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Abstract

Nowadays, improving the management of complex supply chains is key
to become competitive in the 21% century global market. Supply chains are
composed of multi-plant facilities that must be coordinated and synchronized
to cut waste and lead times. This paper proposes a Distributed Assembly Per-
mutation Flowshop Scheduling Problem (DAPFSP) with two stages to model
and study complex supply chains. This problem is a generalization of the Dis-
tributed Permutation Flowshop Scheduling Problem (DPFSP) presented by
Naderi and Ruiz (2010). The first stage of the DAPFSP is composed of f
identical production factories. Each one is a flowshop that produces jobs to be
assembled into final products in a second assembly stage. The objective is to
minimize the makespan. We present first a Mixed Integer Linear Program-
ming model (MILP). Three constructive algorithms are proposed. Finally,
a Variable Neighborhood Descent (VND) algorithm has been designed and
tested by a comprehensive ANOVA statistical analysis. The results show that
the VND algorithm offers good performance to solve this scheduling problem.
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1. Introduction

Assembly systems have been widely studied in the last decade given their
practical interest and applications. An assembly flowshop is a hybrid pro-
duction system where various production operations are independently and
concurrently performed to make parts that are delivered to an assembly line
(Koulamas and Kyparisis, 2001). In assembly systems, a wide variety of fi-
nal products can be made from a given number of different assembled parts.
Assembly programs represent relationships between the different parts which
must be assembled from a set of suppliers.

Nowadays a single supplier or production factory is rare. As a matter of
fact, production systems with more than one production center (named dis-
tributed manufacturing systems) are quite usual as they play an important
role in practice (Moon et al., 2002). The benefits of distributed manufactur-
ing systems include achieving higher product quality, lower production costs
and fewer management risks (Wang, 1997; Kahn et al., 2004; Chan et al.,
2005). From a manager’s point of view, scheduling in distributed systems
is more complicated than in single-factory scheduling problems. In single-
factory problems, the only objective is to find a job schedule for a set of
machines, while an important additional decision in the distributed problem
is allocating jobs to suitable factories. Therefore, two decisions have to be
made; job allocation to factories and job scheduling at each factory. Different
job allocations to different factories result in different production schedules,
which consequently affects supply chain performance (Chan et al., 2005).

This paper contemplates flowshop scheduling as a production system for
each factory or supplier in the distributed problem. The flowshop scheduling
problem (FSP) is composed of a set of M of m machines where each job
of a set N of n jobs must be processed in each machine. The number of
operations per job is equal to the number of machines. The i*" operation of
each job is processed in machine ¢. Therefore, one job can start in machine ¢
only after it has been completed in machine ¢ — 1, and if machine 7 is free.
The processing times of each job in the machines are known in advance,
non negative and deterministic. In FSPs, a number of assumptions are made
(Baker, 1974): all jobs are available for processing at time 0; machines are
continuously available (no breakdowns); each machine can process only one
job at a time; each job can be processed in only one machine at a time; once
the processing of a given job has started in a given machine, it cannot be
interrupted and processing continues until completion (no preemption); setup
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times are sequence-independent and are either included in the processing
times or ignored; infinite in-process storage is allowed.

In the FSP, there are n! possible job permutations for each machine.
Therefore, the total number of solutions for a flowshop problem with m ma-
chines is (n!)™. To simplify the problem, it is assumed that all machines have
the same job permutation. In other words, if one job is at the j** position on
machine 1, then this job has to be at the j** position on all other machines as
well. With this simplifying assumption the FSP is referred to as Permutation
Flowshop Scheduling Problem (PFSP) with n! possible solutions.

This paper studies the Distributed Assembly Flowshop Scheduling Prob-
lem (DAPFSP). It is a combination of the DPFSP and the Assembly Flow-
shop Scheduling Problem (AFSP), and consists of two stages: production
and assembly. The first stage consists of a set F' of f identical factories or
production centers where a set N of n jobs have to be scheduled. All factories
are capable of processing all jobs and each factory is a PFSP with a set M
of m machines. Factories are assumed to be identical. Processing times are
denoted by p;;, @ € M, j € N. The second stage is a single assembly factory
with an assembly machine, M4, which assembles jobs by using a defined as-
sembly program to make a set T' of ¢ different final products. Each product
has a defined assembly program; in other words, each product consists of
some defined jobs. IV}, and J; are used, respectively, to represent product h
assembly program and the jobs that belong to the product h assembly pro-
gram, Ny, : {J;},7 € Nj,. Each product h has |Nj| jobs and job j is needed
for the assembly of one product. Therefore, > ;_, |Ny| = n. Product h as-
sembly can start only when all jobs that belong to /N, have been completed
in the factories. The considered objective is to minimize the makespan at the
assembly factory.

The next section presents a short literature review. Section 3 provides
a Mixed Integer Linear Programming (MILP) model to solve the consid-
ered problem. Section 4 introduces three constructive heuristics, while Sec-
tion 5 presents an iterative method based on Variable Neighborhood Descent
(VND) to improve results further. Section 6 describes a complete compu-
tational evaluation of the MILP model and proposed algorithms, where the
performance of the proposed approaches is discussed in order to assess the in-
fluence of the number of jobs, machines, factories, products and some solver
options on the results. Finally, Section 7 offers conclusions, remarks and
venues for future research.
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2. Literature review

The DPFSP can be viewed as a generalized version of the PFSP. This
problem is one of the most researched topics in the scheduling literature
(Pinedo, 2012; Dong et al., 2009; Zobolas et al., 2009; Laha and Sarin, 2009;
Vallada and Ruiz, 2010; Xu et al., 2011; Zhang and Li, 2011; Chen et al.,
2012; Pan and Ruiz, 2012).

In the PFSP, more attention has been paid to makespan minimization.
The practical implication is obvious: minimizing the makespan leads to the
minimization of the total production run (Framinan et al., 2002). There are
some proposed effective rules and algorithms for the PFSP (Johnson, 1954;
Nawaz et al., 1983). A comprehensive review and evaluation has been made
by Ruiz and Maroto (2005), Vallada et al. (2008) and Pan and Ruiz (2013).

Regarding the assembly scheduling problem, Lee et al. (1993) presented
a three-machine assembly-type flowshop scheduling problem by considering
makespan minimization as the objective function. In their considered model,
each product is composed of two types of jobs, where type a and b are pro-
cessed by machine M, and M, respectively, and machine M, assembles the
two jobs into a product. These authors also present a branch-and-bound so-
lution scheme and an approximate solution procedure. Later, Potts et al.
(1995) extended the model of Lee et al. (1993) by considering m parallel
production machines instead of the first two production machines. They ap-
ply the compact vector summation technique to find approximated solutions
with worse-case absolute performance guarantees. Hariri and Potts (1997)
developed a branch-and-bound algorithm for the same model as Potts et al.
(1995). Moreover, Tozkapan et al. (2003) considered a two-stage assembly
scheduling problem by minimizing the total weighted flow time as an objec-
tive function. They developed a lower bound and a dominance criterion, and
incorporated them into a branch-and-bound procedure. They also presented
a heuristic procedure to find an initial upper bound. Al-Anzi and Allahverdi
(2006) addressed the model presented by Tozkapan et al. (2003) and mini-
mized the total completion time of all the jobs. They used metaheuristics to
solve their model and proposed simulated annealing (SA), tabu search (TS),
and hybrid tabu search heuristics for general cases.

Despite the innumerable literature related to PFSP and AFSP, there are
few studies about the distributed problems. Jia et al. (2002) reported a web-
based system to enable production scheduling (a job shop problem) for the
distributed manufacturing environment and a Genetic Algorithm (GA) was
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adopted to solve the problem. Jia et al. (2003) presented a modified GA to
deal with distributed job shop scheduling problems. Later, Jia et al. (2007)
proposed a new approach to determine good combinations of factories to
manufacture jobs. An adaptive GA for distributed scheduling problems was
proposed by Chan et al. (2005). The same authors proposed a GA with
dominant genes for solving distributed scheduling problems in an FMS envi-
ronment in Chan et al. (2006a). Furthermore, Chan et al. (2006b) proposed
a GA to deal with distributed flexible manufacturing system (FMS) sub-
ject to machine maintenance constraints. Naderi and Ruiz (2010) introduced
the DPFSP for the first time. They developed six different MILPs for the
considered problem and proposed two simple factory assignment rules and
14 heuristics based on dispatching rules, effective constructive heuristics and
VND methods. Liu and Gao (2010) proposed an electromagnetism-like mech-
anism (EM) algorithm for the same problem. The same authors, in Gao and
Chen (2011a) proposed a GA-based algorithm, denoted by GA-LS, Gao and
Chen (2011b) a constructive heuristic algorithm enhanced with a dispatching
rule, Gao et al. (2012b) a knowledge-based genetic algorithm and Gao et al.
(2012a) a Variable Neighborhood Descent (VND) algorithm.

To the best of our knowledge, no further literature exists on DAPFSP,
so this is the first effort that considers the assembly flowshop problem in a
distributed manufacturing setting.

3. Mixed Integer Linear Programming model

A mathematical model is an abstract and good approach that uses math-
ematical language to describe in detail a problem. There are many papers
related to the flowshop problem which use MILP modeling; for example, we
can cite Stafford et al. (2005); Tseng and Stafford (2008); Ching-Jong and
Li-Man (2008) and Naderi and Ruiz (2010), to name just a few.

We first define the model indexes, parameters and variables in Table 1, and

present the MILP afterwards. The proposed MILP model is inspired by the

fifth mathematical model that is presented in Naderi and Ruiz (2010) for the

DPFSP that was shown to outperform the other models tested in that paper.
The objective function of the model is to minimize a makespan:

Min C\pax



Index Description

k,j denotes jobs, k,7 =0,1,...,n, where 0 presents a dummy job

7 denotes machines at each factory,i=1,...,m

l,s denotes products, [,s = 0,1,...,t, where 0 presents a dummy product
M A sufficiently large positive number

Parameters  Description

n number of jobs

m number of machines

f number of factories

t number of products

Dij processing time of job j on machine ¢

DPs processing time of product s at the assembly stage

Gjs Binary parameter equal to 1 if job 5 belongs to product s, and 0 otherwise
Variable Description

Xk binary variable equal to 1 if job k is an immediate predecesor of job j

Yis binary variable equal to 1 if product [ is an immediate predecesor of product s
Cii completion time of job j on machine ¢

CAs completion time of product s on assembly stage

Cmax makespan

Table 1: indexes, parameters and variables used in MILP mathematical model.

s and the constraints of the model are:

J=0,k#j

Y Xoj=f
j=1

S X =1
k=1
ij—f—Xijl VjG{l,...,n—l},j>k3
Cij > Civj + pij Vi, j
Cij > Cig +pij + (Xiy — 1) - M Vk,j # ki

t
Z}ﬁszl Vs

1=0,1#s
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Note that Cp; = CAy = 0,Vj. Constraint set (1) controls and ensures
that each job must have exactly one predecessor. Constraint set (2) indicates
that each job has one succeeding job at the most. Constraint set (3) enforces
that dummy job 0 has to have f predecessor in the final sequence. Constraint
set (4) also enforces that dummy job 0 must be a successor f—1 times (there
is no dummy job at the end of the sequence). Constraint set (5) controls and
ensures that a job cannot be both a predecessor and successor of another
job at the same time. Constraint set (6) enforces the processing of job j in
machine 7 when the processing at machine ¢ — 1 is completed. Constraint set
(7) determines that if job j is placed immediately after job k, its processing
at machine ¢ cannot start before the processing of job k£ in machine i finishes.
Constraints (8) and (9) force that each product should have one predecessor
and at most one succeeding product in the assembly factory, respectively,
constraint (10) controls that a product cannot be both a predecessor and a
successor of another product at the same time. Constraint (11) implies that
each product h cannot begin its assembly before all the jobs in its assembly
program are completed in the last machine m. Constraint set (12) determines
that if product s is placed immediately after product [, its processing on
assembly machine cannot start before the processing of product [ in assembly
machine finishes. Constraint (13) defines the makespan, while constraints
(14)-(17) define the domain of the decision variables.

The significant point of this model is that there is no index for facto-
ries. Sequence-based variables are hence used with a set of f dummy jobs.
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These dummy jobs divide all the jobs into subsequences and assign them
to each factory (i.e., all jobs placed between the first dummy job and the
second dummy job belong to the first factory, and so on). For example,
if one of the possible solutions for a problem with n = 8 and f = 3 is
Xog =Xo3 =X35 =X59 =Xo6 =X61 =X14 =X40 =Xo7 =Xrg = 1,
then the sequence is {0,2,3,5,0,6,1,4,0,7,8}, where partial job sequences
{2,3,5}, {6, 1, 4} and {7, 8} are assigned to factories 1, 2 and 3, respectively.

4. Heuristic methods

As mentioned in the paper of Naderi and Ruiz (2010), the DPFSP is an
NP-Complete problem (if n > f); accordingly, the DAPFSP with an addi-
tional assembly stage as a further stage is certainly a NP-Complete problem.
Therefore, it is necessary to develop a heuristic approach to solve large-sized
problems. In order to solve instances of realistic size in this problem, three
constructive simple heuristics are proposed.

For the assignment of jobs to factories, the two rules, of Naderi and Ruiz
(2010) are used.

1. Assign job j to the factory which has the lowest current Cpax, (NRy).

2. Assign job j to the factory which has the lowest C., after including
job 7, (NRy).

Using these two factory allocation rules, three heuristics are presented to
schedule jobs.

4.1. Heuristic 1

We first introduce some necessary notation. An example with n = 9,
m = 2, f = 2 and t = 3, this is, 9 jobs, 2 factories with a flowshop of
two machines each and three products to assemble, is employed to explain
expressions and heuristics in detail. Table 2 shows the processing times of
the jobs and assembly processing times of products. The products’ assembly
programs are: Ny = {3,4,6}, Ny = {1,2,8,9} and N3 = {5,7}. 7 represents
a product sequence, e.g., m : {1,3,2} is a possible product sequence for the
given example. As mentioned before, each product h is made up of ||
jobs and 7, is the partial job sequence of product h, e.g., m : {6,4,3},
7o : {1,9,8,2} and 73 : {7,5}. A complete job sequence, mp, is constructed
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by putting together all partial job sequences, following the product sequence
T, e.g., mr : {6,4,3,7,5,1,9,8, 2}.

The shortest processing time (SPT) is a well-known dispatching rule for
the PFSP. In the SPT, the job with the shortest processing time is processed
first. This rule tends to reduce the work-in-process inventory, the average
throughput time, and average job lateness (Vollmann et al., 2005). Hence
the SPT is used to determine the product sequence in the assembly machine.

Heuristic 1 begins by applying the SPT rule for the assembly operation
times to obtain 7. A heuristic which is based on Framinan and Leisten (2003)
heuristic (FL) is applied on the jobs that belong to a given product, to
obtain a good partial job sequence for each product. The heuristic evaluates
the completion times of the jobs that belong to product h. Set R;, is made
by sorting jobs in ascending order of completion times. The first two jobs
of R, are selected and inserted into S,. When there are only two jobs in
Sh, all pairwise exchanges are checked and S}, is updated with the one that
results in the best makespan. The next step is removing the third job in Ry,
and inserting it in all possible positions of Sj,. The sequence with the best
makespan will be selected. All possible sequences by carrying out pairwise
exchanges between jobs are evaluated again. The process continues until all
jobs have been considered. S}, is the partial job sequence for product h, (7).
7 is constructed by putting together all 7, and jobs are assigned to factories
from 7 by using NR; or NRs, which respectively result in the Hy; or Hyo
heuristics.

Pseudocode 1 explains heuristics H;; and Hys in detail:

Pseudocode 1 Outline of the Hy; /H;5 heuristic.

- Obtain product sequence w after applying the SPT rule on product assembly processing times, m =
{m(1),m(2),...,7(¢)}; (w(1): The first product in product sequence)

- Determine partial job sequence for all products using the proposed algorithm based on FL heuristic
(7p,: partial job sequence for product h)

- Construct complete job sequence (7wr) by putting together all partial job sequences (7, ), following
the product sequence, 7

- Assign all jobs in 7w to factories using NR; to make Hi; and using N Ry to make Hio

Let us now apply proposed heuristics to the example. 7 : {1,3,2} is
the product sequence obtained after applying the SPT rule to the assembly
processing times of the products. The next step is to find a good partial job
sequence for each product. As mentioned before, each product has a defined
assembly program that includes a defined set of |V,,| jobs. Completion time
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Jobs

Machines 1 2 3 4 5 6 7 8 9

My 1 5 7 9 9 3 8 4 2

Mo 3 8 5 7 3 4 1 3 5

Product 1  Product 2  Product 3

My 6 19 12

Table 2: Processing times of the jobs and assembly processing times of the products for
the example.

for each job at the production stage is the summation of each job processing
times on all machines, > . p;;. Therefore, completion times for set of jobs
of the product 1, Ny = {3,4,6} are Cy3 = 12, Cyy = 16, Cy = 7. Set
R, is obtained by arranging jobs in an increasing completion time order;
Ry = {6,3,4}. The first two jobs of R; are selected and included into S;.
All possible sequences resulting from pairwise exchanges of the first two jobs
in S; are calculated: {6, 3} and {3, 6} which result in makespans values
of 15 and 16, respectively. The sequence with the minimum makespan is
Sy : {6,3}. The third job in Ry, (4) is inserted into all possible positions of
S1. The obtained partial job sequences are: {4,6,3}, {6,4,3} and {6,3,4}
and their makespans in the production stage are: 25, 24, 26, respectively.
As a result, the second is the best position for job 4 and S; is updated
to {6,4,3}. In the next step, general pairwise exchanges are carried out on
the updated Si; hence, the partial job sequences are: {4,6,3}, {6,3,4} and
{3,4,6} and, subsequently, their makespans in the production stage are, 25,
26, 27, respectively. If a better makespan is obtained, then S; is updated.
This process continues until all jobs have been inserted into Sy. m; is the
final updated S, which is equal to {6,4,3}. By following the same method,
the partial job sequences for the other products are: m = {1,9,8,2} and
w3 = {5,7} with partial makespans of 20 and 18, respectively. Hence mr
is {6,4,3,5,7,1,9,8,2}. The final step is to assign jobs in 7y to factories
by using NR; /NRy to obtain Hyy /His. Chax of Hyp and Hyp are 55 and 53,
respectively. The Gantt chart of the considered example after applying Hy;
is shown in Figure 1.

4.2. Heuristic 2

The idea of the second heuristic is to give priority to products whose jobs
are completed in the production stage sooner. This concept is noted as the

10
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Figure 1: Gantt chart of Hy; for the example.

earliest start time to assemble product h, Ej,. The procedure that is used
in Hy; and Hys to find partial job sequences of products (m,) also is used
in heuristic 2. E}, is calculated by using NR; or NRs to assign jobs in each
partial job sequence to factories. 7 is built by sorting Fj in ascending order.
A detailed explanation is shown in Pseudocode 2.

Pseudocode 2 Outline of the Hyy /Hgo heuristic.

- Determine partial job sequences of products using proposed algorithm based on FL heuristic (mp:
partial job sequence for product h)
- Calculate the earliest start time to assemble each product h, Ej, using NR; and NRg to assign jobs
of the partial job sequences, respectively for Ho; and Hag

- Sort E}, in ascending order for all the products to obtain product sequence, 7: {mw (1), 7(2),...,7(¢)}
- Construct complete job sequence (mp) by putting together all partial job sequences (), following
the product sequence, m

- Assign all jobs of wp to factories using NR; to make Hoq and using NRa to make Hao

The last example data is also used to clarify the second proposed heuristic.
E}, is calculated by applying job assignment rules (NR; for the Hy and
NRj for the Hgy) for the partial job sequence of product h. Therefore, the
earliest start times for assembling products by considering NRy are £; = 15,
Ey =15 and E5 = 12. The product sequence 7 is obtained by sorting Fj, in
ascending order, 7 :{3,2,1}. As a result, the complete job sequence, 7r, will
be: {5,7,1,9,8,2,6,4,3}. The final results of Cp,.x for Hy; and Hyy are equal
to 51 and 50, respectively.

11
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4.8. Heuristic 3

The third proposed heuristic is similar to the second one. The difference
is in the construction of the partial job sequences of each product (7). While
heuristic 2 uses a heuristic based on FL, heuristic 3 employs the more simple
SPT rule. Our intention is to test if a simpler constructive heuristic gives
similar results.

Table 3 shows the C,,; of the jobs, the partial job sequence for each
product, after applying the SPT rule and E}, of product A in the columns for
the example.

Product (h) Job (]) CQJ' Th Eh
3 12
1 4 16 6,3, 4 19
6 7
1 4
2 2 13 1,9,8,2 15
8 7
9 7
5 5 12 7,5 12
7 9

Table 3: Job completion times on the last machine of production stage, products partial
job sequence and earliest start time for assembling each product for the example.

Product sequence 7 is {3,2,1} after sorting E}, in ascending order. The
complete sequence 7 after putting together the partial jobs sequences of
each product is: {7,5,1,9,8,2,6,3,4}. After applying NR; to this sequence
we obtain a C . of 51. The C,.« for NR; is 50.

5. Variable Neighborhood Descent (VIND)

We now present a Variable Neighborhood Descent (VND) method (Hansen
and Mladenovic, 2001). VND is an enhanced local improvement strategy
based on the systematic exploration of different neighborhood structures
Ni,...,Ng. A VND starts with the first structure N; by performing a local
search until no further improvements are possible. From this local optimum,
it continues the local search with neighborhood structure Ns. If an improved
solution is found with this structure, the VND goes back to Ny; otherwise, it
continues with Ns, and so forth. If the last structure N, has been applied and
no further improvements are possible, the solution represents a local optimum
with respect to all neighborhood structures and the VND terminates.

12
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5.1. Solution representation and VND initialization

In order to represent a solution, a complete sequence of all jobs 77 is
considered, like in the PFSP. We limit the representation so that all jobs from
a product are never separated. The jobs in the complete sequence are assigned
to factories using NR; or NRy. An example of a solution representation can
be: {6,4,3,1,9,8,2,5,7} which is a equal to product sequence of {1,2,3}
with respect to the last example.

The VND approach needs an initial solution. Although a random solution
can be used as an initial solution, it is better to use heuristics (Naderi and
Ruiz, 2010; Vallada and Ruiz, 2010; Ruiz and Stiitzle, 2007). Our approach
uses the six proposed constructive heuristics to obtain the initial solution.
Later we will test six VND versions, each one starting from the result of each
heuristic.

5.2. Neighborhoods and acceptance criterion

Our proposed VND heuristic employs two neighborhood structures, and
both are applied to the complete sequence 7.

The first is referred to as LSp and is a product local search. It attempts
to improve the objective function by examining different product sequences.
LSp works as follows: 1) It provides a list of product sequences by removing
a single product from 7 and inserting it in all the possible ¢ — 1 positions of
current m; 2) It evaluates the list of obtained product sequences by converting
them into w7 and assigning the jobs of 77 to factories via NRy or NRy; 3) If
one of the obtained 7 in the list has a better C,.,, then 7 is updated to the
better product sequence and all the products are reinserted again (a local
search until a local optimum), otherwise the search continues with the next
product.

The second neighborhood is LS}, tries to find different partial job se-
quences for each product to improve the objective function. LS; works as
follows: 1) LS; starts with the first product h, then the local search starts
by removing the first job of 7, and inserting it in all the possible |N,| — 1
positions of m; 2) Evaluate mp with all the newly obtained partial job se-
quences for product h; 3) If a better objective function is obtained, then
is updated and all jobs in 7, are reinserted again until a local optimum is
found. Otherwise, the search continues with the next job in my; 4) LS; will
continue with the next product until all products have been considered.

Pseudocodes 3 and 4 show the product and the job local search, respec-
tively.
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Pseudocode 3 Product Local Search, LSp.

=1
while [ <t do
- Remove product a which is placed in position [ of 7
- Insert a into all ¢ — 1 possible positions of 7«
- Evaluate all obtained 7 by converting them into wp
if a better Ciax is obtained then
- update 7
else
l=1+1
end if
end while

Pseudocode 4 Job Local Search, LS.

h=1
while h <t do
j=1
while j < Nj, do
- Remove job b which is placed at position j of 7,
- Insert b into all | Ny | — 1 possible positions of current mp,
- using the new mp, convert it to mp
if a better Cmax is obtained then
- Select, the partial job sequence with the best result as the new 7,

else
j=j+1
end if
end while
h=h+1

end while

6. Computational evaluation

Two complete sets of instances have been generated to test the MILP
model and the proposed heuristics. Due to the complexity of the problem,
and given the number of different characteristics considered, four instance
factors and three test factors are combined at the levels provided in Table 4
for small instances. The test factors are: two commercial solver packages
(Solver) are used as solving tools, the number of CPU threads (Thread),
where we have tested 1 thread (serial computing) and 2 threads (parallel
computing) and a time limitation TimeLimit for the stopping criterion. The
heuristics are also tested in a set of larger instances, which differ in the factors
as listed in Table 5.

Processing times in the production stage are fixed to U[1,99] as it is usual
in the scheduling literature. The assembly processing times depend on the
number of jobs assigned to each product h as U[1 x |Ny|, 99 x | N3|]. The total
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Instance factor Symbol Number of levels  Values

Number of jobs n 5 8, 12, 16, 20, 24

Number of machines m 4 2,3,4,5

Number of factories f 3 2,3,4

Number of products ¢ 3 2,3,4

Test factor Symbol Number of levels  Values

Solver Solver 2 CPLEX 12.3, GUROBI 4.6.1

Thread Thread 2 Serial computing (1), Parallel computing (2)
Time limitation TimeLimit 2 900s, 3600s

Table 4: Instance and test factors for the small instances.

Instance factor Symbol  Number of levels  Values
Number of jobs n 3 100, 200, 500
Number of machines m 3 5, 10, 20
Number of factories f 3 4,6, 8
Number of products ¢ 3 30, 40, 50

Table 5: Instance factors for the large instances.

number of combinations in the small and large instances are 5 x 4 x 32 = 180
and 3* = 81, respectively. There are five replications per combination for
small instances and ten replications for every large combination. Therefore,
the total number of instances is 900 and 810, respectively. All the instances
are available at http://soa.iti.es.

6.1. MILP model evaluation

A linear programming model has been constructed for each small instance.
It is solved with all the combinations of the test factors, using CPLEX 12.3
and GUROBI 4.6.1 solvers, serial and parallel computing and two time limits
(900s and 3600s). All the tests are carried out in a high performance comput-
ing cluster with 30 blades, each one containing 16 GBytes of RAM memory
and two Intel XEON E5420 processors running at 2.5 GHz. Note that each
processor has 4 physical computing cores (8 per blade). The 30 blade servers
are used only to divide the workload and experimentations. Experiments are
carried out in virtualized Windows XP machines, each with one virtualized
processor with two cores and 2 GB of RAM memory.

A categorical variable named “response type” with two values, 0 and 1,
is reported. Value 0 means that an optimum solution is found in the given
time with Cp.. value as a result, and 1 means that in 900s or 3600s, a
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feasible integer solution is found and reported, but it has not been proven
to be optimal. Moreover, the gap between this solution and the best MILP
bound is also reported. In the CPU time allowed, the LP model with all
900 small instances is able to find 516 optimum solutions (57.33 %). Table 6
summarizes the results, which are categorized by factors of solver, threads and
time limit. The comparison criteria are: the percentage of optimum solutions
found (%opt), the average gap as a percentage for the cases in which the
optimum solution is not found (GAP%) and the average time required in
seconds. Later we will carry out statistical testing to ascertain the significance
of the observed differences.

It is clear that GUROBI is able to find more optimal solutions than
CPLEX, and its average gap and average CPU time consumption are smaller
than CPLEX. Overall, time limit of 3600 seconds and parallel computing
(2 threads) results in a larger number of optimal solutions, in comparison
with time limit of 900 seconds and serial computing (1 thread). CPLEX with
parallel computing (2 threads) results in a greater average gap in comparison
with serial computing, but this trend is reversed with GUROBI. Among all
the eight combinations of test factors, GUROBI with two threads and 3600
seconds time limitation finds more optimum solutions than the others.

Time Limit 900s 3600s
Solver
Thread 1 2 1 2
% opt 59.44 61.22 63.11 61.89
CPLEX
GAP% 29.62 30.77 32.23 36.46
Av Time (s) 390.41 380.69 1426.53 1441.80
% opt 66.89 68.33 70.78 73.00
GUROBI
GAP% 2.19 2.04 1.81 1.70

Av Time (s) 328.15 315.57 1152.36  1089.00

Table 6: Performance results for solvers, threads and time limit for the small instances.

Automatic Interaction Detection (AID) is an advanced statistical tech-
nique for multivariate analysis, which was developed by Morgan and Sonquist
(1963). It seeks to find explanatory variables and combinations of these vari-
ables which are important for lowering variance in the dependent variables.
AID is a stepwise procedure that subdivides experimental data according
to one factor through a series of dichotomous splits into a number of mu-
tually exclusive subgroups. The initial AID was improved by Kass (1980)
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by including statistical significance testing in the partition process and by
allowing multi-way splits of data resulting in the so-called Chi-squared Au-
tomatic Interaction Detection (CHAID). A modification to the basic CHAID
algorithm, called an exhaustive CHAID, introduced by Biggs et al. (1991),
performs a more thorough merging and testing of factor variables.

An exhaustive CHAID is used to draw a decision tree to analyze the ef-
fect and interactions of the factors for the averages observed in Table 6. AID
techniques are used in different areas like market research, psychology, edu-
cation, scheduling, etc. Recently, CHAID was employed by Ruiz et al. (2008)
to analyze a complex non distributed scheduling problem MILP model. Also,
Ruiz and Andrés-Romano (2011) employed CHAID to analyse a MILP in a
problem with unrelated parallel machines with resource-assignable sequence-
dependent setup times. Naderi and Ruiz (2010) also used CHAID to analyze
several models for the distributed permutation flowshop scheduling problem.

The exhaustive CHAID method is used to analyze the MILP results,
which were previously presented. The factors, either serial computing or par-
allel computing ( Threads), solver, n, m, f and t, are controlled. We introduce
all the data of both stopping CPU time criteria so the factor time is controlled
as well. The response variable is the type of solution reached by CPLEX and
GUROBI with two possible values (0 and 1). We use the PASW statistics
version 18 software and set a high confidence level for splitting of 99.9%, as
well as a Bonferroni adjustment for the multi-way splits, which compensates
the statistical bias in multi-way paired tests.

In Figure 2, the root node contains the total percentage of the cases were
instances were solved optimally (type 0) and the total number of cases. The
most significant factor is the number of jobs or n, and the next level is divided
into one node for each possible n value. The p-value obtained for this split
comes very close to 0 and the result of the y? statistic is very high, meaning
that the split is done with a very high level of confidence; i.e., n is the most
influential factor on the response variable with a very statistically significant
effect.

Among the resulting five nodes, as the n value increases, the number of
cases for which an optimal solution is found decreases. As a matter of fact, for
n = 20 and 24, only 35.6% of the instances are optimally solved. After this
first multi-way split, nodes are split into the number of factories factor, except
for n =8. It is logical that when there is a larger amount of factories, jobs have
more options for allocations, and the completion time of jobs also shortens.
Hence, the earliest possible time to start product assembly also shortens, and
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the possibility of finding a better solution increases. The number of products
t is the third next important factor, except for node n = 12 / f = 3, where
number of machines is a significant factor. No further statistically significant
divisions are found and the stopping criterion for branching is met for nodes
n=12 / f =4and n =24 / f = 2. The number of products factor shows
the same trend as the second important factor (number of factories); that
is, a higher percentage of optimal solutions is found when there is a larger
number of products. If the number of jobs is constant and the number of
products increases, fewer jobs will be dedicated to each product on average,
so finding a better partial job sequence for each product is easier.

As seen, apart from a few isolated cases, the effect of type of solver, one
thread (serial computing) and two threads (parallel computing) and time
limit (900s and 3600s) are not statistically significant.

6.2. Heuristics evaluation

The twelve pI‘OpOSGd methods (HH, H12, Hgl, HQQ, 1‘1317 1‘1327 \/I\II)H117
VNDy,,, VNDg,,, VNDp,,, VNDp,, and VNDg,,) are now tested. As the
proposed heuristics are not expected to find an optimal solution, the Relative
percentage deviation (RPD), is measured for comparisons. We measure RPD
as follows: using the optimal solution or the best known solution, which is
found through all heuristics and the MILP model (OPTyes) and ALGsor,
which reports the makespan obtained by a given algorithm for a given in-
stance:

RPD = AE450L-OFThest 5 1()0

Table 7 provides the summarized results of the MILP and the average
algorithm deviations from the best known solution for the small instances.
They are categorized by n and f.

As we can see in Table 7, it is clear that the mathematical model is unable
to find an optimum or best solution for all the small instances considered. By
increasing the number of jobs (n) and by decreasing number of the factories
(f), the problem becomes harder for the MILP to solve. All VND algorithms
perform better than the constructive algorithms. NRy works better than the
first one as a rule to assign jobs to factories. In order to know if the differences
observed in Table 7 are statistically significant, a multifactor ANOVA of the
results of the VND algorithms has to be done. The average RPD value for
all the simple constructive heuristics is 6.75%, and this amount lowers to
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Figure 2: Decision tree for the MILP model evaluation.
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2x8 0.00 14.62 13.61 6.91 5.99 13.55 12.17 1.00 0.76 1.00 0.76 1.02 0.78
2x12 0.02 13.70 12.78 5.74 5.17 11.58 11.05 0.93 0.87 0.93 0.87 0.93 0.87
2 x 16 0.45 12.52 11.40 5.77 5.10 10.00 9.16 0.73 0.55 0.72 0.53 1.09 0.53
2x 20 1.55 10.23 9.59 4.55 3.78 896 8.46 0.53 0.36 0.51 0.37 0.57 0.37
2x24 3.42 871 834 5.00 474 754 7.15 0.54 0.21 0.54 0.21 0.54 0.21

3 x8 0.00 11.35 9.96 4.57 3.15 8.92 7.79 1.09 0.70 1.15 0.76 1.15 0.76
3 x 12 0.02 9.96 9.13 3.03 255 8.72 7.50 0.44 0.28 0.44 0.28 0.44 0.28
3 x 16 0.05 10.10 9.16 3.77 3.14 9.59 8.73 0.86 0.56 0.91 0.56 0.91 0.56
3 x 20 0.40 9.86 893 272 219 853 7.84 043 0.43 043 0.43 0.43 0.43
3 x 24 1.16 777 6.48 311 252 7.24  6.32 0.64 0.33 0.64 0.33 0.64 0.33

4x8 0.00 9.03 8.01 216 1.25 6.41 525 1.08 0.63 0.99 0.63 0.99 0.63
4x12 0.00 5.63 453 1.82 1.38 4.58 3.58 0.74 0.47 0.74 0.47 0.74 0.56
4 x 16 0.03 721 634 286 227 6.14 5.18 0.59 0.28 0.59 0.28 0.59 0.28
4 x 20 0.21 6.80 6.00 296 2.61 5.66 504 1.10 0.63 1.10 0.63 1.10 0.63
4 x 24 0.40 5.14 4.43 2.02 1.60 4.87 4.19 0.57 0.26 0.57 0.26 0.57 0.26

Average 0.51 9.51 858 3.80 3.16 8.15 7.29 0.75 0.49 0.75 0.49 0.78 0.50

Table 7: Relative Percentage Deviation (RPD) of MILP and proposed algorithms over the
best known solution for the small instances.

0.63% for the VND methods. The RPD factor difference between simple
constructive heuristics and VND heuristics is very high. For this reason,
we separated the statistical analysis in two ANOVAs: one for the simple
heuristics and the other one for the VND methods. As explained before, there
are 900 small instances, and each ANOVA considers six simple constructive
heuristics or six VND methods with 6 x 900 = 5400 data.

As with all parametric analyses, ANOVA requires some assumptions to
be met. These are normality, homocedasticity and independence of residuals.
While a slightly strong tailed normal distribution of the residuals is observed,
residuals are clearly homoscedastic and independent, and according to the
recent results of Basso et al. (2007) and Rasch and Guiard (2004), this is not
a major problem. The response factor is again the RPD and the controlled
factors are n, m, f, t and algorithms. All the controlled factors in the ANOVA
analysis, except m and t in six simple constructive heuristics, and except f
factor in six VND methods result in strong statistically significant differences
in the RPD response variable, with p-values coming very close to zero. The
results are not shown here due to reasons of space. In order to identify the
best algorithm, the means plot and Tukey’s Honest Significant Difference
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Figure 3: Means plot and 99% confidence level Tukey’s HSD intervals for simple construc-
tive heuristic methods and small instances.

(HSD) intervals (99% confidence) for the six simple constructive heuristics
and VND methods are shown in Figures 3 and 4, respectively.

As it is clear in Figure 3, the second heuristic performs better in compar-
ison with the other simple constructive heuristics and there is no significant
differences between the rules used to assign jobs to factories. However, it is
obvious in Figure 4 that the rules for allocating jobs to factories are impor-
tant, and NRy is statistically different from NR;. It is clear that the VND
algorithm almost improves all the initial solutions equally and that the kind
of initial solution to start the VND is not important for algorithms with the
same job assignment rule. No significant differences between the three VND
considered algorithms using NRj is found.

The CPU times to solve small instances with the considered algorithms
are negligible; for example, the VNDy,, algorithm with 0.004693 seconds,
has the largest average consumed CPU time for the small instances.

6.3. Heuristics evaluation on large instances

In this case, for calculating the RPD, the best solution (OPTjes) is the
best solution found among all twelve algorithms because, in large instances,
good MILP bounds are not known. A summarized result of the average RPD,
considering number of factories, number of products and number of jobs,
is shown in Table 8. Algorithms can be categorized into two groups: VND
algorithms, Hy; and Hgg, in one group, which perform better, and the rest
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Figure 4: Means plot and 99% confidence level Tukey’s HSD intervals for VND methods
and small instances.

in another group. On the other hand, algorithms with NRy work better than
those with NR;.

The second group does not report good results if compared to the first
one, so it has been eliminated from the statistical analysis. A multifactorial
ANOVA has been carried out with only the first group to know if there are
any significant differences between results. Figure 5 shows a means plot (99%
confidence level Tukey’s HSD intervals) for the first group of algorithms. It
is clear that the algorithms which use NR5 as a job assignment rule, report
better results. Moreover, the type of initial solution for the VND algorithms
does not play an important role. Finally, there is no significant difference
between the VND algorithms that use the same job allocation rule.
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Algorithms
Hi; Hiz Hzi Haz Hzy Hsz VNDp,, VNDp,,VNDp, VNDp,, VNDp, VNDyy,,

Factories 4 5.57 5.09 0.32 0.19 2.96 2.56 0.06 0.03 0.05 0.01 0.05 0.01
N 6 3.77 3.29 0.11 0.06 1.64 1.31 0.03 0.01 0.02 0.00 0.02 0.00
8 3.09 2.66 0.04 0.02 1.21 0.93 0.02 0.00 0.01 0.00 0.01 0.00

Products 30 3.78 3.34 0.21 0.11 2.23 1.86 0.03 0.01 0.04 0.01 0.04 0.01
() 40 4.30 3.85 0.15 0.10 1.94 1.62 0.04 0.02 0.02 0.01 0.02 0.01
50 4.36 3.85 0.11 0.05 1.65 1.32 0.04 0.01 0.02 0.00 0.02 0.00

Jobs 100 6.30 5.61 0.17 0.08 2.02 1.58 0.05 0.02 0.03 0.01 0.03 0.01
200 3.76 3.28 0.15 0.07 1.92 1.55 0.03 0.01 0.02 0.00 0.02 0.00
500 2.37 2.16 0.14 0.10 1.87 1.67 0.03 0.01 0.03 0.01 0.03 0.01

z

Relative Percentage Deviation

Aver 4.14 3.68 0.16 0.09 1.94 1.60 0.04 0.01 0.03 0.01 0.03 0.01

Factories 4 0.01 0.01 0.01 0.01 0.01 0.01 4.39 6.79 2.90 7.67 2.55 42.87
(N 6 0.01 0.01 0.01 0.01 0.01 0.01 3.49 7.73 2.85 8.94 1.95 6.11
8 0.01 0.01 0.01 0.01 0.01 0.01 3.26 9.56 1.86 10.21 1.83 20.64

Products 30 0.01 0.01 0.02 0.02 0.01 0.01 3.64 8.05 3.14 11.00 2.70 45.20
() 40 0.01 0.01 0.01 0.01 0.01 0.01 3.59 7.12 2.45 8.05 1.96 5.54
50 0.01 0.01 0.01 0.01 0.01 0.01 3.91 8.91 2.02 .77 1.66 18.88

CPU time (sec.)

Jobs 100 0.00 0.00 0.00 0.00 0.00 0.00 1.09 2.84 0.27 0.72 0.24 0.43
(n) 200 0.00 0.00 0.00 0.00 0.00 0.00 2.02 3.85 0.58 2.22 0.66 1.37
500 0.03 0.02 0.03 0.04 0.03 0.02 8.03 17.39 6.76 23.88 5.41 67.81

Aver 0.01 0.01 0.01 0.01 0.01 0.01 3.71 8.03 2.54 8.94 2.11 23.20

Table 8: Relative Percentage Deviation (RPD) and CPU times of proposed algorithms for
the large instances.
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Figure 5: Means plot and 99% confidence level Tukey’s HSD intervals for algorithms and
large instances.

It is obvious that heuristic 2 performs better than heuristic 3 in both
small and large instances.

The interaction between algorithms and n has no significant effect on the
response variable. An increase in the number of machines always complicates
problems, thus there is no interest in showing these interactions. Interaction
between algorithms and the number of factories f is interesting. By increas-
ing the number of factories, the problem becomes easier, as it is shown in
Figure 6.

036 F =
026
&
S 016

0.06

-0.04 " i _

Figure 6: Means plot and 99% confidence level Tukey’s HSD intervals for interaction be-
tween algorithms and number of factories f and large instances.

Neither the number of products nor the number of jobs factors have a
significant effect, and only an increase in either makes the problem easier to
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solve for simple constructive algorithms. However, neither one has a signifi-
cant effect on the VND algorithms.

In all the results, the RPD of VNDy,, is consistently lower than that

of the other algorithms. Thus with more samples, it is expected that it will
eventually become statistically better than the others. VNDy,, is better than
VNDy,, because NRy checks all the factories when assigning a job and finally
chooses the best one. It takes longer than NR;, which just places the job at
the first available factory. However, when the number of factories increases,
the algorithms that use NR; do not report good results.
The algorithms’ CPU time consumption is summarized in Table 8. Simple
constructive algorithms use a very short time in order to solve problems,
while, as expected, the VND algorithms use more time if compared to simple
constructive algorithms. VNDy,, consumes an average of 23.20 seconds, the
longest CPU time consumption if compared to other algorithms. As Table 8
shows, in the VNDy,, algorithm, factors n = 500, t = 30 and f = 4 are the
most CPU time consuming.

The VND methods try to improve the output of simple constructive al-
gorithms and it is logical that take more time than simple constructive al-
gorithms to solve problems. To compensate, VND algorithms report smaller
RPD values than simple constructive algorithms. As Table 8 shows, the mini-
mum RPD reported by a simple constructive algorithm is 9 times larger than
the largest reported RPD by VND algorithms that use NR5.

If the quality of the solution is more important than CPU time con-
sumption, then VND algorithms are the best options. Otherwise, a simple
constructive algorithm can be a good choice when only CPU time consump-
tion is more important. However, it is worth waiting a maximum time of
almost 24 seconds to obtain a good solution. All the experimental results
and the best solutions can be found at http://soa.iti.es.

7. Conclusion and future research

To the best of our knowledge, this paper is the first attempt to general-
ize the Distributed Permutation Flowshop Scheduling Problem to the Dis-
tributed Assembly Permutation Flowshop Scheduling Problem, where there
is more than one production center to process jobs and a single assembly
center to make final products from produced jobs. A mathematical model is
presented and two solvers are used to solve it. Three constructive algorithms
and three VND algorithms are proposed.
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Computational evaluations were performed with two groups of small and
large instances, and ANOVAs were used to analyze results. Results show
that the VND algorithms report the best results. On the other hand, simple
constructive algorithms consume little CPU time and still produce reasonable
solutions.

For future works, setup times, transportation stages and distinct facto-
ries can be considered for added realism. Other strategies can be used to
construct VND neighborhoods. Other metaheuristics may report better so-
lutions if compared to our proposed VND.
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