
The Distributed Simulation of Multi-Agent Systems
Brian Logan, Georgios Theodoropoulos

Abstract—Agent-based systems are increasingly being applied in a wide
range of areas including telecommunications, business process modelling,
computer games, control of mobile robots and military simulations. Such
systems are typically extremely complex and it is often useful to be able to
simulate an agent-based system to learn more about its behaviour or inves-
tigate the implications of alternative architectures. In this paper, we discuss
the application of distributed discrete-event simulation techniques to the
simulation of multi-agent systems. We identify the efficient distribution of
the agents’ environment as a key problem in the simulation of agent-based
systems, and present an approach to the decomposition of the environment
which facilitates load balancing.

Keywords— agents, distributed simulation, interest management, load
balancing.

I. INTRODUCTION

HERE has been considerable recent interest in agent-based
systems, systems based on autonomous software and/or

hardware components (agents) which cooperate within an en-
vironment to perform some task. An agent can be viewed as
a self-contained, concurrently executing thread of control that
encapsulates some state and communicates with its environ-
ment and possibly other agents via some sort of message pass-
ing [1]. The environment of an agent is that part of the world
or computational system ‘inhabited’ by the agent. The environ-
ment may contain other agents whose environments are disjoint
with or only partially overlap with the environment of a given
agent. For any given agent, the other agents will themselves
form part of the environment of the agent. Agent-based sys-
tems offer advantages when independently developed compo-
nents must inter-operate in a heterogeneous environment, e.g.,
the INTERNET, and agent-based systems are increasingly being
applied in a wide range of areas including telecommunications,
business process modelling, computer games, control of mobile
robots and military simulations [2], [3].
While agents offer great promise, adoption of this new tech-

nology has been hampered by the limitations of current devel-
opment tools and methodologies. Multi-agent systems are often
extremely complex and it can be difficult to formally verify their
properties [3]. As a result, design and implementation remains
largely experimental, and experimental approaches are likely to
remain important for the foreseeable future. In this context, sim-
ulation has a key role to play in the development of agent-based
systems, allowing the agent designer to learn more about the be-
haviour of a system or to investigate the implications of alterna-
tive architectures, and the agent researcher to probe the relation-
ships between agent architectures, envrionments and behaviour.
The use of simulation allows a degree of control over experi-
mental conditions and facilitates the replication of results in a
way that is difficult or impossible with a prototype or fielded
system, and it allows the agent designer or researcher to focus

Brian Logan is a lecturer in the School of Computer Science and IT at the
University of Nottingham, UK. E-mail:bsl@cs.nott.ac.uk.
Georgios Theodoropoulos is a lecturer in the School of Computer Science at

the University of Birmingham, UK. E-mail:gkt@cs.bham.ac.uk

on a particular aspect of the system, deferring problems which
are not central to the research or which are beyond the capabili-
ties of current AI technology [4], [5].
Simulation has traditionally played an important role in agent

research and a wide range of testbeds have been developed to
support the design and analysis of agent architectures and sys-
tems, e.g., [6], [4], [7], [8]. However this work suffers from
two main problems. The first problem is one of generality: no
one testbed is, or can be, appropriate to all agents and environ-
ments [9]. More importantly, even if a suitable testbed can be
found for a given problem, the assumptions made by the testbed
can make it difficult to generalise the results obtained. Such
generalisations are an essential step in establishing functional
relationships between the designs of agents, their behaviour and
the environment in which they are embedded. However, demon-
strating that a particular result holds across a range of agent ar-
chitectures and environments often requires using a number of
different testbeds, with the consequent difficulties of ensuring
consistency in the experimental conditions. The second problem
is one of computational resources. The computational require-
ments of simulations of many multi-agent systems far exceed
the capabilities of conventional sequential von Neumann com-
puter systems. Each agent is typically a complex system in its
own right (e.g., with sensing, planning, inference etc. capabili-
ties), requiring considerable computational resources, and many
agents may be required to investigate the behaviour of the sys-
tem as a whole or even the behaviour of a single agent [10].
One solution to this problem is to attempt to exploit the high
degree of parallelism inherent in agent-based systems. However
work to date has tended to employ various ad-hoc approaches to
parallel simulation, e.g., distributing the agents over a network
of processors interacting via some communication protocol, and
has often yielded relatively poor performance [11], [12]. These
limitations have led researchers to explore the application of dis-
tributed simulation techniques to agent-based systems. For ex-
ample, the JAMES system uses the parallel DEVS framework to
model mobile, deliberative agents [13], [14].
What is required is a general, distributed simulation frame-

work for multi-agent systems. Such a framework, capable of
supporting a wide variety of agents and environments, would
facilitate generalisation by ensuring that different implementa-
tions are subject to identical assumptions. In addition, the use of
distributed simulation techniques would allow us to exploit the
processing power of many machines to study larger and more
complex multi-agent systems [5].1
This paper discusses the application of distributed discrete-

event simulation techniques to the simulation of multi-agent sys-
tems. We identify the efficient distribution of the agents’ en-

Anderson [5] argues that the use of distributed simulation has important ben-
efits other than that of increased computational power, including simpler and
more accurate timing models and more natural implementations of perception,
resulting in improved simulations.

vironment as a key problem in the simulation of agent-based
systems and present an approach to the decomposition of the
environment which facilitates load balancing. In the next sec-
tion, we consider the problem of modelling agents and their
environment and briefly describe the logical process paradigm
which forms the starting point for our work. In section 3 we out-
line the problem of all-to-all communication of the shared state
variables characteristic of multi-agent systems and in section 4
we briefly summarise existing approaches to minimising broad-
cast communication developed in the context of large scale, real
time simulations. In section 5 we describe a new approach to
partitioning the shared state based on the notion of ‘spheres of
influence’ and in section 6 we briefly report the results of ex-
periments attempting to characterise the spheres of influence in
a simple predator and prey simulation. In sections 7, 8 & 9
we sketch load balancing algorithms, an approach to synchro-
nisation and a simulation architecture based on these ideas. We
conclude with a list of open problems and our plans for future
work.

II. MODELLING MULTI-AGENT SYSTEMS

Our aim is to simulate a wide range of agent-based systems,
from a single agent in a complex environment, e.g., an agent
controlling a chemical process plant or a simulated pilot agent
in a military simulation, to many agents in a simple environ-
ment, e.g., an environment consisting almost entirely of other
agents such as user agents, broker agents and resource agents in
an INTERNET environment.
The first problem is how to model the agents and their envi-

ronment. Various approaches for exploiting parallelism at dif-
ferent levels in simulation problems have been developed [15],
[16]. Decentralised, event-driven distributed simulation is par-
ticularly suitable for modelling systems with inherent asyn-
chronous parallelism, such as agent-based systems. This ap-
proach seeks to divide the simulation model into a network of
concurrent Logical Processes (LPs), each maintaining and pro-
cessing a disjoint portion of the state space of the system. State
changes are modelled as timestamped events in the simulation.
From an LP’s point of view, two types of events are distin-
guished; namely internal events which have a causal impact only
to the state variables of the LP, and external events which may
also have an impact on the states of other LPs. External events
are typically modelled as timestamped messages exchanged be-
tween the LPs involved.
We model agents and their environment as one or more Logi-

cal Processes. There are many approaches to constructing agent-
based systems, and many different agent architectures have been
proposed. In many cases, these architectures offer considerable
opportunities for parallel simulation in their own right. How-
ever, for ease of exposition and to facilitate the reuse of existing
code and libraries for the development of agent-based systems,
in this paper we shall model each agent as a single Agent Logical
Process (ALP), and will not consider simulation of the agent’s
internal operation further.
Similarly, we assume that objects and processes within the

agents’ environment are modelled as one or more Environment
Logical Processes (ELP). There are many ways in which the
agents’ environment can be decomposed into ELPs. For exam-

ple, the blocks in a simple ‘blocks world’ environment could
each be modelled as a separate ELP, as could the physics of
stacking blocks etc. Alternatively, all the blocks could form part
of a single ‘blocks system’ ELP. The appropriate ‘grain size’
of the simulation will depend both on the application and on
practical considerations, such as the availability of existing sim-
ulation code. While there are obvious advantages in reusing part
or all of an existing simulation, this can result in an inappropri-
ate grain size which makes it difficult to parallelise the model.
For example, modelling the environment as a single logical pro-
cess can create a bottleneck in the simulation which degrades its
performance, since all agents must react to and act within the
environment.2

III. THE PROBLEM OF SHARED STATE

At any point the state of the simulation is defined by the val-
ues of the state variables maintained by the ALPs and ELPs.
ALPs and ELPs interact via events, modelled as timestamped
messages. The purpose of this interaction is to exchange in-
formation regarding the values of those shared state variables
which define the agent’s manifest environment and the inter-
faces between the ELPs. We say a state variable is shared if
it is read or updated by external events generated by more than
one logical process.
In a conventional decentralised event-driven distributed sim-

ulation LPs interact with each other in a small number of well
defined ways. Even if the interactions are stochastic, the type
of interaction and its possible outcomes are known in advance.
The topology of the simulation is determined by the topology
of the simulated system and its decomposition into LPs, and is
largely static.
In contrast, agents are autonomous. The ability to generate

its own goals is often taken to be a defining characteristic of an
‘autonomous agent’. The autonomous generation of goals im-
plies that the agent has inbuilt desires or preferences determined
by the developer of the agent system. Typically, such desires
are sensitive to the current state of both the environment and the
agent; situations which give rise to a new goal when the agent
is in one state may not give rise to goals when the agent is in
another state, e.g., when it is attending to a higher priority goal.
The actions performed by an agent are therefore not simply a
function of events in its environment: in the absence of input
events, an agent can still produce output events in response to
autonomous processes within the agent. For example, a WWW
agent which normally checks a news service every half hourmay
decide to check the service less often if nothing ‘interesting’ is
happening, or a delivery robot may decide to modify its planned
route to include a recharging station in order to top up its batter-
ies.
Different kinds of agent have differing degrees of access to

different parts of the environment. For example, a WWW agent
has in principle complete access to any site on the INTERNET.
Conversely, a synthetic pilot agent in a military training sim-
ulation typically only has access to a small part of its envi-
ronment. The degree of access is dependent on the range of

Existing attempts to build distributed simulations of agent based systems
have often adopted such a centralised approach in which the agents’ environ-
ment forms part of a central time-driven simulation engine [11], [12], [5].

the agent’s sensors (read access) and the actions it can perform
(write access). However, in many cases, an agent can effectively
change the topology of the environment, either by changing (au-
tonomously) the type or frequency of the events it generates, by
changing its own state (autonomously), for example, by moving
from one part of the environment to another, or by changing the
topology of the rest of the environment, for example, if the agent
moves a bomb from one part of the environment to another.
It is therefore difficult to determine an appropriate simulation

topology a priori. As a result, a simulation of a multi-agent
system typically requires a (very) large set of shared variables
which could, in principle, be accessed or updated by the agents
(if they were in the right position at the right time etc.). Which
variables the agents can in fact access/update depends both on
the state of the agents (e.g., their position) and the state of the
rest of the environment. However, the information required to
determine this access set is itself distributed. The resulting all-
to-all communication of the shared state variables is extremely
costly and results in the loss of many of the advantages of dis-
tributed simulation.

IV. INTEREST MANAGEMENT

The problem of avoiding broadcast communication has been
addressed mainly in the context of real-time large scale simu-
lations where it is termed Interest Management [17]. Interest
Management techniques utilise filtering mechanisms based on
interest expressions (IEs) to provide the processes in the simu-
lation with only that subset of information which is relevant to
them (e.g., based on their location or other application-specific
attributes). The data of interest to a process is referred to as its
Domain of Interest (DOI). Special entities in the simulation, re-
ferred to as Interest Managers, are responsible for filtering gen-
erated data and forwarding it to the interested processes based
on their IEs [17]. The region of the multi-dimensional parameter
space in which an Interest Manager is responsible for managing
data transmission is referred to as its Domain of Responsibility
(DOR).
Various Interest Management schemes have been de-

vised, utilising different communication models and filtering
schemes [17]. In most existing systems, Interest Management
is realised via the use of IP multicast addressing, whereby data
is sent to a selected subnet of all potential receivers. A mul-
ticast group is defined for each message type, grid cell (spa-
tial location) or region in a multidimensional parameter space in
the simulation. Typically, the definition of the multicast groups
of receivers is static, based on a priori knowledge of commu-
nication patterns between the processes in the simulation [18],
[19], [20], [21], [22]. For example, The High Level Architecture
(HLA) utilises the routing space construct, a multi-dimensional
coordinate system whereby simulation federates express their
interest in receiving data (subscription regions) or declare their
responsibility for publishing data (update regions) [23]. In exist-
ing HLA implementations, the routing space is subdivided into a
predefined array of fixed size cells and each grid cell is assigned
a multicast group which remains fixed throughout the simula-
tion; a process joins those multicast groups whose associated
grid cells overlap the process subscription region.
Static, grid-based Interest Management schemes have the dis-

advantage that they do not adapt to the dynamic changes in the
communication patterns between the processes during the simu-
lation and are therefore incapable of balancing the communica-
tion and computational load, with the result that performance is
often poor. Furthermore, in order to filter out all irrelevant data,
grid-based filtering requires a reduced cell size, which in turn
implies an increase in the number of multicast groups, a limited
resource with high management overhead. Some early systems,
such as JPSD [20] and STOW-E [24] did exhibit some degree of
dynamism in their filtering schemes. More recently, there have
been a few attempts to define alternative dynamic schemes for
Interest Management concentratingmainly on the dynamic con-
figuration of multicast groups within the context of HLA. For
example, Berrached et al. [25] examine hierarchical grid imple-
mentations and a hybrid grid/clustering scheme of update re-
gions to dynamically reconfigure multicast groups while Morse
et al. [26] report on preliminary investigations on a dynamic
algorithm for dynamic multicast grouping for HLA. Saville et
al. [27] describe GRIDS, a generic runtime infrastructure which
utilises dynamic instantiation of Java classes in order to achieve
Interest Management. The Joint MEASURE system [28], [29],
[30] is implemented on top of HLA and utilises event distribu-
tion and predictive encounter controllers to efficiently manage
interactions among entities. However, despite these efforts, the
problem of dynamic interest management remains largely un-
solved.
In the remainder of this paper we present a new approach to

dynamic Interest Management, which targets the simulation of
agent-based systems. Our approach is not confined to grids and
rectangular regions of multidimensional parameter space and
does not rely on the support provided by the TCP/IP protocols.
Rather, it is based on the notion of spheres of influence [31],
which are used to dynamically decompose and distribute the
shared state so that bottlenecks and broadcast communication
are minimised. In addition, our approach aims to exploit this de-
composition in order to perform load balancing. Although load
balancing has been studied extensively in the context of conven-
tional distributed simulations [32], [33], [34], [35], [36], [37],
it has received very little attention in relation to Interest Man-
agement, and work in this area to date is only preliminary [17],
[38], [39], [40].

V. SPHERES OF INFLUENCE

We assume that each ALP/ELP is capable of generating and
responding to a finite number of event types, and a specification
of the possible input and output event types forms the interface
between the ALPs and ELPs. Different types of events will typ-
ically have different effects on the shared state, and, in general,
events of a given type will affect only certain types of state vari-
ables (all other things being equal). For example, a ‘move event’
generated when a robot moves forward by 1 metre will only af-
fect the current position of the robot.
Another way of expressing this is to say that different types of

event have different spheres of influencewithin the shared state.
‘Sphere’ is used here metaphorically, to indicate those parts of
the shared state immediately affected by an instance of an event
of a particular type with a given timestamp. More precisely, we
define the ‘sphere of influence’ of an event as the set of state

variables read or updated as a consequence of the event. The
sphere of influence depends on the type of event (e.g., sensor
events or motion events), the state of the agent or environment
logical process which generated the event (e.g., its position in
space in the case of a robot, or the machines to which it cur-
rently has a network connection in the case of a WWW agent)
and the state of the environment. The sphere of influence of
an event is limited to the immediate consequences of the event
rather than its ultimate effects, which depend both on the current
configuration of the environment and the (autonomous) actions
of other agents in response to the event.3 For example, a ‘move
event’ has the immediate effect of changing the position of the
agent which generated the event. It may also have the further
effect of rendering the agent visible to other agents, e.g., if the
move event brings the agent within the visual range of another
agent, or moves it out from behind an obstruction. 4

We can use the spheres of influence of the events generated by
each ALP and ELP to derive an idealised decomposition of the
shared state into logical processes. We define the sphere of in-
fluence of an agent or environmental logical process over the
time interval , , as the union of the spheres of influ-
ence of the events generated by the ALP/ELP over the interval.
Intersecting the spheres of influence for each event generated by
the LP gives a partial order over sets of state variables for the LP
over the interval , in which those sets of variables which
have been accessed by the largest number of events come first,
followed by those less frequently accessed, and so on. The rank
of a variable for LP over the interval , is
the number of events in whose sphere of influence lies.
Intersecting the spheres of influence for each LP gives a par-

tial order over sets of state variables, the least elements of which
are those sets of state variables which have been accessed by the
largest groups of LPs over the interval . This partial order
can be seen as a measure of the difficulty of associating vari-
ables with a particular ALP or ELP: the state variables which
are members of the sets which are first in the order are required
by the largest number of ALPs and/or ELPs, whereas those sets
of state variables which come last are required by only a single
LP.
Any approach to the decomposition of the shared state into

logical processes should, insofar as is possible, reflect this or-
dering. However, any implementation can only approximate
this idealised decomposition, since calculating it requires in-
formation about the global environment, and obtaining this in-
formation would not be efficient in a distributed environment.
Moreover, this ordering will change with time, as the state of
the environment and the relative number of events of each type
produced by the LPs changes, and any implementationwill have
to trade off the cost of reorganising the tree to reflect the ideal
decomposition against the increase in communication costs due
to increased broadcast communication.

This should not be surprising: the computation of such ultimate effects is,
after all, the purpose of the simulation.
This is sometimes called the ‘ramification problem’ and is a special case

of the frame problem which has been extensively studied in AI. We are not
attempting to solve it.

VI. CHARACTERISING SPHERES OF INFLUENCE

We are currently conducting experiments to characterise the
spheres of influence in a number of agent-based simulations. In
this section, we report the preliminary results of one of these
experiments from a simple predator and prey simulation. 5

Fig. 1. A snapshot of the predator and prey simulation

The simulation was originally developed to study the effect
of different herding or flocking behaviours on predation rates
in a population of simulated predators and prey. The simula-
tion consists of a number of predator and prey agents and a
toroidal environment containing variable numbers of randomly
distributed obstacles and food items. Each agent has a number
of sensors with differing ranges, which allow the agent to sense
objects and other agents within a circular region centred at its
current position. For example, predators sense the position of
prey and prey sense the location of predators, food and other
prey. Each agent also has a collection of basic behaviours. In
the case of predators, these include wandering (random motion
in the environment), resting and attacking prey. 6 The behaviours
of prey agents include wandering, eating food, escaping from
predators, and flocking, which causes the prey agents to form
groups. Figure 1 shows a snapshot of the simulation: the preda-
tor is indicated by a diamond, the prey by circles and obstacles
and food by differently coloured squares. The letters inside the
predator and prey indicate the agent’s current behaviour, e.g.,
‘A’ indicates attacking, ‘E’ escaping, ‘F’ flocking, ‘G’ grazing
and so on. The simulation was developed using the SIM AGENT
toolkit [41], a sequential, centralised, time-driven simulator for
multi-agent systems.
The predator and prey simulation is typical of many simula-

tions in the multi-agent systems literature and is a useful test
case for our approach. The simulation has a large shared state
(representing the environment of the agents), and at any given
time, each agent accesses only a subset of the state. This sub-
set changes over time, as the agents move to escape predators
or to find food. The agent’s actions change the environment and

We are grateful to Nick Hawes for providing the code for the simulation.
If a predator ‘catches’ a prey agent, the prey agent is removed from the sim-

ulation and the predator gets a food reward.

hence the behaviour of other agents: when a prey agent eats
some food, the food becomes unavailable to other prey agents
which may ‘starve’ as a consequence. In addition, there is a
reasonable probability that at least some of the state variables
accessed by one agent will also be accessed by other agents,
both because predators tend to follow prey, and because of the
flocking of prey.
In the results presented below, we have made a number of

simplifying assumptions. The environment is limited to grid 400
units by 400 units in size, and we assume that the state contains
only location information, giving a shared state of 160,000 vari-
ables. In addition, we consider only the largest sphere of influ-
ence for each agent: the state variables representing a circular
region of the environment of radius 100 units in the case of a
predator, and a smaller region of radius 50 units in the case of
the prey. These sets of state variables correspond to the spheres
of influence of the predator’s and prey’s vision events respec-
tively, which return the location and motion of all agents within
the agent’s respective sensor ranges.7 A predator agent accesses
approximately 19.6% of the state variables at each timestep
(31,417 variables). Of these, between 96.8% and 100% will be
accessed by the predator at the next timestep, due to limitations
on the speed of the predator. In contrast, a prey agent accesses
only 4.9% of the state variables at any timestep, of which be-
tween 94.9% and 100% will be accessed at the next timestep.

TABLE I
PROBABILITY THAT A RANDOMLY SELECTED STATE VARIABLE WILL BE

ACCESSED BY AGENTS.

Prey 0 1 2 3 4 5
5 0.675 0.257 0.058 0.008 0.001 0
10 0.567 0.282 0.111 0.031 0.007 0.001

Table I shows the probability that a randomly selected state
variable will be accessed by exactly 0, 1, 2 etc. agents at any
given timestep for two populations: 1 predator and 5 prey, and
1 predator and 10 prey. Initial placement of the agents, food
and obstacles was random, each simulation was run for 100
timesteps and the results have been averaged over 50 runs. As
expected, the increased number of agents results in an increase
in the probability that any given state variable will be accessed
by more than one agent from 0.325 to 0.433. However, the prob-
ability of a randomly selected variable being accessed by three
or more agents is still relatively small at less than 4%.
From the data in Table I, it is apparent that the conditional

probability of a state variable being accessed by at least two
agents given that it is accessed by at least one is 0.206 in the
case of 5 prey and 0.346 in the case of 10 prey.

In the version of the simulation described above, we have used variables rep-
resenting discrete spatial locations for ease of exposition, however this is not
central to our argument. For example, we could have used a single state variable
to record the (real-valued) position of each agent, obstacle and food item in the
environment. This requires fewer state variables when the number of agents is
small (and is the default approach adopted by several agent simulation systems,
for example, Gensim [42] and SIM AGENT [41]), but means that every state vari-
able must be accessed in order to determine which objects in the environment
(agents, obstacles or food items) are visible to an agent. Unless the state vari-
ables are grouped in some way based on their values (see, e.g., [5], [30]), this
means that all state variables lie within the sphere of influence of each vision
event and hence of each agent.

TABLE II
PROBABILITY THAT A RANDOMLY SELECTED STATE VARIABLE ACCESSED

BY ONE PREY AGENT WILL BE ACCESSED BY EXACTLY PREY AGENTS.

Prey 1 2 3 4 5
5 0.584 0.211 0.050 0.002 0
10 0.419 0.332 0.104 0.029 0.009

Further analysis of the pattern of state accesses by prey agents
is reported in Table II, which gives the probability that a ran-
domly selected member of the set of state variables accessed by
one agent is also accessed by exactly 1, 2, 3 etc. other prey
agents. As can be seen, even in the case of 10 prey, the proba-
bility of a state variable being shared by three or more agents is
still quite small, at less than 15%.
These data suggest that, while significant numbers of vari-

ables are shared between agents, relatively few variables are
shared by more than three agents. Moreover, each agent ac-
cesses a relatively small proportion of the total state at any given
time.

VII. DISTRIBUTING THE STATE

The decomposition of the state is achieved by means of an ad-
ditional set of Logical Processes, namely Communication Logi-
cal Processes (CLPs). The CLPs act as Interest Managers. Each
CLP maintains a subset of the state variables and the interaction
of ALPs and ELPs is via the variables maintained by the CLPs.
CLPs enable the clustering of ALPs and ELPs with overlapping
spheres of influence and facilitate load balancing. The partition-
ing of the shared state is performed dynamically, in response
to the events generated by the ALPs and ELPs in the simula-
tion. Thus, the number and distribution of CLPs is not fixed, but
varies during the simulation.
We now sketch an algorithm for the decomposition of the

shared state into CLPs. Initially, the whole of the shared state
is handled by a single CLP, as depicted in Figure 2(a). All read
and update events from all ALPs and ELPs are all directed to
this single CLP, as is all inter-agent communication.
As simulation progresses, the CLP performs a dynamic anal-

ysis of the pattern and frequency of state accesses and computes
an approximation of the agents’ spheres of influence. If the load
increases to the point that the CLP becomes a bottleneck (e.g.,
when message traffic exceeds a predefined threshold), the CLP
creates one or more new CLPs, to which it assigns those dis-
joint subsets of the state variables that form the least elements
in its approximation of the partial order over the spheres of in-
fluence. Those groups of ALPs and ELPs whose events and
actions have formulated the new CLP(s) communicate directly
with the corresponding new CLP. The process then repeats with
the newly created CLP(s) monitoring the load and generating
additional CLPs as required to keep the overall simulation load
on the CLPs within bounds (Figure 2(b)).
This behaviour naturally leads to a tree structure, where the

ALPs/ELPs are the leaves and the CLPs the intermediate nodes
of the tree. Events by the ALPs/ELPs which refer to state vari-
ables not maintained by their parent CLP will be routed through
the tree to the appropriate CLP node. This can be accomplished
by recording in each CLP routing information specifying which

CLP0

LPnLP1LP0

(a)

CLP0

LP0 LP1

LPn

CLP1 CLP2
LP2 LPi

LPj

CLP3 CLP4

LPk LPl

(b)

Fig. 2. Generating the tree of CLPs.

event types are relevant to its child ELPs, ALPs and CLPs and
to its parent CLP.
We define the cost of accessing a variable for an agent or

environment logical process as the rank of for , ,
times the number of CLPs which must be traversed to reach
during the interval , , i.e., the cost of accessing
variables in the local CLP is 0. Then the cost to an ALP/ELP
of accessing all the variables in its sphere of influence is:

and the total access cost for all LPs of a particular
decomposition over the interval is:

The optimal decomposition over the interval is one which
minimises the total access cost.
As the total number and distribution of instances of each event

type generated by an ALP/ELP varies, so the partial order over
the spheres of influence changes, and the structure of the tree
must change accordingly to reflect the ALPs/ELPs’ current be-
haviour and keep the communication and computational load
balanced. This may be achieved in two ways, namely by chang-
ing the position of the ALP/ELP in the tree, and by relocating
state in the tree. State may be relocated either by moving sub-
sets of the state variables from one CLP to another, or by merg-

ing CLPs upwards and then (possibly) splitting them again in a
different way.

CLP0

LP0 LP1 LPn

CLP1 CLP2

LPj

(a)

CLP0

CLP1 CLP2

LP0 LP1 LPnLPj

(b)

CLP0

CLP2
LP0

LP1 LPnLPj

(c)

Fig. 3. ALP/ELP migration and merging of CLPs.

For example, Figures 3(a) and 3(b) illustrate the migration of
an ALP/ELP (LP1) in the tree, to bring it closer to the part of
the state it most frequently accesses (denoted by the shaded area
in CLP2). If this reduces the load handled by CLP1 sufficiently,
it can be merged with CLP0, as depicted in Figure 3(c). Alter-
natively, the subset of state variables accessed by LP1 in CLP2
could have been moved to CLP1.

VIII. SYNCHRONISATION
In decentralised, event-driven distributed simulation, each LP

maintains a local clock with the current value of the simulated
time, Local Virtual Time (LVT). This value represents the pro-
cess’s local view of the global simulated time and denotes how
far in simulated time the corresponding process has progressed.

An LP will repeatedly accept and process messages arriving on
its input links, advancing its LVT and possibly generating, as a
result, a number of messages on its output links. The timestamp
of an output message is the LVT of the LP when the message
was sent.
A fundamental problem in event-drivendistributed simulation

is to ensure that the LPs always process messages in increas-
ing timestamp order, and hence faithfully and accurately imple-
ment the causal dependencies and partial ordering of events dic-
tated by the causality principle in the modelled system. Syn-
chronous approaches utilise global synchronisation schemes
(implemented in a centralised or decentralised fashion) to force
the LPs to advance together in lock step. This guarantees that the
causality principle is not violated but the potential for speedup
is limited. In contrast, in asynchronous simulation, LPs op-
erate asynchronously, advancing at completely different rates,
simultaneously processing events which occur at completely
different simulated times. This approach has greater potential
for speedup, but additional synchronisation mechanisms are re-
quired to ensure that the LPs adhere to the local causality con-
straint and process messages in increasing timestamp order [43],
[44].
Two main approaches have been developed to ensure that the

local causality constraint is not violated is asynchronous simu-
lation, namely conservative [45] and optimistic [46]. Conser-
vative approaches strictly avoid causality errors but can intro-
duce deadlock problems. In addition, conservative techniques
rely heavily on the concept of lookahead, and are thus typi-
cally suitable only for applications with good lookahead prop-
erties. However the autonomous, pro-active behaviour of agents
severely restrict the ability to predict events in the model [31],
[47]. Conservative protocols also typically require a static
partition and configuration of the distributed model, and sys-
tems with dynamic behaviour, such as agent-based systems, are
in general difficult to model [16], [48], [15]. Optimistic ap-
proaches allow the processes to advance optimistically in sim-
ulated time, detecting and recovering from causality errors by
means of a rollback mechanism which forces processes to undo
past operations. For the rollback of the simulation to be fea-
sible, each process must hold information regarding its recent
history (e.g., previous state vectors, processed input events, and
previously sent output messages) up to last ‘correct time’, re-
ferred to as the Global Virtual Time (GVT). GVT is generally
the smallest local clock value amongst all the LPs, and is peri-
odically computed and distributed to all the logical processes. In
contrast to conservative approaches, optimistic approaches can
accommodate the dynamic creation of logical processes and do
not require the prediction of future events for their efficient op-
eration. However some authors have argued that the overhead of
storing the recent history of each process is likely to outweigh
the gains of employing an optimistic strategy when simulating
multi-agent systems [13], [47].
Synchronisation is further complicated by the introduction of

Interest Management. To date, most work on Interest Manage-
ment has been carried out within the context of large-scale, real-
time simulations where synchronisation is straightforward, as,
at any instant, all processes (federates) are approximately at the
same wall-clock time. However in logical time simulations, dif-

ferent LPs will typically be at different logical times, and Inter-
est Management can introduce temporal coherency errors in the
Simulation [49]. Thus far, only a limited amount of work has
been done in this area, mainly for HLA and similar grid-based
filtering schemes [22], [49].
The proposed framework supports both synchronous ap-

proaches and conservative and optimistic synchronisation pro-
tocols, as it seems likely that no one synchronisation technique
will be appropriate in all situations. For example, the tree struc-
ture of the proposed simulation architecture facilitates the im-
plementation of synchronous schemes, such as those employed
by e.g., JAMES [13], [14]. Much recent work on deliberation
for agent-based systems has focussed on ‘anytime’ techniques,
i.e., techniques which produce solutions of monotonically in-
creasing quality given more computational resources [50], [51].
However many other forms of deliberation are interruptible, in
the sense that they can be run for a fixed period of time (or num-
ber of node expansions), and return enough state to continue the
computation if a solution has not been found. This approach is
commonly used in single-threaded hybrid reactive-deliberative
architectures when it is necessary to place an upper bound on re-
sponse time, e.g., [52]. When simulating agents which use such
timesliced deliberation techniques, we can run the deliberation
for a single timeslice, at the end of which either a solution has
been found (or a solution of sufficient quality has been found if
we are using anytime techniques) and we know how long the de-
liberation will take, or we know that deliberation is guaranteed
to take at least the duration of the timeslice. By incrementing
simulated time in increments equal to the deliberation timeslice,
we can allow the rest of the simulation to proceed in parallel
with the agent’s deliberation.
Alternatively, we can adopt a ‘moderately optimistic’ strategy

as proposed by Uhrmacher and Gugler [47], which splits simu-
lation and external deliberation into two separate threads and
allows simulation and deliberation to proceed concurrently, util-
ising simulation events as synchronisation points. The simula-
tion is delayed to guarantee at each step that no rollback beyond
the last state can occur, thus minimising the amount of state that
must be stored. This has the advantage that we need make no as-
sumptions about the interruptibility of the agent’s deliberation,
at the cost of the machinery and space to allow rollback to the
last state.
In other cases, it may be more appropriate to model the

agent’s deliberation as a sequence of internal events correspond-
ing to steps in the deliberation, allowing the rest of the simula-
tion to progress up the timestamp of the most recent deliberative
event. For example, the ACT-R agent architecture [53] asso-
ciates a ‘latency’ with each of the rules defining the behaviour
of the agent, which specifies how long the rule takes to execute.
Coupled with access to ACT-R’s internal state (see below), this
could form the basis of an optimistic synchronisation strategy, in
which simulation of the agent’s deliberation proceeds optimisti-
cally in parallel with the rest of the simulation.8 To reduce the
cost of rollbacks, hybrid schemes such as Time Windows [54],
[55] or Bounded Lag [56] may be utilised.

ACT-R agents are not mobile, and the firing of an individual rule typically
involves only limited changes to the agent’s state, so the amount of state that
must be stored in the event of a rollback is relatively small.

Simulation Engine

SV1 ...SV5SV4SV3SV2 SVn

LVT
INTERNAL
STATE

VARIABLES

AGENT CODE

Communication System

Fig. 4. The Agent Logical Process.

IX. THE SIMULATION ARCHITECTURE

The simulation consists of three types of Logical Processes,
namely ALPs, ELPs, and CLPs. In this section we outline the ar-
chitecture and operation of these processes assuming optimistic
synchronisation.

A. The Agent and Environment Logical Processes

Figure 4 presents the basic architecture of an ALP. A simula-
tion engine acts upon and interfaces to the agent code. The sim-
ulation engine performs four main functions: it converts mes-
sages from other LPs into the format required by the agent, e.g.,
perceptual data, KQML messages etc.; it manages the agent’s
private internal state; it converts the agent’s actions into mes-
sages for communication to other LPs; and it performs all nec-
essary synchronisation.
The agent code could consist of, e.g., a model and its as-

sociated processor, or an existing agent implementation. The
architecture facilitates the reuse of existing agent models and
implementations, since all that is required is the development
of appropriate interfaces to the simulation engine. Clearly, for
this to be possible, the simulation engine must be able to ac-
cess the agent’s state and interrupt the agent and restart it on
the updated state (e.g., in the event of a rollback). The ease
with which this can be accomplished depends on the architec-
ture of the agent. For example, architectures and toolkits such
as SIM AGENT [41], SOAR [57] and ACT-R [53] maintain a
single, centralised representation of the agent’s internal state,
e.g., a workingmemory or goal stack, making rollback relatively
straightforward. If the agent’s representation is distributed, as in
a neural net, or embedded in program variables, interfacing it to
the simulation engine may be more difficult.
The structure of an ELP is similar to that of an ALP with

the ‘agent code’ replaced by the models or implementation code
necessary to simulate the relevant object(s) and process(es) in
the environment. As with agents, a considerable amount of work
has been done on developing simulations of environmentswhich
are, or could be, used in simulations of multi-agent systems.

B. The Communication Logical Process

The CLPs have a dual role in the model. Firstly they act
as ‘routing nodes’, routing query and action-reportingmessages
from ALPs and ELPs through the tree to the appropriate CLPs.
Secondly, they maintain the shared state, acting as a communi-
cation channel between ALPs and ELPs.
A high level view of the structure of the CLP is provided

in Figure 5. Each CLP maintains a State/Action Buffer (SAB)
which keeps the shared state variables as well as their recent
history (since the most recent calculation of the GVT), namely,
the ALP/ELP that accessed each variable and the time and type
of access (read or update).
Upon receiving a message reporting an action by an ALP, the

CLP will check whether this action is ‘valid’, that is, whether it
has a causal relationship with an action of another agent in the
simulated past. If the action is valid, the CLP will keep a record
of the agent’s action in its SAB, and forward the message to the
appropriate ELP process to compute the effects of the agent’s
action on the environment. If this results in further changes
to the shared state, the ELP will notify the CLP to update the
corresponding state variables. In order to model the effects of
the agent’s actions on the environment, ELPs may need to read
the values of other shared state variables in the CLP by issuing
query messages. The CLP will also activate the rollback mech-
anisms for ALPs and ELPs whose simulated past is affected by
the action of the agent. If the action of the agent is not valid, the
agent is forced to rollback.

C. Accessing the Shared State

The problem of sharing variables between LPs in distributed
simulations has been addressed before in the context of other
applications [58], [59], and an overview of the different ap-
proaches can be found in [60]. The distributed implementation
of the mechanism that will allow ALPs and ELPs to access the
shared state variables maintained by the CLPs will depend on
the characteristics of the simulation host machine (e.g., shared
or distributed memory multiprocessor, cluster of workstations
etc.).

SV1 SV2 SV3

V1 V1 V3

....

SVn

Vn

SVi

tk tl tk

ALPj ALPk ALPkALPl

SVjSViSVkSVi

urr u

tjti

ALPi

r

...

GVT

state
variable

value

state variable

agent process

timestamp

action
(read/update)

IE3,t3

IE1,t1

IE2,t2

...

Input
Message
Queue

OE2,t2

...

OE3,t3

OE1,t1

Output
Message
Queue

Communication System

to/from
ALPs/ELPs

Fig. 5. The Communication Logical Process.

Within the context of the proposed framework, reading the
environment state will generally involve the interested ALP is-
suing a timestamped query (Interest Expression) to a CLP. The
CLP will respond by providing the agent with a copy of the val-
ues of the requested set of state variables which were valid at
the time denoted by the request timestamp. Several different
approaches may be followed in the case where the query times-
tamp refers to the future of the CLP, depending on the type of
behaviour of the simulated agent; e.g., the ALP could block un-
til the CLP’s LVT reaches the timestamp of the query or it could
be allowed to continue its operation based on some optimistic
assumptions. Alternatively, the agent may register its interest in
a particular set of state variables (its DOI) to the corresponding
CLP, which will then inform the agent of any updates of these
state variables9.
Updating the state of a CLP process requires the agent process

to inform the CLP of its external actions by sending a message
of the type action, timestamp , the timestamp denoting the
simulated time that the action was performed by the agent.

X. SUMMARY

In this paper we have described a framework for the dis-
tributed simulation of multi-agent systems which aims to over-
come some of the deficiencies of the ad-hoc, centralised, time-
driven simulation approaches typically employed for agent sim-
ulation. Our framework uses the notion of ‘spheres of influence’
as a basis for dynamically partitioning the shared state of the
simulation model into logical processes, and we have sketched
an algorithm for dynamically partitioning the simulation to per-
form load balancing. We have presented preliminary results of
experiments to characterise the spheres of influence in a simple
agent-based simulation which suggests that our approach may
be feasible. However, further work is required to establish the
general applicability of this approach.
In addition, a number of challenging issues have to be ad-

dressed before our approach can be realised. Techniques are

Of course, an agent may choose not to query the environment at all and
make decisions based on certain assumptions regarding the environment state
(e.g. non-monotonic reasoning).

required to obtain global snapshots of the distributed simula-
tion and approximate the spheres of influence at any instant,
e.g. [61], [62]. Furthermore, algorithms for redistributing the
state and reorganising the tree to approximate the spheres of
influence and balance the load to achieve high simulation per-
formance must be developed. This will require the definition
of appropriate performance metrics and cost functions which
take into account the relevant characteristics of both the host
platform (e.g., network configuration, CPU and memory archi-
tecture etc.) and the dynamics of the simulated systems (e.g.,
frequency of interactions and state accesses etc.). To this end,
a range of alternative solutions may be envisaged, from the pe-
riodic redistribution of the whole state and construction of the
tree of CLPs from scratch, to the gradual moving of LPs and
state variables through different levels in a dynamically recon-
figured tree. In addition, CLPs should be able to respond to
various events/queries issued by the LPs regarding their envi-
ronment. As the state information required to respond to these
may be distributed through the tree, appropriate routing algo-
rithms are needed to enable the CLPs to locate this information;
this is clearly non-trivial. Finally, appropriate synchronisation
protocols have to be developed.
In future work we hope to address these issues with the ulti-

mate goal of implementing a generic distributed simulation ker-
nel for multi-agent systems.

REFERENCES
[1] Michael Wooldridge and Nick R. Jennings, “Intelligent agents: Theory

and practice,” Knowledge Engineering Review, vol. 10, no. 2, pp. 115–
152, Jun 1995.

[2] Jeffrey Bradshaw, Ed., Software Agents, AAAI Press, Menlo Park, CA,
1997.

[3] N. R. Jennings and M. Wooldridge, “Applications of intelligent agents,”
in Agent Technology: Foundations, Applications, Markets, N. R. Jennings
and M. Wooldridge, Eds., pp. 3–28. Springer-Verlag, 1998.

[4] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe,
“Trial by fire: Understanding the design requirements for agents in com-
plex environments,” AI Magazine, vol. 10, no. 3, pp. 32–48, Fall 1989.

[5] John Anderson, “A generic distributed simulation system for intelli-
gent agent design and evaluation,” in Proceedings of the Tenth Confer-
ence on AI, Simulation and Planning, AIS-2000, Hessam S. Sarjoughian,
François E. Cellier, Michael M. Marefat, and Jerzy W. Rozenblit, Eds.
March 2000, pp. 36–44, Society for Computer Simulation International.

[6] Martha E. Pollack and Marc Ringuette, “Introducing the Tileworld: Ex-
perimentally evaluating agent architectures,” in Proceedings of the Ninth
National Conference on Artificial Intelligence, Boston, MA, 1990, AAAI,
pp. 183–189.

[7] Thomas A. Montgomery and Edmund H. Durfee, “Using MICE to study
intelligent dynamic coordination,” in Proceedings of the Second Interna-
tional Conference on Tools for Artificial Intelligence. 1990, pp. 438–444,
IEEE.

[8] S. M. Atkin, D. L. Westbrook, P. R. Cohen, and G. D. Jorstad., “AFS and
HAC: Domain general agent simulation and control.,” in Software Tools
for Developing Agents: Papers from the 1998 Workshop, Jeremy Baxter
and Brian Logan, Eds. July 1998, pp. 89–96, AAAI Press, Technical Re-
port WS–98–10.

[9] Steve Hanks, Martha E. Pollack, and Paul R. Cohen, “Benchmarks,
testbeds, contolled experimentation and the design of agent architectures,”
AI Magazine, vol. 14, no. 4, pp. 17–42, 1993.

[10] Aaron Sloman, “What’s an AI toolkit for?,” in Software Tools for Devel-
oping Agents: Papers from the 1998 Workshop, Jeremy Baxter and Brian
Logan, Eds. July 1998, pp. 1–10, AAAI Press, Technical Report WS–98–
10.

[11] J. Baxter and R. T. Hepplewhite, “Broad agents for intelligent battlefield
simulation,” in Proceedings of the 6th Computer Generated Forces and
Behavioural Representation. Institute of Simulation and Training, 1996.

[12] R. Vincent, B. Horling, T. Wagner, and V. Lesser, “Survivability simulator
for multi-agent adaptive coordination,” in Proceedings of the International
Conference on Web-Based Modeling and Simulation 1998 (WMC’98),
1998.

[13] A. M. Uhrmacher, P. Tyschler, and D. Tyschler, “Modeling mobile agents,”
in Proceedings of the International Conference on Web-based Modeling
and Simulation, part of the 1998 SCS Western Multiconference on Com-
puter Simulation, 1998, pp. 15–20.

[14] Bernd Schattenberg and Adelinde Uhrmacher, “Planning agents in
JAMES,” Proceedings of the IEEE, 2000.

[15] A. Ferscha and S. K. Tripathi, “Parallel and distributed simulation of dis-
crete event systems,” Tech. Rep. CS.TR.3336, University of Maryland,
1994.

[16] R. Fujimoto, “Parallel discrete event simulation,” Communications of the
ACM, vol. 33, no. 10, pp. 31–53, October 1990.

[17] Katherine L. Morse, “Interest management in large scale distributed sim-
ulations,” Tech. Rep. 96-27, Department of Information and Computer
Science, University of California, Irvine, 1996.

[18] Joshua Smith, Kevin Russo, and Lawrence Schuette, “Prototype multicast
IP implementation in ModSAF,” in Proceedings of the Twelfth Workshop
on Standards for the Interoperability of Distributed Simulations, 1995, pp.
175–178.

[19] ThomasW.Mastaglio and Robert Callahan, “A large-scale complex virtual
environment for team training,” IEEE Computer, vol. 28, no. 7, pp. 49–56,
July 1995.

[20] Michael Macedonia, Michael Zyda, David Pratt, and Paul Barham, “Ex-
ploiting reality with multicast groups: a network architecture for large-
scale virtual environments,” in Virtual Reality Annual International Sym-
posium, March 1995, pp. 2–10.

[21] James O. Calvin, Carol J. Chiang, and Daniel J. Van Hook, “Data sub-
scription,” in Proceedings of the Twelfth Workshop on Standards for the
Interoperability of Distributed Simulations, March 1995, pp. 807–813.

[22] Jeff S. Steinman and Frederick Weiland, “Parallel proximity detection and
the distribution list algorithm,” in Proceedings of the 1994 Workshop on
Parallel and Distributed Simulation, July 1994, pp. 3–11.

[23] Defence Modeling and Simulation Office, High Level Architecture RTI
Interface Specification, Version 1.3, 1998.

[24] D. Van Hook, J. Calvin, M. Newton, and D. Fusco, “An approach to DIS
scaleability,” in Proceedings of the 11th Workshop on Standards for the
Interoperability of Distributed Simulations, 1994, pp. 347–356.

[25] A. Berrached, M. Beheshti, O. Sirisaengtaksin, and de Korvin A., “Alter-
native approaches to multicast group allocation in HLA data distribution,”
in Proceedings of the 1998 Spring Simulation Interoperability Workshop,
1998.

[26] Katherine L. Morse, Lubomir Bic, Michael Dillencourt, and Kevin Tsai,
“Multicast grouping for dynamic data distribution management,” in Pro-
ceedings of the 31st Society for Computer Simulation Conference (SCSC
’99), 1999.

[27] J. Saville, “Interest management: Dynamic group multicasting using mo-
bile java policies,” in Proceedings of the 1997 Fall Simulation Interoper-
ability Workshop, 1997, number 97F-SIW-020.

[28] S. B. Hall, B. P. Zeigler, and H. Sarjoughian, “Joint MEASURE: Dis-
tributed simulation issues in a mission effectiveness analytic simulator,”
in Proceedings of the Simulation Interoperability Workshop, Orlando, FL,
1999.

[29] S. B. Hall, “Using Joint MEASURE to study tradeoffs between network
traffic reduction and fidelity of HLA compliant pursuer/evader simula-
tions,” in Proceedings of the Summer Simulation Conference, Vancouver,
Canada, 2000, Society for Computer Simulation.

[30] Hessam S. Sarjoughian, Bernard P. Zeigler, and Steven B. Hall, “A lay-
ered modeling and simulation architecture for agent-based system devel-
opment,” Proceedings of the IEEE, 2000.

[31] Georgios Theodoropoulos and Brian Logan, “A framework for the dis-
tributed simulation of agent-based systems,” inModelling and Simulation:
a tool for the next millenium, Proceedings of the 13th European Simula-
tion Multiconference (ESM’99), Helena Szczerbicka, Ed. SCS, Society for
Computer Simulation International, June 1999, vol. 1, pp. 58–65, Society
for Computer Simulation International.

[32] C. Burdorf and J. Marti, “Load balancing strategies for Time Warp on
multi-user workstations,” The Computer Journal, vol. 36, no. 2, pp. 168–
176, 1993.

[33] D. W. Glazer and C. Tropper, “On process migration and load balancing
in Time-Warp,” IEEE Transactions on Parallel and Distributed Systems,
vol. 3, no. 4, pp. 318–327, 1993.

[34] A. Goldberg, “Virtual time synchronisation of replicated processes,” in
Proceedings of 6th Workshop on Parallel and Distributed Simulation. So-
ciety for Computer Simulation, 1992, pp. 107–116, Society for Computer
Simulation.

[35] P. L. Reiher and D. Jefferson, “Dynamic load management in the Time-
Warp operating system,” Transactions of the Society for Computer Simu-
lation, vol. 7, no. 2, pp. 91–120, 1990.

[36] R. Schlagenhaft, M. Ruhwandl, C. Sporrer, and H. Bauer, “Dynamic load
balancing of a multi-cluster simulation on a network of workstations,” in
Proceedings of 9th Workshop on Parallel and Distributed Simulation. So-
ciety for Computer Simulation, 1995, pp. 175–180, Society for Computer
Simulation.

[37] C. Carothers and R. Fujimoto, “Background execution of Time-Warp pro-
grams,” in Proceedings of 10th Workshop on Parallel and Distributed
Simulation. Society for Computer Simulation, 1996, Society for Computer
Simulation.

[38] P. Messina, D. Davis, S. Brunette, T. Gottshock, D. Curkendall, L. Ekroot,
C. Miller, L. Plesea, L. Craymer, H. Siegel, C. Lawson, D. Fusco, and
W. Owen, “Synthetic forces express: A new initiative in scalable comput-
ing for military simulation,” in Proceedings of the 1997 Spring Simulation
Interoperability Workshop. IST, 1997.

[39] E. White and M. Myjak, “A conceptual model for simulation load bal-
ancing,” in Proceedings of the 1998 Spring Simulation Interoperability
Workshop, 1998.

[40] M. Myjak, S. Sharp, W. Shu, J. Riehl, D. Berkley, P. Nguyen, S. Camplin,
and M. Roche, “Implementing object transfer in the HLA,” Tech. Rep.,
1999.

[41] A. Sloman and R. Poli, “SIM AGENT: A toolkit for exploring agent de-
signs,” in Intelligent Agents II: Agent Theories Architectures and Lan-
guages (ATAL-95), Mike Wooldridge, Joerg Mueller, and Milind Tambe,
Eds., pp. 392–407. Springer–Verlag, 1996.

[42] John Anderson and Mark Evans, “A generic simulation system for in-
telligent agent designs,” Applied Artificial Intelligence, vol. 9, no. 5, pp.
527–562, October 1995.

[43] L. Lamport, “Time, clocks and the ordering of events in distributed sys-
tems,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, July
1978.

[44] J. Misra, “Distributed discrete-event simulation,” ACM Computing Sur-
veys, vol. 18, no. 1, pp. 39–65, March 1986.

[45] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via a
sequence of parallel computations,” Communications of the ACM, vol. 24,
no. 11, pp. 198–205, November 1981.

[46] D. Jefferson and H. Sowizral, “Fast concurrent simulation using the Time
Warp mechanism,” in Proceedings of the SCS Distributed Simulation Con-
ference, 1985, SCS Simulation Series, pp. 63–69.

[47] A. M. Uhrmacher and K. Gugler, “Distributed, parallel simulation of mul-
tiple, deliberative agents,” in Proceedings of the nth Parallel and Dis-
tributed Simulation Conference (PADS’2000), Bologna, May 2000, IEEE,
pp. 101–110.

[48] V. Jha and R. L. Bagrodia, “Transparent implementation of conservative
algorithms in parallel simulation languages,” in Proceedings of the 1993
Winter Simulation Conference, December 1993, pp. 677–686.

[49] I. Tacic and R. Fujimoto, “Synchronised data distribution management in
distributed simulations,” in Proceedings of the 12th Workshop on Parallel
and Distributed Simulation (PADS98), 1998, pp. 108–115.

[50] Tom Dean and Mark Boddy, “An analysis of time-dependent planning,” in
Proceedings of the Seventh National Conference on Artificial Intelligence
(AAAI’88). AAAI, 1988, pp. 49–54.

[51] Brian Logan and Natasha Alechina, “ with bounded costs,” in Pro-
ceedings of the Fifteenth National Conference on Artificial Intelligence,
AAAI-98, Menlo Park CA & Cambridge MA, 1998, AAAI, pp. 444–449,
AAAI Press/MIT Press.

[52] Brian Logan, “Route planning with ordered constraints,” in Proceedings
of the 16th Workshop of the UK Planning and Scheduling Special Interest
Group. University of Durham, Dec 1997, pp. 133–144.

[53] John R. Anderson and Christian Libiere, The Atomic Components of
Thought, Lawrence Erlbaum Associates, 1998.

[54] L. M. Sokol, D. P. Briscoe, and A. P. Wieland, “MTW: A strategy for
scheduling discrete simulation events for concurrent simulation,” in Pro-
ceedings of the SCS Multiconference on Distributed Simulation. Society
for Computer Simulation, July 1988, SCS Simulation Series, pp. 34–42.

[55] R. Ayani and H. Rajaei, “Parallel simulation using conservative time win-
dows,” in Proceedings of the 1992 Winter Simulation Conference, Decem-
ber 1992, pp. 709–717.

[56] B. D. Lubachevsky, “Bounded Lag distributed discrete event simulation,”
in Proceedings of the 1988 SCS Multiconference on Distributed Simula-
tion. Society for Computer Simulation, July 1988, SCS Simulation Series,
pp. 183–191.

[57] J. E. Laird, A. Newell, and P. S. Rosenbloom, “SOAR: An architecture for
general intelligence,” Artificial Intelligence, vol. 33, pp. 1–64, 1987.

[58] K. Ghosh and R. Fujimoto, “Parallel discrete event simulation using space-
time memory,” in Proceedings of the International Conference on Parallel
Processing, 1990, vol. III, pp. 201–208.

[59] D. Conklin, J. Cleary, and B. Unger, “The Sharks World: A study in dis-
tributed simulation design,” in Proceedings of the 1990 Multiconference
on Distributed Simulation,, San Diego, 1990, pp. 157–160.

[60] H. Mehl and S. Hammes, “Shared variables in distributed simulation,” in
Proceedings of the 7th Workshop on Parallel and Distributed Simulation
(PADS93), 1993, pp. 16–19.

[61] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Transactions on Computer Sys-
tems, vol. 3, no. 1, pp. 63–75, 1985.

[62] O. Babaoglou and K. Marzullo, “Consistent global states of distributed
systems: Fundamental concepts and mechanisms,” Technical Report
UBLCS-93-1, Laboratory for Computer Science, University of Bologna,
January 1993.

Brian Logan is a lecturer in the School of Computer
Science and IT at the University of Nottingham, UK.
He received a PhD in design theory from the Univer-
sity of Strathclyde, UK in 1986. His research inter-
ests include the specification, design and implementa-
tion of agent-based systems, including logics and on-
tologies for agent-based systems and software tools
for building agents. Before moving to Nottingham,
he was a member of the Cognition and Affect group
at the University of Birmingham, where he worked
on agent-related projects funded by the UK Defence

Evaluation and Research Agency and the Leverhulme Trust, developing archi-
tectures for autonomous intelligent agents capable of complex decision making
under constraints such as incomplete and uncertain information and time pres-
sure.

Georgios Theodoropoulos received a Diploma de-
gree in Computer Engineering from the University of
Patras, Greece in 1989 and MSc and PhD degrees in
Computer Science from the University of Manchester,
U.K. in 1991 and 1995 respectively. Since February
1998 he has been a Lecturer in the School of Com-
puter Science, University of Birmingham, U.K. teach-
ing courses on Hardware Engineering and Computer
Networks. His research interests include parallel and
distributed systems, computer and network architec-
tures and modelling and distributed simulation.

