
The Distributed Computing Column
by

Panagiota Fatourou

Department of Computer Science, University of Crete
P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and
Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)
N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece
faturu@csd.uoc.gr

http://www.csd.uoc.gr
http://www.uoc.gr
http://www.ics.forth.gr
http://www.forth.gr
faturu@csd.uoc.gr


6th Workshop on Theory of Transactional
Memory

Maria Couceiro∗, Vincent Gramoli† and Paolo Romano∗
∗ University of Lisbon/INESC-ID † NICTA and University of Sydney

Portugal Australia

Abstract

This year, the 6th edition of the Workshop on Theory of Transactional
Memory (WTTM) was collocated with PODC 2014 in Paris, and took place
on July 14. The objective of WTTM was to discuss new theoretical chal-
lenges and recent achievements in the area of transactional computing.

Among the various recent developments in the area of Transactional
Memory (TM), one of the most relevant was the support for Hardware TM
(HTM), which was introduced in various commercial processors. Unsur-
prisingly, the recent advent of HTM in commercial CPUs has had a major
impact also in the program of this edition of WTTM, which has gathered
several works addressing issues related to the programmability, efficiency,
and correctness of HTM-based systems, as well as hybrid solutions combin-
ing software and hardware TM implementations (HyTM).

As in its previous editions, WTTM could count on the generous support
of the EuroTM COST Action (IC1001), and on a set of outstanding keynote
talks which were delivered by some of the leading researchers in the area,
namely Idit Keidar, Shlomi Dolev, Maged Michael and Michael Scott, who
were invited to present their latest achievements.

This edition was dedicated to the 60th birthday of Maurice Herlihy and
to his foundational work on Transactional Memory, which was commemo-
rated by Michael Scott in the concluding talk of the event.

This report is intended to give the highlights of the problems discussed
during the workshop.

Transactional Memory (TM) is a concurrency control mechanism for synchro-
nizing concurrent accesses to shared memory by different threads. It has been
proposed as an alternative to lock-based synchronization to simplify concurrent
programming while exhibiting good performance. The sequential code is encap-
sulated in transactions, which are sequences of accesses to shared or local vari-
ables that should be executed atomically. A transaction ends either by committing,



in which case all of its updates take effect, or by aborting, in which case all its up-
dates are discarded.

1 TM Correctness and Universal Constructions
Idit Keidar opened the workshop with a talk presenting a joint work with Kfir Lev-
Ari and Gregory Chockler on the characterization of correctness for shared data
structures. The idea pursued in this work is to replace the classic and overly con-
servative read-set validation technique (which checks that all read variables have
not changed since they were first read) with the verification of abstract condi-
tions over the shared variables, called base conditions. Reading values that satisfy
some base condition at every point in time implies correctness of read-only opera-
tions. The resulting correctness guarantee, however, is found not to be equivalent
to linearizability, and can be captured through two new conditions: validity and
regularity. The former requires that a read-only operation never reaches a state
unreachable in a sequential execution; the latter generalizes Lamport’s notion of
regularity [17] for arbitrary data structures. An extended version of the work pre-
sented at WTTM has appeared also in the last edition of DISC [18].

Claire Capdevielle presented her joint work with Colette Johnen and Alessia
Milani on solo-fast universal constructions for deterministic abortable objects,
which are objects that ensure that, if several processes contend to operate on it,
a special abort response may be returned. Such a response indicates that the op-
eration failed and guarantees that an aborted operation does not take effect [13].
Operations that do not abort return a response which is legal with respect to the
sequential specification of the object. The work presented uses only read/write
registers when there is no contention and stronger synchronization primitives, e.g.,
CAS, when contention occurs [3]. They propose a construction with a lightweight
helping mechanism that applies to objects that can return an abort event to indicate
the failure of an operation.

Sandeep Hans presented a joint work with Hagit Attiya, Alexey Gotsman, and
Noam Rinetzky on an evaluation of TMS1 as a consistency criterion necessary and
sufficient for the case where local variables are rolled-back upon transaction aborts
[2]. The authors claim that TMS [9] is not trivially formulated. In particular, this
formulation allows aborted and live transactions to have different views of the
system state. Their proof reveals some natural, but subtle, assumptions on the TM
required for the equivalence result.



2 Hardware TM
Maged Michael presented an overview of the HTM implementation in the recent
IBM Power8 processor, as well as use cases and performance figures. The TM
implementation shipped with the processor integrates several interesting TM fea-
tures, including the ability to suspend transactions (which is expected to allow
for much more efficient hybrid TM designs) and to execute the, so called, Roll-
back Only Transactions (ROT) (i.e. special transactions intended for single thread
speculation that avoid the costs of conflict detection).

In order to synchronize with transactions executing on the, so called, fall-back
path, hardware transactions subscribe, upon their start, to the lock that is also used
to serialize transactions in the fall-back path. The lazy subscription [7] technique
consists of postponing the check that the lock is not held, also called “subscrip-
tion”, from the start phase to the pre-commit phase of the transaction. Tim Har-
ris presented his joint work with Dave Dice, Alex Kogan, Yossi Lev and Mark
Moir [8] and listed several pitfalls induced by lazy subscription. They show that
this technique is not safe for Transactional Lock Elision [19] because unmodified
critical sections executing before subscribing to the lock may behave incorrectly
in a number of subtle ways1. They also show that recently proposed compiler-
based mechanisms for lazy subscriptions [5] are not sufficient to avoid all of the
pitfalls identified by their work. Also, they argue that extending such compiler
supports to avoid some of the identified pitfalls would add substantial complexity
and would usually limit the extent to which subscription can be deferred, hence
undermining the effectiveness of the optimization.

Alex Matveev, in a joint work with Yehuda Afek and Nir Shavit, proposed
a novel reduced hardware lock elision algorithm (RH-LE) providing a safe (and
opaque) concurrency between hardware transactions and their lock-based fallback
path. The core idea behind the RH-LE approach is to execute the lock fallback
path as a Rollback-Only Transaction (ROT). ROTs are a special kind of hard-
ware transactions introduced in Power8 processors, which track only the memory
writes and do not undergo conflict detection. By encapsulating the fall-back in
a ROT, one can hide the memory writes issued in the fall-back till its success-
ful commit. This allows hardware transactions to use lazy subscription without
exposing them to data inconsistencies. Besides preserving opacity of concurrent
hardware transactions, this technique also allows read-only hardware transactions
to commit even when there is a concurrent fallback execution.

Hillel Avni presented a work entitled “Evaluating the Addition of Non-
Transactional Loads to HTM” which advocates the introduction of load instruc-

1https://blogs.oracle.com/dave/entry/a_simple_lazy_subscription_
pathology

https://blogs.oracle.com/dave/entry/a_simple_lazy_subscription_pathology
https://blogs.oracle.com/dave/entry/a_simple_lazy_subscription_pathology


tions (called Non-Transactional Loads, or, shortly, NTL) that are invisible to the
transactional system, even if triggered from within a transaction. The talk illus-
trated the benefits associated with the introduction of NTLs operations in HTM
systems, including the possibility of designing more efficient hybrid TM sys-
tems [7] and supporting composable COP [1] operations. The presentation also
addressed some of the key difficulties underlying the implementation of NTLs,
and discussed possible ways to tackle them.

Dan Alistarh, in his joint work with Justin Kopinsky, Petr Kuznetsov, Srivat-
san Ravi and Nir Shavit, proposes the first model for hybrid TM systems that for-
mally captures the notion of cached accesses provided by hardware transactions,
and precisely defines instrumentation costs in a quantifiable way. The proposed
model allows for identifying an inherent trade-off between the degree of con-
currency a Hybrid TM (HyTM) implementation provides between hardware and
software transactions and the amount of instrumentation overhead the implemen-
tation must incur. Several lower bounds on the instrumentation costs of HyTM
implementations are derived, and it is shown that the cost of avoiding linear in-
strumentation overheads (as for instance in HybridNOrec [7]) for progressive im-
plementations is that hardware transactions may be aborted by non-conflicting
software transactions.

3 Transaction Semantics and Performance
Michael Scott’s keynote, entitled “Transactional Semantics with Zombies”, ad-
dresses the definition of a formal model of zombie executions. The talk focused
on the run-time level, where the semantics of individual operations, such as start,
read, write, try-commit, govern the interactions between the compiler and the
TM system. For sandboxing TM systems, which allow a doomed (or “zombie”)
transaction to continue for some time beyond an inconsistent read, run-time level
semantics cannot be captured by opacity as currently defined.

Konrad Siek presented his work with Pawel T. Wojciechowski on “Zen and the
Art of Concurrency Control”. Their work explores the TM safety property space:
serializability, opacity, virtual world consistency, and the TMS family, and con-
siders whether they support early release and to what extent. In their presentation,
Siek specified how serializability can be combined with some database proper-
ties to create a broader spectrum of useful early release supporting TM safety
properties. They filled the remaining gap by proposing Last-use consistency, a
consistency property that excludes those inconsistent views [21].

Shlomi Dolev presented two scheduling results. The first idea is CAR-
STM [10] and is used to schedule conflicting transactions on the same threads
to avoid further conflicts. The second idea is SemanticTM [4] and the combina-



tion of the two techniques aims at enhancing the robustness of the TM system in
presence of conflict prone workloads.

Vincent Gramoli presented his joint work with Petr Kuznetsov and Srivat-
san Ravi on the importance of concurrency as a complementary metric to per-
formance. Despite the inherent differences of existing synchronization techniques
provided by chip multiprocessors, including locks or hardware transactional mem-
ory, one can reason on the best suited synchronization to maximize the concur-
rency of an application [11]. Performance is still the final desirable goal, yet a
concurrency metric helps reasoning in terms of potential performance capabilities
regardless of low-level hardware artifacts. They argue that, as the trend is to in-
crease the number of cores, only programs that are highly concurrent will scale
with the growing core count. In particular, a program that reaches optimal con-
currency (without a too large overhead) should intuitively scale on future chips
embedding more cores.

4 Integrating Conditional Variables and Replica-
tion in TM

Yujie Liu presented his work with Chao Wang and Michael Spear on “A New API
For Transactional Condition Synchronization”. In this talk, a new mechanism for
transactional condition synchronization was introduced, which leverages explicit
predicates specified by the programmer in the form of lambda expressions. The
published lambda expressions are evaluated after every transaction commit, by
encapsulating their evaluation in an independent transaction (possibly executing
in hardware). Unlike prior work, the proposed solution does not require split-
ting atomic transactions that wait on a condition [20] and is also compatible with
hardware and hybrid TM [14].

Maciej Kokocinski presented his work with Tadeusz Kobus and Pawel T.
Wojciechowski on the “Safety of Replicated Transactional Memory”. In their
talk, a distributed variant of TM is considered in which transactional memory
is consistently replicated on network nodes for greater availability and fault-
tolerance [16, 6]. They argue that opacity [12], a standard TM safety property,
is misused when applied to replicated transactional systems. The authors also
sketch the requirements for a new safety property that can work well with all
kinds of transactional systems, including replicated TM.



5 Conclusion
Transactional memory has finally been integrated in commodity hardware and
various questions arose on the best use of these features. While more work is
needed to tune and fully exploit them [15], HTMs are here to stay. It is now time
to explore how these features can simplify and boost concurrent programming
tasks without hampering consistency.

Acknowledgements We are grateful to the speakers, to the program com-
mittee members of WTTM 2014 for their help in reviewing this year’s
submissions and to Panagiota Fatourou for her help in the organization of the
event. This event was partially supported by the COST Action IC1001 Euro-TM
(http://www.eurotm.org).

References
[1] Yehuda Afek, Hillel Avni, and Nir Shavit. Towards consistency oblivious

programming. In Proceedings of the International Conference on Principles
of Distributed Systems, OPODIS’11. Springer, 2011.

[2] Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. Safety
of live transactions in transactional memory: TMS is necessary and suffi-
cient. In Proceedings of the 28th International Conference on Distributed
Computing, DISC’14. Springer-Verlag, 2014.

[3] Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov. Computing with reads
and writes in the absence of step contention. In Proceedings of the 19th Inter-
national Conference on Distributed Computing, DISC’05. Springer-Verlag,
2005.

[4] Hillel Avni, Shlomi Dolev, Panagiota Fatourou, and Eleftherios Kosmas.
Abort free semantictm by dependency aware scheduling of transactional in-
structions. In Proceedings of the Second International Conference on Net-
worked Systems, NETYS’14. Springer-Verlag, 2014.

[5] Irina Calciu, Tatiana Shpeisman, and Maurice Herlihy. Improved single
global lock fallback for best-effort hardware transa tional memory. In Trans-
act. ACM, 2014.

[6] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Luis Rodrigues.
D2STM: Dependable distributed software transactional memory. In Pro-

http://www.eurotm.org


ceedings of the 15th Pacific Rim International Symposium on Dependable
Computing, PRDC’09. IEEE Computer Society, 2009.

[7] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir,
Michael L. Scott, and Michael F. Spear. Hybrid NOrec: A case study in the
effectiveness of best effort hardware transactional memory. In Proceedings
of the Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS’11. ACM, 2011.

[8] Dave Dice, Timothy L. Harris, Alex Kogan, Yossi Lev, and Mark Moir. Ex-
tending hardware transactional memory to overcome the pitfalls of lazy sub-
scription. In http://labs.oracle.com/scalable, 2014.

[9] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. To-
wards formally specifying and verifying transactional memory. Electron.
Notes Theor. Comput. Sci., 259, 2009.

[10] Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: Scheduling-
based collision avoidance and resolution for software transactional memory.
In Proceedings of the 2008 ACM Symposium on Principles of Distributed
Computing, PODC’08. ACM, 2008.

[11] Vincent Gramoli, Srivatsan Ravi, and Petr Kuznetsov. Brief announcement:
From sequential to concurrent: correctness and relative efficiency. In Pro-
ceedings of the 31th ACM Symposium on Principles of Distributed Comput-
ing, PODC’12. ACM, 2012.

[12] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’08. ACM, 2008.

[13] Vassos Hadzilacos and Sam Toueg. On deterministic abortable objects. In
Proceedings of the 2013 ACM Symposium on Principles of Distributed Com-
puting, PODC ’13. ACM, 2013.

[14] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable memory transactions. In Proceedings of the Tenth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’05. ACM, 2005.

[15] Intel. Intel xeon processor e3-1200 v3
product family - specification update, 2014.
http://www.intel.com/content/dam/www/public/us/en/documents/specification-
updates/xeon-e3-1200v3-spec-update.pdf.

http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf


[16] Tadeusz Kobus, Maciej Kokocinski, and Pawel T. Wojciechowski. Hybrid
replication: State-machine-based and deferred-update replication schemes
combined. In Proceedings of the 2013 IEEE 33rd International Conference
on Distributed Computing Systems, ICDCS ’13. IEEE Computer Society,
2013.

[17] Leslie Lamport. On interprocess communication. Distributed Computing,
1(2), 1986.

[18] Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. On correctness of data
structures under reads-write concurrency. In Proceedings of the Interna-
tional Symposium on Distributed Computing, DISC’14. Springer-Verlag,
2014.

[19] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the 34th
Annual ACM/IEEE International Symposium on Microarchitecture, MI-
CRO’01. IEEE Computer Society, 2001.

[20] Michael F. Ringenburg and Dan Grossman. AtomCaml: First-class atomic-
ity via rollback. In Proceedings of the Tenth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’05. ACM, 2005.

[21] Konrad Siek and Pawel T. Wojciechowski. Brief announcement: Relaxing
opacity in pessimistic transactional memory. In Proceedings of the 28th
International Symposium on Distributed Computing, DISC’14. Springer-
Verlag, 2014.


	TM Correctness and Universal Constructions
	Hardware TM
	Transaction Semantics and Performance
	Integrating Conditional Variables and Replication in TM
	Conclusion

