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1. Introduction. A positive integer n is called 4-full whenever p|n
implies that p* | n, where p denotes a prime number. Let Q4(z) be the num-
ber of 4-full numbers not exceeding x, for x sufficiently large. The problem
of finding an asymptotic formula for Q4(z) with a good error term has a
long and distinguished history, beginning with a famous paper of Erdds and
Szekeres [3]. Elementary (Abel summation, Euler-Maclaurin summation),
analytic (Perron formula, residue theorem), and exponential sum methods
have subsequently been used to attack the problem. Let

F(s) = i X:Z) for Re(s) > 1,

where x(n) is the character function of 4-full integers; then

_ C(45)¢(55)¢(65)¢(Ts) <~ c(n)
F(s) = ¢(10s) nzl ns

the Dirichlet series ) ¢(n)n™° is absolutely convergent for Re(s) > 1/11, so
that by the residue theorem we can write

Qa(z) = > Wiz''+ A(x),

4<4i<7

with A(x) an error term. Let
A =inf{p: A(z) < x°}.
The following list of upper bounds of A can be found in the literature:

1/5 = 0.2, Erd6s and Szekeres [3] (1935),

1/6 = 0.1666. .., Bateman and Grosswald [2] (1958),
169/1360 = 0.1242 . .., Kriitzel [7] (1972),

257/2072 = 0.1240.. .., Ivi¢ [4] (1978),

3187/25852 = 0.1232..., Ivi¢ [5] (1981),

3091/25981 = 0.1189 ... ., Ivié and Shiu [6] (1982),

[165]
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5/44 = 0.1136.. .., Kratzel [8] (1983),

21/187 = 0.1122..., Kriitzel [10] (1989);
in particular, the last result of Kratzel was obtained by using the three-
dimensional lattice point results of his paper [9]. Professor Kratzel informed
the author in June 1993 that Dr. Menzer (Jena) already got a further im-
provement on his result.

The purpose of this paper is to give a better upper bound for A. We will
show the following

THEOREM 1. A < 6/59 = 0.1016. ..

Our result is near but still falls short of the expected bound, namely,
A < 0.1. In light of the argument involved in Kratzel [10], it suffices to
deduce the following

THEOREM 2. For any € > 0,
Z 1= Ac'/4 4 Bz'/5 4 Ca/6 4 DatlT 4 O(25/%+)

n‘llngngnzga:
with some absolute constants A, B, C and D.

Following the approach of Krétzel, Theorem 2 can be reduced to
4-dimensional exponential sums, which can be estimated by a combination
of Kolesnik’s method and a refined version of the Bombieri—-Fouvry—Iwaniec
method (cf. [11], [12]).

The author is grateful to Professor Ekkehard Kratzel for providing a lot
of reprints of his papers on divisors problems, without which the present
work would not exist.

2. Proof of Theorem 2 (reduction). From (4), (5) and (7) of [10],
Z 1= AzY* 4+ Bat/® + 02/ + DxV/7 + E(x),

where
E(z)=— Z S(a,b,c,d;z) + Oz,
(a,b,c,d)
(a,b,c,d) runs through all permutations of (4,5,6,7), and

1/d
x
S(a,b,c,d;oo=le<(nanbnc> )
1 3

2

Y(t) =t—[t] —  ([t] is the integral part of ¢), with ), denoting summation

over all lattice points (n1,n2,n3) with

niningtd <z, 1< (<) ny < ng;
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here ny (<)ng) means ny < ng if (a,b) = (a;,a;) for i < j, and n; <
ny otherwise, and we have set (4,5,6,7) = (a1,a2,as,a4). We can write
S(a,b,c,d;x) as O((Inx)3) subsums of the type S(a, b, ¢, d; N), together with
a permissible error, where N = (N7, N3, N3), N,’s are positive integers, and

. 1/d
S(a,b,C,dQN):Zgw(<n‘fnb ) )

C
213

with ), denoting summation over lattice points (n1,n2,n3) with
(0) nindnst® <z, 1<ni(<)ng <nz, N, <n, <2N, (v=1,2,3).

By means of the Fourier series treatment of the function ¢ (t) (cf. (18) and
(19) of [11]), for a parameter K € [10,2'/?] and some number H € [1, K?]
(H depends on K), we have the estimate

(1) x7¢S(a,b,c,d; N) < N{NoN3K !
+min(1, K/H)(®(H; N) +¥(H; N)),

where

)

SH;N) = H 3|7 elf(hyni,na,ng))

h~H

1/d
T
f(h,nl,ng,ng):h< : )

a C
ninong

(2)

with )", denoting summation over lattice points (ni,n2,n3) with
(*) nindnstd <z, 1<n; <ng<nz, N,<n,<2N, (v=123),

and

WH;N) = H S| elfi(hnz,ng)),

h~H
fi(h,no,n3) = h(mn;“_bng_c)l/d

with ), denoting summation over lattice points (n2,n3) with
(#) ng+bn§+d <z, 1<ny<ng, N,<n,<2N, (v=2,3)

(that is, (#) is obtained from (0) by taking n; = ns).

Throughout this paper we use the notations r ~ R and r 2 R to mean
1<r/R<2and C; <r/R < Cy, respectively; C; (i = 1,2,3,...) will be
some absolute constants. As usual, e(§) = exp(2mi&) for a real number &.
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As the contribution of ¥(H; N) is always negligible when compared with
that of ®(H; N), we will omit ¥(H; N) from our argument throughout. For
convenience we can assume that z = v/5 - Z, where Z is an integer, that is,
r is a quadratic irrational (otherwise we can replace z by 5'/2[z571/?] and
add a permissible error in (1)). To deal with @(H; N) we first transform
summation over ng to summation over u via the following lemma.

LEMMA 1. Let f(z) and g(x) be algebraic functions for x € |a,b], satis-
fying

|f”(l’) ~ R—l7 fm(ﬂi‘) < (RU)il,
g(@)| < H, g¢'(z)<HUT', UUL=1
Then
> gne(f(n))
a<n<b

= bume (D) — wnla) 4+ 1/8
a<z:u<,3 f”(n(u)) (f( ( )) ( )+ / )

+OHIB-a+2)+Hb—a+R)(U T +UY)

S )]

where [a, 8] is the image of [a,b] under the mapping y = f'(x), n(u) is
determined by the equation f'(n(u)) = u, and

- 1 fora<u<pg,
“11/2  foru= «a = integer or u= 3 = integer;

the function (x) is defined as follows:

() = ||| if © is not an integer,
| B—a otherwise,

where ||z|| = minpez | — nl; and /7" > 0 if f' >0, and /f" = i\/|f"|
if [ <0.

Proof. This is Lemma 1.4 of [13].

Now put
X =an] ",
M; = max(Ns,ny), My = min((Xn;°)Y(+D aN,),
he b e he b
U= — (Xny "My eV Uy = —(Xny My e 4le.

d d
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Lemma 1 yields

3 3 el

Mi1<nz<M>

— Z Cl(X_lh_dngu2d+c)1/(2(d+c))€(g)
Ui <u<Usg

+ O(Ng(HF)_1 4+ Inz 4+ min ((]\732H_1F_1)1/2 1>>

" Us — hejd
1
+O( min <(N2H_1F—1)1/2’)>
<Z ’ T (2, X,)]]
+ R(h,n1,n2),

where
g = Cg(thucngb)l/(C"'d), Xl = max(nz, Ng), X2 = 2N3,
F = (XNg°Ny")/4,
%Cl(X_lh_dngde+C)_1/(2(C+d))€(g)
R(h,n1,m2) = if My = (Xny®)Y(@+e) and U; integer,
0 otherwise,
he b —dee
T(ng,w) = F(Xn2 by—d=eyl/d,
We find that (as F' > Nj)
1
. 2 7—1—1\1/2 1/11
@ i (3 ) <t

ni no

Let G = (N, “N, " N3 ©)V/¢ (= F). By Hilfssatz 4 of [9] we get
1
(5) min <(N2H1F1)1/2, )
2.2 ’ 1T (n2, Xi) ||

ni na

< N(1+HGN;Y((N2H'GHY2 + HT'G7IN,N3) In
< N (HO)Y?Inx + 2/,
Finally, an application of the exponent pair (1/6,4/6) gives

6) > > R(h,ni,ny)

niy n2

< Ny(NF(HG)™O)Y2(Ny/O(GHN; YO + N H T G
< NIN;2N3G~1/3 4 Ny N,N3G~3/2 < NyN2/2NZ/® + Ny N,
< (NTNSN)B/132 4 Ny N, < 213/132,
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From (2)—(6) we get

(1) S(H;N) < HH(NGHTG)Y2 Y |3 g1m)ga(na)gswlels)
h~H

+ Nl(HG)1/2 Inz + 1'13/132,
where ) . denotes summation over lattice points (n1,n2,u) with
1<ny<ny, N,<n,<2N, (v=1,2), U5 <u<Us,

and g;(-) (i = 1,2,3) are monomials with |g;(-)| < 1.

3. Three estimates for S(a,b,c,d; N)

LEMMA 2. Let f(x,y) = Az*y®, g(x,y) = Bx"y°®, where o, B3, v and §
are rationals with af(a+ f —1)(a+ 0 —2) #0, A > 0, and suppose that
g(z,y) = G holds for (z,y) with x ~ X and y ~Y. Moreover, suppose that
D c{(z,y) |z~ X,y ~Y}, D is embraced by O(1) algebraic curves, and
X>Y. Lt N=XY, F=AXY"?. Then

> gz ye(f(z,y) < (N + AN)G(VF2N? 4 N°/6

(z,y)eD
+ VNSFIX T4 NF~YV* 4 NY~1/2),

Proof. This is a “weighted” version of Lemma 9 of [11], and can be
obtained similarly by Kolesnik’s original method.

Applying Lemma 2 to the variables ns and u of the multiple sum of (7),
we get

e °®(H; N) < V(HG)>NSNZN3 + V(HG)3NSNJ
+ (HG)'>N{N)? + NyNyN3/? + 2%,

where ¢ = 13/132; thus from (1) we obtain

(8)  a7%S(a,b,c,d; N) < NyNoN3s K~ + V(KG)2NSN3 N3
+ V(KG)3NEN] + (KG)/?>N,N,/?
+ NiNoN3/? 4 2.

To choose K optimally we need the following

LEMMA 3. Let M, N, ty,, Un, Am, By be positive (1 <n < N,1 <m
< M), and Q1 and Q2 be given non-negative numbers with Q1 < Q2. Then



The distribution of 4-full numbers 171

there is a number Q) such that Q1 < Q < Q2 and

DT AnQUm+ D> BaQ T Y > (AyBym)/umten)

1<m<M 1<n<N 1<n<N 1<m<M
Um —Un
+ E An Q™ + E B,Q5"".
1<m<M 1<n<N

Proof. This is Lemma 2 of [11].

By Lemma 3 we can choose a K € [0, z'/2] optimally in (8) so that
(9  27*S(a,b,c,d; N) < VGPNFNFNS + VGENITNGON3
+ VGNFNZN, + NiNyNo/2 4 29
This is our first estimate. To get the second, we apply the next
LEMMA 4. Let H > 1, X > 1, Y > 1000, «, 8 and ~y be real numbers with

ay(y=1)(B—1) #0, and let A > C(c, 3,7) > 0 and f(h,z,y) = Ah®zPy7.
Define

S(H,X,Y) = Z Cl(hax)CQ(y)e(f(haxay))y
(h,z,y)€D

where D is a region contained in the rectangle {(h,z,y) | h ~ H,z ~ X,
y ~ Y} such that for any fized pair (ho, xo), the intersection DN{(ho, xo,y) |
y ~ Y} has at most O(1) segments. Also, suppose that |Ci(h,z)| < 1,
|Ca(y)| <1 and F = AH*XPY? > Y. Then, for L=In((A+1)HXY +2)
and M = max(1, FY ~2),

L73S(H,X,Y) < YV(HX)PYBF? + HXY?8(1 4 YTF~4)1/16
+ VHX)PYEF2M° + V(HX)PY M.

Proof. This is Theorem 3 of [12].

We apply Lemma 4 to the triple (h,u, ng) of (7), with the choice (h, z,y)
= (h,u,n2), and we estimate the sum over n; trivially in (7), thus obtaining
(note that v = HGN;*):

(10) 2 °®(H;N) < ¥HSGUNZNEBNS + (HG)/2N,N3/®
+ V(HG)AN{SN]" + ¥V HSGUNPNFEN3
+ VHBGNPNENS + VGN{N§ N,
+ V(HG)>N}NZ + z%.

From (1) and (10) we find that
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(11) z7%S(a,b,c,d; N) < Ny NoN3 K+
+ VKSGUNENPNG + (KG)Y2N, N,/
+ V(KG)*N{°NJ™ + VKSG''NP2NZEN3
+ VKBGUONIZNIENS + VGNEINZIN,
+ V(KG)?N{N3 + a*.

Choosing K € [0, z'/?] optimally via Lemma 3, we obtain

(12)  27%8(a,b,c,d; N) < VGUNPONZINIT + ¥/ (GN3) N8N
+ V(GN3)INF'N0 + V/(GN3)'TNZONO
+ V(GN3)'* N3N + V(GN3)> N3N}
+ VGNyNs N} + z%.

This is the second estimate. To deduce the third, we first relax the severe
constraint n; < ng and U; < u < Uy by the next familiar lemma.

LEMMA 5. Let T, a and (3 be real, T >0, 8 > 0. Then

1f wsint8  f1+00/(T(3= o) i [a] <5,
< dt_{O(l/(T(la!—B))) if o] > 8

-T

We can apply Lemma 5 as follows. For instance, we want to remove the
inequality

he —a,, — —c—
u>U; = E(xnl ngy b(2N3) d)l/d

when My = 2N3; then we choose T = 2! o = In(x(hc)?) and 3 =
In((ud)®n§n5(2N3)°t9) in Lemma 5. As z = +/5Z with Z an integer, the
contribution of O(T'(||a| —3])~!) of Lemma 5 can be estimated satisfactorily
by using the fact that |z — p/q| > ¢~ 22! for all rationals p/q with ¢ > 0
(which is implied by a special case of Liouville’s theorem, cf. §5 of Chapter 6
in Baker [1]). In this fashion we can remove all the relationships between
the lattice points (h,n2) and (nq,u) consecutively. Thus from (7) we get

(13) 2 °®(H;N)
<« (HP3GNE)2 Y Z‘ 3" Clny,w)e(Calzhucny *ny "))

h~H nQNNQ (’I’Ll,u)GDl
+ N1 (HG)Y? + 2%,

where, for brevity, 6 = 1/(c¢+ d), and D, is a region contained in {(nq,u) |
ny ~ Ny,u 2 U = HGN; '}, independent of h and ng; |C(n1,u)| < 1. By
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Lemma 4 of [11] we get from (13) the estimate

(14) v 2*P(H; N)? < H ?>NiB,By + HGN} + 1%¢,

where B is the number of lattice points (h, na, h, n2) such that
hoh~H, nyfig~ Ny, |(hing?)/(+d _ (pdn; 01/ (c4d)| « ARy,

with A = (HG)~"' and Ry = (H?N, ®)"/(¢+4) and where B, is the number
of lattice points (ny,u,n1,u) such that

ny,fy ~ Ny, u,u = HGNg Y,
[(ueny @)Y () — (@7 )Y D) < ARy,

with Ry = ((GHN5 ')eN; *)Y/(¢+4) By Lemma 5 of [11],

(15) By < (HNy 4+ HNyNoG~H(Inz)? < HN, In’z,
(16) By < (N{HGN; '+ HGNIN;?)(Inx)?> < NyHGN; ' In’z.

From (14)—(16) we get
+~%G(H; N) < (GN1N2N3) V2 + Ny (HG)Y? + 2%,
which, in conjunction with (1) and the choice K = (G~*N3N3)'/3, gives

(17)  27%8(a,b,c,d; N) < (GN1NaN3)/2 + VGNP NyN, + ¢
< (GN1N2N3)1/2 + x¥.

This is our third estimate.

4. Proof of Theorem 2 (completion). Recall that N; < Ny < N3;
thus

(18) (N3 <) G := (zN7 Ny PNy )Y < (eN7 TNy S NG 5)4

for any permutation (a, b, ¢, d) of (4,5,6,7). By our three estimates (9), (12),
(17), and the fact (18), we have, with n = 4e,

(19) 7S (a,b,c,d; N) < VaN)NsN3 + Va3 NPNFN;?
+ YaNPNZN; '+ NiN,Ny/% + 2%

< VaN{NiNS + VP NP NSO

+ VaNPN, + NyNoN3/? + %,
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(20) = "S(a,b,c,d; N) < Ve NENEN; T + Va2 NONS N2

+ VaNBNBN; T+ VeI NS NN, T

+ VaINTTNIN;* + VaN3INg !
+ VaN{NJON; ' + 2%,

and

21 27"S(a,b,c,d; N) < Ve N3Ny 2Ny L+ 2.
1 Vo V3

It remains to deduce the required estimate from (19)—(21).
From (19) and (21) it is seen that

7 "S(a,b,c,d; N) < VaN)NiINS + By + Ey + E3 + 2¥,

where

E; = min( Va3 (N Np)2L, Va (N No)~3) < 201,

E5 = min( 1\2/313(N1N2)3, \zg/a:(NlNg)_g’) < g0t

Es = min(N1NoN3/? Vo Ny PNy 2N D) < (2N 10t < 20,
Thus
(22) 7"S(a,b,c,d; N) < VaN)NiNS + 201,

From (20) and (22) we obtain

(23) x~"S(a,b,c,d; N) < Z B 4 2%,

4<i<10

(24) By = min( VaNJN; T, VaN)NIN3) < V2P NPNZ,
(25)  Es = min( Vo INPNEN; B Ve N)NsN3)

< VNN,
(26) Ee = min( Yz NJN3N; ', Ve NINING) < VaSN3ND,
(27)  E; = min( VaNPNPN; L, VaeNINING) <« "WaSNTIND,
(28) Eg = min( 'V INBNPEN; T VNI NING)

< "V NPTNG,
(29)  Eo = min( Va!NITNIN;*, VaNINING) < Va2 NPINST,
(30) Ey = min( VaNINION; T, WeNINING) < Vab(NiNo)5L
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By (21) and (22) we get

(31) 7 "S(a,b,c,d; N) < min( Ve NYNiNZ, VaN; 3Ny 2Ny 1) + 291

< V(zNy'N; T3 420

For brevity we set J = N1 N,. From (23) to (31) we find that

x~"S(a,b,c,d; N) < Z E; + 2%,

11<4<17

where

xJ )3, 3\?/x3J7) < 28/59
3, /4T3 JI095) o 01007,
3, /28 J26.5) « 01006

(zJ77)
(zJ7)
(xJ77)
(xJ_1)3, 11\6/5(,‘6J79) < xO.l’
(zJ7)
(xJ77)
(xJ77)

E12 = min

E13 = min

488 1
37 \/5833 ]237) < $0 ,
289 1
3, \/.CC24 786) < .CEO 0087

xJ )3 4\8/373J27) < 01

E15 = min

E16 = min

E17 = min

as required.
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