in

an international journal listed in the Journal Citation Reports (JCR):

• Hatami, S., Ruiz, R., and Andrés-Romano, C. (2013). The distributed as-

sembly permutation flowshop scheduling problem. International Jour-

nal of Production Research, 51(17):5292–5308.

During the years of the publication, the article has received 4 citations

according to Google scholar and 2 according to Web of Knowledge.

To bring the DPFSP as close as possible to the reality of production

shops, sequence dependent setup times (SDST) are added to all machines

in the production stage and to the single assembly machine on the second

stage (see Chapter 4). This problem represents a solid step forward in solv-

ing more realistic distributed scheduling problems. Two simple heuristics

are combined with two existing job to factory assignment rules to solve the

problem. Furthermore, two metaheuristics, Variable Neighborhood Descent
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(VND) and Iterated Greedy (IG) are designed for the problem. Two different

solution representations are considered. A new acceptance criterion that does

not consider a simulated annealing-like temperature as it is common in the

IG literature is proposed. According to the results, the new parameter-less

acceptance criterion is better which simplifies the already simple IG even

further. The performance of all presented methods is analyzed by statistical

techniques. The constructive heuristics produce reasonably good results in

short (almost instantaneous) CPU times, while results close to optimality are

reached by the more time consuming methods like VND or IG.

We have presented the results of this chapter in the following international

conference:

• Hatami, S., Ruiz, R., and Andrés-Romano, C. (2014). Simple con-

structive heuristics for the distributed assembly permutation flowshop

scheduling problem with sequence dependent setup times. In Second

International Conference on Control, Decision and Information Tech-

nologies, CoDIT14, Metz, France.

Also, the results of this chapter are accepted in another international

journal cited in the Journal Citation Reports (JCR):

• Hatami, S., Ruiz, R., and Andrés-Romano, C. (2015). Heuristics

and Metaheuristics for the Distributed Assembly Permutation Flowshop

Scheduling Problem with Sequence Dependent Setup Times. Interna-

tional Journal of Production Economics.

In chapter 5, the first stage of the problem is changed to a set of identical

factories with unrelated parallel machines and the second stage is a single

assembly machine as in the previous problems. The problem is referred

as the Distributed Parallel Machine and Assembly Scheduling Problem or

DPMASP. Due to technological constraints, the vacancy of the machines is

not allowed and some jobs can might be processed only in certain factories. A
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mathematical model and two high-performing heuristics are proposed for the

model. Comprehensive computational experiments are carried out to evaluate

the performance of the mathematical model and heuristics. Both proposed

simple heuristics are fast but one of them gives close to optimal solutions in

less than half a second in the worst case. Furthermore, for large instances the

heuristics perform very good and give solutions in almost a negligible time.

We published the results of Chapter 5 as a journal article in International

Journal of Production Management and Engineering in year 2015:

• Hatami, S., Ruiz, R., and Andrés-Romano, C. (2015). The distributed

assembly parallel machine scheduling problem with eligibility con-

straints. International Journal of Production Management and Engi-

neering, 3(1):13–23.

As mentioned, the presented model in Chapter 5 has an especial constraint

that no machine at any factory might be empty due to technological or econom-

ical constraints. This constraint is relaxed in the model considered in Chapter

6. Four simple, fast and high-performing heuristics are designed. Compre-

hensive computational experiments on three different sized sets of instances

are carried out to evaluate the performance of the mathematical model and

heuristics. All heuristics use negligible CPU times in comparison with the

solvers.

The results of this work are submitted to an international conference:

• Hatami, S., Ruiz, R., and Andrés-Romano, C. Heuristics for a Dis-

tributed Parallel Machine Assembly Scheduling Problem with Eligibil-

ity Constraints submitted to the 6th International Conference on Indus-

trial Engineering and System Management (IESM 2015) Conference,

Seville, Spain.
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8.2 Future work

In this section we report the limitations of our contributions and open the doors

to future research possibilities.

• The joint consideration of distributed manufacturing, an assembly stage

and sequence-dependent setup times both in the production stage and

in the assembly stage result in a more realistic problem. However, it

is not yet a fully practical industrial case. The literature on scheduling

problems starts in the 1950s and yet today there is a widely recognized

gap between the theory and practice of scheduling systems. This has

been recently pointed out in the book of Framinan et al. (2014). Many

authors during the last 30 years or more have been working towards

closing this research gap. This thesis is another step in this direction.

Closing this research gap in a thesis is not possible and large amount of

work is needed to close it to practical problems. Real production shops

have even more constraints and real situations than those considered

in this thesis. Therefore, considering more constraints and additional

characteristics in the problem setting will make it even more realistic

and close to practical problems. These constraints and additional char-

acteristics could be for example:

– Transportation times or a transportation stage between the produc-

tion and assembly stages.

– Buffer between the stages.

– Other shop configuration for production stage.

– Considering maintenance operations.

– Heterogeneous distributed factories could account for more com-

plex scenarios.

– The assembly stage could be made more complex with parallel

machines or ever with shop problems.
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• Other objective functions such as tardiness or production costs instead

of makespan is an interesting research path.

• Precedence constraints among the jobs of a given product could be

considered as well.

• Other heuristics or metaheuristics may report better solutions if com-

pared to the proposed ones in this thesis.
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