Intro

The distribution of calibrated likelihood-ratios in speaker recognition

David van Leeuwen and Niko Brümmer d.vanleeuwen@let.ru.nl, nbrummer@agnito.es Netherlands Forensic Institute / Radboud University Nijmegen, Agnitio Research

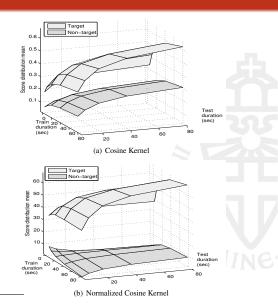
15 October 2013¹

¹First published at Interspeech 2013

Intro

Inspiration for this work

- We had these badly-behaving scores² depending on utterance duration
- We tried to design universal calibration transformations
- Question arose: where do calibrated scores hang out?
- What is their distribution?



²Mandasari *et al.*, Interspeech 2011

BTFS 2013

Traditionally:

• The capability to set a threshold correctly

Nowadays:

- The ability to give a proper probabilistic statement about identity
 - ... to produce (log) likelihood ratio scores for every comparison
 - ... that lead to optimal Bayes' decisions

Traditionally:

• The capability to set a threshold correctly

Nowadays:

- The ability to give a proper probabilistic statement about identity
 - ... to produce (log) likelihood ratio scores for every comparison
 - ... that lead to optimal Bayes' decisions

Bayes' decision

 $\begin{array}{l} {\sf Priors + likelihoods \rightarrow posteriors} \\ {\sf Posteriors + costs \rightarrow expected \ costs} \\ {\sf Minimize \ expected \ costs \rightarrow decision} \end{array}$

The forensic motivation of the Likelihood Ratio

Use the log Likelihood Ratio as weight of evidence in court

- Using Bayes's rule, separate contributions
 - Forensic Expert, w.r.t. the material they know about
 - The other evidence / circumstances of the case

to compute the posterior probability that suspect is the perpetrator

The End

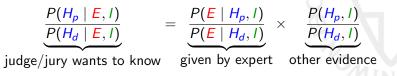
The forensic motivation of the Likelihood Ratio

Use the log Likelihood Ratio as weight of evidence in court

- Using Bayes's rule, separate contributions
 - Forensic Expert, w.r.t. the material they know about *E*
 - The other evidence / circumstances of the case I

to compute the posterior probability that suspect is the perpetrator $H_p = \neg H_d$

Mathematically,



From scores to likelihood ratios

- A likelihood ratio can be treated like a score
 - All analysis tricks work: ROC, DET, EER, decision cost functions...
- But can we transform a score into a LR?
- This is a process known as calibration: giving meaning to probabilistic statements

From scores to likelihood ratios

- A likelihood ratio can be treated like a score
 - All analysis tricks work: ROC, DET, EER, decision cost functions...
- But can we transform a score into a LR?
- This is a process known as calibration: giving meaning to probabilistic statements

problem statement

But what is the definition of *calibrated* scores / LRs?

Definition of Calibrated Likelihood Ratios

Our definition³

The LR of the LR is the LR

or, for the mathematically inclined

$$LR = \frac{P(LR \mid H_p)}{P(LR \mid H_d)}$$

³Proof in paper, short version in Mandasari *et al.*, IEEE-TASLP (2013, accepted)

Definition of Calibrated Likelihood Ratios

Our definition³

The LR of the LR is the LR

or, for the mathematically inclined

$$LR = \frac{P(LR \mid H_p)}{P(LR \mid H_d)}$$

which happens to be equivalent to

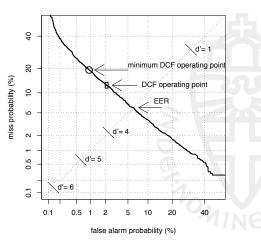
$$\log \mathrm{LR} = \log \frac{P(\log \mathrm{LR} \mid H_p)}{P(\log \mathrm{LR} \mid H_d)}$$

The LLR of the LLR is the LLR

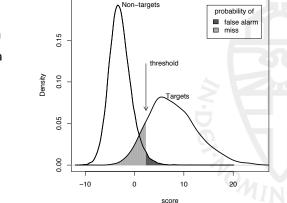
³Proof in paper, short version in Mandasari *et al.*, IEEE-TASLP (2013, accepted)

More inspiration: Why are DET curves straight?

- If score distributions are Gaussian, then DET curve is straight
 - Slope is ratio of standarddeviations of the score distributions
- If DET is straight, score distributions are not necessarily Gaussian
 - but can be made Gaussian by warping of score axis



For reference: these are the score distributions



Probability density

- Clearly not Gaussian
- But *still* leading to a straight DET curve
- non-targets: d(x) (different)
- targets: e(x)
 (equal)

Can Gaussian Scores be Well Calibrated?

Let's try

- Gaussian non-targets $d(x) = \mathcal{N}(x \mid \mu_d, \sigma_d^2)$
- calibration definition for LLR:

$$x = \log \frac{e(x)}{d(x)}$$

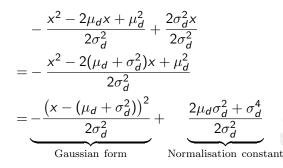
cargets $e(x) = e^{x}d(x)$

Now use the expression for the normal distribution \mathcal{N} , and see what the targets e(x) look like

$$e(x) = e^{x}d(x) = \frac{1}{\sqrt{2\pi}\sigma_{d}}e^{x-(x-\mu_{d})^{2}/2\sigma_{d}^{2}}$$

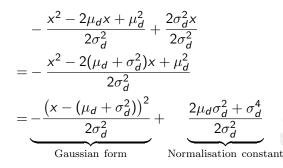
	Calibration	Gaussian scores	Applications	The End
Math 101				

Expanding the exponent for target distribution e(x):



Intro Calibration Gaussian scores Applications The End
Math 101

Expanding the exponent for target distribution e(x):



Gaussian form

- if $\mu_e = \mu_d + \sigma_d^2$
- with $\sigma_e = \sigma_d$
- normalization requires $-2\mu_d = \sigma^2$

tro Calibration Gaussian scores Applications

Conclusions of this little exercise

- Consider non-target distribution d(x) and target score distribution e(x)
- Then if d(x) is normally distributed

The End

Intro Calibration Gaussian scores Applications
Conclusions of this little exercise

- Consider non-target distribution d(x) and target score distribution e(x)
- Then if d(x) is normally distributed

... the calibration definition tells us

- e(x) is normally distributed as well
- Variances are the same for d(x) and e(x)
- The means are symmetric around 0,

$$\mu_d = -\mu_e$$

• Variance and mean are related

$$\sigma^2 = 2\mu$$

The End

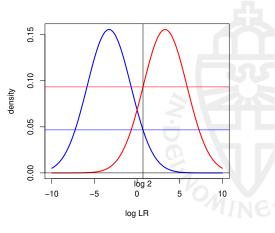
Gaussian scores

Applications

The End

Example of well-calibrated scores

 LR = 2 density scores around 2 is 2× as high for targets (red) as for the non-targets (blue)



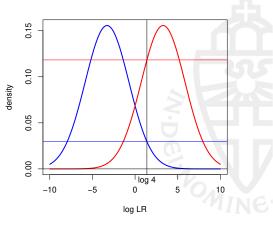
Gaussian scores

Applications

The End

Example of well-calibrated scores

- LR = 2 density scores around 2 is 2× as high for targets (red) as for the non-targets (blue)
- LR = 4



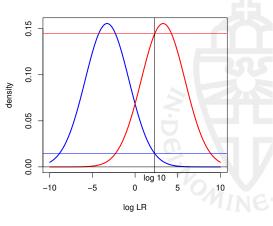
Gaussian scores

Applications

The End

Example of well-calibrated scores

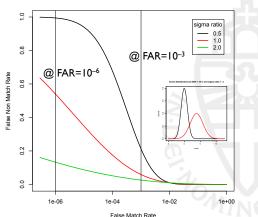
- LR = 2 density scores around 2 is 2× as high for targets (red) as for the non-targets (blue)
- LR = 10



Some direct consequences

- Well calibrated straight DET curves must be of 45° slope
- Preferred "flat" straight DET curves can't arise from calibrated scores
 - highlydiscriminative systems have flat DET curves,
 - fingerprint, iris,

. . .



ROC at EER = 1 %

Gaussian scores

Applications

The End

All relations are known, now

From this model of scores all other characteristics follow, e.g.,

- Equal Error Rate E=
 - Threshold at 0
 - Integrate the miss error:

$$E_{=} = \int_{-\infty}^{0} \mathcal{N}(x \mid \sigma, \mu) \, dx$$
$$= \Phi(-\mu/\sigma) = \Phi(-\sqrt{\mu/2})$$

- $\Phi(z)$ cumulative normal distribution
- Cost of LLR $C_{\rm llr}$

$$\mathcal{C}_{\mathrm{llr}} = rac{1}{\log 2} \int_{-\infty}^{\infty} \mathcal{N}(x \mid \mu, \sigma) \log(1 + e^{-x}) \, dx$$

• $C_{\rm llr}$ depends only on $E_{=}$

Gaussian scores

$C_{\rm llr}$ depends only on $E_{=}$

1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2 0.5 0.0 0.3 0.4 eer

Calibrated Gaussian LLR distributions

Approximate relation:

$$C_{\mathrm{llr}} \approx 1 - (2E_{\mathrm{=}} - 1)^2$$

Application: a new way of doing calibration

Calibration is the process of fixing scores so that they can be interpreted better as log likelihood ratios

• Traditionally, this is done in speaker recognition by an affine transformation of score *s*

$$x = as + b$$

 parameters a and b found by logistic regression using a development set of trials

Application: a new way of doing calibration

Calibration is the process of fixing scores so that they can be interpreted better as log likelihood ratios

• Traditionally, this is done in speaker recognition by an affine transformation of score *s*

$$x = as + b$$

 parameters a and b found by logistic regression using a development set of trials

New calibration method:

Find a and b by constraining the transformed scores to satisfy the Gaussian LLR conditions for μ and σ

Intro

Calibration

Gaussian scores

Applications

The End

Math 101 again

Raw score means and variances $m_{d,e}$, $s_{d,e}^2$.

- Transformed target mean: $am_e + b = \mu$
- Transformed non-target mean $am_d + b = -\mu$
- Weighted variance $v = (1 \alpha)s_d^2 + \alpha s_e^2$
- Transformed variance $\sigma^2 = a^2 v = 2\mu$

Math 101 again

Raw score means and variances $m_{d,e}$, $s_{d,e}^2$.

- Transformed target mean: $am_e + b = \mu$
- Transformed non-target mean $am_d + b = -\mu$
- Weighted variance $v = (1 \alpha)s_d^2 + \alpha s_e^2$
- Transformed variance $\sigma^2 = a^2 v = 2\mu$

... results in solution

$$m_e - m_a$$

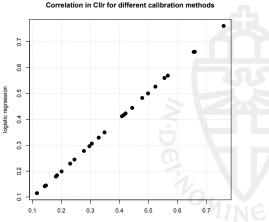
$$b = -a \frac{m_e + m_d}{2}$$

• This is a closed-form solution!

Constrained Maximum Likelihood Gaussian: CMLG

First calibration experiment: Miranti's scores

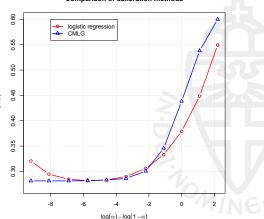
- RUN i-vector PLDA system
- calibrate on SRE-2008, evaluate using C_{llr} on SRE-2010
- 25 different durationcombinations, to sample range of performances
- Two linear calibration methods
 - y Logistic regression
 - x This method (CMLG)



constrained maximum likelihood Gaussian (CMLG)

Second experiment: Niko's scores

- Agnitio Research's SRE-2012 system and scores
- Calibrated using their dev-set
- Evaluated using C_{primary}
 - official SRE-2012 metric
 - sensitive to low-FA range
- Contrasting
 - Niko + GD Interspeech 2013
 - This method
 CMLG



Comparison of calibration methods

The End

- We can prove that "the LLR of the LLR is the LLR"
 - ... already in exam questions course Forensic Linguistics...
- Well calibrated Gaussian non-target scores imply
 - Gaussian target scores
 - with same variance
 - and opposite mean
 - and a variance that is equal to the difference in means
- We can use it to find calibration parameters
 - as a closed-form solution
 - that gives same performance as logistic regression, for
 - two different systems
 - two different evaluation data bases
 - two different calibration-sensitive evaluation metrics