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THE DISTRIBUTION OF EIGENVALUES OF

RANDOMIZED PERMUTATION MATRICES

by Joseph NAJNUDEL & Ashkan NIKEGHBALI

Abstract. — In this article we study in detail a family of random matrix
ensembles which are obtained from random permutations matrices (chosen at ran-
dom according to the Ewens measure of parameter θ > 0) by replacing the entries
equal to one by more general non-vanishing complex random variables. For these
ensembles, in contrast with more classical models as the Gaussian Unitary En-
semble, or the Circular Unitary Ensemble, the eigenvalues can be very explicitly
computed by using the cycle structure of the permutations. Moreover, by using the
so-called virtual permutations, first introduced by Kerov, Olshanski and Vershik,
and studied with a probabilistic point of view by Tsilevich, we are able to define,
on the same probability space, a model for each dimension greater than or equal
to one, which gives a meaning to the notion of almost sure convergence when the
dimension tends to infinity. In the present paper, depending on the precise model
which is considered, we obtain a number of different results of convergence for the
point measure of the eigenvalues, some of these results giving a strong convergence,
which is not common in random matrix theory.

Résumé. — Dans cet article, nous étudions en détail une famille d’ensembles de
matrices aléatoires qui sont obtenues à partir de matrices de permutation aléatoires
en remplaçant les coefficients égaux à un par des variables aléatoires complexes non
nulles plus générales. Pour ces ensembles, les valeurs propres peuvent être calculées
très explicitement en utilisant la structure en cycles des permutations. De plus,
en utilisant les permutations virtuelles, étudiées par Kerov, Olshanski, Vershik et
Tsilevich, nous sommes capables de définir, sur le même espace de probabilité, un
modèle pour chaque dimension supérieure ou égale à un, ce qui donne un sens à
la notion de convergence presque sûre quand la dimension tend vers l’infini. Dans
le présent article, selon le modèle précis qui est étudié, nous obtenons différents
résultats de convergence pour la mesure ponctuelle des valeurs propres, certains de
ces résultats donnant une convergence forte.

Keywords: Random matrix, permutation matrix, virtual permutation, convergence of
eigenvalues.
Math. classification: 15A18, 15A52, 20B30.
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1. Introduction

1.1. Random permutation matrices and outline of the paper

The distribution of the eigenvalues of random matrices and some re-

lated objects such as their characteristic polynomials have received much

attention in the last few decades. They have been applied in such diverse

branches as physics, number theory, analysis or probability theory as illus-

trated in the monographs [11], [10] and [1] or the survey paper [5]. The main

matrix ensembles which have been studied are the Gaussian ensembles and

some of their generalizations, the classical compact Lie groups U(N) (the

group of unitary matrices), O(N) (the orthogonal group) and some of their

continuous sub-groups, endowed with the Haar probability measure. It is

also natural to investigate for the distribution of the eigenvalues of ran-

dom permutation matrices, i.e. matrices which are canonically associated

to a random element of a given finite symmetric group. Indeed it is well-

known that the eigenvalues of a permutation matrix Mσ associated with

a permutation σ are entirely determined by the cycle structure of σ, and

hence one can hope to take advantage of the extensive literature on ran-

dom permutations (see e.g. the book by Arratia, Barbour and Tavaré [2])

to describe completely the structure of the point process of the eigenvalues

of random permutation matrices (e.g. the correlation measure of order q,

the convergence of the normalized and non-normalized empirical spectral

distribution, etc. ). This has been shortly sketched out in the pioneering

work by Diaconis and Shahshahani [6] and further developed by Wieand in

[16], who studied the problem of counting how many eigenvalues lie in some

fixed arc of the unit circle. Wieand compares the results obtained in this

case with those obtained for the unitary group under the Haar measure and

notices some similarities but also some differences when it comes to look at

more refined aspects. Then it is suggested that one should try to compute

finer statistics related to the eigenvalues in order to see how random permu-

tation matrices fit into the random matrix picture. Of course one expects

some drastic differences: for instance the point process associated with the

eigenvalues of random permutation matrices should not be determinantal

whereas it is determinantal for the unitary group. The goal of the present

work is to continue the work initiated by Diaconis and Shahshahani in [6]

and Wieand in [16]. Before mentioning more precisely the various direc-

tions in which we wish to extend the existing work, it should be mentioned

that other works have been recently done on random permutation matri-

ces, such as the paper by Hambly, Keevach, O’Connell and Stark [8] on
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the characteristic polynomial of random unitary matrices, the papers by

Zeindler ([18]) and by Dehaye and Zeindler ([4]), or the works by Wieand

([17]) and Evans ([7]) on the eigenvalues of random wreath products (but

in this latter case, the techniques that are involved are different and we

shall also address this framework in a future work).

The ensembles of matrices we study in this paper are constructed from

permutation matrices by replacing the entries equal to 1 by more general

random variables. The advantage of this kind of ensembles is that it some-

how combines the advantages of the ensembles of permutation matrices,

and of the more classical ensembles of unitary matrices (as the Circular

Unitary Ensemble): the very explicit computations made on permutation

matrices can be naturally extended to our setting, and on the other hand,

we have more flexibility on the possible distributions of the eigenvalues, and

in particular their properties of absolute continuity: for example, the eigen-

values are not necessarily roots of unity, and the average distribution of the

eigenvalues (one-point correlation function) can be absolutely continuous

with respect to the Lebesgue measure.

We now describe in more detail how we shall continue and extend some

of the previous works and shall postpone precise definitions to the next

paragraph:

• We shall consider a larger ensemble of random matrices with more

general distributions than for ensembles of permutation matrices;

roughly speaking, we first pick a permutation of size N from ΣN
(the group of permutations of size N) at random according to the

Ewens measure of parameter θ > 0 (under this measure, the prob-

ability of a given permutation σ is proportional to θn, where n is

the number of cycles of σ) and then consider the corresponding ma-

trix; we then replace the 1’s by a sequence of i.i.d. random variables

z1, . . . , zN taking values in C
∗. This ensemble is a sub-group of the

linear sub-group GL(N,C) and the classical random permutation

matrices correspond to the case where θ = 1 and where the distri-

bution of the zi’s is the Dirac measure at 1. The choice of the Ewens

measure is natural since it is a one parameter deformation of the

uniform distribution which is coherent with the projections from

ΣN ′ onto ΣN for N
′

> N (see the next paragraphs). If the zi’s take

their values on the unit circle, then our ensemble is a sub-group of

U(N).

• We shall also give a meaning to almost sure convergence for the

probability empirical spectral distribution. Indeed, it is not a priori
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776 Joseph NAJNUDEL & Ashkan NIKEGHBALI

obvious to define almost sure convergence in random matrix theory

since the probability space changes with N and to the best of our

knowledge there has not been, so far, a satisfactory way to overcome

this difficulty. We propose to deal with this problem by considering

the space of virtual permutations, which were introduced by Kerov,

Olshanski and Vershik in [9]. A virtual permutation is a sequence

of permutations (σN )N>1 constructed in a coherent way, in the

sense that for all N ′ > N > 1, the cycle structure of σN can be

obtained from the cycle structure of σN ′ simply by removing the

elements strictly larger than N . The virtual permutations satisfy

the following property: if (σN )N>1 is a virtual permutation, if N ′ >
N > 1 and if σN ′ is distributed according to the Ewens measure

of parameter θ on ΣN ′ , then σN follows the Ewens measure of

parameter θ on ΣN . We shall then take advantage of the work by

Tsilevich [14], who proved almost sure convergence for the relative

cycle lengths of virtual permutations. We shall also extensively use

an algorithmic way to generate the Ewens measure on the space of

virtual permutations.

• We shall study in detail the point process of the eigenvalues of a

matrix M drawn from our matrix ensembles. For instance we estab-

lish various convergence results for the empirical spectral measure

µ(M) =
∑
δλ, or for µ(M)/N (N being the dimension of the ma-

trix) where the sum is over all eigenvalues λ ofM , counted with mul-

tiplicity. We also consider the average measure obtained by taking

the expectation of µ(M), as well as the correlation measure of or-

der q. In the special case where the random variables zi’s take their

values on the unit circle, the point process associated with the eigen-

values has some more remarkable properties. For instance, when the

zi’s are uniformly distributed on the unit circle, the empirical spec-

tral measure as well as its limit (in a sense to be made precise) are

invariant by translation. Still in this case, the 1-correlation for fixed

N and N = ∞ is the Lebesgue measure, whereas for q > 2, and

fixed N , the q-correlation is not absolutely continuous with respect

to the Lebesgue measure anymore. For N = ∞, the pair correlation

measure is still absolutely continuous with respect to the Lebesgue

measure with an explicit density, but this result fails to hold for

the correlations of order greater than or equal to 3. One can push

further the analogy with the studies made for the classical compact

continuous groups by characterizing the distribution function of the
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smallest eigenangle (again when the zi’s are uniformly distributed

on the unit circle) as the solution of some integral equation.

1.2. Definitions and notation

In this section we describe the structure of the eigenvalues of the “general-

ized permutation matrices” mentioned above, independently of any proba-

bility measure, and then we define the family of probability measures which

will be studied in detail in the sequel of this article. More precisely let ΣN
be the group of permutations of order N . By straightforward computations,

one can check that the set of matrices M such that there exists a permu-

tation σ ∈ ΣN and complex numbers z1, z2, . . . , zN , different from zero,

satisfying Mjk = zj1j=σ(k), is a multiplicative group, denoted by G(N) in

this article, and which can be written as the wreath product of C
∗ and

ΣN . The group GN can also be viewed as the group generated by the per-

mutation matrices and the diagonal matrices of GL(N,C). The elements

of G(N) such that |zj | = 1 for all j, 1 6 j 6 N , form a subgroup denoted

H(N) of G(N), which can be viewed as the wreath product of U (the set

of complex numbers with modulus one) and ΣN . One can also define, for

all integers k > 1, the group Hk(N) of elements of G(N) such that zkj = 1

for 1 6 j 6 N : the subgroup Hk(N) of H(N) is the wreath product of Uk
(group of k-th roots of unity) and ΣN . Note that the group structure of

G, H or HN does not play a fundamental role in our work, however, this

structure gives a parallel between this paper and the study of other groups

of matrices, such as the orthogonal group, the unitary group or the sym-

plectic group (we note that H and HN are subgroups of the unitary group

of dimension N). The advantage of the study of matrices in G(N) is the

fact that the structure of their eigenvalues can be very explicitly described

in function of the cycle structure of the corresponding permutations. More

precisely, let M be a matrix satisfying Mjk = zj1j=σ(k) for all 1 6 j, k 6 N ,

where σ is a permutation of order N , and z1, . . . , zN ∈ C
∗. If the supports

of the cycles of σ are C1, . . . , Cn, with corresponding cardinalities l1, . . . , ln,

and if for 1 6 m 6 n, Rm is the set of the roots of order lm of the complex

number

Zm :=
∏

j∈Cm

zj ,

then the set of eigenvalues of M is the union of the sets Rm, and the

multiplicity of any eigenvalue is equal to the number of sets Rm containing

it. An example of explicit calculation is that of the trace: since for all

TOME 63 (2013), FASCICULE 3
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integers l > 2, the sum of the l-th roots of unity is equal to zero, one

immediately deduces that

Tr(M) =
∑

j∈F
zj ,

where F is the set of fixed points of σ. More generally, one can compute the

trace of all the powers of M . Indeed, for all integers k > 1, the eigenvalues

of Mk can be computed by taking the k-th powers of the elements of the

sets Rm. Therefore,

Tr(Mk) =

n∑

m=1

∑

ωlm =Zm

ωk.

Now, if lm is not a divisor of k, the last sum is equal to zero, and if lm is

a divisor of k, all the terms of the last sum are equal to Z
k/lm
m . We deduce

that

Tr(Mk) =
∑

lm|k
lmZ

k/lm
m .

We see that the description of the eigenvalues and the computations above

do not depend on any probability measure given on the space G(N). Let us

now define a particular class of probability measures on G(N) which will

be studied in detail in this paper.

Definition 1.1. — Let θ > 0 and let L be a probability distribution on

C
∗. The probability measure P(N, θ,L) on G(N) is the law of the matrix

M(σ, z1, . . . , zN ), where:

• the permutation σ follows the Ewens measure of parameter θ on

ΣN , i.e. the probability that σ is equal to a given permutation is

proportional to θn, where n is the number of cycles of σ.

• for all j, 1 6 j 6 N , zj is a random variable following the proba-

bility law L.

• the random permutation σ and the random variables z1, . . . , zN are

all independent.

• M(σ, z1, . . . , zN ) is the matrix M ∈ G(N) such that for all 1 6

j, k 6 N , Mjk = zj1j=σ(k).

In this paper we prove for a large class of probability distributions L, the

weak convergence of the law of the empirical measure of the eigenvalues,

when the dimension N tends to infinity. In several particular cases we are

also interested in almost sure convergences, and then we need to couple

all the dimensions N on the same probability space. This can be done by

introducing the so-called virtual permutations, which were first defined by
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Kerov, Olshanski and Vershik in [9] and also studied by Tsilevich [14]. A

virtual permutation is a sequence (σN )N>1 of permutations, such that for

all N > 1, σN ∈ ΣN , and the cycle structure of σN is obtained from the

cycle structure of σN+1, simply by removing the element N + 1 (for ex-

ample if σ8 = (13745)(28)(6), then σ7 = (13745)(2)(6)). Now, for θ > 0,

it is possible to define on the space of virtual permutations the so-called

Ewens measure of parameter θ as the unique (by the monotone class the-

orem) probability measure, such that if (σN )N>1 follows this measure, σN
follows the Ewens(θ) measure on ΣN . Now we can introduce the following

definition:

Definition 1.2. — Let θ > 0 and let L be a probability law on C
∗. The

probability measure P(∞, θ,L), defined on the product of the probability

spaces G(N), N > 1, is the law of a sequence of random matrices (MN )N>1,

such that MN = M(σN , z1, . . . , zN ), where:

• the sequence (σN )N>1 is a random virtual permutation following

Ewens measure of parameter θ.

• for all j > 1, zj is a random variable following the distribution L.

• the virtual permutation (σN )N>1 and the random variables (zj)j>1

are independent.

It is easy to check that for all N > 1, the image of P(∞, θ,L) by the

N -th coordinate projection is the measure P(N, θ,L). The properties on

P(N, θ,L) or P(∞, θ,L) which are obtained in this article depend on the

probability distribution L in an essential way.

In the next section, we shall review some properties of virtual permuta-

tions which are needed in the sequel of the paper, and then we give general

results on the point process associated with the eigenvalues of random ma-

trices from G(N). We finally refine some of these results in the case of

H(N).

2. Generating the Ewens measure on the set of virtual

permutations

The space of virtual permutations was first introduced by Kerov, Olshan-

ski and Vershik in [9] in the context of representation theory; the interested

reader can refer to the notes by Olshanski in [12] for more details and refer-

ences. Here we shall mostly be concerned with the probabilistic aspects of

virtual permutations which were studied in detail by Tsilevich in [14]. We

now review a construction of the virtual permutations which is explained
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in [14] and which is suitable for the probabilistic reasoning. We then show

how to generate the Ewens measure of parameter θ on the space of virtual

permutations. This is already explained by other means by Tsilevich in her

unpublished note [15]; here we provide a more elementary way to generate

it and give all details since this is going to be at the source of many of our

proofs and because also virtual permutations might not be so well-known.

In the sequel, we shall assume that the reader is familiar with the GEM

and Poisson-Dirichlet distributions (if not, one can refer to [3], pp. 40–48).

As already mentioned, one of the interests of the construction of virtual

permutations is that it gives a natural explanation of convergences in law

involved when one looks at the relative lengths of cycles of random permu-

tations in the symmetric group ΣN when N goes to infinity. Recall that for

all integer N > 1, there exists a bijective map

ΦN :
N∏

j=1

{1, 2, . . . , j} −→ ΣN

such that

ΦN ((mj)16j6N ) = τN,mN
◦ τN−1,mN−1

◦ · · · ◦ τ2,m2
◦ τ1,m1

,

where τj,k is the unique permutation such that τj,k(j) = k, τj,k(k) = j,

and τj,k(l) = l for l different from j and k (if j 6= k, τj,k is a transposition,

if j = k, it is the identity). If N1 > N2, the bijections ΦN1 and ΦN2

induce a natural surjective map πN1,N2 from ΣN1 to ΣN2 , defined in the

following way: if σ ∈ ΣN1
, there exists a unique sequence (mj)16j6N1

,

mj ∈ {1, . . . , j} such that

σ = ΦN1 ((mj)16j6N1) ,

and one then defines:

πN1,N2
(σ) := ΦN2

((mj)16j6N2
) .

Note that for N1 > N2 > N3,

πN2,N3
◦ πN1,N2

= πN1,N3
.

Now, a virtual permutation is a sequence of permutations (σN )N>1, such

that σN ∈ ΣN for all N , and which is consistent with respect to π, i.e. for

all N1 > N2,

πN1,N2(σN1) = σN2 .

We denote by Σ∞ the (infinite) set of virtual permutations, and note that

the group structure of ΣN does not induce any group structure on Σ∞.
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Moreover, there is a natural bijection,

Φ∞ :
∞∏

j=1

{1, 2, . . . , j} −→ Σ∞

induced by the bijections ΦN . Indeed, for all infinite sequences (mj)j>1,

mj ∈ {1, . . . , j} one defines:

Φ∞ ((mj)j>1) := (σN )N>1

where for all N ,

σN = ΦN ((mj)16j6N ) .

Here, one immediately checks that (σN )N>1 is consistent. Moreover, one

can also define a surjective map π∞,N from Σ∞ to ΣN for all N > 1, by

setting:

π∞,N ((σn)n>1) := σN ,

and one can check the relation

πN1,N2
◦ π∞,N1

= π∞,N2
.

The cycle structure of a virtual permutation can be described by the so-

called Chinese restaurant process, described for example by Pitman ([13]).

More precisely, let

σ∞ = (σN )N>1 ∈ Σ∞

be a virtual permutation. There exists a unique sequence (mj)j>1, mj ∈
{1, . . . , j} such that

σ∞ = Φ∞ ((mj)j>1) .

Then the cycle structure for σN can be described by induction on N :

• σ1 is (of course!) the identity of Σ1;

• if mN+1 = N+1 for N > 1, the cycle structure of σN+1 is obtained

from the structure of σN by simply adding the fixed point N + 1;

• if mN+1 6 N for N > 1, the cycle structure of σN+1 is obtained

from the structure of σN by inserting N + 1 just before mN+1, in

the cycle containing mN+1.

For example, if σ4 = (124)(3) and m5 = 5, then σ5 = (124)(3)(5), and

if σ4 = (124)(3) and m5 = 2, then σ5 = (1524)(3). As described in [14],

one can define on Σ∞ the so-called Ewens measure, which is the equivalent

on virtual permutations of the Ewens measure on ΣN . More precisely, let

θ ∈ R+ be a parameter, and let (Mj)j>1 be a sequence of independent

random variables, Mj ∈ {1, . . . , j} such that for all j > 2:

P[Mj = j] =
θ

θ + j − 1
,

TOME 63 (2013), FASCICULE 3
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and

P[Mj = k] =
1

θ + j − 1

for all k < j. On Σ∞, the Ewens measure µ
(θ)
∞ of parameter θ is defined as

the image of the law of (Mj)j>1 by the map Φ∞. The name of this measure

is consistent, since the image of µ
(θ)
∞ by π∞,N is precisely the Ewens measure

µ
(θ)
N of parameter θ on ΣN , under which the probability of a permutation

σN is given by the expression:

θc(σN )−1

(θ + 1)(θ + 2) · · · (θ +N − 1)
,

where c(σN ) is the number of cycles of σN .

Remark: For θ = 1, the Ewens measure on SN is the uniform measure,

and for θ = 0, it is the uniform measure on permutations with a unique

cycle.

In [14] it is proved that if (σN )N>1 is a virtual permutation following

the Ewens measure of parameter θ, then for all k > 0, the k-th length

of cycle (by decreasing order) corresponding to the permutation σN , di-

vided by N , tends a.s. to a random variable xk when N goes to infinity.

Moreover, the decreasing sequence (xk)k>1 follows the Poisson-Dirichlet

distribution of parameter θ. This property can in fact be easily explained

by the construction of the Ewens measure on Σ∞ we give below.

Let λ = (λj)j>1 be a decreasing sequence in R+ and let us denote:

K(λ) := inf{k > 1, λk = 0} ∈ N
∗ ∪ {∞}.

The set E(λ) is defined as the disjoint union of circles (Cj)16j<K(λ), such

that Cj has perimeter λj . Now let x = (xk)k>1 be a sequence of distinct

points in E(λ). One defines a virtual permutation σ∞(λ, x) =
(
σN (λ, x)

)
N>1

as follows: for N > 1, k ∈ {1, . . . , N}, there exists a unique j such that

the point xk lies on the circle Cj . Let us follow the circle Cj , counterclock-

wise, starting from xk: the image of k by σN (λ, x) is the index of the first

point in {x1, . . . , xN} we encounter after xk (for example, if xk is the only

point in Cj and {x1, . . . , xN}, then k is a fixed point of σN (λ, x), because

starting from xk, we do a full turn of the circle Cj , before encountering

xk again). The cycle structure of σN (λ, x) is the following: two elements k

and l in {1, . . . , N} are in the same cycle if and only if xk and xl lie on

the same circle, and the order of the elements {k1, . . . , kp} in a given cycle

corresponds to the counterclockwise order of the points xk1 , . . . , xkp , which

are on the same circle. Moreover, the cycle structure of σN+1(λ, x) can be

obtained from the structure of σN (λ, x) by a “chinese restaurant” process:
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• If xN+1 is on a circle which does not contain any of the points

x1, . . . , xN , then one simply adds the fixed point N + 1;

• If xN+1 is on a circle which contains some of the points x1, . . . , xN ,

and if xN+1 lies just before xp if one follows this circle counter-

clockwise, then one inserts N + 1 in the cycle containing p, just

before p.

This construction implies that (σN (λ, x))N>1 is a consistent sequence of

permutations, and then σ∞(λ, x) is a virtual permutation. Therefore a vir-

tual permutation can be viewed as a chinese restaurant process with con-

tinuous tables (the circles (Cj)16j<K(λ)), and with an infinite number of

customers (the points (xk)k>1): its component of index N is obtained by

taking into account only the N first customers. Note that for the moment,

λ, the sequence of lengths of the circles (or the tables!) plays a minor role

in our construction. However, it becomes important when one introduces

randomness. In the following proposition, we give an explicit construction

of the Ewens measure on Σ∞ (and therefore, on ΣN , by using π∞,N ),

which involves the notion of uniform measure on E(λ), defined as follows:

x ∈ E(λ) is uniform if and only if for j > 1, x lies in Cj with probability

λj , the perimeter of Cj (note that the sum of the perimeters is a.s. equal

to one), and conditionally on x ∈ Cj , x is uniform on the circle Cj .

Proposition 2.1. — Let θ ∈ R+. If the random sequence λ follows the

Poisson-Dirichlet distribution of parameter θ (for θ = 0, one sets λ1 = 1

and λk = 0 for k > 1), and if, conditionally on λ, the points (xk)k>1 are

i.i.d., with distribution absolutely continuous with respect to the uniform

measure on E(λ) (and hence, a.s. distinct), then for x := (xk)k>1, the

virtual permutation σ∞(λ, x) follows the Ewens measure of parameter θ.

Proof. — The probability law of a random virtual permutation is uni-

quely determined by its image by Φ−1
∞ , which is the probability law of a

sequence (Mj)j>1 of random variables (Mj ∈ {1, . . . , j}). By the monotone

class theorem, this law is uniquely determined by the sequence of laws of

(Mj)16j6N , N > 1. Now, by applying ΦN for all N > 1, one deduces that

the law of a virtual permutation is uniquely determined by the sequence of

laws of its images by π∞,N , N > 1. This property implies Proposition 2.1

if one shows that for all N > 1, σN (λ, x) follows the Ewens measure of

parameter θ. To prove this, let us first observe that for all permutations ψ ∈
SN , the law of (xψ(k))16k6N is equal to the law of (xk)16k6N . Hence, the

law of σN (λ, x) is invariant by conjugation. This implies that the probability

of a given permutation, under this law, depends only on its cycle structure,

as under the Ewens measure. Therefore, it is sufficient to prove that for all
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partitions (l1, . . . , lp) of N , the probability that the supports of the cycles

of σN (λ, x) are exactly the sets of the form

{l1 + · · · + ln + 1, l1 + · · · + ln + 2, . . . , l1 + l2 + · · · + ln + ln+1}
for 0 6 n 6 p − 1, is the same as under the Ewens measure. Now, condi-

tionally on λ, this probability can be written as follows:

∑

i1 6=i2 6=···6=ip

p∏

n=1

λlnin .

Hence one only needs to prove the equality:

(2.1) E


 ∑

i1 6=i2 6=···6=ip

p∏

n=1

λlnin


 =

θp−1

(θ + 1) · · · (θ +N − 1)

p∏

n=1

(ln − 1)!

since its right-hand side is the probability of the event described above, un-

der the Ewens measure of parameter θ. The equation (2.1) is a consequence

of the Ewens sampling formula: for sake of completeness, we give a proof

here. For θ = 0, both sides are equal to one if p = 1 and l1 = N , and to zero

otherwise: therefore one can assume that θ > 0. Let (µj)j>1 be a random

sequence following the GEM law of parameter θ, and let (νj)j>1 be the

sequence obtained by putting (µj)j>1 in decreasing order. One obviously

has
∑

i1 6=i2 6=···6=ip

p∏

n=1

µlnin =
∑

i1 6=i2 6=···6=ip

p∏

n=1

νlnin .

Now, (νj)j>1 and (λj)j>1 have the same law, hence it is sufficient to prove

that

(2.2) E


 ∑

i1 6=i2 6=···6=ip

p∏

n=1

µlnin


 =

θp−1

(θ + 1) · · · (θ +N − 1)

p∏

n=1

(ln − 1)!

One needs the following lemma:

Lemma 2.2. — Let (µj)j>1 be a GEM process of parameter θ > 0, and

r, s ∈ R+. Then the quantity

E(θ, r, s) := E




∞∑

i=1

µri

(
1 −

i∑

j=1

µj

)s


satisfies the equality

E(θ, r, s) =
r!(s+ θ − 1)!θ

(r + s+ θ − 1)!(r + s)
.
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Proof of Lemma 2.2. — One can write

E(θ, r, s) =E
[
µr1(1 − µ1)s

]

+ E


(1 − µ1)r+s

E




∞∑

i=2

(
µi

1 − µ1

)r(
1 −

i∑

j=2

µj
1 − µ1

)s ∣∣∣∣∣µ1




.

Now conditionally on µ1,
(
µj+1

1−µ1

)
j>1

is a GEM process of parameter θ.

Therefore:

E




∞∑

i=2

(
µi

1 − µ1

)r(
1 −

i∑

j=2

µj
1 − µ1

)s∣∣∣∣∣∣
µ1


 = E




∞∑

i=1

µri

(
1 −

i∑

j=1

µj

)s


= E(θ, r, s).

which implies

E(θ, r, s) = E[µr1(1 − µ1)s] + E(θ, r, s)E[(1 − µ1)r+s],

and, since the density of the law of µ1, with respect to the Lebesgue measure

is θ(1 − x)θ−1 on (0, 1),

E(θ, r, s) =
E[µr1(1 − µ1)s]

1 − E[(1 − µ1)r+s]
=

θ
∫ 1

0
xr(1 − x)s+θ−1dx

1 − θ
∫ 1

0
(1 − x)r+s+θ−1dx

=
θ r!(s+ θ − 1)!/(r + s+ θ)!

1 − θ/(r + s+ θ)
=
θ r!(s+ θ − 1)!(r + s+ θ)

(r + s)(r + s+ θ)!

which implies Lemma 2.2. �

Now let us go back to the proof of Proposition 2.1. For all integers q > 0,

1 6 j1 < · · · < jq, and r1, . . . , rq, r, s > 0:

E




∞∑

j=jq+1

(
q∏

p=1

µ
rp

jp

)
µrj

(
1 −

j∑

i=1

µi

)s ∣∣∣∣∣ (µi)16i6jq




=

(
q∏

p=1

µ
rp

jp

)(
1 −

jq∑

i=1

µi

)r+s

E




∞∑

j=jq+1

(
µj

1 −∑jq

i=1 µi

)r

(
1 −

j∑

i=jq+1

µi

1 −∑jq

i=1 µi

)s ∣∣∣∣∣ (µi)16i6jq


 .

Since conditionally on (µi)16i6jp ,
(

µjq+j′

1 −∑jq

i=1 µi

)

j′>1

.
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is a GEM process of parameter θ, the last conditional expectation is equal

to E(θ, r, s). One deduces that

E




∞∑

j=jq+1

(
q∏

p=1

µ
rp

jp

)
µrj

(
1 −

j∑

i=1

µi

)s


= E(θ, r, s)E



(

q∏

p=1

µ
rp

jp

)(
1 −

jq∑

i=1

µi

)r+s

 .

By considering all the possible values of (jp)16p6q, and by adding the equal-

ities, one obtains that

E


 ∑

j1<j2<···<jq+1

(
q∏

p=1

µ
rp

jp

)
µrjq+1

(
1 −

jq+1∑

i=1

µi

)s


= E(θ, r, s)E


 ∑

j1<j2<···<jq

(
q∏

p=1

µ
rp

jp

)(
1 −

jq∑

i=1

µi

)r+s

 .

By applying recursively this equality, and using Lemma 2.2, one deduces

that

E

[ ∑

j1<j2<···<jq

(
q∏

p=1

µ
rp

jp

)]
=

q∏

p=1

[
E

(
θ, rp,

q∑

m=p+1

rm

)]

=

q∏

p=1

θ (rp)!
[(∑q

m=p+1 rm

)
+ θ − 1

]
!

(∑q
m=p rm

) [(∑q
m=p rm

)
+ θ − 1

]
!

= θq

(
q∏

p=1

rp!

)
(θ − 1)![(∑q

m=1 rm

)
+ θ − 1

]
!

q∏

p=1

1∑q
m=p rm

.

We can now compute the left-hand side of (2.2):

E

[ ∑

i1 6=i2 6=···6=ip

p∏

n=1

µlnin

]
=
∑

σ∈Σp

E


 ∑

iσ(1)<···<iσ(p)

p∏

n=1

µ
lσ(n)

iσ(n)




=
∑

σ∈Σp

E


 ∑

i1<···<ip

p∏

n=1

µ
lσ(n)

in




=
∑

σ∈Σp

θp

(
p∏

n=1

lσ(n)!

)
(θ − 1)![(∑p

n=1 lσ(n)

)
+ θ − 1

]
!

p∏

n=1

1∑p
m=n lσ(m)
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= θp

(
p∏

n=1

ln!

)
(θ − 1)!

(θ +N − 1)!

∑

σ∈Σp

1∏p
n=1

∑p
m=n lσ(m)

.

Therefore, (2.2) and then Proposition 2.1, is proved if one checks the equal-

ity: ∑

σ∈Σp

1∏p
n=1

∑p
m=n lσ(m)

=
1∏p

n=1 ln
.

Now, since for all l > 0,
1

l
=

∫ ∞

0

e−lxdx,

one deduces that

∑

σ∈Σp

1∏p
n=1

∑p
m=n lσ(m)

=
∑

σ∈Σp

∫

x1,...,xp>0

e−
∑p

n=1
xn(
∑p

m=n
lσ(m))

p∏

n=1

dxn

=
∑

σ∈Σp

∫

x1,...,xp>0

e−
∑p

m=1
lσ(m)

∑m

n=1
xn

p∏

n=1

dxn.

By doing the change of variable

yσ(m) =

m∑

n=1

xn,

one obtains:
∑

σ∈Σp

1∏p
n=1

∑p
m=n lσ(m)

=
∑

σ∈Σp

∫

y1,...,yp>0

e−
∑p

m=1
lσ(m)yσ(m)

1yσ(1)6···6yσ(p)

p∏

n=1

dyn

=

∫

y1,...,yp>0

e−
∑p

m=1
lmym

p∏

n=1

dyn =
1∏p

n=1 ln

which completes the proof of Proposition 2.1. �

As an illustration, we quickly show how this proposition implies the

following almost sure convergence result for relative cycle lengths due to

Tsilevich:

Proposition 2.3 (Tsilevich [14]). — Let (σN )N>1 be a virtual per-

mutation following the Ewens probability measure with parameter θ. One

defines the sequence (α
(N)
k )k>1 of normalized lengths of cycles of σN (i.e.

lengths divided by N), ordered by increasing smallest elements, and com-

pleted by zeros. Then, for all k > 1, α
(N)
k converges almost surely to a
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random variable α
(∞)
k , and (α

(∞)
k )k>1 follows a GEM distribution of pa-

rameter θ. In particular, the law of (α
(N)
k )k>1 converges weakly to the

GEM(θ) distribution. Moreover, if y
(N)
l denotes the l-th largest element of

(α
(N)
k )k>1 for all integers N > 1 and N = ∞, then

y
(N)
l −→

N→∞
y

(∞)
l

a.s., and (y
(∞)
l )l>1 follows a Poisson-Dirichlet distribution of parameter θ.

In particular, the law of (y
(N)
l )l>1 (i.e. the sequence of decreasing normal-

ized lengths of cycles) tends to the PD(θ) distribution.

Proof. — Let us construct (σN )N>1 via Proposition 2.1. Since Proposi-

tion 2.3 is trivial for θ = 0, one can suppose θ > 0. This implies (with the

notation of Proposition 2.1) that λj > 0 for all j > 1, and a.s., there exists

p such that xp lies on the circle Cj . We define a sequence (jn)n>1 by the

following recursive construction:

• The index j1 is given by: x1 ∈ Cj1 :

• For n > 1, j1, . . . , jn already defined, jn+1 is given by: xp ∈ Cjn+1
,

where p is the smallest index such that xp /∈ Cj1 ∪ · · · ∪ Cjn (this

index a.s. exists).

It is easy to check that for k > 1:

α
(N)
k =

|Cjk
∩ {x1, . . . , xN}|

N
=

1

N

N∑

p=1

1xp∈Cjk
.

Now, by the law of large numbers, it is almost sure that for all integers

j > 1:

1

N

N∑

p=1

1xp∈Cj −→
N→∞

λj .

Then, α
(N)
k tends almost surely to λjk

. Now, by construction of the se-

quence (jk)k>1, we see that (λjk
)k>1 is the classical size-biased reordering

of (λj)j>1, and hence a GEM process of parameter θ. Now, it is obvious

that (y
(∞)
l )l>1 is the decreasing reordering of (λjk

)k>1, i.e. the PD(θ) pro-

cess (λl)l>1. It remains to prove that y
(N)
l → λl almost surely. Indeed, if l

is fixed, there exists a.s. a (random) index N0 > l such that:

N0∑

k=1

α
(∞)
k > 1 − λl/2.
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Since α
(N)
k −→

N→∞
α

(∞)
k for all k > 1, there exists a.s. a (random) N1 such

that for N > N1:
N0∑

k=1

α
(N)
k > 1 − λl/2.

Since the numbers (α
(∞)
k )k>1 are a.s. pairwise distinct, there exists a.s.

N2 such that if N > N2, the order of (α
(N)
k )16k6N0

is the same as the

order of (α
(∞)
k )16k6N0

. In particular (recall that N0 > l), the l-th largest

element of (α
(N)
k )16k6N0

has the same index r as the l-th largest element

of (α
(∞)
k )16k6N0

. Now, since α
(∞)
k < λl/2 for all k > N0, α

(∞)
r is also

the l-th largest element of (α
(∞)
k )k>1, i.e. λl. For N > sup(N1, N2), α

(N)
r

is the l-th largest element of (α
(N)
k )16k6N0

and α
(N)
k < λl/2 for N >

N0, hence the l-th largest element y
(N)
l of (α

(N)
k )k>1 is included in the

interval [α
(N)
r , α

(N)
r ∨ λl/2]. Since α

(N)
r −→

N→∞
α

(∞)
r = λl, Proposition 2.3 is

proved. �

3. The “non-unitary case”

3.1. The normalized and non-normalized empirical eigenvalues

distributions

Let M be a matrix in G(N) for some N > 1. We associate with the point

process of the eigenvalues of M the finite measure µ(M) on C defined by

µ(M) :=
∑

λ∈E(M)

mM (λ)δλ,

where E(M) is the set of eigenvalues of M , mM (λ) is the multiplicity of

λ as an eigenvalue of M , and δλ is Dirac measure at λ. By the general

description of eigenvalues given in Section 1.2, one has, for all σ ∈ ΣN ,

z1, . . . , zN ∈ C
∗:

µ
(
M(σ, z1, . . . , zN )

)
=

n∑

m=1

∑

ωlm =Zm

δω,

where l1, l2, . . . , ln are the lengths of the cycles C1, C2 · · · , Cn of σ, and for

1 6 m 6 n:

Zm =
∏

j∈Cm

zj .

Let us now suppose that the distribution of a sequence of random ma-

trices (MN )N>1, MN ∈ G(N), is of the form P(∞, θ,L). One has MN =
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M(σN , z1, . . . , zN ) where (σN )N>1 follows the Ewens(θ) distribution, and

is independent of the sequence (zj)j>1 of i.i.d. variables, which have law

L. Since for all N > 1, the cycle structure of σN can be deduced from the

cycle structure of σN+1 by removing N + 1, there exists a partition Π of

N
∗ such that for all N , the supports of the cycles of σN are obtained by

intersecting the sets of Π with {1, . . . , N}. Moreover, under the Ewens(θ)

measure, Π contains a.s. an infinite number of sets (see Section 2): let us

order them by increasing smallest elements, and denote them by (Cm)m>1.

One then has

(3.1) µ(MN ) =

∞∑

m=1

1lN,m>0

∑

ωlN,m =ZN,m

δω,

where lN,m is the cardinality of CN,m, the intersection of Cm and {1, . . . , N},

and

ZN,m =
∏

j∈CN,m

zj .

The natural question one can now ask is the behaviour of the measure

µ(MN ) for large N . Since each cycle of σN gives a number of eigenvalues

equal to its length, one can expect that µ(MN ) is dominated by the large

cycles of MN . Moreover, the l eigenvalues corresponding to a cycle of length

l form a regular polygon of order l, and the distance of their vertices to the

origin is equal the the l-th root of the product of l i.i.d. random variables

of law L. If l is large and if one can apply a multiplicative version of the

law of large numbers, one can expect that this distance does not vary too

much. Then, it is natural to guess that under some well-chosen conditions

on L, the measure µ(MN ), which has total mass N , is close to N times the

uniform measure on a circle centered at the origin. Indeed, we can prove

the following statement:

Proposition 3.1. — Let (MN )N>1 be a sequence of matrices following

the law P(∞, θ,L) for some θ > 0 and some probability L on C
∗. We sup-

pose that if Z is a random variable which follows the distribution L, then

log(|Z|) is integrable. Under these assumptions, almost surely, the proba-

bility measure µ(MN )/N converges weakly to the uniform distribution on

the circle of center zero and radius exp
(
E[log(|Z|)]

)
.

Proof. — Let f be a continuous and bounded function from C to R, and

let R > 0. Then, there exists a constant A > 0, and a function α from

(0, R) to R+, tending to zero at zero, such that for all ǫ ∈ (0, R), for all
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integers l > 1, and for all z ∈ C such that |z|1/l ∈ (R− ǫ, R+ ǫ):

(3.2)

∣∣∣∣∣
∑

ωl=z

f(ω) − l

2π

∫ 2π

0

f(Reiλ) dλ

∣∣∣∣∣ 6
A

ǫ
+ lα(ǫ).

Indeed, let us define for all δ > 0:

η(δ) := sup
{

|f(y) − f(y′)|, |y − y′| 6 δ, |y|, |y′| 6 2R
}
,

which tends to zero with δ since f is uniformly continuous on any compact

set. With this definition, we obtain:∣∣∣∣∣
∑

ωl=z

f(ω) −
∑

ωl=z′

f(ω)

∣∣∣∣∣ 6 lη(ǫ),

where z′ := zRl/|z| has modulus Rl. Now, there exists λ ∈ [0, 2π/l) such

that: ∑

ωl=z′

f(ω) =
∑

ωl=1

f(Rωeiλ) =: Φ(λ)

One has, for all λ, λ′ ∈ [0, 2π/l):

|Φ(λ) − Φ(λ′)| 6 lη(R|λ− λ′|) 6 lη(2πR/l).

Moreover ∫ 2π/l

0

Φ(λ) dλ =

∫ 2π

0

f(Reiλ) dλ,

and then, for all λ ∈ [0, 2π/l),
∣∣∣∣Φ(λ) − l

2π

∫ 2π

0

f(Reiλ) dλ

∣∣∣∣ 6 lη(2πR/l),

which implies:∣∣∣∣∣
∑

ωl=z

f(ω) − l

2π

∫ 2π

0

f(Reiλ) dλ

∣∣∣∣∣ 6 l [η(ǫ) + η(2πR/l)] .

If l 6 2πR/ǫ, one can majorize this quantity by 4πRη(2πR)/ǫ, and if

l > 2πR/ǫ, one can majorize it by 2lη(ǫ). Hence we obtain (3.2), for A =

4πRη(2πR) and α(ǫ) = 2η(ǫ).

Since for B > 0 depending only on f , the left-hand side of (3.2) can

be trivially majorized by Bl for any z ∈ C, we deduce, for µ equal to the

uniform measure on the circle of radius R:
∣∣∣∣

1

N

∫

C

f dµ(MN ) −
∫

C

f dµ

∣∣∣∣

6

∞∑

m=1

1lN,m>0

[
BlN,m
N

1|ZN,m|1/lN,m /∈(R−ǫ,R+ǫ)
+

A

Nǫ
+
lN,m
N

α(ǫ)

]
.
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For now, let us take R := exp

(
E[log(|Z|)]

)
, where Z is a random variable

following the law L. By the strong law of large numbers applied to the

sequence (log |zj |)j∈Cm
, it is not difficult to check that a.s., for all m > 1:

BlN,m
N

1|ZN,m|1/lN,m /∈(R−ǫ,R+ǫ)

tends to zero when N goes to infinity. Moreover, independently of N , this

quantity is dominated by Bsm, where sm is the supremum of lN,m/N for

N > 1. For the moment, let us assume that a.s.:

(3.3)

∞∑

m=1

sm < ∞

In this case, one can apply dominated convergence and obtain:

∞∑

m=1

1
lN,m>0,|ZN,m|1/lN,m /∈(R−ǫ,R+ǫ)

BlN,m
N

−→
N→∞

0.

Moreover,
∞∑

m=1

1lN,m>0
A

Nǫ
−→
N→∞

0

a.s., since the number of cycles of σN increases slowly with respect to N

(the order of magnitude is log(N)), and

∞∑

m=1

1lN,m>0
lN,m
N

α(ǫ) = α(ǫ).

Hence we deduce that

lim sup
N→∞

∣∣∣∣
1

N

∫

C

f dµ(MN ) −
∫

C

f dµ

∣∣∣∣ 6 α(ǫ),

and by taking ǫ → 0, we are done. It only remains to prove (3.3). This rela-

tion can be shown by looking carefully at the construction of the Ewens(θ)

measure on virtual permutations given in Section 2. Indeed, for N > 1,

conditionally on (lK,m)m>1,16K6N , with m0 := inf{m > 1, lN,m = 0}, one

has lN+1,m = lN,m + 1m=m1
where m1 is a random index equal to m′

with probability lN,m/(N + θ) for m′ < m0 and to m0 with probability

θ/(N + θ). This implies quite easily that (lN,m/(N + θ))N>1 is a nonnega-

tive submartingale. By Doob’s inequality one deduces that the expectation

of s2
m is dominated by a constant (depending only on θ) times the expec-

tation of y2
m, where ym is the limit of lN,m/N , which exists almost surely.
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Now, (ym)m>0 is a GEM process of parameter θ, hence the expectation of

y2
m decreases exponentially with m. Consequently,

(3.4)

∞∑

m=1

E[sm] < ∞,

which implies (3.3) almost surely. �

If we do not want to deal with virtual permutations, we can replace the

a.s. convergence by a weak convergence in probability, as follows:

Corollary 3.2. — Let (MN )N>1 be a sequence of matrices such that

MN ∈ G(N) follows the distribution P(N, θ,L) for some θ > 0 and some

probability L on C
∗. We suppose that if Z is a random variable which

follows the distribution L, then log(|Z|) is integrable. Under these assump-

tions, the probability measure µ(MN )/N converges weakly in probabil-

ity to the uniform distribution on the circle of center zero and radius

R := exp(E[log(|Z|)]), i.e. for all continuous, bounded functions f from

C to R:
1

N

∫

C

f dµ(MN ) −→
N→∞

1

2π

∫ 2π

0

f(Reiλ)dλ

in probability.

This convergence result means that most of the eigenvalues of a ma-

trix MN following P(N, θ,L) are concentrated around the circle of radius

exp(E[log(|Z|)]). Now, even for N large, there remain some eigenvalues

which are far from this circle, since the law of large numbers involved in

the proof of Proposition 3.1 does not apply for the small cycles of the per-

mutation σN associated with MN . In order to study the influence of the

small cycles, let us suppose that (MN )N>1 follows the measure P(∞, θ,L)

(which is possible since the image of P(∞, θ,L) by the N -th coordinate is

P(N, θ,L)). Then, one can write the measure µ(MN ) in the following way:

µ(MN ) =
∞∑

k=1

∑

m>1,lN,m=k

∑

ωk=ZN,m

δω,

with the same notation as in equation (3.1). This equality implies the fol-

lowing equality in distribution:

(3.5) µ(MN ) =

∞∑

k=1

aN,k∑

p=1

∑

ωk=Tk,p

δω,

where for all k > 1, aN,k is the number of k-cycles of the permutation σN
(which follows the Ewens(θ) measure on ΣN ), where for k, p > 1, the law of

Tk,p is the multiplicative convolution of k copies of the distribution L, and
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where (aN,k)k>1 and the variables Tk,p, k, p > 1 are independent. Now, the

finite dimensional marginals of (aN,k)k>1 converge, in distribution, to the

corresponding marginals of (ak)k>1, where the variables ak are independent

Poisson random variables, with E[ak] = θ/k (see for instance [2]). One can

then expect that in a sense which needs to be made precise, the law of

µ(MN ) converges to the distribution of

(3.6) µ∞ :=

∞∑

k=1

ak∑

p=1

∑

ωk=Tk,p

δω,

where all the variables ak and Tk,p in sight are independent. Of course, one

needs to be careful, because the measure µ∞ has an infinite total mass,

which, under the assumptions of Proposition 3.1, is expected to concentrate

around the circle of radius exp(E[log(|Z|)]). One also remarks that the

convergence expected here is very different from the convergence proved in

Proposition 3.1; in particular, it involves the measure µ(MN ) and not the

probability µ(MN )/N . In order to state rigorously our result, let us give

the following definition:

Definition 3.3. — Let X be a real, integrable, random variable. For

q > 0, we say that X is in Uq if and only if for a sequence (Xk)k>1 of i.i.d.

random variables with the same distribution as X and for all ǫ > 0, there

exists C > 0 such that for all n > 1:

P

[∣∣∣∣∣

(
1

n

n∑

k=1

Xk

)
− E[X]

∣∣∣∣∣ > ǫ

]
6

C

nq
.

Remark 3.4. — If q > 1 is an integer, by expanding

E



(

1

n

n∑

k=1

(
Xk − E[X]

)
)2q




and by using Markov’s inequality, one easily proves that a random variable

in L2q is also in Uq.

We can now state a result about the convergence of µ(MN ).

Proposition 3.5. — Let (MN )N>1 be a sequence of matrices such that

MN ∈ G(N) follows the distribution P(N, θ,L) for some θ > 0 and some

probability L on C
∗. We suppose that if Z is a random variable following

the distribution L, then log(|Z|) is in Uq for some q > 0. Under these

assumptions, for all bounded, continuous functions f from C to R, such that

f = 0 on a neighborhood of the circle |z| = R, where R := exp(E[log(|Z|)]),
f is a.s. integrable with respect to µ∞, where the random measure µ∞ is
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given by (3.6). Moreover, the following convergence in distribution holds

for such test functions f :
∫

C

f dµ(MN ) −→
N→∞

∫

C

f dµ∞.

Proof. — Let (ξr)r>1 be a sequence of independent Bernouilli random

variables, such that the parameter of ξr is equal to θ/(θ + r − 1) (in par-

ticular, ξ1 = 1 almost surely). We suppose that (ξr)r>1 is independent of

(Tk,p)k,p>1, and for all N, k > 1, we define bN,k as the number of pairs of

consecutive ones in the sequence (ξ1, ξ2, . . . , ξN , 1) which are separated by

a distance of k, and bk as the analog for the infinite sequence (ξr)r>1. In

other words:

bN,k = 1N+1−k>1,ξN+1−k=1,ξN+2−k=···=ξN =0

+
∑

16j6N−k
1ξj=ξj+k=1,ξj+1=···=ξj+k−1=0,

and

bk =
∑

j>1

1ξj=ξj+k=1,ξj+1=···=ξj+k−1=0.

By the classical properties of the Feller coupling (see for instance [2]),

(bk)k>1 has the same distribution as (ak)k>1 and for all N > 1, (bN,k)k>1

has the same distribution as (aN,k)k>1. Therefore, in Proposition 3.5, one

can replace µ(MN ) by νN and µ∞ by ν∞, where:

νN =
∞∑

k=1

bN,k∑

p=1

∑

ωk=Tk,p

δω,

and

ν∞ :=

∞∑

k=1

bk∑

p=1

∑

ωk=Tk,p

δω.

Let f be a continuous and bounded function from C to R, equal to zero in

a neighborhood of the circle |z| = R. There exist A > 0, 0 < R1 < R < R2,

depending only on f , such that |f(z)| 6 A1|z|/∈(R1,R2), and then,

∫

C

|f | dν∞ 6 A

∞∑

k=1

bk∑

p=1

k1|Tk,p|1/k /∈(R1,R2).

The function f is a.s. integrable with respect to ν∞ (and then, µ∞). Indeed,
∫

C

|f | dν∞ < ∞
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if and only if
∞∑

k=1

bk∑

p=1

1|Tk,p|1/k /∈(R1,R2) < ∞,

and the expectation of this quantity is

θ
∞∑

k=1

P[|Tk,1|1/k /∈ (R1, R2)]

k
,

which is finite since log(|Z|) is in Uq for some q > 0. Let us now introduce

the random measure:

ν′
N =

∞∑

k=1

cN,k∑

p=1

∑

ωk=Tk,p

δω,

where

(3.7) cN,k =
∑

16j6N−k
1ξj=ξj+k=1,ξj+1=···=ξj+k−1=0.

One has bN,k = cN,k, except for k equal to the smallest integer k0 such that

ξN+1−k0
= 1, in which case bN,k0

= cN,k0
+ 1. Therefore,

νN = ν′
N + ν′′

N ,

where

ν′′
N =

∑

ωk0 =Tk0,cN,k0
+1

δω.

Since f is a.s. integrable with respect to ν∞, and for all k > 1, bk is the

increasing limit of cN,k, one obtains, a.s.:

(3.8)

∫

C

f dν′
N −→
N→∞

∫

C

f dν∞.

Moreover, there exist 0 < R1 < R < R2, depending only on f , such that

for all k′ > 1:

P

[∫

C

f dν′′
N 6= 0

]
6 P

[
|Tk0,cN,k0 +1|1/k0 /∈ (R1, R2)

]

=
∑

k>1

P[k0 = k]P[|Tk,1|1/k /∈ (R1, R2)]

6 P[k0 6 k′] + sup
k′′>k′

P

[
|Tk′′,1|1/k′′

/∈ (R1, R2)
]

Now, P[k0 6 k′] tends to zero when N goes to infinity (the order of mag-

nitude is 1/N), and by taking N → ∞, and then k′ → ∞, one deduces:

(3.9) P

[∫

C

f dν′′
N 6= 0

]
−→
N→∞

0.
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Therefore, by taking (3.8) and (3.9) together:
∫

C

f dν′
N −→
N→∞

∫

C

f dν∞

in probability, and a fortiori, in distribution. �

Remark 3.6. — In the proof of Proposition 3.5, we have used the Feller

coupling in order to replace the convergence in law by a convergence in

probability. However, this coupling does not correspond to the coupling

used by considering the measure P(∞, θ,L). Moreover, if (MN )N>1 follows

this measure, the number of cycles of a given length in σN does not converge

when N goes infinity, and the support of these cycles is changing infinitely

often. Hence, one cannot expect an almost sure convergence (or even a

convergence in probability) in Proposition 3.5.

Propositions 3.1 and 3.5 apply for a large family of distributions L, how-

ever, some integrability conditions need to be satisfied. One can ask what

happens if these conditions do not hold. We are not able to prove a result for

all the possible distributions L, but it is possible to study some important

particular cases, if the probability distributions involved in our problem can

be explicitly computed. Here, the most important distributions we need to

deal with are the probability measures Lk, k > 1, defined in the following

way: Lk is the unique measure on C
∗, invariant by multiplication by a k-th

root of unity, and such that its image by the k-th power is the multiplica-

tive convolution of k copies of L. Intuitively, Lk is the law of a random k-th

root of the product of k independent random variables with law L, chosen

uniformly among the k possible roots. The measures Lk are not easy to

compute in general. One case where the computation is simplified is the

case where L has the radial symmetry. Indeed let (Yp)p>1 be a sequence

of i.i.d. random variables with the same law as log(|Z|), where Z follows

the distribution L. The distribution Lk is the law of e
iΘ+ 1

k

∑k

p=1
Yp where

Θ is independent of (Yp)p>1 and uniform on [0, 2π). In particular, if L is

the law of eiΘ+ρSα , where ρ is a strictly positive parameter, Θ a uniform

variable on [0, 2π) and Sα (α ∈ (0, 2]) an independent standard symmetric

stable random variable of index α, then Lk is the law of eiΘ+ρk(1−α)/αSα .

Using this explicit description of Lk, we can make a detailed study of the

“stable case”. For α > 1 (and in particular for a log-normal modulus, cor-

responding to α = 2), Propositions 3.1 and 3.5 directly apply. Therefore,

let us suppose α 6 1. For α = 1, one has the following:

Proposition 3.7. — Let ρ > 0, and let L be the law of eiΘ+ρS1 , where

Θ is a uniform random variable on [0, 2π) and S1 an independent standard
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symmetric Cauchy random variable. For θ > 0, let (MN )N>1 be a sequence

of random matrices such that MN follows the distribution P(N, θ,L). Then

the distribution of the random probability measure µ(MN )/N converges to

the law of the random measure

µ̄∞ :=
∑

m>1

xmµ
U

e
ρS

(m)
1

,

where (xm)m>1 is a Poisson-Dirichlet process with parameter θ, (S
(m)
1 )m>1

is an independent sequence of i.i.d. standard symmetric Cauchy variables,

and for R > 0, µUR is the uniform measure on the circle of center zero

and radius R. This convergence has to be understood as follows: for all

continuous and bounded functions f from C to R,

1

N

∫

C

f dµ(MN ) −→
N→∞

∫

C

f dµ̄∞

in distribution.

Proof. — One can suppose that (MN )N>1 follows the distribution

P(∞, θ,L). With the same notation as in the proof of Proposition 3.1,

one sees that µ(MN )/N has the same distribution as the random measure:

µ̄N :=

∞∑

m=1

lN,m
N

(
1lN,m>0

lN,m

∑

ω∈UlN,m

δωLm

)
,

where (Lm)m>1 is a sequence of i.i.d. random variables with law L (recall

that Lk is equal to L for all k > 1). If f is a continuous, bounded function

from C to R, one has:

∫

C

f dµ̄N =
∞∑

m=1

lN,m
N

(
1lN,m>0

lN,m

∑

ω∈UlN,m

f(ωLm)

)
.

Now, there exists a GEM process (ym)m>1 of parameter θ and a sequence

of random variables (sm)m>1, such that almost surely,

∞∑

m=1

sm < ∞

lN,m
N

−→
N→∞

ym,

for all m > 1 and
lN,m
N

6 sm
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for all N,m > 1. By the convergence of Riemann sums corresponding to

the integral of continuous functions on a compact set, one deduces that

almost surely, for all m > 1:

lN,m
N

(
1lN,m>0

lN,m

∑

ω∈UlN,m

f(ωLm)

)
−→
N→∞

ym
2π

∫ 2π

0

f(Lme
iλ) dλ,

where the left-hand side is smaller than or equal to sm‖f‖∞, independently

of N . By dominated convergence:
∫

C

f dµ̄N −→
N→∞

1

2π

∑

m>1

ym

∫ 2π

0

f(Lme
iλ) dλ,

almost surely. This implies Proposition 3.7. �

Remark 3.8. — Almost surely, the random measure µ̄∞ is strictly pos-

itive for any nonempty set of C. Therefore, for all continuous functions f

from C to R+, non-identically zero, and for all A ∈ R+:

P

[∫

C

f dµ(MN ) 6 A

]
−→
N→∞

0.

Hence, one cannot expect an analog of Proposition 3.5 in the case studied

here.

For the case α < 1, one intuitively expects that most of the eigenvalues

become very large or very small. The precise statement is the following:

Proposition 3.9. — Let ρ > 0, and let L be the law of eiΘ+ρSα , where

Θ is a uniform random variable on [0, 2π) and Sα an independent stan-

dard symmetric stable random variable, with index α < 1. For θ > 0, let

(MN )N>1 be a sequence of random matrices such that MN follows the

distribution P(N, θ,L). Then, the distribution of the random probability

µ(MN )/N converges to the law of the random measure Gθδ0, where Gθ is

a beta random variable with parameters (θ/2, θ/2), in the following sense:

for all continuous functions f from C to R, with compact support,

1

N

∫

C

f dµ(MN ) −→
N→∞

Gθf(0)

in distribution.

Remark 3.10. — The total mass of the limit measure is a.s. strictly

smaller than one. Intuitively, this is due to the fact that a large part of

the total mass of µ(MN ) is going far away from zero, when N is large.

This mass is missing in the limiting measure in Proposition 3.9, because

we consider functions f with compact support.
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Proof. — We suppose that (MN )N>1 follows the distribution P(∞, θ,L).

Let f be a continuous function from C to R, with compact support, and

let us choose R > 1 such that f(z) = 0 for all z such that |z| > R. Let us

define, for all z ∈ C,

g(z) := 1|z|61f(0).

and for r ∈ (0, 1):

β(r) := sup{|f(z) − f(0)|, |z| 6 r},
which tends to zero with r. One checks that

1

N

∫

C

|f − g|dµ(MN ) 6 β(r) + 2‖f‖∞
µ(MN )({z ∈ C, r 6 |z| 6 R})

N
,

which implies:

P

[ 1

N

∫

C

|f − g|dµ(MN ) > β(r) + (2‖f‖∞ + 1)r
]

6 P

[
µ(MN )({z ∈ C, r 6 |z| 6 R})

N
> r

]

6
1

r
E

[
µ(MN )({z ∈ C, r 6 |z| 6 R})

N

]
.

Now,

E

[
µ(MN )({z ∈ C, r 6 |z| 6 R})

N

]

=

∞∑

m=1

E

[
lN,m
N

1
lN,m>0,|ZN,m|(1/lN,m)∈(r,R)

]
.

From the independence of lN,m and (zj)j>1, and from the basic properties

of stable random variables, one has

P

[
lN,m > 0, |ZN,m|(1/lN,m) ∈ (r,R) | lN,m

]
= Ψ(lN,m),

where the function Ψ (which can depend on α, ρ, r and R, but not on N)

is bounded by one and tends to zero at infinity. Hence:

E

[
µ(MN )({z ∈ C, r 6 |z| 6 R})

N

]
6 E

[ ∞∑

m=1

lN,mΨ(lN,m)

N

]
.

Now, for all m > 1, a.s.:

lN,mΨ(lN,m)

N
−→
N→∞

0

and
lN,mΨ(lN,m)

N
6 sm.
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By dominated convergence,

E

[
µ(MN )({z ∈ C, r 6 |z| 6 R})

N

]
−→
N→∞

0

which implies:

P

[
1

N

∫

C

|f − g|dµ(MN ) > β(r) + (2‖f‖∞ + 1)r

]
−→
N→∞

0.

By letting r go to zero, one deduces that

1

N

∫

C

|f − g|dµ(MN ) −→
N→∞

0

in probability. Therefore, it is sufficient to prove the conclusion of Proposi-

tion 3.9, with f replaced by g. Moreover, one can suppose f(0) = g(0) = 1.

In this case, one has:

1

N

∫

C

gdµ(MN ) =
∑

m>1

lN,m
N

1lN,m>0,|ZN,m|61.

Now, by symmetry of the stable variables considered here and by the inde-

pendence of (lN,m)m>1 and (zj)j>1,

1

N

∫

C

gdµ(MN ) =
∑

m>1

lN,m
N

ǫm

in distribution, where (ǫm)m>1 is a sequence of i.i.d Bernoulli variables

of parameter 1/2, independent of (lN,m)N,m>1. The parameter 1/2 is ex-

plained as follows: ǫm = 1|ZN,m|61, where log(|ZN,m|) is a symmetric, stable

random variable, and then

P[ǫm = 1] = P[log(|ZN,m|) 6 0] = P[log(|ZN,m|) > 0] = 1/2.

Now, by dominated convergence (recall that the sum of the variables sm is

a.s. finite),
∑

m>1

lN,m
N

ǫm −→
N→∞

∑

m>1

ymǫm,

which implies Proposition 3.9 if we check that

X :=
∑

m>1

ymǫm

is equal to Gθ in distribution (recall that (ym)m>1 is a GEM(θ) process,

independent of the sequence (ǫm)m>1). This fact can be proved as follows:

by self-similarity of the GEM(θ) process,

X = V X + ǫ(1 − V ),
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in distribution, where V , X, ǫ are independent, V is a beta variable of

parameters θ and 1, and ǫ is a Bernoulli variable of parameter 1/2. With

this identity, one can compute the moments of X by induction, and finally,

one can identify its law. �

Again for the stable case with parameter α < 1, one has an analog of

Proposition 3.5, for the eigenvalues which are in a compact set not con-

taining zero. The precise statement is:

Proposition 3.11. — Let ρ > 0, and let L be the law of eiΘ+ρSα ,

where Θ is a uniform random variable on [0, 2π) and Sα an independent

standard symmetric stable random variable, with index α < 1. For θ > 0,

let (MN )N>1 be a sequence of random matrices such that MN follows the

distribution P(N, θ,L). Then, for all continuous functions f from C to R,

with compact support, and such that f = 0 on a neighborhood of zero,

f is a.s. integrable with respect to µ∞, where the random measure µ∞ is

given by (3.6). Moreover, the following convergence in distribution holds

with such test functions:
∫

C

f dµ(MN ) −→
N→∞

∫

C

f dµ∞.

Proof. — The proof is similar to the proof of Proposition 3.5. One only

has to change the estimate:

P[|Tk,1|1/k /∈ (R1, R2)] 6 Ck−q

(for some C, q > 0), by the estimate:

P[|Tk,1|1/k ∈ (r,R)] 6 Ck−q,

available for all r, R such that R > r > 0, by the classical properties of

symmetric stable random variables. �

3.2. The average eigenvalues distributions

Another interesting problem is the study of the expectation µ̃N of the

random measure µ(MN ), where MN follows the distribution P(N, θ,L).

The measure µ̃N of a Borel set in C represents the expected number of

eigenvalues of MN (with multiplicity) contained in this set, and it can be

explicitly computed:
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Proposition 3.12. — Let N > 1, θ > 0, L a probability measure on

C
∗. If MN follows the distribution P(N, θ,L), then the expectation µ̃N of

µ(MN ) can be represented as follows:

µ̃N = θ

N∑

k=1

N(N − 1) · · · (N − k + 1)

(N − 1 + θ)(N − 2 + θ) · · · (N − k + θ)
Lk.

Proof. — Let f be a Borel function from C to R+. By taking the same

notation as in (3.5), one has:
∫

C

f dµ̃N = E

[ ∞∑

k=1

aN,k∑

p=1

∑

ωk=Tk,p

f(ω)

]

Now, for all k, p > 1:

E


 ∑

ωk=Tk,p

f(ω)


 = k

∫

C

f dLk

Moreover, (Tk,p)k,p>1 is independent of (aN,k)k>1. One deduces that

E




∞∑

k=1

aN,k∑

p=1

∑

ωk=Tk,p

f(ω) | (aN,k)k>1


 =

∞∑

k=1

kaN,k

∫

C

f dLk.

Therefore

µ̃N =

∞∑

k=1

kE[aN,k]Lk.

By doing explicit computations of E[aN,k] (see e.g. [2]), one deduces Propo-

sition 3.12. �

Remark 3.13. — When the distribution of the zj ’s is the Dirac mass

at 1, then Lk is the uniform measure on the k-th roots of unity.

One has a similar result for the limiting random measure µ∞ of µ(MN ):

Proposition 3.14. — Let θ > 0, L a probability measure on C
∗,

(MN )N>1 a sequence of random matrices such that MN follows the dis-

tribution P(N, θ,L). Then the expectation of the random measure µ∞,

given by (3.6) (it can be considered, in some sense, as the limit of µ(MN )

for N → ∞), is the measure:

µ̃∞ = θ

∞∑

k=1

Lk.

Proof. — The proof of Proposition 3.14 is exactly similar to the proof of

Proposition 3.12. �
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Now, we have a sequence of finite measures µ̃N , defined as the expectation

of µ(MN ) and explicitly described, and an infinite measure µ̃∞, defined

as the expectation of µ∞. Moreover, we know that, for a large class of

probability laws L, the random probability measure µ(MN )/N converges

weakly in probability to the uniform measure on a circle, and in a sense

which can be made precise, µ(MN ) tends to µ∞. Hence, we can expect

analog convergences for the sequence of measures (µ̃N )N>1. One indeed

has the following result:

Proposition 3.15. — Let θ > 0, L a probability measure on C
∗,

(MN )N>1 a sequence of random matrices such that MN follows the dis-

tribution P(N, θ,L). We suppose that if Z follows the distribution L, then

log(|Z|) is integrable, and we define R := exp(E[log(|Z|)]). Then the prob-

ability measure µ̃N/N (which represents the probability distribution of a

random eigenvalue of MN , chosen uniformly among the N possible eigen-

values), converges weakly to the uniform distribution on the circle {z = R}.

Moreover, if log(|Z|) is in U2, then for 0 < R1 < R < R2, the restriction

of µ̃N to the set {|z| /∈ (R1, R2)} converges weakly to the corresponding

restriction of µ̃∞, which is a finite measure.

Proof. — Let f be a continuous and bounded function from C to R. By

Proposition 3.1 (more precisely, by Corollary 3.2):

1

N

∫

C

f dµ(MN ) −→
N→∞

1

2π

∫ 2π

0

f(Reiλ) dλ

in probability. Since f is uniformly bounded, one deduces the first part of

Proposition 3.15 by taking the expectation. Let us now prove the second

part. We now suppose that f is a bounded and continuous function from C

to R, equal to zero in a neighborhood of the circle {|z| = R}. By Proposition

3.12, it is sufficient to prove that

∞∑

k=1

∣∣tN,k,θ1N>k − 1
∣∣
∫

C

|f | dLk −→
N→∞

0,

where

tN,k,θ =
N(N − 1) · · · (N − k + 1)

(N − 1 + θ)(N − 2 + θ) · · · (N − k + θ)
.

Each term of the sum converges to zero when N goes to infinity. Hence by

dominated convergence we are done if we prove that:

(3.10)

∞∑

k=1

vk,θ

∫

C

|f | dLk < ∞,
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where

vk,θ = 1 + sup{tN,k,θ, N > k}.

Now, for θ > 1, vk,θ = 2, and for θ < 1:

vk,θ = 1 +
k!(θ − 1)!

(k − 1 + θ)!
,

which implies that vk,θ is dominated by k(1−θ)+ for fixed θ. On the other

hand, the fact that log(|Z|) is in U2 implies that the integral of |f | with

respect to Lk decreases with k at least as fast as 1/k2. This implies (3.10).

�

As above, it is interesting to see what happens if L is the distribution of

eiΘ+ρSα , where ρ > 0, Θ is a uniform random variable on [0, 2π) and Sα
is an independent standard symmetric stable random variable, with index

α ∈ (0, 2]. For the log-normal case α = 2, Proposition 3.15 applies directly.

For the case α ∈ (1, 2), one can apply the first part of Proposition 3.15,

which gives the convergence of the average empirical measure µ̃N/N , but

the second part cannot apply. Indeed, by using the classical tail estimates of

stable random variables one checks that for all nonempty open sets A ⊂ C:

µ̃∞(A) = θ

∞∑

k=1

Lk(A) = ∞.

For α = 1, one has Lk = L for all k > 1, and then:

µ̃N = NL

for all N > 1. The most interesting case is α < 1.

Proposition 3.16. — Let ρ > 0, and let L be the law of eiΘ+ρSα ,

where Θ is a uniform random variable on [0, 2π) and Sα an independent

standard symmetric stable random variable, with index α < 1. For θ > 0,

let (MN )N>1 be a sequence of random matrices such that MN follows the

distribution P(N, θ,L). Then the probability measure µ̃N/N (which rep-

resents the probability distribution of a random eigenvalue of MN , chosen

uniformly among the N possible eigenvalues), converges vaguely to half of

the Dirac measure at zero. Moreover, for all r,R such that 0 < r < R, the

restriction of µ̃∞ to the set {|z| ∈ (r,R)} is infinite if α > 1/2, finite if

α < 1/2, and for α < 1/(2 ∨ (3 − θ)) (in particular for α 6 1/3), it is the

weak limit of the corresponding restriction of µ̃N when N goes to infinity.
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Proof. — Let f be a continuous function from C to R, with compact

support. By Proposition 3.9, one has the convergence in distribution:

1

N

∫

C

f dµ(MN ) −→
N→∞

Gθf(0).

Since f is uniformly bounded, one can take the expectation and obtain:

1

N

∫

C

f dµ̃N −→
N→∞

1

2
f(0),

which gives the first part of Proposition 3.16. Now, one checks that for all

r,R such that 0 < r < R, Lk({z ∈ C, |z| ∈ (r,R)}) decreases as k1−1/α

when k goes to infinity, which gives the condition for the finiteness of µ̃∞
restricted to {z ∈ C, |z| ∈ (r,R)}. The proof of the convergence of the

restriction of µ̃N to this set toward the restriction of µ̃∞ is similar to the

proof of the second part of Proposition 3.15. One only needs to check that:
∞∑

k=1

vk,θLk({z ∈ C, |z| ∈ (r,R)}) < ∞,

which is true, since vk,θ is dominated by k(1−θ)+ and Lk({z ∈ C, |z| ∈
(r,R)}) is dominated by k1−1/α, for 1/α > 2 ∨ (3 − θ). �

3.3. The q-correlation

The measures µ̃N and µ̃∞ give the average repartition of the eigenvalues

(and its limit for large dimension) of a matrix following the distribution

P(N, θ,L). It is interesting to generalize this study to the q-correlation

of eigenvalues for all strictly positive integers q, i.e. the distribution of

the possible sequences of q eigenvalues. More precisely, if MN follows the

distribution P(N, θ,L), let us consider, for all q > 1, the random measure

on C
q:

µ[q](MN ) =
∑

j1 6=j2 6=···6=jq

δ(ωj1 ,...,ωjq ),

where (ωj)16j6N is a sequence containing all the eigenvalues of MN , with

multiplicity. The “q-correlation measure” is defined as the average of

µ[q](MN ): it is a finite measure µ̃
[q]
N on C

q, with total mass N !/(N − q)!.

One checks that µ[q](MN ) has (by taking the same notation as in (3.5))

the same distribution as the random measure

νN :=
∑

(wk,p)k>1,16p6aN,k
∈W(q,(aN,k)k>1)

∑

(Ek,p∈Sk,wk,p
(Tk,p))k>1,16p6aN,k

∆
(
(Ek,p)k>1,16p6aN,k

)
,
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where W (q, (aN,k)k>1) is the set of families (wk,p)k>1,16p6aN,k
of nonnega-

tive integers, with total sum q, Sk,wk,p
(Tk,p) is the family of subsets of k-th

roots of Tk,p, with cardinality wk,p, and ∆((Ek,p)k>1,16p6aN,k
) is defined

by:

∆
(
(Ek,p)k>1,16p6aN,k

)
=
∑

σ∈Σq

δ(ωσ(j))16j6q

for a sequence (ωj)16j6q containing all the elements of the sets Ek,p, each

element appearing a number of times equal to the number of sets Ek,p
containing it. Here, wk,p represents the number of eigenvalues ωjr

(1 6 r 6

q) which come from the p-th k-cycle of the permutation, and Ek,p represents

the set of these eigenvalues. The sum for σ ∈ Σq in the definition of ∆ is

due to the fact that in the definition of µ[q](MN ), the same q eigenvalues

are put into all the q! possible orders. Let us now take the conditional

expectation with respect to (aN,k)k>1. One obtains the following random

measure:

E[νN | (aN,k)k>1] =
∑

(wk,p)k>1,16p6aN,k
∈W (q,(aN,k)k>1)

L[q]
(
(wk,p)k>1,16p6aN,k

)
,

for

L[q]((wk,p)k>1,16p6aN,k
)

=
1∏

k>1,16p6aN,k
wk,p!

∑

σ∈Σq

σ · L̃[q]
(
(wk,p)k>1,16p6aN,k

)
,

where

σ · L̃[q]
(
(wk,p)k>1,16p6aN,k

)

is the image, by the permutation σ of the coordinates, of

L̃[q]
(
(wk,p)k>1,16p6aN,k

)
=

⊗

k>1,16p6aN,k

L[wk,p]
k ,

for

L[wk,p]
k =

∑

z1 6=···6=zwk,p
∈Uk

(z1, z2, . . . , zwk,p
) · Lk,

where (z1, z2, . . . , zwk,p
) · Lk is the image of Lk by the application z 7→

(zz1, zz2, . . . , zzwk,p
). More intuitively, the measure L[r]

k is obtained by tak-

ing all the possible r-uples of k-th roots of a complex number following the

distribution L. The measure L̃[q] is obtained from the measures L[wk,p]
k via

a concatenation of the wk,p-uples, each of them corresponding to a cycle

of the random permutation involved in MN . One then gets L[q] by taking
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into account all the permutations of the q eigenvalues. Since the permuta-

tions of the eigenvalues associated to the p-th k-cycle were already taken

into account in the definition of L[wk,p]
k , one needs to compensate this by

putting, for each cycle, a factor wk,p! at the denominator. By defining λk,r
as the number of indices p such that wk,p = r, one then gets:

E[νN | (aN,k)k>1] =
∑

(λk,r)k>1,r>0∈L(q,(aN,k)k>1)

∏
k>1 aN,k!∏

k>1,r>0 [λk,r!(r!)λk,r ]
· · ·

· · ·
∑

σ∈Σq

σ ·
[ ⊗

k>1,r>0

(L[r]
k )⊗λk,r

]

where L
(
q, (aN,k)k>1

)
is the set of families (λk,r)k>1,r>0 of nonnegative

integers such that ∑

k>1,r>0

rλk,r = q

and for all k > 1: ∑

r>0

λk,r = aN,k.

Here, we have regrouped all the identical terms corresponding to the same

values of (λk,r)k>1,r>0: the number of such identical terms is equal to the

number of choices of (wk,p)k>1,16p6aN,k
giving the same family (λk,r)k>1,r>0,

i.e. ∏
k>1 aN,k!∏

k>1,r>0 λk,r!
.

Note that for all k > 1, the measure L[0]
k is trivial (it is the unique

probability measure on a space with one element), hence, one can remove

it in a tensor product. One deduces:

E[νN | (aN,k)k>1] =
∑

(λk,r)k,r>1∈L̃(q)

∏

k>1

· · ·

· · · aN,k!

(aN,k −∑r>1 λk,r)!
∏
r>1 [λk,r!(r!)λk,r ]

∑

σ∈Σq

σ ·
[ ⊗

k>1,r>1

(L[r]
k )⊗λk,r

]

where L̃(q) is the set of families (λk,r)k,r>1 of nonnegative integers such

that ∑

k>1,r>1

rλk,r = q
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and where the inverse of the factorial of a strictly negative integer is consid-

ered to be equal to zero. Then, by removing the conditioning with respect

to (aN,k)k>1, one gets:

µ̃
[q]
N =

∑

(λk,r)k,r>1∈L̃(q)

u

[∑
r>1

λk,r

]
k>1

N,θ

1∏
k,r>1 [λk,r!(r!)λk,r ]

· · ·

· · ·
∑

σ∈Σq

σ ·
[ ⊗

k>1,r>1

(L[r]
k )⊗λk,r

]
,

where, for all sequences of nonnegative integers (λk)k>1 for which the set

of k such that λk > 0 is finite:

u
[λk]k>1

N,θ = E

[∏

k>1

aN,k!

(aN,k − λk)!

]

(recall that this quantity depends on θ, as the law of (aN,k)k>1). By ele-

mentary combinatorial arguments, one can prove that

u
[λk]k>1

N,θ =

∏∑
k>0

λk

j=1 (N + 1 − j)∏
k>1 k

λk
.P,

where P is the probability that in a random permutation following the

Ewens(θ) distribution, the integers from 1 +
∑
j<k λj and

∑
j6k λj lie in

different k-cycles, for all k > 1. By the Feller coupling, one deduces that

u
[λk]k>1

N,θ = 1
∑

k>1
kλk6N

(∑
k>1

kλk∏

j=1

N + 1 − j

N + θ − j

)
θ

∑
k>1

λk

∏
k>1 k

λk
.

Then by denoting L̃(N, q) the set of families (λk,r)k,r>1 of nonnegative

integers such that ∑

k>1,r>1

rλk,r = q

and ∑

k>1,r>1

kλk,r 6 N,

one obtains the following result:

Proposition 3.17. — Let θ > 0 and let L be a probability distribution

on C
∗. If one takes the notation above, the q-correlation measure µ̃

[q]
N asso-

ciated with the eigenvalues of a random matrix following the distribution
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P(N, θ,L) is given by the formula:

µ̃
[q]
N =

∑

(λk,r)k,r>1∈L̃(N,q)

(∑
k,r>1

kλk,r∏

j=1

N + 1 − j

N + θ − j

)
· · ·

· · ·
∏

k,r>1


 1

λk,r!

(
θ

r!k

)λk,r

 ∑

σ∈Σq

σ ·
[ ⊗

k>1,r>1

(L[r]
k )⊗λk,r

]

Remark 3.18. — One can check that Proposition 3.12 is a particular

case of Proposition 3.17 for q = 1. Note that for N, q > 2, the q-correlation

measure µ̃
[q]
N is not absolutely continuous with respect to Lebesgue mea-

sure. The situation is different from what one generally gets by studying

classical ensembles of random matrices. For example, in many ensembles

of hermitian and unitary matrices, the point process of the eigenvalues is

determinantal, which means that the correlation measure is absolutely con-

tinuous with respect to the Lebesgue measure, with density at (x1, . . . , xq)

given by det(K(xm, xn)16m,n6q), where K is a certain function from U
2

(for unitary matrices) or R
2 (for hermitian matrices) to R.

In a similar way, we can define the q-correlation measure µ̃
[q]
∞ , associ-

ated with the random point measure µ∞ defined by (3.6). We obtain the

following:

Proposition 3.19. — Let θ > 0 and L be a probability distribution on

C
∗. Then, the q-correlation measure µ̃

[q]
∞ associated with the point measure

µ∞ defined by (3.6) is given by:

µ̃[q]
∞ =

∑

(λk,r)k,r>1∈L̃(q)

∏

k,r>1


 1

λk,r!

(
θ

r!k

)λk,r

 · · ·

· · ·
∑

σ∈Σq

σ ·


 ⊗

k>1,r>1

(
L[r]
k

)⊗λk,r

 .

Since we have an explicit expression for the correlations measures, we

can expect some limit theorems when the dimension N goes to infinity. In

fact, we have the following proposition:

Proposition 3.20. — Let θ > 0, q > 1 integer, L a probability measure

on C
∗, (MN )N>1 a sequence of random matrices such that MN follows the

distribution P(N, θ,L). We suppose that if Z follows the distribution L,

then log(|Z|) is integrable, and we define R := exp
(
E[log(|Z|)]

)
. Then the
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probability measure 1
N(N−1)···(N−q+1) µ̃

[q]
N (which represents the probability

distribution of a random sequence of q eigenvalues of MN , chosen uniformly

among the N(N−1) · · · (N−q+1) possible sequences), converges weakly to

the q-th power of the uniform distribution on the circle {z = R}. Moreover,

if log(|Z|) is in Uq+1, then for 0 < R1 < R < R2, the restriction of µ̃
[q]
N to

the set {(z1, . . . , zq) ∈ C
q,∀r 6 q, |zr| /∈ (R1, R2)}, converges weakly to the

corresponding restriction of µ̃
[q]
∞ .

Proof. — Recall that µ̃
[q]
N is the average of the random measure:

µ[q](MN ) =
∑

j1 6=j2 6=···6=jq

δ(ωj1 ,...,ωjq ),

where (ωj)16j6N is a sequence containing all the eigenvalues of MN , with

multiplicity. Let f1, . . . , fq be bounded, continuous functions from C to R+.

One has:

I :=

∫

Cq

f1(z1) · · · fq(zq)dµ̃[q]
N (z1, . . . , zq)

= E


 ∑

j1 6=j2 6=···6=jq

f1(ωj1) · · · fq(ωjq )


 ,

which implies,

(3.11) J − ‖f1‖∞ · · · ‖fq‖∞[Nq −N(N − 1) · · · (N − q + 1)] 6 I 6 J,

for

J := E




q∏

r=1

(
N∑

j=1

fr(ωj)

)


or equivalently

J = E

[
q∏

r=1

(∫

C

frdµ(MN )

)]
.

Now, by Proposition 3.1 and Corollary 3.2,
(

1

N

∫

C

frdµ(MN )

)

16r6q

−→
N→∞

(
1

2π

∫ 2π

0

fr(Re
iλ) dλ

)

16r6q

in probability. By applying the bounded, continuous function from R
q to R:

(x1, . . . , xq) 7→ (|x1| · · · |xq|) ∧ (‖f1‖∞ · · · ‖fq‖∞),

one deduces that

J

Nq
−→
N→∞

1

(2π)q

∫

[0,2π]q

f1(Reiλ1) · · · fq(Reiλq ) dλ1 · · · dλq.
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By using the inequalities (3.11), one obtains that

I

N(N − 1) · · · (N − q + 1)
−→
N→∞

1

(2π)q

∫

[0,2π]q

f1(Reiλ1) · · · fq(Reiλq ) dλ1 · · · dλq,
which gives the first part of Proposition 3.20. In order to prove the second

part, let us suppose that 0 < R1 < R < R2 and that f is a bounded,

continuous function from C
q to R, vanishing if one of the coordinates has

a modulus between R1 and R2. It is sufficient to prove:

∑

(λk,r)k,r>1∈L̃(q)

∣∣∣1N>
∑

k,r>1
kλk,r

tN,
∑

k,r>1
kλk,r,θ

− 1
∣∣∣
∏

k,r>1

[
1

λk,r!

(
θ

r!k

)λk,r
] ∑

σ∈Σq

∫

Cq

f d

(
σ ·


 ⊗

k>1,r>1

(
L[r]
k

)⊗λk,r


)

−→
N→∞

0,

with the notation of the proof of Propositions 3.15 and 3.17. By dominated

convergence, we are done if we check:

∑

(λk,r)k,r>1∈L̃(q)

v∑
k,r>1

kλk,r,θ

∏

k,r>1


 1

λk,r!

(
θ

r!k

)λk,r

 · · ·

· · ·
∑

σ∈Σq

∫

Cq

f d


σ ·


 ⊗

k>1,r>1

(
L[r]
k

)⊗λk,r



 < ∞.

Now, for (λk,r)k,r>1 ∈ L̃(q), by the estimates obtained in the proof of

Proposition 3.15:

v∑
k,r>1

kλk,r,θ
6 C(θ)

(
1 +

∑

k,r>1

kλk,r

)(1−θ)+

6 2qC(θ) [1 ∨ sup{k > 1,∃r > 1, λk,r > 0}]
(1−θ)+

6 2qC(θ)
∏

k,r>1

kλk,r(1−θ)+ ,

where C(θ) > 0 depends only on θ. By assumption, if Z is a random variable

which follows the distribution L, then log(Z) ∈ Uq+1, which implies that

Lk{z ∈ C, |z| /∈ (R1, R2)}
decreases at least as fast as 1/kq+1 when k goes to infinity, with a constant

depending only on L, R1 and R2. Since f vanishes when a coordinate has
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modulus in (R1, R2), one deduces:

∫

Cq

f d


 ⊗

k>1,r>1

(
L[r]
k

)⊗λk,r

 6 C

∏

k>1,r>1

(
k(k − 1) · · · (k − r + 1)

kq+1

)λk,r

where C can depend on L, R1, R2, f , q. Hence, one only needs to check

that:
∑

(λk,r)k,r>1∈L̃(q)

∏

k,r>1


 1

λk,r!

(
θCrk
kβ

)λk,r

 < ∞,

where β > q + 1 and where by convention, the binomial coefficient Crk is

equal to zero for k < r. Now, for (λk,r)k,r>1 ∈ L̃(q):

Crk 6 kr

and

θ

∑
k,r>1

λk,r
6 (1 + θ)q.

Hence it is sufficient to have
∑

(λk,r)k,r>1∈L̃(q)

∏

k,r>1

kλk,r(r−β) < ∞.

Since ∑

k,r>1

rλk,r = q,

one necessarily has λk,r = 0 for r > q. Hence, in any case,

kλk,r(r−β)
6 kλk,rγ

for γ = q − β < −1, and Proposition 3.20 is proved if
∑

(λk,r)k,r>1∈L̃(q)

∏

k,r>1

kγλk,r < ∞.

This last estimate is easy to check, by replacing L̃(q) by the (larger) set

of families (λk,r)k,r>1 of nonnegative integers such that λk,r = 0 for r > q

and λk,r 6 q in any case. �

4. The point process of eigenangles and its scaling limit in

the unitary case

In this section we do a more precise study of the point process of eigenval-

ues, in the unitary case. In particular, we obtain a scaling limit for the eige-

nangles if they are properly renormalized. This limit is dominated by the
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large cycles of permutations, hence, we can expect almost sure convergence

results if we consider virtual permutations. More precisely, let (MN )N>1 be

a sequence of random matrices following the distribution P(∞, θ,L), where

θ > 0 and L is a probability distribution on the unit circle. Recall that

the measure µ(MN ), representing the point process of eigenvalues can be

written as:

µ(MN ) =
∞∑

m=1

1lN,m>0

∑

ωlN,m =ZN,m

δω.

Here lN,m is the cardinality of the intersection CN,m of Cm and {1, . . . , N},

and

ZN,m =
∏

j∈CN,m

zj ,

where (Cm)m>1 is the partition of N∗ (ordered by increasing smallest ele-

ment) given by the cycle structure of a virtual permutation following the

Ewens(θ) measure, and (zj)j>1 is an independent sequence of i.i.d. vari-

ables with law L. Since all the eigenvalues are on the unit circle, it can be

more practical to consider the eigenangles. The corresponding point pro-

cess can be described as follows: one takes the point x if and only if eix is

an eigenvalue of MN , with a multiplicity equal to the multiplicity of the

eigenvalue. Note that this process is 2π-periodic, and the corresponding

random measure τ(MN ) can be written as:

τ(MN ) =

∞∑

m=1

1lN,m>0

∑

x≡ΘN,m(mod. 2π/lN,m)

δx,

where

ΘN,m =
1

ilN,m

∑

j∈CN,m

log(zj)

is real and well-defined modulo 2π/lN,m, for lN,m > 0. Note that the con-

struction of the measure τ(MN ) implies immediately that τ(MN )([0, 2π)) =

N , in other words, the average spacing of two consecutive points of the

corresponding point process is equal to 2π/N . If we want to expect a con-

vergence for N going to infinity, we need to rescale τ(MN ) in order to have

a constant average spacing, say, one. That is why we introduce the rescaled

measure τN (MN ), defined as the image of τ(MN ) by the multiplication

by N/2π: the corresponding point process contains the points x such that

e2iπx/N is an eigenvalue of MN . One checks that

τN (MN ) =

∞∑

m=1

1yN,m>0

∑

k∈Z

δ(γN,m+k)/yN,m
,
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where yN,m := lN,m/N is the m-th renormalized cycle length of the per-

mutation σN associated with MN , and:

γN,m :=
1

2iπ

∑

j∈CN,m

log(zj)

is well-defined modulo 1. Now the general results on virtual permutations

(see [14] or Section 2) imply that for all m > 1, yN,m converges a.s. to

a random variable ym, where (ym)m>1 is a GEM process of parameter θ.

Then, if γN,m is supposed to be equal to zero, one can expect that the

measure τN (MN ) converges to

τ∞((MN )N>1) :=

∞∑

m=1

∑

k∈Z

δk/ym
.

Of course, one needs to be careful since τ∞((MN )N>1) has an infinite Dirac

mass at zero. Moreover, the condition γN,m = 0 is satisfied if and only if L
is δ1, the Dirac measure at one. That is why we state the following result:

Proposition 4.1. — Let (MN )N>1 be a sequence of random matrices,

which follows the distribution P(∞, θ, δ1), for θ > 0. Then, with the no-

tation above, the random measure τN (MN ) converges a.s. to the random

measure τ∞((MN )N>1), in the following sense: for all continuous functions

f from R to R+, with compact support,
∫

R

f dτN (MN ) −→
N→∞

∫

R

f dτ∞((MN )N>1)

almost surely.

Remark 4.2. — In Proposition 4.1, the matrix MN is simply a per-

mutation matrix, associated to a permutation σN ∈ ΣN . Moreover, the

positivity of f is needed in order to deal with the infinite Dirac mass at

zero of τ∞((MN )N>1).

Proof. — If f(0) > 0, the integral of f with respect to τN (MN ) is greater

than or equal to f(0) times the number of m such that yN,m > 0, i.e. the

number of cycles of σN . Since this number tends a.s. to infinity with N , we

are done. Then, we can suppose f(0) = 0, which implies:
∫

R

f dτN (MN ) =
∞∑

m=1

∑

k∈Z\{0}
f(k/yN,m)

and ∫

R

f dτ∞((MN )N>1) =
∞∑

m=1

∑

k∈Z\{0}
f(k/ym)
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where we take the convention f(k/yN,m) = 0 for yN,m = 0. Now, if the

support of f is included in [−A,A] and if sm is the supremum of yN,m for

all N > 1, it is clear that f(k/yN,m) = f(k/ym) = 0 for all k,m such that

|k| > Asm. One deduces that
∫

R

f dτN (MN ) =
∑

(m,k)∈S
f(k/yN,m)

and ∫

R

f dτ∞((MN )N>1) =
∑

(m,k)∈S
f(k/ym)

where S is the set (independent of N) of couples of integers (m, k) such

that m > 1 and 0 < |k| 6 Asm. Now
∑

m>1

sm < ∞

almost surely (see (3.3)), and then S is a.s. a finite set. Since f(k/yN,m)

tends a.s. to f(k/ym) for all k,m (recall that f is continuous), we are

done. �

The a.s. weak convergence given in Proposition 4.1 cannot be directly

generalized if the law L is not the Dirac measure at one, because γN,m
changes in a non-negligible way for each N ∈ Cm. However, one can ex-

pect a weaker convergence. A natural candidate for the corresponding limit

distribution would be the law of a random measure defined by:

(4.1)

∞∑

m=1

∑

k∈Z

δ(k+χm)/ym
,

where we recall that (ym)m>1 is a GEM(θ) process, and where (χm)m>1 is

an independent i.i.d. sequence in R/Z. The distribution of χ1 needs to be,

in a sense which has to be made precise, close to the distribution of:

1

2iπ

K∑

j=1

log(zj),

where K is a large integer (recall that (zj)j>1 is an i.i.d. sequence of ran-

dom variables with law L). From the following result, we deduce a good

candidate:

Lemma 4.3. — Let L be a probability measure on U, and for k > 1, let

L∗k be the multiplicative convolution of k copies of L. Moreover, let r(L)

be the infimum of the integers r such that L is carried by the set Ur of r-th
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roots of unity. Then for all sequences (dk)k>1 of strictly positive integers,

tending to infinity with k, the probability measure:

1

dk

k+dk−1∑

p=k

L∗p

converges weakly to L∗, where L∗ is the uniform distribution on Ur if

r(L) < ∞, and the uniform distribution on U if r(L) = ∞.

Proof. — Let us define, for all q ∈ Z, and for all probability measures

M on U:

M̂(q) :=

∫

U

zqdM.

Moreover, let us set, for k > 1:

Mk :=
1

dk

k+dk−1∑

p=k

L∗p

Then, one has:

M̂k(q) =
1

dk

k+dk−1∑

p=k

[L̂(q)]p,

which is equal to one if L̂(q) = 1 and which tends to zero when k → ∞, if

L̂(q) 6= 1. Now, L̂(q) = 1 if and only if q is divisible by r(L), for r(L) < ∞,

and if and only if q = 0, for r(L) = ∞. Hence:

L̂∗(q) = 1L̂(q)=0
,

and finally,

M̂k(q) −→
k→∞

L̂∗(q).

�

Because of Lemma 4.3, the law D(L) of χ1, in equation (4.1), is cho-

sen as follows: if r(L) < ∞, it is the uniform distribution on the classes

{0, 1/r, . . . , (r−1)/r} modulo 1, and if r(L) = ∞, it is the uniform measure

on R/Z.

Remark 4.4. — If r(L) is finite, it is the smallest integer r > 1 such

that MN ∈ Hr(N) a.s., for MN following the distribution P(N, θ,L).

We are now able to state our convergence result for any distribution L
on U:

TOME 63 (2013), FASCICULE 3



818 Joseph NAJNUDEL & Ashkan NIKEGHBALI

Proposition 4.5. — Let (MN )N>1 be a sequence of random matrices,

such that for all N > 1, MN follows the distribution P(N, θ,L), where θ > 0

and where L is a probability measure on U. We suppose that L satisfies

one of the two following conditions:

• the measure is carried by Ur for some integer r > 1.

• there exists v > 1 such that for ǫ > 0 small enough, and for all arcs

A in U of size ǫ, L(A) 6 | log(ǫ)|−v.
Let τ∞(θ,L) be the random measure defined by:

τ∞(θ,L) :=

∞∑

m=1

∑

k∈Z

δ(k+χm)/xm
,

where (xm)m>1 is a Poisson-Dirichlet process of parameter θ, and (χm)m>1

is an independent sequence of i.i.d. random variables on R/Z, following the

distribution D(L) defined above. Then, with the previous notation, the

distribution of the random measure τN (MN ) converges to the distribution

of the random measure τ∞(θ,L), in the following sense: for all continuous

functions f from R to R+, with compact support,

• if f(0) > 0 and r(L) < ∞, then
∫

R

f dτ∞(θ,L) = ∞

a.s., and for all A > 0:

P

[∫

R

f dτN (MN ) 6 A

]
−→ 0

when N → ∞;

• if f(0) = 0 or r(L) = ∞, then:
∫

R

f dτ∞(θ,L) < ∞

a.s., and
∫

R

f dτN (MN ) −→
N→∞

∫

R

f dτ∞(θ,L)

in distribution.

Remark 4.6. — In Proposition 4.5, the Poisson-Dirichlet distribution

can be replaced by a GEM distribution, since it does not change the law

of the random measure τ∞(θ,L).
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Proof. — Without changing the laws of the random measures τN (MN )

and τ∞(θ,L), one can suppose that (MN )N>1 follows the distribution

P(∞, θ,L) and that, with the notation above:

τ∞(θ,L) =

∞∑

m=1

∑

k∈Z

δ(k+χm)/ym
,

where (χm)m>1 is supposed to be independent of (ym)m>1. Recall that

τN (MN ) =

∞∑

m=1

1yN,m>0

∑

k∈Z

δ(k+γN,m)/yN,m
,

where, conditionally on (yN,m)m>1, (γN,m)m>1 is a sequence of independent

random variables on R/Z, and for all m > 1, γN,m has the same law as logZ
2iπ ,

where Z follows the distribution L∗NyN,m = L∗lN,m . Let us now suppose

f(0) > 0 and r(L) < ∞. Since χm is a.s. equal to zero for infinitely many

m (because D(L)({0}) > 0), τ∞(θ,L) has an infinite Dirac mass at zero,

and then a.s.: ∫

R

f dτ∞(θ,L) = ∞.

Moreover ∫

R

f dτN (MN ) > f(0)

∞∑

m=1

1yN,m>0,γN,m=0.

Now, if (Zp,q)p,q>1 is a family of independent random variables, indepen-

dent of σN (the permutation associated with MN ), and such that for all

p, q > 1, Zp,q has distribution L∗p, then

∞∑

m=1

1yN,m>0,γN,m=0 =

∞∑

p=1

aN,p∑

q=1

1Zp,q=1

in distribution, where aN,p denotes the number of m such that lN,m = p

(i.e. the number of p-cycles in σN ). Therefore:

∫

R

f dτN (MN ) � f(0)

∞∑

p=1

cN,p∑

q=1

1Zp,q=1,

where � denotes the stochastic domination, and where (cN,p)p>1, defined

by the Feller coupling as in (3.7), is supposed to be independent of

(Zp,q)p,q>1. Since for all p > 1, cN,p increases a.s. to bp, Proposition 4.5 is

proved for f(0) > 0 and r(L) < ∞, if we show that a.s.,

∞∑

p=1

bp∑

q=1

1Zp,q=1 = ∞.
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and a fortiori, if we prove that

∞∑

p=1

1∃q6bp,Zp,q=1 = ∞.

Since all the variables (bp)p>1 and (Zp,q)p,q>1 are independent, by the

Borel-Cantelli lemma it is sufficient to have

∞∑

p=1

P[∃q 6 bp, Zp,q = 1] = ∞.

Now, if for p > 1, we define

P (p) = L∗p({1}),

we have:

P[∃q 6 bp, Zp,q = 1 | bp] = 1 − [1 − P (p)]bp ,

and, since bp is a Poisson random variable of parameter θ/p,

P[∃q 6 bp, Zp,q = 1] = 1 − e−θP (p)/p,

and then we are done if we prove:

(4.2)
∑

p>1

P (p)/p = ∞.

Now, by Lemma 4.3:

1

2k

2k+1−1∑

p=2k

L∗p

converges weakly to the uniform distribution on Ur(L), for k → ∞. Since

all the measures involved here are supported by the finite set Ur(L), one

deduces that

1

2k

2k+1−1∑

p=2k

P (p) −→
k→∞

1/r(L),

which implies (4.2). We can now suppose f(0) = 0 or r(L) = ∞. In order

to prove Proposition 4.5 in this case, we need the following result:

Lemma 4.7. — Let θ > 0, r ∈ N
∗, and let (lN,m)m>1 be the sequence of

cycle lengths (ordered by increasing smallest elements, and completed by

zeros) of a random permutation in ΣN , following the Ewens measure with

parameter θ. Then, there exists a function Ψr,θ from N
∗ to R

+, tending to
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zero at infinity, and such that for all strictly positive integers (lm)16m6r,

(l′m)16m6r, N , satisfying:

r∑

m=1

lm < N −N2/3,

r∑

m=1

l′m < N −N2/3,

∀m ∈ {1, . . . , r}, ∃q ∈ N
∗, q2

6 lm, l
′
m < (q + 1)2,

one has

P[∀m ∈ {1, . . . , r}, lN,m = lm]

P[∀m ∈ {1, . . . , r}, lN,m = l′m]
∈
(
1 − Ψr,θ(N), 1 + Ψr,θ(N)

)
.

Proof. — For 0 6 m 6 r, let us define:

Lm =

m∑

p=1

lp, L′
m =

m∑

p=1

l′p,

By using the Feller coupling, one obtains the following expression:

P[∀m ∈ {1, . . . , r}, lN,m = lm] =

r∏

m=1


 θ

N − Lm + θ

Lm−1∏

p=Lm−1+1

N − p

N − p+ θ




=

(
Lr∏

p=1

N − p

N − p+ θ

)(
r∏

m=1

θ

N − Lm

)
.

Hence, if Lr > L′
r

P[∀m ∈ {1, . . . , r}, lN,m = lm]

P[∀m ∈ {1, . . . , r}, lN,m = l′m]
=

(
Lr∏

p=L′
r+1

N − p

N − p+ θ

)(
r∏

m=1

N − L′
m

N − Lm

)
.

For 1 6 m 6 r, there exists an integer q > 1 such that q2 6 lm, l
′
m <

(q + 1)2, and q 6
√
N , since lm, l

′
m < N . Hence, |lm − l′m| 6 2q 6 2

√
N ,

and |Lm−L′
m| 6 2r

√
N . Moreover, N−Lm, N−L′

m > N2/3 by assumption.

Therefore, one has the majorization:
∣∣∣∣∣log

(
P[∀m ∈ {1, . . . , r}, lN,m = lm]

P[∀m ∈ {1, . . . , r}, lN,m = l′m]

)∣∣∣∣∣

6 2r
√
N log

(
1 +

θ

N2/3

)
+ r log

(
1 +

2r
√
N

N2/3

)
.

This implies Lemma 4.7 for:

Ψr,θ(N) =

(
1 +

θ

N2/3

)2r
√
N(

1 +
2r

√
N

N2/3

)r
+

1

N
− 1.

�
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A consequence of Lemma 4.7 is the following:

Lemma 4.8. — Let θ > 0 and let L be a probability law on the unit

circle. Let (lN,m)m>1 be the sequence of cycle lengths (ordered by increas-

ing smallest elements, and completed by zeros) of a random permutation in

ΣN , following Ewens measure with parameter θ > 0. Let (γN,m)m>1 be a

sequence of random variables on R/Z such that conditionally on (lN,m)m>1,

(γN,m)m>1 are independent and for all m > 1, γN,m has the same law as
logZ
2iπ , where Z follows the multiplicative convolution L∗lN,m of lN,m copies

of L. Then, for all r > 1, the family (lN,m/N, γN,m)m6r converges in dis-

tribution to (ym, χm)m6r, where (ym)m>1 is a GEM process of parameter

θ, and (χm)m>1 is an independent sequence of i.i.d. random variables, with

law D(L), defined above.

Proof. — Let qN,m be the integer part of the square root of lN,m. For all

continuous functions g from (R/Z)r to R+, one has:

E[g((γN,m)m6r) | (qN,m)m6r]

=

∫

Ur

g(log z1/2iπ, . . . , log zr/2iπ) dN(qN,m)m6r
(z1, . . . , zr),

where N(qN,m)m6r
is defined as the conditional expectation of a random

measure, more precisely:

N(qN,m)m6r
= E

[
r⊗

m=1

L∗lN,m

∣∣∣(qN,m)m6r

]
.

Let us suppose that qN,m > N1/3 for all m 6 r and:

N −
r∑

m=1

(qN,m + 1)2 > N2/3.

By Lemma 4.7, the conditional law of (lN,m)m6r given (qN,m)m6r is a linear

combination of Dirac measures on the r-uples (lm)m6r of integers such that

q2
N,m 6 lm < (qN,m + 1)2, and the quotient between two coefficients of this

combination lies on the interval (1 − Ψr,θ(N), 1 + Ψr,θ(N)). One deduces

that

(
1 − Ψr,θ(N)

) r⊗

m=1

L′
qN,m

6 N(qN,m)m6r
6
(
1 + Ψr,θ(N)

) r⊗

m=1

L′
qN,m

where, for q > 1:

L′
q =

1

2q + 1

q2+2q∑

l=q2

L∗l.
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Hence:

E
[
g((γN,m)m6r) | (qN,m)m6r

]

= C

∫

Ur

g
(
log z1/2iπ, . . . , log zr/2iπ

) r∏

m=1

L′
qN,m

(dzm)

for

1 − Ψr,θ(N) 6 C 6 1 + Ψr,θ(N).

Now, by Lemma 4.3, L′
q converges to L∗ when q goes to infinity, hence,

there exists a function Kg from R+ to R+, tending to zero at infinity, and

such that for all q > q0 > 1, q integer:

∣∣∣∣
∫

Ur

g(log z1/2iπ, . . . , log zr/2iπ)

r∏

m=1

L′
qN,m

(dzm)

−
∫

Ur

g(log z1/2iπ, . . . , log zr/2iπ)

r∏

m=1

L∗(dzm)

∣∣∣∣ 6 Kg(q0).

Therefore, if N is large enough, if qN,m > N1/3 for all m 6 r and if

N −
r∑

m=1

(qNm
+ 1)2 > N2/3,

then:

E[g((γN,m)m6r) | (qN,m)m6r] ∈ [A1, B1],

for

A1 =
(
1 − Ψr,θ(N)

)[
−Kg(N

1/3) +

∫

Ur

g(log z1/2iπ, . . .

. . . , log zr/2iπ)
r∏

m=1

D(L)(dzm)

]

and

B1 =
(
1 + Ψr,θ(N)

)[
Kg(N

1/3) +

∫

Ur

g(log z1/2iπ, . . .

. . . , , log zr/2iπ)
r∏

m=1

D(L)(dzm)

]
.

Now, let f be a continuous function from [0, 1]r to R+. One has:

E
[
f((q2

N,m/N)m6r)g((γN,m)m6r)
]

∈ [A2, B2],

for

A2 = A1E
[
f((q2

N,m/N)m6r)1E
]
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and

B2 = B1E
[
f((q2

N,m/N)m6r)1E
]

+ ‖f‖∞‖g‖∞P[Ec],
where

E := {∀m 6 r, qN,m > N1/3, N −
r∑

m=1

(qN,m + 1)2 > N2/3}

and Ec is the complement of the event E . If we suppose that (lN,m)N,m>1

are the cycle lengths associated with a virtual permutation following the

Ewens(θ) measure, then for all m 6 r, q2
N,m/N tends a.s. to ym, for a

GEM(θ) processes (ym)m>1, and the event Ec holds for finitely many values

of N . Therefore:

E[f((q2
N,m/N)m6r)1E ] −→

N→∞
E[f((ym)m6r)]

and

P[Ec] −→
N→∞

0.

One deduces that

E
[
f((q2

N,m/N)m6r)g((γN,m)m6r)
]

−→
N→∞

E
[
f((ym)m6r)g((χm)m6r)

]

(recall that (ym)m6r and (χm)m6r are supposed to be independent). Now,
∣∣∣∣∣
q2
N,m

N
− lN,m

N

∣∣∣∣∣ 6
2√
N
,

hence, by the uniform continuity of f and the boundedness of g:

E[f(lN,m/N)m6r)g((γN,m)m6r)] −→
N→∞

E[f((ym)m6r)g((χm)m6r)],

which proves Lemma 4.8. �

Now, let f be a continuous, nonnegative function with compact support,

and Φ a continuous function from R+ to [0, 1], such that Φ(x) = 0 for x 6 1

and Φ(x) = 1 for x > 2. Let us suppose f(0) = 0 or r(L) = ∞. We first

remark that for all integers r, s > 1:

r∑

m=1

Φ(syN,m)
∑

k∈Z

f [(k+γN,m)/yN,m] −→
N→∞

r∑

m=1

Φ(sym)
∑

k∈Z

f [(k+χm)/ym]

in distribution. This is a consequence of Lemma 4.8 and the fact that

Φ(sy)
∑

k∈Z

f [(k + χ)/y]
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is continuous with respect to (y, χ) ∈ [0, 1] × (R/Z). Now, if f is supported

by [−A,A] (for A > 0), one has the inequalities:
∑

k∈Z

f [(k + γN,m)/yN,m] 6 (2A+ 1)‖f‖∞

and ∑

k∈Z

f [(k + χm)/ym] 6 (2A+ 1)‖f‖∞.

Therefore, for λ ∈ R+:
∣∣∣E
[
e
iλ
∑r

m=1
1yN,m>0

∑
k∈Z

f [(k+γN,m)/yN,m]
]

− E

[
e
iλ
∑r

m=1

∑
k∈Z

f [(k+χm)/ym]
]∣∣∣

6

∣∣∣E
[
e
iλ
∑r

m=1
Φ(syN,m)

∑
k∈Z

f [(k+γN,m)/yN,m]
]

− E

[
e
iλ
∑r

m=1
Φ(sym)

∑
k∈Z

f [(k+χm)/ym]
]∣∣∣

+ (2A+ 1)λ‖f‖∞

r∑

m=1

(
P[0 < yN,m 6 2/s] + P[ym 6 2/s]

)
.

The first term in the right-hand side of this inequality tends to zero when

N goes to infinity. Hence:

lim sup
N→∞

∣∣∣E
[
e
iλ
∑r

m=1
1yN,m>0

∑
k∈Z

f [(k+γN,m)/yN,m]
]

− E

[
e
iλ
∑r

m=1

∑
k∈Z

f [(k+χm)/ym]
]∣∣∣

6 (2A+ 1)λ‖f‖∞

r∑

m=1

(
lim sup
N→∞

P[yN,m 6 2/s] + P[ym 6 2/s]
)
.

Now if we assume that (yN,m)N,m>1 is the family of renormalized cycle

lengths of a virtual permutation following the Ewens(θ) measure, we obtain,

by Fatou’s lemma:

lim inf
N→∞

P[yN,m > 2/s] > E

[
lim inf
N→∞

1yN,m>2/s

]
.

Since yN,m tends to ym for N going to infinity:

lim sup
N→∞

P[yN,m 6 2/s] 6 P[ym 6 2/s].

By taking s → ∞, we deduce that:

(4.3)
∣∣∣E
[
e
iλ
∑r

m=1
1yN,m>0

∑
k∈Z

f [(k+γN,m)/yN,m]
]

− E

[
e
iλ
∑r

m=1

∑
k∈Z

f [(k+χm)/ym]
]∣∣∣
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tends to zero when N goes to infinity. Now, for all χ ∈ [0, 1) and y ∈ (0, 1]:
∑

k∈Z

f [(k + χ)/y] 6 (2A+ 1)‖f‖∞
(
1χ6Ay + 11−χ6Ay

)

and if f(0) = 0, χ = 0:
∑

k∈Z

f [(k + χ)/y] 6 (2A+ 1)‖f‖∞1Ay>1.

Therefore, if γN,m is identified with the unique element of [0, 1) in its con-

gruence class modulo 1, then:

E

[ ∞∑

m=r+1

1yN,m>0

∑

k∈Z

f [(k + γN,m)/yN,m]

]
(4.4)

6 (2A+ 1)‖f‖∞

∞∑

m=r+1

[
P(yN,m > 0, 0 < γN,m 6 AyN,m)

+ P(yN,m > 0, 1 − γN,m 6 AyN,m) + P(γN,m = 0, AyN,m > 1)
]

if f(0) = 0. In fact, this inequality remains true for f(0) > 0. Indeed, in

this case, one has, by assumption, r(L) = ∞, and then by the conditions

given in Proposition 4.5, L has no atom. Since

E

[ ∞∑

m=r+1

1yN,m>0

∑

k∈Z

f [(k + γN,m)/yN,m]

]

6 (2A+ 1)‖f‖∞

∞∑

m=r+1

[
P(yN,m > 0, γN,m 6 AyN,m)

+ P(yN,m > 0, 1 − γN,m 6 AyN,m)
]
,

we also have (4.4). Now, for all ρ ∈ (0, 1):

P
[
yN,m > 0, 0 < γN,m 6 AyN,m

]

= P
[
yN,m > 0, 0 < γN,m 6 ρm

]
+ P

[
yN,m > ρm/A

]
.

Since conditionally on {yN,m > 0}, the law of γN,m is a convex combination

of iterated convolutions of L, it satisfies the same assumptions as L, with

the same underlying constants. One deduces that there exist v > 1, m0 > 1,

C > 0, independent of N , such that for m > m0:

(4.5) P
[
yN,m > 0, 0 < γN,m 6 ρm

]
6 Cm−v.

Now, if the normalized lengths of cycles (yN,m)N,m>1 are associated with a

virtual permutation following the Ewens(θ) measure, and if for all m > 1,

sm is the supremum of yN,m for all N > 1, then the expectation of sm
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decreases exponentially with m (this result is contained in our proof of (3.4)

above). One deduces that there exist ρ ∈ (0, 1) and m1 > 1, independent

of N and such that for m > m0:

(4.6) P
[
yN,m > ρm/A

]
6 ρm.

From (4.5) and (4.6),

sup
N>1

∞∑

m=r+1

P
[
yN,m > 0, 0 < γN,m 6 AyN,m

]
−→
r→∞

0.

In a similar way, one can prove:

sup
N>1

∞∑

m=r+1

P
[
yN,m > 0, 1 − γN,m 6 AyN,m

]
−→
r→∞

0

and

sup
N>1

∞∑

m=r+1

P
[
γN,m = 0, AyN,m > 1

]
−→
r→∞

0.

Therefore, by (4.4):

(4.7) sup
N>1

E

[ ∞∑

m=r+1

1yN,m>0

∑

k∈Z

f [(k + γN,m)/yN,m]

]
−→
r→∞

0.

By replacing γN,m by χm and yN,m by ym, one obtains:

(4.8) E

[ ∞∑

m=r+1

1ym>0

∑

k∈Z

f [(k + χm)/ym]

]
−→
r→∞

0,

since the law of χm satisfies the same assumptions as L and the expectation

of ym decreases exponentially with m. Since the quantity given by (4.3)

tends to zero when N goes to infinity, one easily deduces from (4.7) and

(4.8) that it is also the case for:
∣∣∣∣E
[
e
iλ
∑

∞

m=1
1yN,m>0

∑
k∈Z

f [(k+γN,m)/yN,m]
]
−E

[
e
iλ
∑

∞

m=1

∑
k∈Z

f [(k+χm)/ym]
]∣∣∣∣,

which proves Proposition 4.5. �

5. The uniform case

5.1. Eigenvalues distributions and correlation measures

In this section, we focus on the uniform case, i.e. the case where for

N > 1, the random matrix MN follows the law P(N, θ,L), where θ > 0
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and L is the uniform distribution on the unit circle. Let (yN,m)N,m>1 be

the family of renormalized cycle lengths corresponding to a virtual permu-

tation following the Ewens(θ) measure, ym the limit of yN,m for N going

to infinity, and (χm)m>1 a sequence of i.i.d. uniform random variables on

[0, 1), independent of (yN,m)N,m>1. The random measure τN (MN ) has the

same law as

τ̄N :=

∞∑

m=1

1yN,m>0

∑

k∈Z

δ(χm+k)/yN,m

and τ∞(θ,L) is equal to

τ̄∞ :=

∞∑

m=1

∑

k∈Z

δ(χm+k)/ym

in distribution. This description of the law of τN (MN ) and τ∞(θ,L) implies

the following remarkable property:

Proposition 5.1. — Under the assumptions given above, the distri-

butions of the random measures τN (MN ) and τ∞(θ,L) are invariant by

translation.

Proof. — It is enough to prove it for τ̄N and τ̄∞. The image of τ̄N by a

translation of A ∈ R is equal to

∞∑

m=1

1yN,m>0

∑

k∈Z

δ(χ′
m+k)/yN,m

,

where χ′
m is the fractional part of χm + AyN,m. Now one easily sees that

conditionally on (yN,m)m>1, the sequence (χ′
m)m>1 is an i.i.d. sequence

of uniform variables on [0, 1), as (χm)m>1. This implies the invariance by

translation of τ̄N . For τ̄∞, the proof is exactly similar. �

The main interest of the introduction of the measures τ̄N and τ̄∞ is the

following: we cannot expect an a.s. convergence of the random measure

τN (MN ) when N goes to infinity, even if (MN )N>1 follows the distribution

P(∞, θ,L) because, with the notation of the previous section, the “shifts”

γN,m (which are equal to χm in distribution), do not converge a.s. when

N goes to infinity; however, since we take the same variables χm in the

definitions of τ̄N and τ̄∞, we can expect such a convergence for these new

measures. More precisely, we have the following:

Proposition 5.2. — Almost surely, with the notation above, the ran-

dom measure τ̄N converges vaguely to τ̄∞, which is locally finite.
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Proof. — The fact that τ̄∞ is locally finite is a consequence of Proposi-

tion 4.5 (one has r(L) = ∞). Now, let f be a continuous function from R

to R, with support included in [−A,A] (for some A > 0). One has:
∫

R

f dτ̄N =
∞∑

m=1

∑

k∈Z

1yN,m>0f((χm + k)/yN,m)

and ∫

R

f dτ̄∞ =
∞∑

m=1

∑

k∈Z

f((χm + k)/ym).

Let sm be the supremum of yN,m for N > 1. For |k| > A + 1 or Asm <

χm < 1 −Asm, one has:

1yN,m>0f((χm + k)/yN,m) = f((χm + k)/ym) = 0,

and since

E

[ ∑

m>1

sm

]
< ∞,

there exists a.s. a (random) finite subset S of N∗ × Z such that:
∫

R

f dτ̄N =
∑

(m,k)∈S
1yN,m>0f((χm + k)/yN,m)

and ∫

R

f dτ̄∞ =
∑

(m,k)∈S
f((χm + k)/ym).

Since a.s., for all m > 1, k ∈ Z:

1yN,m>0f
(
(χm + k)/yN,m

)
−→
N→∞

f((χm + k)/ym),

one deduces Proposition 5.2. �

One can now study the correlation measures associated with the point

processes studied above. More precisely, if

τN (MN ) =
∑

j>1

δxj
,

where (xj)j>1 is a sequence of real numbers, one can define, for all q > 1

the random measure on R
q:

τ
[q]
N (MN ) =

∑

j1 6=j2 6=···6=jq

δ(xj1 ,...,xjq ).

Similarly, one can define τ
[q]
∞ (θ,L), τ̄

[q]
N and τ̄

[q]
∞ . Of course, one has the

following equalities in distribution:

τ
[q]
N (MN ) = τ̄

[q]
N
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and

τ [q]
∞ (θ,L) = τ̄ [q]

∞ .

Proposition 5.2 can be generalized as follows:

Proposition 5.3. — For all q > 1 the random measure τ̄
[q]
N converges

vaguely towards τ̄
[q]
∞ , which is locally finite.

Proof. — The fact that τ̄
[q]
∞ is locally finite is a consequence of the local

finiteness of τ̄∞. Now, let f be a continuous function from R
q to R, with

support included in [−A,A]q (for some A > 0). One has:

∫

R

f dτ̄
[q]
N =

∑

(m1,k1) 6=···6=(mq,kq)∈N∗×Z

1yN,m1 ,...,yN,mq>0

f
(
(χm1 + k1)/yN,m1 , . . . , (χmq + kq)/yN,mq

)

and∫

R

f dτ̄ [q]
∞ =

∑

(m1,k1) 6=···6=(mq,kq)∈N∗×Z

f
(
(χm1

+k1)/ym1
, . . . , (χmq

+kq)/ymq

)

Let sm be the supremum of yN,m for N > 1. If for some j 6 q, |kj | > A+ 1

or Asmj < χmj < 1 −Asmj , one has:

1yN,m1 ,...,yN,mq>0f
(
(χm1 + k1)/yN,m1 , . . . , (χmq + kq)/yN,mq

)
= 0

and

f
(
(χm1

+ k1)/ym1
, . . . , (χmq

+ kq)/ymq

)
= 0.

Since

E

[ ∑

m>1

sm

]
< ∞,

there exists a.s. a (random) finite subset S of N∗ × Z such that:

∫

R

f dτ̄
[q]
N =

∑

(m1,k1) 6=···6=(mq,kq)∈S
1yN,m1 ,...,yN,mq>0

f
(
(χm1 + k1)/yN,m1 , . . . , (χmq + kq)/yN,mq

)

and∫

R

f dτ̄ [q]
∞ =

∑

(m1,k1) 6=···6=(mq,kq)∈S
f
(
(χm1

+ k1)/ym1
, . . . , (χmq

+ kq)/ymq

)

Since a.s., for all m1, . . . ,mq > 1, k1, . . . , kq ∈ Z:

1yN,m1 ,...,yN,mq>0f
(
(χm1 + k1)/yN,m1 , . . . , (χmq

+ kq)/yN,mq

)
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tends to

f
(
(χm1

+ k1)/ym1
, . . . , (χmq

+ kq)/ymq

)

when N goes to infinity, one deduces Proposition 5.3. �

Now, for q > 1, we define the “q-correlation measure” τ̃
[q]
N associated

with the point process τN (MN ) (or equivalently, τ̄N ), as the average of the

measure τ
[q]
N (MN ) (or τ̄

[q]
N ). Similarly, we define the measure τ̃

[q]
∞ as the

average of τ
[q]
∞ (θ,L) of τ̄

[q]
∞ . Both τ̃

[q]
N and τ̃

[q]
∞ are positive measures on R

q.

From the convergence of τ̄
[q]
N toward τ̄

[q]
∞ , one deduces the following result:

Proposition 5.4. — For all q > 1, the measures τ̃
[q]
N (N > 1) and τ̃

[q]
∞

are locally finite, and τ̃
[q]
N converges vaguely towards τ̃

[q]
∞ when N goes to

infinity.

Proof. — Let f be a continuous function from R to R, with compact

support. One has,
∣∣∣∣
∫

R

f dτ̄
[q]
N

∣∣∣∣

6 ‖f‖∞
∑

(m1,k1) 6=···6=(mq,kq)∈N∗×Z

1
(|kj |6A+1)j6q,

(
χmj

/∈(Asmj
,1−Asmj

)
)

j6q

.

which is independent of N and has a finite expectation. Indeed, this quan-

tity is bounded by a constant times
[ ∞∑

m=1

(
1χm /∈(Asm,1−Asm)

)
]q
,

and

E

[( ∞∑

m=1

(
1χm /∈(Asm,1−Asm)

)
)q]

6
∑

m1,...,mq>1

P
[(
χmj /∈ (Asj , 1 −Asj)

)
j>1

]

6
∑

m>1

∑

max{mj ,16j6q}=m

P
[
χm /∈ (Asm, 1 −Asm)

]

6 2A
∑

m>1

mq
E[sm] < ∞,

since the expectation of sm decreases exponentially with m (see the proof

of (3.4)). Almost surely, by proposition 5.2,
∫

R

f dτ̄
[q]
N −→

N→∞

∫

R

f dτ̄ [q]
∞ ,
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and then one obtains, by taking expectation and applying dominated con-

vergence: ∫

R

f dτ̃
[q]
N −→

N→∞

∫

R

f dτ̃ [q]
∞ ,

where all these integrals are finite. This proves Proposition 5.4. �

For q = 1, the q-correlation measure of a subset of R is simply the average

number of points lying on this set. It can be very simply expressed:

Proposition 5.5. — The 1-correlation measures τ̃
[1]
N (N > 1) and τ̃

[1]
∞

are equal to Lebesgue measure on R.

Proof. — Let f be a nonnegative, continuous function from R to R. One

has:

E

[ ∫

R

f dτ̄N

∣∣∣ (yN,m)m>1

]
=
∑

m>1

1yN,m>0

∑

k∈Z

∫ 1

0

f((k + x)/yN,m) dx

=
∑

m>1

yN,m

∫

R

f(z) dz

=

∫

R

f(z) dz,

which proves Proposition 5.5 for τ̃
[1]
N . The proof for τ̃

[1]
∞ is similar. �

We remark that for q > 2, the correlation measure τ̃
[q]
N is not absolutely

continuous with respect to the Lebesgue measure. Indeed, for all integers

l, 1 6 l 6 N , the probability that the point process associated with τ̄N
has two points separated by an interval of exactly N/l is not equal to zero

(this event holds if the corresponding permutation has a cycle of length l).

Similarly, for q > 3, τ̃
[q]
∞ is not absolutely continuous with respect to the

Lebesgue measure, since the point process associated with τ̄∞ has almost

surely three distinct points x, y, z ∈ R such that y − x = z − y.

However, despite the fact that τ̃
[2]
N is not absolutely continuous with

respect to the Lebesgue measure for all N > 1, its limit τ̃
[2]
∞ is absolutely

continuous with respect to the Lebesgue measure. More precisely one has

the following:

Proposition 5.6. — The measure τ̃
[2]
∞ on R

2 (which depends on the

parameter θ) has a density ρ with respect to the Lebesgue measure, which

is called “2-correlation function”, and which is given by:

ρ(x, y) = φθ(x− y),
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where the function φθ from R to R is defined by:

φθ(x) =
θ

θ + 1
+

θ

x2

∑

a∈N∗,a6|x|
a

(
1 − a

|x|

)θ−1

.

Proof. — One can write:

τ̄ [2]
∞ =

∑

m6=m′>1

∑

k,k′∈Z

δ((χm+k)/ym,(χm′ +k′)/ym′ )

+
∑

m>1

∑

k 6=k′∈Z

δ((χm+k)/ym,(χm+k′)/ym),

which implies that for all nonnegative and continuous functions f from R
2

to R,

E

[∫

R2

f dτ̄ [2]
∞

∣∣∣(ym)m>1

]
(5.1)

=
∑

m6=m′>1

∑

k,k′∈Z

∫ 1

0

∫ 1

0

f
(
(k + x)/ym, (k

′ + x′)/ym′

)
dxdx′

+
∑

m>1

∑

k 6=k′∈Z

∫ 1

0

f
(
(k + x)/ym, (k

′ + x)/ym
)
dx

=

( ∑

m6=m′>1

ymym′

)∫

R2

f(x, x′)dxdx′

+
∑

m>1

∑

a∈Z\{0}
ym

∫

R

f(x, x+ a/ym)dx.

The expectation of the first term of (5.1) is equal to
(

1 − E

[∑

m>1

y2
m

])∫

R2

f(x, x′)dxdx′ =
θ

θ + 1

∫

R2

f(x, x′) dxdx′.

In order to compute the expectation of the second term, let us fix m and

a, and let us denote by dm the density of the probability distribution of ym
(recall that dm(x) = 0 for all x /∈ [0, 1]). One has:

E[ymf(x, x+ a/ym)] =

∫ 1

0

tdm(t)f(x, x+ a/t) dt

=

∫

R

a2

|u|3 dm(a/u)f(x, x+ u) du

and then:

E
[
ym

∫

R

f(x, x+ a/ym)dx
]

=

∫

R2

a2

|x′ − x|3 dm(a/(x′ − x))f(x, x′) dxdx′.
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Finally, the expectation of the second term of (5.1) is:

∑

a∈Z\{0}

∑

m>1

∫

R2

a2

|x′ − x|3 dm(a/(x′ − x))f(x, x′) dxdx′

which proves Proposition 5.6 with

φθ(x) =
θ

θ + 1
+

1

|x|3
∑

a>1

a2
∑

m>1

dm(a/|x|).

Now, for all continuous functions g from [0, 1] to R+, one has:

E

[ ∑

m>1

ymg(ym)

]
= E[g(yM )],

where conditionally on (ym)m>1, the random index M is chosen in a size-

biased way, i.e. M = m with probability ym. By classical properties of

GEM and Poisson-Dirichlet processes, yM is equal to y1 in distribution,

and then its density at x ∈ [0, 1] is θ(1 − x)θ−1. Hence, one deduces that

∫ 1

0

xg(x)
∑

m>1

dm(x) = θ

∫ 1

0

(1 − x)θ−1g(x)dx,

and then, for almost every x ∈ [0, 1],

∑

m>1

dm(x) =
θ(1 − x)θ−1

x
,

which implies Proposition 5.6. �

5.2. The smallest eigenangle

Another interesting problem about the point process associated with

τN (MN ) is the estimation of its smallest positive point. This point corre-

sponds (after scaling the eigenangle by N) to the first eigenvalue of MN

obtained by starting from 1 and by turning counterclockwise on the unit

circle. Its distribution has a limit by the following result:

Proposition 5.7. — With the notation above, the smallest positive

point corresponding to the random measure τ̄N tends a.s. to the smallest

positive point corresponding to τ̄∞.
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Proof. — One has, for all m > 1,

χm/yN,m −→
N→∞

χm/ym,

if by convention, χm/yN,m = +∞ for yN,m = 0. One deduces that for all

m0 > 1,

lim sup
N→∞

inf
{
χm/yN,m,m > 1

}
6 lim sup

N→∞
inf
{
χm/yN,m, 1 6 m 6 m0

}

= inf
{
χm/ym, 1 6 m 6 m0

}

and then, by taking m0 → ∞:

lim sup
N→∞

inf
{
χm/yN,m,m > 1

}
6 inf

{
χm/ym,m > 1

}
.

On the other hand, for all A > 0, there exists a.s. m1 > 1 such that

χm/sm > A for all m > m1, which implies that χm/yN,m > A and

χm/ym > A. Consequently

lim inf
N→∞

inf
{
χm/yN,m,m > 1

}
> A ∧ lim inf

N→∞
inf{χm/yN,m, 1 6 m 6 m1}

> A ∧ inf
{
χm/ym, 1 6 m 6 m1

}

> A ∧ inf
{
χm/ym,m > 1

}
.

By taking A → ∞, one obtains:

lim inf
N→∞

inf{χm/yN,m,m > 1} > inf{χm/ym,m > 1},

and finally,

inf{χm/yN,m,m > 1} −→
N→∞

inf{χm/ym,m > 1},

which proves Proposition 5.7. �

One immediately deduces the following:

Corollary 5.8. — The smallest positive point of the random measure

τN (MN ) converges in distribution to the smallest positive point of τ∞(θ,L).

At this stage, one naturally seeks for the explicit computation of the

distribution of the smallest positive point of τ∞(θ,L). We can remark the

similarity between this process and the limit point process (a determinantal

process with sine kernel) obtained from the scaled eigenangles (with the

same scaling by N) of a random unitary matrix following the Haar measure.

For the Haar measure, the law of the smallest positive point satisfies a

certain Painlevé differential equation (see for instance [1] for more details

and references). In our case, one can also obtain this probability distribution

as a solution of some integral equation. More precisely, one has the following

result:
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Proposition 5.9. — For all x > 0, let G(x) be the probability that the

point process τ∞(θ,L) has no point in the interval (0, x), and for all x ∈ R,

let us set:

H(x) := 1x>0x
θ−1G(x).

Then H is integrable and satisfies the following equation:

(5.2) xH(x) = θ

∫ 1

0

(1 − y)H(x− y)dy.

Moreover, if the Fourier transform Ĥ of H is given by

Ĥ(λ) =

∫ ∞

−∞
e−iλxH(x)dx,

then it satisfies the equation:

(5.3) Ĥ(λ) = Ĥ(0) exp

(
−iθ

∫ λ

0

1 − e−iµ − iµ

µ2
dµ

)
,

for all λ ∈ R.

Proof. — The probability G(x) can be expressed as follows:

G(x) = P

[
inf
m>1

{χm/ym} > x

]
,

where we recall that (ym)m>1 is a GEM process of parameter θ. Condition-

ally on y1, the sequence (y′
m := ym+1/(1 − y1))m>1 is also a GEM process

of parameter θ. Therefore,

P

[
inf
m>2

{χm/ym} > x | χ1, y1

]
= P

[
inf
m>1

{χm+1/y
′
m} > x(1 − y1) | χ1, y1

]

= G(x(1 − y1)).

By taking the expectation, one obtains:

G(x) = E
[
1χ1/y1>xG(x(1 − y1))

]

= E [(1 − xy1)+G(x(1 − y1))]

=

∫ 1∧1/x

0

θ(1 − y)θ−1(1 − yx)G(x(1 − y))dy

since the law of y1 has density θ(1−y)θ−1 with respect to Lebesgue measure.

Hence:

G(x) =
θ

xθ

∫ 1

0

(x− y)θ−1(1 − y)G(x− y)dy

where by convention, we set G(y) = 0 for all strictly negative y. This

implies the equation (5.2) in Proposition 5.9. Note that for all x > 0,

H(x) 6 xθ−1.
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Moreover, for x > 2, 0 6 y 6 1:

H(x− y) = (x− y)θ−1G(x− y) 6 (x− y)θ−1G(x− 1)

6 (x− 1)θ−12(θ−1)+G(x− 1)

6 2(θ−1)+H(x− 1),

and by (5.2),

H(x) 6
2(θ−1)+θ

2x
H(x− 1).

Hence, at infinity, H decreases faster than exponentially, and H, x 7→
xH(x) are in L1. One deduces that Ĥ is well-defined and differentiable.

By (5.2) one has for all λ ∈ R:

Ĥ ′(λ) = −iθĤ(λ)K̂(λ),

where K is the function defined by K(y) = (1 − y)106y61. Therefore:

Ĥ(λ) = Ĥ(0) exp

(
−iθ

∫ λ

0

K̂(µ)dµ

)
,

which implies 5.3. �
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