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Abstract

Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high

uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a

multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with

field data including 24 forest census plots and 218 peat thickness measurements, to map the

distribution of peatland vegetation types and calculate the combined above- and below-ground

carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that

peatlands cover 35 600 ± 2133 km2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat

thickness and bulk density are the most important sources of uncertainty in these values. One

particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem

yet identified in Amazonia (1391 ± 710Mg C ha−1). The novel approach of combining optical

and radar remote sensing with above- and below-ground carbon inventories is recommended for

developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that

Amazonian peatlands should be a priority for research and conservation before the developing

regional infrastructure causes an acceleration in the exploitation and degradation of these

ecosystems.

S Online supplementary data available from stacks.iop.org/ERL/9/124017/mmedia
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1. Introduction

The large carbon stocks of Amazonian forests have been

recognized for many years [1] and estimates of total Ama-

zonian above-ground biomass (AGB) for terra firme (dry

land) forest, based on forest census data and remote sensing

range from 58 to 134 Pg C [2–8]. However, there is another

significant store of carbon in Amazonia which has not, to

date, been incorporated into regional or global carbon bud-

gets: the carbon stored in peatlands. Recent work on the

Pastaza-Marañón foreland basin (PMFB) in Northwest Peru

has revealed the presence of extensive and deep accumula-

tions of peat that contain 2–20 Pg C in below-ground stocks

[9, 10]. Such values are significant in the context of both

national (e.g. 6.9 Pg C held in AGB in Peru [11]) and regional

Environmental Research Letters

Environ. Res. Lett. 9 (2014) 124017 (12pp) doi:10.1088/1748-9326/9/12/124017

Content from this work may be used under the terms of the
Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1748-9326/14/124017+12$33.00 © 2014 IOP Publishing Ltd1

mailto:gyfchd@leeds.ac.uk
http://stacks.iop.org/ERL/9/124017/mmedia
http://dx.doi.org/10.1088/1748-9326/9/12/124017
http://creativecommons.org/licenses/by/3.0


carbon budgets. Hence it is important that the uncertainties in

these estimates are reduced.

The PMFB in Northwest Peru contains the most exten-

sive peatlands yet discovered in Amazonia [10]. It is a sub-

siding foreland basin of c.100 000 km2 formed during the

Cenozoic uplift of the Andes [12–15] and possibly still

actively subsiding today [16]. High rainfall, frequent flooding

and low lying topography provide the waterlogged and anoxic

conditions required for peat formation which, in this geolo-

gical setting, have enabled significant thicknesses (up to

7.5 m) of peat to accumulate [9, 17, 18]. Much smaller

peatlands have also been reported from Southern Peru

(294 km2, 0.027 PgC [19]), central Amazonia (area and car-

bon stocks unknown [20]), and North of the Amazon basin in

the Orinoco delta (7000 km2, 0.049 Pg C [21]). In contrast

with the better-known but highly degraded and at-risk peat-

lands of SE Asia [22], those of the PMFB remain largely

intact and the threat of destruction from direct human impacts

is comparatively low. Climate models suggest that by the end

of the 21st century, the Western Amazon, unlike SE Asia, is

not likely to become significantly drier, though it is predicted

to warm significantly [23, 24]. Increasing wet season pre-

cipitation over the last 20 years supports this prediction [25],

although evidence for decreased dry season river discharge

over the same time period could suggest enhanced seasonality

rather than any change in annual precipitation [26]. Therefore,

improving carbon storage estimates for the PMFB peatlands

is important as they face an uncertain future, which could

enhance or diminish this carbon stock depending on climatic

and land use change.

Uncertainties in the existing estimate of the amount of

carbon stored in the PMFB peatlands derive from a number of

factors. The geographical extent and remoteness of the PMFB

mean that a relatively small proportion of the peatlands have

been mapped in the field, and variability in peat thickness and

carbon density at local scales mean that extrapolations from a

small number of field observations introduce large uncer-

tainties. In addition, although most of the peatlands are

forested, little attempt has previously been made to estimate

the above-ground component of the carbon stock using

ground data [27, 28], which may be valuable for validating

recent remote sensing estimates of above-ground carbon

stocks that include the PMFB [11].

A remote sensing approach is useful for mapping peat-

land area as it provides detailed information at a regional

scale, and is especially promising in the PMFB because the

peatlands have been found to be floristically, structurally and

topographically distinct from terra firme [18, 28]. These

features are not only distinctive on the ground, but also in

satellite data. Landsat products are effective at describing the

surface reflectance properties of vegetation and have pre-

viously been used to distinguish between peatlands and terra

firme in this region and elsewhere [10]. L-band SAR (syn-

thetic aperture radar) products, such as Advanced Land

Observing Satellite (ALOS) phased array type L-band SAR

(PALSAR), are able to penetrate the canopy and are effective

in characterising forest structure [29, 30] and biomass in terra

firme and peatland forests [31–33]. Additionally, SAR

responds to soil moisture and can therefore distinguish

between inundated and non-inundated areas [34]. SRTM

(shuttle radar topography mission) data provide an estimate of

elevation and are useful for identifying large-scale topo-

graphical boundaries within tropical forests [35, 36]. The

most effective approaches to mapping vegetation and esti-

mating AGB identified so far combine data from multiple

sensors, such as those described above, in a single analysis

[33, 37–40].

Remote sensing data are not only useful for delineating

peatland area but may also be useful for constraining the

properties of peat (thickness, bulk density and carbon con-

centration) that account for much uncertainty in estimating

carbon stocks. In the PMFB, peat has been found beneath

palm swamp forest, ‘pole’ forests (low stature forest with

many thin-stemmed trees), and almost entirely herbaceous

‘open’ communities [18, 78]. These different peatland vege-

tation types are associated with different peat properties and,

therefore, differing quantities of below-ground carbon, as has

been observed elsewhere in tropical peatlands [41, 42]. If

peatland vegetation types can be identified by remote sensing

and the amount of below-ground carbon is associated with

vegetation type, as has been shown for Northern peatlands

[43], then detailed vegetation mapping has the potential to

better constrain regional carbon estimates.

In addition to our use of data from multiple sensors and

using vegetation type as a constraint on peat properties, our

approach differs from previous work in the region [10] in the

following ways:

• remote sensing classifications have been performed on a

single image which spans the entire region, rather than

two Landsat scenes individually which can introduce

errors in area estimates;

• the number of training points is approximately twice as

large as in previous studies, providing more data for the

remote sensing classification;

• the number of measurements of peat thickness, bulk

density and carbon concentration has also been doubled,

providing more representative mean values;

• the contribution of AGB has been included, utilising

recently published species-specific allometric equations

for palms [44], which are a dominant component of

peatland forests.

We thus incorporate vegetation and soil data with a

number of suitable remote sensing products (Landsat, ALOS

PALSAR and SRTM) to answer the following questions:

1. What is the total area and carbon stock of the peatlands

of the PMFB?

2. How large are the AGB and peat elements of the carbon

stock of the peatlands of the PMFB, and how do these

vary spatially?

3. What are the relative contributions of the different

peatland ecosystem types (pole forests, palm swamps

and open peatlands) to the total carbon stock of

the PMFB?
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4. How accurate are our estimates of peatland area and

carbon storage likely to be, and where does the

uncertainty lie?

2. Methods

2.1. Study area and field data

The study area is the PMFB, located in Loreto, Northeast

Peru (figure 1). Four categories of field data were used (table

S.1): (1) 218 ground reference points, used for remote sensing

classification; (2) 24 forest census plots, used to estimate

quantities of above-ground carbon; (3) 218 peat-thickness

measurement points, used to determine quantities of below-

ground carbon; and (4) 33 peat cores, from which C content

and dry bulk density were measured. The equal number of

ground reference points and peat thickness measurements is

coincidental: only 115 of the measurements occur at the same

place. Some of these sites were selected as they have been

identified as peatlands in previous studies [9, 10]. Other sites

were selected based on examination of Landsat data and

chosen to provide a representative sample of the range of

ecosystem types known to harbour peat.

2.2. Satellite imagery

All remote sensing image processing and analysis was con-

ducted in ENVI 5.1 (Exelis VIS). Three data products were

used: Landsat Thematic Mapper data from the Landsat 5

satellite (six scenes using bands 4, 5 and 7), ALOS/PALSAR

(25 scenes using HH and HV polarizations) and SRTM [46].

A final seven-band image stack consisting of Landsat bands 4,

5 and 7, PALSAR bands HH, HV and their ratio (HH/HV),

and an SRTM elevation band in metres above sea level was

then created (figure 2). Details of images (table S.2) and pre-

processing can be found in the supplementary material.

2.3. Image classifications

A supervised classification method was used whereby a

number of ‘known pixels’, assigned to predefined classes,

Figure 1. The location of 30 clusters of study sites within the PMFB
(shaded area). Filled dots represent clusters of peat depth measure-
ment points; ringed dots represent individual or clusters of 0.5 ha
forest census plots; and triangles represent vegetation surveys where
peat thickness was not measured (data from [45]). The boundary of
the PMFB has been delineated using SRTM elevation data and is
based on an elevation drop from c.140 to c.120 m above sea level.
Numbers correspond to the site names provided in table S.1.

Figure 2. Remote sensing data mosaics. Panel A is an RGB
composite Landsat image with bands 4, 5, and 7 assigned to red,
green and blue, respectively. Panel B is an RGB composite of the
PALSAR data, with HH, HV and HH/HV bands assigned to red,
green and blue. Panel C is the SRTM data showing estimated metres
above sea level.
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were used to train a classifier for all pixels in the image. These

known pixels correspond to ground reference points of a

known location and class. In this study these classes are land

cover or vegetation types corresponding to three peat-forming

(pole forest, palm swamp and open peatlands) and four non

peat-forming categories (terra firme/occasionally flooded

forest, seasonally flooded forest, open water, and urban areas/

river beaches). 218 ground reference points were used: half of

these were used as known pixels to perform the classifica-

tions, henceforth referred to as ‘training data’. The remaining

ground reference points (referred to as ‘test data’) were used

to test the accuracy of the classifications by quantifying how

closely the predefined classes of these known pixels corre-

spond to the classes they were assigned by the classification.

Details of ground reference points can be found in the sup-

plementary information.

Three classifications were undertaken, firstly using

Landsat data alone, secondly using Landsat and PALSAR

data, and finally using Landsat, PALSAR and SRTM data.

The accuracy of each classification was assessed and the most

accurate classification was used to provide the area estimates

that we used to generate carbon stock estimates. The support

vector machine (SVM) classifier in ENVI was used for all

classifications because this approach has been found to pro-

duce accurate results with limited field data [47]. In this

instance it was also more accurate than either the maximum

likelihood or ENVI standard neural network classifiers. The

default ENVI SVM classifier was used with the radial basis

function kernel type. The SVM classifier is a binary classifier

but a multiclass classification is achieved by implementing a

pairwise classification strategy.

2.4. Above-ground carbon measurements

Twenty-four 0.5 ha forest census plots were established fol-

lowing the RAINFOR (Amazon Forest Inventory Network)

protocol [48]. Diameters of all trees with dbh (diameter at

breast height, 1.3 m) ⩾10 cm were recorded and each tree was

identified to species (c. 70% of individuals) or genus level (c.

30% of individuals) by comparison with specimens held in

herbariums Herrerense (HH) and Amazonense (AMAZ).

Stem height of palms was measured using a clinometer or a

laser range finder. The plots were established in five field

seasons in 2008, 2009, 2010, 2012 and 2013. Biomass of

dicot trees was estimated using the pan-tropical three-para-

meter (dbh, wood density and E) equation of [49]. Species-

specific wood density values were obtained from [28] where

available, and the global wood density database otherwise

[50, 51]. These sources accounted for more than 95% of

calculations in all plots. When species-specific wood density

values were not available then a genus-level, or family level

mean was used, and if no family-level values were available

then the mean plot wood density was used, following [52].

Palm biomass was estimated using species-specific allometric

equations [44] which require stem or total height as the only

parameter. Above-ground carbon was assumed to be 50% of

above ground biomass

2.5. Below-ground carbon measurements

Three measurements are required to determine quantities of

below-ground carbon: peat thickness, dry bulk density and

carbon concentration. Peat thickness was measured at each

peat measurement point using a Russian-type corer [53], from

both the edges and centre of the peatlands, though the number

of measurements made varied between sites. Stratigraphic

units were visually assessed in the field and assigned to peat,

‘clayey peat’, or ‘mud’ (deposits dominated by minerogenic

sediments) following [10]. Deposits assigned as ‘mud’

were excluded from all further analysis and were not

included in peat thickness measurements. Thirteen peat cores

from different vegetation types were analysed as part of this

study. Dry bulk density (dry weight (g)/volume (cm3)) was

calculated on 100 cm3 samples taken every 50 cm from the

peat core and dried at 80 °C for 24 h or until a constant

weight was reached. Carbon concentration was primarily

determined using previously published data from 30 cores

[9, 10], where carbon concentration was measured every

50 cm down-core. Additionally, ten further cores were used

in which carbon concentration was determined in four

samples from 5, 10, 20 and 30 cm depths. All carbon con-

centration estimates were made using an Elementar Vario

Microcube.

2.6. Carbon stock calculations

The above- and below-ground peat carbon pool was calcu-

lated using the equation below, following [54]:

∑
ρ

= +
=

D C A AGC A
CP

 

10 10
, (1)

p

p
p p p p p p

1
12

 

12

v

where: CP is the total peatland carbon pool (Pg), p represents

each peatland ecosystem type, v represents the total number of

peatland ecosystem types, Dp is peat thickness (m), ρp is dry

bulk density (kg m3), Cp is carbon concentration (expressed

as the percentage mass of carbon in the dry peat), AGCp is

above-ground carbon (kg m2), and Ap is area (m2).

In order to generate mean values and confidence intervals

for the carbon stock estimates for each peatland ecosystem

type, a bootstrap resampling and randomized Monte Carlo

method was used as the data are not normally distributed.

Firstly, measured values for each variable of equation (1)

were grouped into the three peatland ecosystem types pro-

viding a distribution of values for each variable in each

ecosystem type, e.g. peat thickness in pole forest or bulk

density in palm swamps. These distributions of values were

then resampled with replacement 1000 times, generating a

series of simulated bootstrapped distributions for each vari-

able in each ecosystem type. A randomly selected, single

value from each simulated distribution was then entered into

equation (1). This process was repeated 107 times, to generate

a distribution of simulated carbon stock values for each

ecosystem type, from which the mean value and 95% con-

fidence limits could be extracted. Confidence intervals for

peatland area were generated separately using the method

described by [55], whereby the confusion matrix of the
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classification was used to estimate map classification error

and 95% confidence intervals for the area of each peatland

ecosystem type. These 95% confidence intervals were used to

generate a simulated distribution of 1000 values of area for

each peatland ecosystem type.

2.7. Sensitivity analysis

To assess the importance of each input component (Dp, ρp,

Cp, Ap and AGCp), as defined in equation (1) in determining

the carbon stock output in each peatland ecosystem type,

ranked partial correlation coefficients (RPCCs) were used.

RPCCs assess the significance of the relationship between

each input component and the carbon stock estimate [56]

whilst controlling for variation in the other terms. This was

done by extracting 1000 simulated carbon stock values and

the corresponding input values; RPCCs were then calculated

for each input component in each peatland ecosystem type.

All statistical analysis was performed in R [57].

3. Results

3.1. Carbon stock of the PMFB

The total peatland area of the PMFB is estimated to be

35 600 ± 2133 km2 (table 1). Palm swamps account for the

majority of the peatland area (78 ± 1.5%), with pole forests

and open peatlands accounting for 11 ± 1.7% and 11 ± 0.3%,

respectively (table 1). Palm swamps have the greatest total

carbon stock (2.3 Pg C), followed by pole forests (0.5 Pg C)

and open peatlands (0.3 Pg C), giving a total peatland carbon

stock of 3.14 Pg C for the PMFB. However, pole forests store

carbon at the greatest density (1391 ± 710Mg C ha−1). All

three peatland ecosystem types store a greater amount of

carbon per unit area than neighbouring terra firme forest

(figure 3).

Overall, approximately 90% of the carbon in these

peatland ecosystems is stored below ground in peat, with the

remaining 10% stored in AGB, though this ratio varies

between peatland ecosystem types. Pole forests in this study

are always located on thick peats (>2.5 m) and have low AGB

stocks due to their low stature and thin trunks. Palm swamps

occur on both thin and, less typically, thick peats, and store

large amounts of carbon in AGB, comparable to quantities of

AGB found in terra firme forests (figure 3). Un-forested

(open) peatlands were assumed to have negligible AGB with

all carbon stored in peat, which was variable in thickness.

Open peatlands had the lowest carbon density, as although

their below-ground carbon density was approximately

equivalent to that of palm swamps, the lack of appreciable

AGB reduced their overall carbon stock (figure 3).

3.2. Distribution of peatland ecosystem types

Peatlands in this region are not randomly distributed across

the landscape but instead appear to be largely confined to the

low-lying areas of the PMFB (figure 4). Whilst individual

pixels in upland areas may have spectral and/or structural

similarities to peatland vegetation, they can be assumed to be

part of the upland forest mosaic in the form of tree fall gaps,

heavily degraded forest, small isolated swamps in topographic

depressions, or patches of white sand forest. Some of these

areas may contain shallow peat deposits, but their inclusion in

the classification would lead to increased confusion between

terra firme forest and peatlands and potentially over-

estimations of peatland area. Furthermore, the different

peatland ecosystem types show a strong spatial pattern across

the PMFB (figure 4). Pole forests are apparently restricted to

the Northeastern part of the basin; palm swamps are most

extensive in the Pacaya-Samiria National Reserve and bor-

dering the Rio Pastaza (see figures 1 and 4), and open peat-

lands are most common in the Northwest and far South of the

region (figure 4).

3.3. Performance of remote sensing classification

The classification performed well when tested against an

independent dataset (table 2 and figure 5), with a mean,

minimum and maximum user’s accuracy (the proportion of

the classified area that corresponds to the correct class based

on ground reference points) of 91%, 79% and 100%, and an

overall kappa coefficient (coefficient of agreement accounting

for agreement occurring by chance) of 0.94. The most accu-

rately mapped vegetation class was terra firme forest; pole

forest was the least accurately mapped. The inclusion of the

three different satellite products, including optical (Landsat)

and radar (ALOS PALSAR and SRTM) data, improved the

accuracy of the classification for most classes apart from

flooded forests (figure 5) with mean user’s accuracy, produ-

cer’s accuracy (the proportion of ground reference pixels that

Figure 3. Above- and below- ground carbon density of the three
peatland ecosystem types: open peatlands (OP), palm swamps (PS),
pole forests (PF) and mean values for Amazonian terra firme forests
(TF). The negligible AGC of open peatlands is assumed to be zero.
Terra firme above-ground values are taken from [52] and below-
ground values from [58]. Error bars represent standard errors.
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have been correctly classified) and kappa coefficients all

increasing with the addition of each product (table S.3).

Landsat data were generally effective at distinguishing land

cover classes, and successfully identified some of the areas of

peatlands. However, the Landsat classification was not able to

differentiate between pole forest and palm swamp, or between

pole forest and terra firme forests (figure 5). This was improved

by the addition of ALOS PALSAR data, which can identify the

structural differences between the forest types because the

backscatter signal of pole forest (many small trees) is very

different to that of both terra firme forest (fewer but larger trees)

and palm swamp forest (many palm species with no lateral

growth). Finally, the use of SRTM data further improved the

classification by constraining it to areas of suitable low-lying

topography within the PMFB (figure 5 and table 2).

4. Discussion

4.1. Carbon stock of the peatlands of the PMFB

Our analysis confirms the importance of the peatlands of the

PMFB as a substantial store of carbon (best estimate 3.14 Pg

C), and the most carbon-dense landscape in Amazonia, stor-

ing 892 ± 535Mg C ha−1. Of the three peatland vegetation

types, pole forest is the most carbon-dense with

1391 ± 710Mg C ha−1. Compared with typical terra firme

forests which store 63–190Mg C ha−1 in AGB [4, 52] and a

similar amount (132Mg C ha−1) below ground [59], our study

therefore suggests that peatland pole forests are, by a large

margin, the most carbon-dense forest type in Amazonia.

Our best estimate of the total PMFB peatland carbon

stock of 3.14 Pg C, including below-ground carbon, is nearly

50% of a recent estimate of above-ground carbon for the

whole of Peru (6.9 Pg C [11], but see table S4), whilst only

occupying 3% of the area of Peruvian forest [5]. It is therefore

apparent that these peatlands account for a very large pro-

portion of carbon stocks at regional and national levels and

therefore need to be included in total carbon storage esti-

mates. Where another study [6] estimated below-ground

biomass stocks for Amazonia, a simple positive relationship

between AGB and BGB was assumed. In the PMFB the

reverse of this relationship is generally true, illustrating that

carbon stocks in peatlands cannot be estimated accurately

with more general methods developed for pantropical carbon

stock estimates.

AGB typically contributes 10% to the overall carbon

stock of these peatland ecosystems; however, this varies

between peatland ecosystem types. Unsurprisingly, low-sta-

ture pole forest has low AGB (61.8 ± 9.8 Mg ha−1). Previous

topographical and geochemical studies have indicated that

pole forest occurs on domed, ombrotrophic (i.e. entirely rain-

fed) peatlands [18]. The consequently nutrient-poor, acidic

conditions exclude many species and presumably also lead to

low net primary productivity and, as a result, lower AGB

compared to upland forests. Similar structural characteristics

are seen in the nutrient-poor white sand forests of Amazonia

[60, 61] and on Southeast Asian ombrotrophic peatlands

[41, 62]. Palm swamps, in contrast, have an above-ground

carbon density (100.9 ± 7.7Mg ha−1) that is broadly compar-

able with surrounding terra firme forest (c. 120Mg C ha−1

[52]). The high AGB of the dominant palm species, Mauritia

flexuosa, contributes substantially to the high above-ground

carbon density of the palm swamps. M. flexuosa regularly

grows to heights greater than 30 m, and due to the lack of

lateral growth in the canopy, can achieve high stem densities

(>150 individuals ha−1). Moreover, allometric equations that

have been developed specifically for palms, provide higher

estimates of the biomass of tall, adult Mauritia compared to

previous studies [44].

Table 1. Summary of above- and below-ground carbon stocks in different peatland vegetation types within the PMFB and the mean,
minimum and maximum values of the parameters used to calculate these figures and their corresponding 95% confidence intervals. AGC and
BGC refer to above- and below-ground carbon stocks respectively. Confidence intervals for the carbon stock estimates are based on a
bootstrap resampling and randomized Monte Carlo method.

Peatland eco-

system type

Area

(km2)

Dry bulk

density

(g cm−3)

Peat thick-

ness (cm)

C

conc.

(%) AGC (Pg) BGC (Pg)

Total C

stock (Pg)

Pole forest Mean 3,686 0.084 315 50.5 0.030 0.494 0.524

95% CI ±810 ±0.007 ±26.8 ±1.6 0.009–0.074 0.110–1.131 0.138–1.174

Min — 0.01 90 23.2 — — —

Max — 0.239 660 59.1 — — —

Palm swamp Mean 27,732 0.099 173 44.0 0.263 2.073 2.336

95% CI ±1101 ±0.009 ±23.4 ±2.7 0.138—0.355 0.012—5.738 0.268—5.997

Min — 0.028 0 24.0 — — —

Max — 0.181 540 55.6 — — —

Open peatland Mean 4,181 0.051 265 48.5 — 0.277 0.277

95% CI ±222 ±0.016 ±37.8 ±2.8 — — 0.034—0.974

Min — 0.012 50 27.7 — — —

Max — 0.183 450 56.1 — — —

Total 35 600 — — — 0.293 2.844 3.137

95% CI ±2133 — — — — — 0.440—8.145
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4.2. Sources of uncertainty

The uncertainty associated with our estimate of the total

PMFB peatland carbon stock remains substantial (0.4–8.1 Pg

C), but significantly lower than previous published estimates

(1.7–19.0 Pg C [10]). There is uncertainty associated with

each component of the carbon stock calculation and the

magnitude of uncertainty within each component varies with

vegetation type. Overall, the source of greatest uncertainty is

variation in peat thickness and bulk density (table 3). In palm

swamps, peat thickness provided the greatest uncertainty due

to large variation in peat thickness within and between sites,

while in the pole forests, which consistently grow on thick

peat, bulk density was the most important source of

Figure 4. The three support vector machine supervised classifications of the study area, created from Landsat bands 4, 5 and 7 alone (panel
A), Landsat bands 4, 5 and 7 and PALSAR bands HH, HV and HH/HV (panel B) and finally Landsat bands 4, 5 and 7, PALSAR bands HH,
HV and HH/HV and an SRTM band (Panel C). Colours represent different land cover categories: terra firme and occasionally flooded forest
(dark blue), palm swamp (red), open peatland (pink), pole forest peatland (dark red), river beach and urban areas (white), seasonally flooded
forest (light blue) and open water (black).

Figure 5. The proportion of the classified area that corresponds to the
correct class based on ground reference point (user’s accuracy)
assessment for three SVM classifications using only Landsat (light
grey), Landsat and PALSAR (dark grey) and Landsat, PALSAR and
SRTM (black).
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uncertainty. Systematically increasing these measurements

across all peatland ecosystem types and in all areas across the

basin would provide more reliable estimates. However, the

substantial variation in peat thickness and bulk density

occurring both within and between sites suggests that a high

degree of uncertainty will likely persist regardless of sampling

effort because of the complexity and dynamism of the PMFB

landscape. Our analysis indicates relatively little uncertainty

associated with the estimated peatland area (table 3).

Although this is encouraging, there is an assumption within

these uncertainty estimates that the training and testing

ground reference points provide complete coverage of the

study area, which is not the case. More ground reference

points in data-deficient areas are needed to test the classifi-

cation further. Root biomass is another source of uncertainty

in our analysis: although fine roots form part of the peat

matrix and are incorporated in our BGC estimates, coarse root

biomass is not included in our analysis. Further work on

coarse root volume and biomass is required in these ecosys-

tems to account accurately for this uncertainty.

One surprising finding is that our carbon stock estimate is

c. 50% of the previous best estimate of 6.232 Pg [10], even

with the addition of the AGB component. The disparity

between these estimates is partly due to the difference in

estimates of total peatland area: our more thorough approach

yields an area of 35 600 ± 2133 km2, which is 8258 km2

smaller than the previous estimate of 43 858 km2. The

increased number of peat thickness and bulk density mea-

surements also reduced the carbon stock estimate slightly,

reducing mean peat thickness from 2.48 to 2.39 m and bulk

density from 0.083 to 0.079 g cm−3, although it is encoura-

ging that increasing the number of sites and measurements did

not cause large changes in these values. The process of

constraining peatland carbon stock estimations by three

vegetation types rather than averaging across all individual

sites also contributed to reducing our estimate of overall

carbon stock. The thickest peat deposits under pole forest

account for a small proportion of the total peatland area while

palm swamps, although more extensive, store less carbon per

unit area.

4.3. The role of multiple remote sensing products

We have shown that combining Landsat, ALOS PALSAR

and SRTM products is more effective in distinguishing dif-

ferent ecosystem types in our study area than using any one

product alone. In particular, including PALSAR and SRTM

datasets in our analysis improved our ability to distinguish

between the swamp classes. We recommend the use of this

data fusion approach in the future, though we stress that

spatial uncertainties remain in the map, particularly to the

west of the study area where there are currently few ground

reference points. The bootstrap analysis we performed

allowed these uncertainties to be propagated through to our

carbon estimates.

Table 2. Confusion matrix for the final SVM classification using Landsat, PALSAR and SRTM data showing the number of pixels per class
in both the training data set (used to generate the classification) and test data set (used to assess the accuracy of the classification), how data
from these two independent datasets correspond and where errors of omission and commission are found. Additionally the total number of
ground reference points (GRPs) for each class and the percentage accuracy for each training and test class are shown. Abbreviations refer to
land cover classes; Palm swamps (PSs), open peatlands (OPs), pole forest (PF), seasonally flooded forest (FF), Terra firme/occasionally
flooded forest (TF), urban areas and river beaches (UB) and open water rivers and lakes (RLs).

PS-test OP-test PF-test FF-test TF-test UB-test RL-test Total Total GRPs Accuracy (%)

PS-train 538 0 41 0 103 0 0 682 37 78.9

OP-train 0 425 0 0 0 27 0 452 12 94.0

PF-train 10 0 88 2 10 0 0 110 17 80.0

FF-train 12 1 9 149 2 13 0 186 19 80.1

TF-train 2 0 0 0 1881 3 0 1886 53 99.7

UB-train 0 20 0 0 0 1238 0 1258 47 98.4

RL-train 0 0 0 0 0 0 1042 1042 33 100

Total 562 446 138 151 1996 1281 1042 5616 218 —

Accuracy (%) 95.7 95.3 63.8 98.7 94.2 96.6 100 — — —

Table 3. The relative importance of each input component in
determining carbon stock for each peatland ecosystem type.
Importance is defined on the basis of partial ranked correlation
coefficients between each input variable and the final output (carbon
stock).

Peatland ecosys-

tem type

Component of carbon

stock calculation

Partial rank correla-

tion coefficient

(Spearman’s ρ)

Pole forest Peat depth 0.88

Peatland area 0.25

Dry bulk density 0.89

Carbon concentration 0.56

Above-ground

biomass

0.17

Palm swamps Peat depth 0.94

Peatland area 0.11

Dry bulk density 0.81

Carbon concentration 0.56

Above-ground

biomass

0.38

Open peatlands Peat depth 0.88

Peatland area 0.04

Dry bulk density 0.92

Carbon concentration 0.49
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4.4. Distribution of peatland ecosystem types

A key finding of this study is the strong spatial pattern of the

different peatland ecosystem types. Pole forests are largely

limited to the Northeastern area of the study region close to

the Rio Tigre and are underlain by the thickest, oldest and

probably most ombrotrophic peat deposits [10, 18]. The

correspondence between thick peat and pole forest may be the

result of long term geomorphological stability which has

allowed peat to accumulate above the maximum flood level,

leading to ombrotrophic conditions, low nutrient status and

vegetation succession to pole forest. This explanation is

supported by geological evidence that this region has

experienced a lower frequency of river avulsions and

increased stability since the isolation of the Rio Tigre from

the Rio Pastaza c.8000 years BP [63]. The build-up of peat

above the maximum flood level during the course of its

development in this area is also supported by geochemical

evidence which records a transition from high- to low-nutrient

status through the peat profile [18], consistent with models of

fen to bog transitions in peatlands at high latitudes [64]. Palm

swamps, by contrast, are typically found close to large and

geomorphologically dynamic rivers [15], and minerogenic

intrusions in the peats formed under this vegetation provide

evidence of frequent flooding [18]. We suggest that frequent

fluvial influence has maintained higher nutrient input

throughout their development, up to the present day, and that

in these geomorphologically dynamic settings there has not

been sufficient time for ombrotrophic conditions to develop.

Open peatlands are found primarily close to large and

dynamic rivers [16], and while their depth and nutrient status

vary [17, 18], radiocarbon dating from the two deepest sites

shows they are significantly younger than pole forests [9, 10].

We suggest that open peatlands may represent an early suc-

cessional community in the development of peatland

ecosystems.

Work in progress on the vegetational history of these

peatlands will help to test these hypotheses about potential

landscape controls on the distribution and development of the

different peatland vegetation types. A further vegetation type

that is known to harbour peat is seasonally flooded forest [9].

This peatland ecosystem type was excluded from this analysis

because it is poorly known (only two such sites, locally

known as tahuampa, have been confirmed to hold peat).

Further fieldwork is required to quantify its contribution to the

carbon stock.

4.5. Contribution of PMFB to the tropical peatland carbon pool

In terms of tropical peatlands globally, the peatlands of the

PMFB account for 6.5% of their area and 3.5% of their car-

bon stocks [54]. Whilst these figures are small in comparison

to the deeper and more extensive peatlands of Southeast Asia,

the conservation importance of Peruvian peatlands should not

be dismissed. Southeast Asian peatlands have experienced

decades of destruction, leading to a 50% loss of intact peat

swamp forest [22] and large carbon emissions [65, 66]. At

current rates of destruction they would be lost entirely by

2030 [22]. Peruvian peatlands, on the other hand, remain

almost entirely intact, though they face an increasing range of

threats including degradation by large-scale cutting of palms

for fruit, hydrocarbon extraction, illegal logging, oil palm

plantation expansion, and direct disturbance by proposed rail

and road links from the city of Iquitos to the rest of Peru, as

well as the knock-on consequences of improved access [67–

69]. We therefore suggest that the peatlands of the PMFB

should be a priority for carbon-focussed conservation strate-

gies, because they constitute a large carbon stock, and there is

an opportunity to protect these areas before infrastructure

develops sufficiently for them to be degraded and exploited.

Accurate carbon stock information for tropical peatlands

is required to inform initiatives such as reducing emissions

from deforestation and degradation (REDD+) [70, 71]. To our

knowledge this is the first study in tropical peatlands to

estimate both above- and below-ground components of the

carbon pool at a regional scale. Estimates of below-ground

carbon stocks elsewhere in tropical peatlands have been based

on a small number of individual peatlands [19, 72] or on

historical, continental or national level inventories, which

have little empirical basis and are difficult to verify

[62, 73, 74]. AGB estimates have been developed to assess

the efficacy of remote sensing products and have used limited

ground data [75–77]. We suggest that the method applied

here, using extensive above- and below-ground field data

alongside multiple remote sensing products, is the most

effective way of generating the kind of regional and national

carbon stock inventories required by initiatives such as

REDD+.

5. Conclusions

This investigation provides the most accurate estimates to

date of the carbon stock of an area that is the largest peatland

complex in the Neotropics, and confirms the status of the

PMFB as the most carbon-dense landscape in Amazonia. The

novel approach of combining optical and radar remote sen-

sing with above- and below-ground carbon inventories is

shown to increase the accuracy of regional carbon stock

estimates and is recommended for developing regional carbon

estimates for tropical peatlands globally. The PMFB remains

almost entirely intact, but threats to its persistence are

increasing. If Amazonian peatlands are to continue to act as a

carbon store and avoid the fate of their counterparts in

Southeast Asian, then they must be a conservation and

research priority.
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