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ABSTRACT

Context. The extreme brightness of gamma-ray burst (GRB) afterglows and their simple spectral shape make them ideal beacons to
study the interstellar medium of their host galaxies through absorption line spectroscopy at almost any redshift.

Aims. We describe the distribution of rest-frame equivalent widths (EWs) of the most prominent absorption features in GRB afterglow
spectra, providing the means to compare individual spectra to the sample and identify its peculiarities.

Methods. Using 69 low-resolution GRB afterglow spectra, we conduct a study of the rest-frame EWs distribution of features with an
average rest-frame EW larger than 0.5 A. To compare an individual GRB with the sample, we develop EW diagrams as a graphical
tool, and we give a catalogue with diagrams for the 69 spectra. We introduce a line strength parameter (LSP) that allows us to quantify
the strength of the absorption features in a GRB spectrum as compared to the sample by a single number. Using the distributions of
EWs of single-species features, we derive the distribution of their column densities by a curve of growth (CoG) fit.

Results. We find correlations between the LSP and the extinction of the GRB, the UV brightness of the host galaxies and the neutral
hydrogen column density. However, we see no significant evolution of the LSP with the redshift. There is a weak correlation between
the ionisation of the absorbers and the energy of the GRB, indicating that, either the GRB event is responsible for part of the ionisation,
or that galaxies with high-ionisation media produce more energetic GRBs. Spectral features in GRB spectra are, on average, 2.5 times
stronger than those seen in QSO intervening damped Lyman-« (DLA) systems and slightly more ionised. In particular we find a larger
excess in the EW of C1vA11549 relative to QSO DLAs, which could be related to an excess of Wolf-Rayet stars in the environments
of GRBs. From the CoG fitting we obtain an average number of components in the absorption features of GRBs of 6.00*!%2. The

125°
most extreme ionisation ratios in our sample are found for GRBs with low neutral hydrogen column density, which could be related

to ionisation by the GRB emission.
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1. Introduction

Long gamma-ray burst (GRB) afterglows shine, during the first
hours, as the most luminous objects that can be detected in the
Universe (Kann et al. 2007; Racusin et al. 2008). They have been
observed at almost any redshift, from nearby (GRB 980425 was
the nearest one, at z = 0.008, Galama et al. 1998) to the very
distant Universe (GRB 090429B is the current record-holder
with a photometric redshift of z = 9.4, Cucchiara et al. 2011,
GRB 090423 being the furthest spectroscopically confirmed at
z = 8.2, Tanvir et al. 2009; Salvaterra et al. 2009). Their op-
tical spectra are normally well reproduced by a clean, simple
power-law, making them ideal beacons to probe the material in
the line of sight of the GRBs. Using optical spectroscopy it is
possible to study the dust extinction, that introduces a curvature

* Tables 1, 2, and Appendices are available in electronic form at
http://www.aanda.org
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in the spectra (see e.g. Kann et al. 2010; Schady et al. 2010; Zafar
et al. 2011), we can learn about intervening systems, located be-
tween the host galaxy of the GRB and the observer (Prochter
et al. 2006; Tejos et al. 2007; Vergani et al. 2009) or about the
material located within the host galaxy itself (Vreeswijk et al.
2007; D’Elia et al. 2009).

Most of the knowledge that we currently have about the in-
terstellar medium (ISM) of GRBs comes from the study of indi-
vidual events. However, as the samples of GRB afterglows be-
come larger, much can be gained from statistical studies. This
however, does not come without complications: due to the very
wide range of redshifts, very different rest-frame wavelength
ranges are probed and tools need to be developed for their com-
mon study. Furthermore, the large samples of GRB afterglows
are dominated by low resolution spectra. In these spectra, the
line profiles cannot be fitted to derive column densities and the
different components that form each feature cannot be resolved.

All, page 1 of 35


http://dx.doi.org/10.1051/0004-6361/201219894
http://www.aanda.org
http://www.aanda.org
http://www.edpsciences.org

A&A 548, A1l (2012)

This means that we can only measure equivalent widths (EW)
of the lines, which limits the information that can be extracted
from a single spectrum. However, we can attempt to derive some
of the information contained in these spectra through the use of
statistical analysis of large samples.

In this paper, we use 69 low resolution optical spectra to
study the absorption features created by material within the GRB
host galaxies. In particular we look at the distribution of the rest-
frame EWs of the most prominent lines found in GRB afterglow
spectra. Based on this, we devise observational tools to easily
evaluate the different types of environments that host GRBs and
understand their properties and diversity.

The paper is structured as follows: Sect. 2 presents the sam-
ple, the methods used and the biases and limitations of our study,
Sect. 3 presents the results of the analysis, Sect. 4 discusses the
results and finally, Sect. 5 gives our conclusions.

2. Sample and method

This work is based on the sample presented by Fynbo et al.
(2009) selecting those spectra with known redshifts and a res-
olution 300 < R < 2000, to have data of similar characteristics.
The selection criteria of this sample, first proposed by Jakobsson
et al. (2006b) and later refined by Fynbo et al. (2009) were cho-
sen to achieve a high degree of completeness and to be as in-
dependent as possible of the optical properties of the afterglow:
(1) burst duration longer than 2 s; (2) precise localisation, nor-
mally provided in X-rays by Swift/XRT, and distributed within
12 h of the burst, to allow a rapid follow-up; (3) small Galactic
extinction (Ay < 0.5 mag); (4) favourable declination for opti-
cal follow-up observations (-70° < § < +70°), and a distance
between the sun and the field of more than 55°, to allow at least
1 h of observations to secure spectroscopy.

We add 8 further low-resolution spectra to those presented by
Fynbo et al. (2009), obtained after the publication but with sim-
ilar criteria, as detailed in Appendix B. The total sample com-
prises 69 spectra. This includes 7 spectra that were part of the
sample of Fynbo et al. (2009) but that did not meet all the criteria
outlined in the previous paragraph.

This study analyses the distribution of rest-frame EWs,
which is only possible for the most prominent absorption fea-
tures in GRB afterglow spectra (the number of detections is still
too small for faint features). Our sample is limited to those ab-
sorption features that have a rest-frame EW of at least 0.5 A in
the composite spectrum presented by Christensen et al. (2011),
which add to a total of 22 features. Some lines produced by
transitions from excited fine structure and metastable states are
known to vary during the evolution of the GRB and would in-
troduce a further uncertainty in the results, so we exclude them
from our analysis. Using the same argument, we exclude from
our dataset the line at 2186.96 A that Christensen et al. (2011)
identify as due to MnT, as we believe that it is actually not due to
this species but most probably to a transition from a fine struc-
ture line or a metastable state. This is supported by the fact that
it is only seen in spectra with many other fine structure features
and that it is detected only in early spectra. Furthermore, other
Mn1 lines that should have been simultaneously detected are not
present in the composite spectrum.

We use the EW measurements provided by Fynbo et al.
(2009), together with the 8 other unpublished spectra, and com-
plement them with detection limits that we calculate for each
feature in the individual spectra. To obtain the detection lim-
its we use the individual spectra with their corresponding error
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Fig. 1. EW distribution of the Sill feature at 1527 A. The thick black
line histogram indicates only detections, whereas the dotted histogram
includes also the limits. The red line is the best fit of the complete his-
togram with a lognormal distribution and the dashed blue line is a phys-
ical fit as described in Sect. 3.4. In green we show a histogram of EWs
in a sample of DLA systems (see Sect. 3.3) and its lognormal fit. Similar
histograms for all the lines in the sample can be found in Fig. B.1.

spectra and measure the uncertainty at the location of the fea-
tures over a wavelength span equivalent to the instrumental res-
olution, which is determined by the width of the slit (with this we
assume that the lines are unresolved with our resolution, which
is generally the case). The limits presented in this work are 3-0.
We excluded from the analysis the regions of the spectra that
were affected by strong telluric features. Tables 1 and 2 display
the rest-frame EWs and limits for the lines in each spectrum.

2.1. EW histogram fitting

Using the data described above we build histograms of EWs in
a logarithmic scale (see Fig. 1 for an example). To consider the
EW uncertainties, we do not give all the weight of the measure-
ment to a single bin, but instead we use a Gaussian distribution
to distribute the weight over the different bins according to the
uncertainty of the measurement. For the detection limits, we dis-
tribute the weight evenly over all the possible values below the
3-¢ limit in linear space.

In contrast with the work published by Christensen et al.
(2011), where the EWs are weighted with the signal to noise ra-
tio of the individual spectra to get a typical GRB spectrum, our
aim is to study the actual distribution, independently of the sig-
nal to noise ratio of the spectra. To give a statistical value to the
distributions that we obtain, as a first order approximation, we
fit the histograms (detections plus limits) to a log-normal dis-
tribution. This gives us a typical EW value for the line and a
standard deviation in the logarithmic space. The results of these
fits are displayed in Table 3. The table includes also the number
of detections and limits for each of the features in our sample.
Figure 2 shows these results graphically, including information
on the ionisation potential of each transition (see Table 4).

2.2. On the fitting function

In our study we assume that the column density of each individ-
ual species is described by a log-normal distribution. However,
this does not directly imply that the distribution of EWs will also
have a similar distribution. The column densities will be con-
volved with the curve of growth (CoG), distorting the original
distribution. In this section we simulate the effect of a log-normal
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Fig. 2. Average strength of the different lines together with their standard deviation, as displayed in Table 3. The area of the dots are proportional
to the ionisation potential of each species. We mark in orange the low ionisation lines (<10 eV), in blue the high ionisation lines (>30 eV) and in
black the intermediate lines and the blend of O 1/Si1141302, 1304. In green we plot the average EW's for quasar intervening DLAs for a subsample

of lines (see Sect. 3.3).

Table 3. Fits to the distribution of lines, including the number of detec-
tions and detection limits for each species.

Det. Lim. 10{eeEW) (&) & log (EW/A)

Feature
Sim/SmAA1260, 1260 15 20 1.08 0.34
OrSinmia1302, 1304¢ 22 15 1.95 0.29
Cna1335¢ 23 16 1.64 0.30
Sitva1394 19 19 0.88 0.37
Si1vA1403 19 19 0.74 0.39
SinA1527 27 16 1.05 0.43
C1vaa1548, 1551 35 7 2.37 0.30
Fe 1111608 19 24 0.71 0.61
Al1n11671 26 13 1.27 0.41
AlTIIA1855 15 27 0.70 0.60
Al1I11863 14 29 0.58 0.53
Zn11/Crni12026, 2026 16 27 0.75 0.37
Zn1/CruiA2063, 2062 11 26 0.50 0.49
FemA2344¢ 23 14 1.59 0.33
Feni12374 17 20 1.08 0.45
FemA2383¢ 23 15 2.00 0.25
Fe 1112587 20 16 1.45 0.39
FemA2600¢ 18 16 1.78 0.42
Mg 11142796, 2803 27 4 3.76 0.30
Mg142852 12 18 0.84 0.49
Ca113935 7 8 1.29 0.31
Camna3970 7 8 0.93 0.34

Notes. We show 10¢°2 £%) instead of (log EW) as it allows a more
intuitive interpretation. ” In some cases this line is blended with a fine
structure transition of the same species. This can be significant in early
spectra, as the fine structure line is normally excited by the prompt GRB

emission.

distribution convolved with typical CoG using Monte Carlo
simulations.

Figure 3 shows how a log-normal histogram of column
densities for SimA1527 with log(N/cm™2) = 14.5 + 1.0 ran-
domly generated (5000 tests) is transformed into a distribu-
tion of EWs. To do this, we also consider a random distribu-
tion of particle velocities following a log-normal distribution
with log (b/km sH=1.1+03 (equivalent to 12.6 kms™"). We
can see how, in the border between the linear and the saturated
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Fig. 3. Convolution of a log-normal distribution of column densities of
Si1i11527, randomly generated, with a CoG to a distribution of EWs.
We have assumed a distribution with log (N/cm™2) = 14.5+1.0 and also
a log-normal distribution of particle velocities with log (b/kms™") =
1.1 £ 0.3 (equivalent to 12.6 km s™1). The red continuous line indicates
the CoG using the central b parameter, while the dotted lines are for
b values 1-0- above or below. Continuous blue lines mark the distribu-
tion of column densities and its corresponding distribution of EWs once
convolved with the CoG. The blue dashed line is the EW distribution
that would be produced if the CoG would only have a linear regime.

regime, where we find the features studied in this paper, the his-
togram has a tail to lower values of EWs and is truncated for
high EWs due to the effect of saturation. This is similar to what
we see in Figs. 1 and B.1 for most of the lines in our sample.
This implies that using log-normal distributions to fit the EW
histograms is not an accurate physical description. However, due
to the limited size of the sample, and the fact that the tail of the
distribution towards low EWs is not well sampled in most of the
cases (it is mainly populated by detection limits), we use the log-
normal distribution as a first degree approximation. Furthermore,
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Table 4. Ionisation potential of the ionised species in our sample, from
Morton (2003).

Species Ionisation
potential (eV)

Al 5.99
Call 6.11
Mg 7.65
Fell 7.90
Sint 8.15
Zn1l 9.39
Cn 11.26
Al1ln 18.83
Si1v 33.49
Civ 47.89

the use of such a simple fitting function allows us to perform
an efficient and model independent observational analysis. In
Sect. 3.4 we attempt to use a more complex fit of the data to
derive statistical distributions of column densities.

2.3. Biases and limitations

When using this sample, we must be aware that there are ob-
servational biases that limit the statistical value of the study,
even if the data were obtained using criteria designed to min-
imise them. Within the sample criteria, there were cases for
which a spectrum could not be obtained and/or the redshift was
not constrained. These missing data will be dominated by faint
afterglows, probably due to high extinctions, or by low density
environments, which produce weaker features. The biases of this
sample, which includes ~1/3 of the bursts meeting the observa-
tional criteria during the period of the study, are explained in
detail by Fynbo et al. (2009).

For the spectra with a large amount of limits as compared to
line detections, the way in which we treat the limits will affect
our fits. We have chosen to give equal probability in the linear
space to all the possible values below the 3-¢ limits as this is the
less model-dependent method.

On the other hand, there are limitations on the study of EWs
in low resolution spectra as compared to determining the column
densities of material with Voigt profile fitting in high resolution
spectra. In most of the cases, the lines that we are studying are
in the saturated regime, where the strength of the lines are not
linearly related with the amount of material, so line ratios must
be handled with care. In this sense, the study of the EWs of in-
dividual bursts can give us an idea of the environment within
GRB host galaxies, but a quantitative description can be more
challenging (see Sect. 3.4).

Finally, one must be cautious when studying some of the in-
dividual features due to blending of several species. The most
prominent case in our sample is the feature at 1303 A produced
by the blend of O141302.17, Si1121304.37 and O1¥21304.86.
Both O141302.17 and Si1mA1304.37 are intense features that
cannot be disentangled at our resolution and that add similar
contributions, whereas O 1*11304.86 is only important in some
very early spectra. In a similar way the two ZnII features are
blended with Cr11. Although in most cases the Zn 11 is dominant,
the contribution of CrII cannot be neglected. In the case of early
spectra, some FeII features as well as C1I can be blended with
fine structure transitions of the same species. These fine struc-
ture transitions can be induced by the radiation from the prompt
GRB emission and in consequence have an EW that can vary
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with time. These features are disregarded in the physical fit per-
formed in Sect. 3.4. In Table 3 we indicate the lines that are
affected by blends with other lines.

3. Results
3.1. EW diagrams

By comparing an individual spectrum with the sample of EW
distributions, one can understand the general characteristics of
the GRB environment. To do this in an effective way, we create
comparative EW diagrams, where the EWSs of an individual burst
are plotted together with the average and standard deviations of
the sample, which are the same as shown in Fig. 2 (see Fig. 4 for
some examples and Fig. C.1 for the complete catalogue of EW
diagrams).

These diagrams are useful to quickly estimate the strength
of the absorption features as compared to the sample as
well as to identify environments with unusual characteristics.
Independently of the strength of the features, the relative line
strengths should be similar to the sample average if the com-
position of GRB host galaxies is uniform. An EW diagram that
does not follow the shape of the average diagram (see the 3 bot-
tom panels of Fig. 4), immediately tells us that the environment
of the GRB has peculiarities. As an example, GRB 060526, sec-
ond from the bottom of Fig. 4, shows very low EWs for highly
ionised species, such as SiTv, CIV or AlTII as compared to their
lower ionised transitions Sill, CII and Al1l. For GRB 070411
the behaviour is the opposite.

As EW diagrams can easily reveal anomalous feature
strengths, they are also a useful tool to identify faulty measure-
ments, features that are affected by contamination of intervening
material, artefacts in the data, etc. In fact, while writing this pa-
per we have identified several such cases, allowing us to revise
the data and, when possible, correct the measurements.

3.2. Line strength parameter

Comparative studies of spectra over a wide range of redshifts can

be a difficult task, as the spectral features can fall at very different

wavelengths in the observer frame. To study the line strengths of

the different bursts, independently of the wavelength range cov-

ered, we define the line strength parameter (LSP hereafter) as:
N

1 < log EW; —(log EW),
Lsp= L 38 (log EW);
N

ey

P Olog EW, i

where EW; is the equivalent width for each of the individual
detected lines in the spectrum, (log EW), the central equivalent
width obtained from the fits in Sect. 3, orjog gw; is the standard
deviation (both shown in Table 3) and N the total number of lines
used to calculate the LSP.

This parameter measures the strength of the absorption fea-
tures of a spectrum as compared to the average GRB spectrum.
A value of zero would mean that the absorption features in
the spectrum have the same strength as the average spectrum.
Positive values indicate bursts with stronger than average lines,
and equal to 1.0 if the deviation is equivalent to 1-o. In the same
way a negative value implies weak lines. In Table 5 we display
the LSP for each of the GRBs considered in the sample. We
also calculate the standard deviation (of the summation values
in Eq. (1)) for each of the GRBs that indicates how different is
the distribution of line strengths with respect to the average of
GRBs. In the case of a spectrum where we only have detection
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Fig.4. EW diagrams: in red we represent the EWs of the spectral features if each afterglow spectrum. The continuous black line is the average of
the sample of GRBs (see Fig. 2), whereas the dotted lines indicate the standard deviations over and under this value. Gray regions mark the range
where there is no spectral coverage or it is affected by strong telluric features. Each panel shows examples of individual bursts: GRB 060210, an

afterglow with strong lines; GRB 070125, with weak features; GRB 060526, with a very weakly ionised environment; GRB 070411, with very

high ionisation.
limits, we use the strongest limit given by a single line to calcu-

late a limit value for the LSP.

The distribution of LSPs can be fitted by a Gaussian with
an average value of (LSP) = —0.03 and a standard deviation
of osp = 0.72. The average LSP is not centred on zero but
slightly below, as the distribution of EWs is not fitted by a per-
fect Gaussian but has a tail towards lower values (see Sect. 2.2).

These values can be used to calculate the percentile of line

strength that corresponds to a specific afterglow (see Fig. 5)
through the following formula:
LSP; — (LSP) @

‘/50' LSP

)

PLSP,i =50 (1 + ERF(

to extract further information, we calculate two additional LSPs,

separately using just high-, or low-ionised species. In this way ple from Noterdaeme et al. (2009) based on the Sloan Digital
we can see if the behaviour is different for high ionisation and  Sky Survey Data Release 7 (SDSS-DR7) database of QSO spec-

low-ionisation LSP we use the lines of species with ionisation

potential lower than 10 eV and for the high-ionisation LSP those
that have potentials higher than 30 eV, as shown in Table 4. Both
low-ionisation LSP (LSPy ) and high-ionisation LSP (LSPy) are

displayed in Table 5.

3.3. Comparison with quasar DLAs

In general, GRBs are produced in environments with large
amounts of neutral gas, with neutral hydrogen column densi-
ties that lie in the damped Lyman-a (DLA) regime. In this sec-
tion we measure the rest-frame EWs of a sample of interven-
ing DLA systems in quasar spectra in a similar way to what we

)
have done for GRBs. We have used the original QSO-DLA sam-

tra. These authors automatically searched for DLA lines, refin-
ing their Ly fits whenever metal lines are detected redward of
the Ly« forest. We have selected all systems from their list with
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low ionised environments. The higher ionisation lines could be

more closely associated with star forming regions, such as the
ones that produce GRBs, whereas the lower ionisation species
would be more representative of the overall galaxy. For the

log (Ni/cm™2) > 20 and redshifts in the range 2.2 < z < 3.2,
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Table 5. Neutral hydrogen column density, derived from Lya, LSP, low-
ionisation LSP and high-ionisation LSP for the 69 spectra in our sample.

GRB log Nu; LSP LSP, LSPy
050319  20.90 +0.20 0.69 +0.30 0.67 +£0.14 1.20 +0.25
050401 22.60+0.30 0.57+0.46 0.34+031 0.12+0.03
050408 - 0.49+£0.37 0.34+£0.22 -
050730  22.10 +£0.10 -0.46 +0.27 -0.48 +0.22 -0.31 +0.12
050802 - 041+0.18 048 +0.18 0.20 +0.04
050824 - —0.68 £0.24 —0.68 +0.24 -
050908 17.60 +0.10 -1.12+096 < -3.19 0.09 £ 0.11
050922C 21.55+0.10 -0.90 £0.57 -0.64 +0.26 —-0.75 +0.27
060115  21.50+0.10 0.01 £0.22 028 £0.06 -0.84 +0.18
060124  18.50 +£ 0.50 0.28 +0.08 <-1.55 0.28 +0.08
060206 21.85+0.10 0.50 +0.15 <1.01 -
060210 21.55+0.15 135+0.71 121+047 148 +0.53
060502A - -0.16 £0.21 -0.16 = 0.21 -
060526  20.00 + 0.15 -0.46 £0.53 -0.12+0.14 -2.39+0.51
060614 - <-0.37 <-0.37 -
060707  21.00+0.20 0.36+0.35 0.66+0.20 -0.87+0.19
060714  21.80 +0.10 0.62+0.33 0.52+0.25 0.64 +0.23
060729 - —0.84 £ 0.40 -0.84 +0.40 -
060904B - 0.04+0.13 0.04 £0.13 -
060906  21.85+0.10 -0.42+0.19 -0.31 +0.07 -0.29 +0.06
060908 - 0.45+0.10 <-0.18 0.45 +0.10
060926  22.60 +0.15 -0.25+0.09 -0.10 +0.02 -0.32+0.07
060927 - <0.23 <0.23 -
061007 - 0.65+0.34 0.65+0.34 -
061021 - -1.00 £0.21 -1.00 +0.21 -
061110A - —-0.05 £0.01 -0.05 £ 0.01 -
061110B - 0.14+0.24 -037+0.11 0.64 +£0.19
061121 - 0.76 £0.37 0.79+0.43 0.90+0.19
070110  21.70 £0.10 -0.33 £0.41 -0.09 +0.20 —-0.95 +0.35
070125 - -2.58 £0.80 -3.35+0.71 -1.82+0.39
070306 - <0.36 <0.36 <1.69
070318 - -0.39 £0.37 -0.39 £ 0.37 -
070411  19.30+0.30 -0.97 £0.72 -1.24 +0.46 -0.05 + 0.05
070419A - -0.29 +£0.12 -0.29 +0.12 -
070506  22.00 +0.30 0.50+0.39 0.54 +£0.28 0.70 +0.28
070508 - <0.39 <0.39 -
070611 - -0.81 £0.17 —0.81 +£0.17 <-1.84
070721B 21.50 +0.20 0.27+0.24 0.17 +£0.04 0.56 +0.21
070802  21.50+0.20 1.12+0.68 1.35+0.68 -0.16+0.03
071020 - 0.50+0.28 0.50 £0.28 <-0.13
071031 22.15+0.05 -0.40+0.32 -0.47+0.30 0.02 +0.04
071112C - -0.59 £0.32 -0.59 £0.32 -
080210 21.90+0.10 0.22+0.32 0.02+0.20 0.62 +0.22
080319B - -0.75+0.23 -0.75+0.23 -
080319C - 046 +£0.24 0.45+0.10 0.60+0.13
080330 - -043 +£0.42 -1.12+0.34 -0.47 +£0.10
080411 - -0.08 £0.12 —0.15+0.11 -
080413B - 0.19+0.28 0.44 £0.22 -
080520 - <-0.60 <-0.60 <2.11
080603B 21.85+0.05 —1.11+0.59 -1.57 +0.48 —-0.83 +0.30
080604 - 038+0.21 038=x0.21 -
080605 - 0.54+045 061+036 1.11+0.24
080607 2270 +0.15 0.88+0.47 0.80+0.30 1.06 +0.38
080707 - 0.49+0.28 0.49+0.28 -
080710 - -1.33+£0.70 -1.33 +0.70 -
080721 21.60+0.10 0.41+0.31 0.52+024 0.52+0.22
080810 - -0.19 £0.19 -0.79 £0.17 0.40 = 0.09
080905B - -0.02 £0.32 -0.06 £0.25 -0.51 +£0.11
080913 - <-0.42 <-0.42 -
080916A - 0.38+£0.08 0.38 £0.08 -
080928 - —-0.88 £0.62 -0.98 £0.62 -0.16 +£0.03
081007 - <3.43 <3.43 -
081008  21.59 +0.10 -0.59 +£0.40 -0.30+0.15 -0.83 +0.31
090102 - 0.75+049 0.87+0.50 0.56+0.12
090516  21.73+0.10 131+0.64 125+0.44 1.21+0.43
090519 - <-0.55 <0.50 < -0.55
090529 - 0.07+0.17 0.61 £0.13 -0.47 £0.10
090812 2230 +£0.10 —-0.14 £0.35 —-0.07 +0.21 -0.65 + 0.26
090814A - 0.81 £0.34 0.81 +0.34 -
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Fig. 5. Cumulative distribution of the line strength parameter. The red
line are the observations, whereas the the blue dashed line is the best fit
to a Gaussian distribution.

Table 6. Fits to the distribution of lines for quasar intervening DLA
systems.

Feature 1002 %) (A) oy, ewiay
Cna1335 0.63 0.34
Sitva1403 0.30 0.36
Sita1527 0.45 0.39
C1vAA1548,1551 0.70 0.39
AlTI11671 0.43 0.39
AlTIA1855 0.24 0.37

located at least 5000 kms™' from a background QSO with
R < 21. To simplify the analysis we have limited the compar-
ison to the following spectral features: C 11335, Si1vA41403,
Sina1527, C1vA1549, Al1iA1671 and AlT11A1855.

In Figs. 1 and C.1 of the Appendix we show the histograms
of the EWs for GRBs and in the cases of the lines where we
have DLA data, we also represent additional histograms with
DLA data in green. The DLA histograms have been scaled down
to match the smaller number of GRBs so that the histograms
can be plotted together. Similar measurements to the ones dis-
played in Table 3 are given for DLAs in Table 6. It is imme-
diately clear that the features produced by quasar intervening
DLAs are weaker. We find that the EWs of GRB absorption
features are, on average, 2.5 + 0.6 times larger than the DLAs.
The excess of material in the line of sight of GRBs as com-
pared to DLAs has been already described (Savaglio et al. 2003;
Jakobsson et al. 2006a) and is interpreted as due to the differ-
ent impact parameters: the material generating the DLA absorp-
tions are produced as the line of sight to the quasar intercepts the
intervening galaxy, which is statistically more probable to hap-
pen in the outskirts of the galaxy (Prochaska et al. 2007; Fynbo
et al. 2008; Pontzen et al. 2010). On the other hand, GRBs are
produced inside the most luminous regions (Bloom et al. 2002;
Fruchter et al. 2006; Svensson et al. 2010) of star forming galax-
ies (Christensen et al. 2004), implying that the light will have
to interact with much more material before escaping the host
galaxy. However, we note that all the lines in our DLA sample
are between 2.3 and 2.9 times weaker than the ones in the GRB
sample except for one. In the case of C1v, the GRB lines are
3.4 times stronger than those found in DLAS. This excess of C1V
could be indicative of an excess of Wolf-Rayet stars (Berger et al.
2006) in the GRB host galaxies, as compared to QSO DLAs.
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Table 7. Distribution of column densities derived from the EWs.

Species Features (A) <10g (N/ (:In‘2)>mmp Tlog (N/em2) <10g (N/ cm‘2)>loml
Sit 1527 14.50*028 1.1079:39 15.28+028
Sitv 1394, 1403 13.80%02! 0.80930 14.58+021
Cv 1549 14.50028 0.80+03 15.28+038
Fenl 1608, 2374, 2587 14.29703% 1.00*0:0 15.07+033
AlTl 1671 13.38+028 1.20*9:39 14.16028
Al 1855, 1863 13.17028 0.907930 13.95%0-28
Mg1 2852 12.19792 0.80703 12.97+921
Mg 11 2800 13.5992% 0.60*0:40 14.37+028
Can 3935, 3970 12.54*021 0.50*0:40 13.32+02!

1.25

Notes. From the fits we derive that the average number of line components is 6.00" 5.
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Fig. 6. Distribution of the b parameter for absorption components, mea-
sured by fitting voigt profiles in high-resolution spectra of GRB after-
glows. The orange line is the log-normal fit.

For comparison, we have plotted, in Fig. 2, the average
EWs measured for DLAs (in green) together with the values
for GRBs.

3.4. Physical fit of the EW distributions

In this section we attempt to fit the distributions of EWs that we
have obtained, using CoGs to derive the actual distribution of
column densities of each species. We use only features that are
produced by single species (we exclude the O1/Si1l, Zn1I/CrII
and SiII/S I line blends, as well as the C1I and Fe IT that can be
blended with fine structure lines, but we include doublets of the
same species such as C1v, MgII).

The fit is determined from the distribution of EWs of all
the features simultaneously. To do this, we must make some
assumptions: (1) the distribution of column densities is de-
scribed by a log-normal distribution (characterised by (log N)
and oo v); (2) the distribution of particle velocities is de-
scribed by a log-normal distribution (characterised by {log b)
and oo ); (3) the material producing the features is located in
a series of clumps, the same for all the species, this will create a
specific number of components.

To limit the amount of free parameters we will assume that

the distribution of particle velocities has <log (b/km s_1)> =1.1

(equivalent to 12.6 kms™') and o, kms~y = 0.3. This is esti-
mated from the values derived from line profile fitting in 10 GRB
afterglows (with a total of 66 velocity components) observed
with high spectral resolution using UVES at the Very Large
Telescope (see Fig. 6, D’Elia et al. 2007; Piranomonte et al.
2008; Fox et al. 2008; D’Elia et al. 2009).

The fitting code that we have created compares the EW his-
tograms to models created in a similar way to what was shown in

Sect. 2.2. The models are computed for varying column density
distributions and varying number of components. The method
searches for minimum y? values within an allowed range of
parameters.

To simultaneously use as much information as possible, we
fit all the features that we have in our sample together. The re-
sults of the fits are displayed in Table 7. The distributions giv-
ing the best fits, obtained by this method are shown in Figs. 1
and C.1 as dashed blue lines. From these results we obtain that
the typical number of components generating absorption lines is
6.00f}:3(5). Within our sample, the most abundant species that are
detected in the host galaxies of GRBs are C1v and Sill, with
Cam and Mg1 being the least common.

4. Discussion
4.1. lonisation ratios

Using the elements of our sample that have different states of
ionisation, we can derive equivalent width ratios that will give
indicative measures of the typical degrees of ionisation of each
element in GRB host galaxies. This can be used to compare
with the environments probed in quasar intervening DLA sys-
tems or to identify peculiar GRB environments that depart from
the typical values.

We first compare Si1vA1403 with SinA1527. These two
lines have the advantage of being separated by only 124 A in the
rest-frame, so that they are normally covered in a single spec-
trum. Figure 7 shows the values of Si1vA1403 vs. SillA1527
for both GRBs (red dots) and QSO intervening DLAs (green
squares). The average ratio of the detections (limits are not con-
sidered here) are shown with a dashed line (red for GRBs, green
for DLAS), and dotted lines represent the standard deviations.
At a first glance we see that GRBs seem to have higher ratios of
Si1vA1403/Si1iA1527. However, when we plot the ratio of the
distributions from Table 3 (dashed-dotted line), where limits are
considered, we see that it lies below the average value and that
it is almost identical to the one from intervening DLAs. In the
case of the DLAs the average value of the detections and the
distribution are consistent. This implies that the previous aver-
age value is biased by non-detections of SiIvA1403, which is
usually weaker than Si1141527. This does not seem to be so sig-
nificant for the DLA systems, as the two ratios match.

The ratio between C1vA1549 and C1141335 can be a better
estimator of the ionisation as, being both very strong features,
it provides a large number of detections (Fig. 8). Furthermore,
among the ionisation ratios given here, this one has the lowest
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Fig.7. Si1tvA1403 vs. Si1id1527. Red dots are from GRB spectra
whereas green boxes are from quasar intervening DLA systems. For
clarity, detection limits are only plotted for GRBs. Dashed lines are the
average values of the line ratios (detection limits are ignored), dotted
are the standard deviation of these values and dashed-dotted lines are
the ratios of the average values of the distributions. See Table 8 for a
summary of the line ratios.
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Fig.8. C1vA1549 vs. C1111335. The colour coding is the same as in
Fig. 7.

dispersion in strength of the features, making the ionisation out-
liers stand out more clearly. Finally, the ionisation potential of
CIV is the highest of our sample (see Table 4). In this case the
average ratios of the detections and the ratio of the distribution
average are consistent, meaning that the detection limits are not
strongly affecting the results.

In the case of the Al1IIA1855 and Al1141671 ratio, the ion-
isation potentials are not as extreme as in the previous cases,
meaning that moderate star formation can account for the exci-
tation of Al to these levels (see Fig. 9).

In Fig. 10 we plot the ratio of the two more extreme ionised
species in our sample, C1vVA1549 and Si1vA14032. Berger et al.
(2006) suggest that a Wolf-Rayet outflow model would produce
absorbers rich in carbon and low in silicon, making the C 1v/SiIv
a good tracer these kind of massive stars. In fact, this ratio shows
a more significant difference with the DLA systems. This indi-
cates a possible excess of Wolf-Rayet stars in the environments
of GRBs, consistent with the models that explain long GRBs as
the collapse of massive stars.

The fits to all these line ratios are given in Table 8.

Finally we plot both the ionisation ratios (EW of the highest-
ionised species over the EW of the lowest-ionised species) of
carbon and silicon in Fig. 11. The ratios of both C and Si
and allow us to easily separate highly-ionised (at the top right
of the figure) and low-ionised environments (at the lower left)
from the average values found in GRBs (centre). It is curious
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Fig. 9. Al 111855 vs. Al11A1671. The colour coding is the same as in
Fig. 7.
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Fig.10. C1vA1549 vs. Si1vA1403. The colour coding is the same as in
Fig. 7.

Table 8. EW ratios of selected lines for GRBs and DLAs.

Ratio GRB DLA
Det. Dist. Det. Dist.

Centre, o Centre Centre, o Centre

log($dli3)  —0.06,0.23  -0.15  -0.19,0.24  -0.18
log(Sl) 013,043 016 007,023 005
log(4MlE5)  -0.20,023  -0.26 —0.29,025 -0.25
log(SM48) 047,016 051 039,024 037

Notes. Both the average of the detections (when both lines are de-
tected) and the distributions (ratio of the average of the distributions
from Tables 3 and 6) are shown. In the case of the average ratios of
detections we give also the dispersion of the distribution.

to see that the 4 GRBs with highest ionisation, GRBs 050908,
060124, 080810 and 070411 all have very low neutral hydro-
gen column densities, with log (Ng;/cm™2) < 20 (see also
Sect. 4.2.3). This relation between high ionisation environments
and low column density of neutral hydrogen was already noted
by Jakobsson et al. (2006a) and later modelled by Thone et al.
(2011). In these very ionised spectra, the photons emitted by the
GRB itself or of an environment rich in Wolf-Rayet stars would
ionise the hydrogen. In the case of GRB 090426, the amount
of absorbing HI was seen to decrease during the hours that fol-
lowed the GRB (Thone et al. 2011), supporting the hypothesis
of the ionising GRB.

On the other side, bursts like GRBs 060526 and 060707
show very low ionisation. Given that GRBs are supposed to
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Fig. 11. Comparison between the ionisation ratio of carbon and silicon.
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Fig. 12. Comparison of the high- and low-ionisation LSPs. The dashed
line indicates equal low- and high-ionisation LSP. The dotted lines mark
where they differ by 1.0.

happen in strong star forming regions, we would expect ionised
environments. As a consequence, these bursts with very low ion-
isation might be mostly probing material that is in the line of
sight but unrelated to the star forming regions where GRBs are
produced.

Many GRBs cannot be included in plots like the one in
Fig. 11 because of the lack of several of the species in the spec-
trum. In these cases we can study the ionisation of the GRB envi-
ronment by using the LSP;, and LSPy. Figure 12 compares them
and shows how some extreme environments, with very low or
very high ionisation levels stand out.

4.2. LSP correlations

In the following paragraphs we study correlations (or the lack of
them) between the strength of the absorption features (through
the LSP) and several properties of the GRB and its host galaxy
environment. For each case we use parametric (Pearson’s r
correlation coefficient) and non-parametric tests (Spearsman’s p)
to determine the strength of the correlations.

4.2.1. LSP vs. observation time

As a first check, we study how the LSP correlates with the time
after the GRB (rest frame) in which the observation was per-
formed. Christensen et al. (2011) find a decrease in the strength
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Fig. 13. Comparison of the LSP with the time of the observation in rest
frame, showing no correlation. The shaded region indicates the uncer-
tainty in the slope of the linear fit.
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Fig. 14. Correlation between the LSP and the intrinsic extinction of the
GRB. The shaded region indicates the uncertainty in the slope of the
linear fit.

of several absorption features of our sample when they compare
two composite spectra with average times of 0.4 and 5 h after
the burst. Our data shows no significant correlation of the LSP
with time, as shown in Fig. 13. We find correlation coefficients
of r = —0.015 (for a sample of 65 data points) and p = —0.03,
implying a probability of correlation of 0.21 (0.30).

4.2.2. LSP vs. extinction

We here compare the LSP with the extinction, parametrized by
Ay, the equivalent extinction in the rest-frame V-band. Ay is usu-
ally derived from SED fitting of power-laws with a superposed
extinction law. When available, we use the extinction determined
by Zafar et al. (2011), using Kann et al. (2010) and Schady et al.
(2010) for other cases.

When a GRB is seen through more material in its host
galaxy, the absorption features in the spectrum show higher
EWs. Furthermore, if the presence of this material is correlated
with the presence of dust, the spectrum would also be more ex-
tinguished. This is precisely what we see in Fig. 14 where the
LSP increases with increasing extinction. We obtain correlation
coefficients of » = 0.52 (for a sample of 36 data points) and p =
0.63, indicating a probability of correlation of 0.99997 (3.70). A
linear fit to the data gives LSP = (0.98 £ 0.28)Ay + (0.59 £ 0.20).
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Fig. 15. Relation between the LSP and the Lya-derived Ny of the GRB.
The shaded regions indicate the uncertainty in the slopes of the linear
fits.

4.2.3. LSP vs. NH,O

As the amount of material producing the absorption features in-
creases in the line of sight, together with the increase of the LSP,
we would expect to see an increase in the column density of
neutral hydrogen, measured through the fitting of the absorption
Lya feature.

Figure 15 (top) plots the LSP as a function of the
Lya-derived column density of neutral hydrogen, Ny o (from
Fynbo et al. 2009). Unfortunately, this is only possible to mea-
sure from the ground for GRBs with redshift larger than z ~ 2,
when the 1215 A feature is redshifted into the visible range.
Although there is some tendency to find higher Ny in large LSP
spectra, there is a great dispersion, pointing to a large disper-
sion in the metallicities of GRB environments or independent
regions generating the absorptions. Correlation coefficients of
r = 0.32 (for a sample of 27 data points) and p = 0.15, with a
probability of correlation of 0.56 (0.70") confirms the weakness
of the correlation. A linear fit to the data gives LSP = (0.19 +
0.11)log (NHI,o/cm‘z) — (3.98 + 2.39). However, we note that
the fit is constrained by those GRBs with log (Ny;/cm™2) < 20.
If we exclude those bursts the fit is unconstrained.

It is interesting to see how the plot changes when we con-
sider separately the LSP;, and LSPy. Figure 15 (bottom) shows
that GRBs with column densities log (Ni;.0/cm™2) < 20 present
extreme ionisation states, showing predominantly very highly
ionised environments, although there is also the case of a very
low ionised burst. The relation of low neutral hydrogen col-
umn densities and high-ionisation has been already seen before
(Jakobsson et al. 2006a; Campana et al. 2010; Thone et al. 2011)
and interpreted as due to the ionisation of hydrogen in the near
GRB environment (Lazzati et al. 2001; Watson et al. 2007).
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the uncertainty in the slope of the linear fit.

4.2.4, LSP vs. NH,X

Using X-ray measurements we can also obtain an estimate of the
column density of neutral hydrogen (Nyx) by fitting the spec-
trum of the X-ray afterglow with a power law and an extinction
curve (Campana et al. 2010). However, this extinction is not di-
rectly caused by hydrogen but by metals, so it is very dependent
on the composition of the host galaxy. The relation between the
extinction and Ny is well known for the Milky Way, but the un-
certainty is large in GRB host galaxies (Watson & Jakobsson
2012). Comparing the LSP with the X-ray derived Ny (Fig. 16)
shows a correlation but with large dispersion. We obtain corre-
lation coefficients of r = 0.39 (for a sample of 44 data points)
and p = 0.40, indicating a probability of correlation of 0.993
(2.60). A linear fit gives LSP = (0.48 + 0.17) log (Ny x /cm™2) —
(10.51+3.74). In this case we find no significant difference when
considering the low- and high-ionised LSPs.

4.2.5. LSP vs. redshift

Thanks to the very broad redshift distribution of GRBs, they can
help to answer questions related to the evolution of galaxies and
their star formation history. In this section we look for a possible
evolution of the LSP with the redshift. Figure 17 shows a large
dispersion in the LSPs but no significant evolution. A linear fit to
the dataset returns a slope of 0.02 + 0.08, consistent with no red-
shift evolution. We obtain correlation coefficients of » = 0.016
(for a sample of 69 data points) and p = 0.06, indicating a very
low correlation probability of 0.41 (0.50).
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Fig. 18. Relation of the ionisation, characterised by LSPy—LSP. with
Eis,. The shaded region indicates the uncertainty in the slope of the
linear fit.

It has been shown that DLAs show a significant evolu-
tion of their metallicity with redshift (Wolfe et al. 2005), with
lower metallicities for high redshifts. For lower metallicities,
one would expect to see, on average, weaker absorption features
due to metal lines. For GRBs, this evolution is shallower (Fynbo
et al. 2006; Thone et al. 2012), so that it only becomes signifi-
cant at very high-redshift. In our sample there are only 2 GRBs
at z > 5 and, in those cases, we only have limits for their LSP.
Although this could be indicative of a lower LSP, the sample is
not big enough for a high-z study.

4.2.6. lonisation vs. Ejs,

Here we compare the ionisation of the GRB environment, char-
acterised by the difference between the high-ionisation LSP
(LSPy) with the low-ionisation LSP (LSPy), with the isotropic
equivalent energy release in y-rays of the GRB (Butler et al.
2007; Sakamoto et al. 2011). Figure 18 shows that the ionisation
grows with Ejy,, with correlation coefficients of r = 0.35 (for a
sample of 35 data points) and p = 0.30, indicating a correlation
probability of 0.92 (1.70). A linear fit gives (LSPy — LSP.) =
(0.41 £ 0.19) log(Eiso/erg) — (21.98 + 10.17).

Although this correlation is weak, it gives a hint of an in-
teresting effect: it could mean that part of the ionisation that
we see in afterglow spectra are due to the GRB, or that highly
ionised hosts (probably due to intense star formation) produce
more energetic GRBs. Part of the dispersion of this correlation
can be caused by using the isotropic equivalent energy (where
we assume that the energy is emitted isotropically) instead of
the beaming-corrected energy (which is the real energy that is
released through jets). Unfortunately, we do not have enough
data to perform a study with the beaming-corrected energy.

4.2.7. LSP vs. host galaxy absolute magnitude

In this section we compare the LSP with the absolute host mag-
nitude at a rest-frame wavelength of 1700 A. These data are ob-
tained from Schulze et al. (in prep.), using the observations from
the TOUGH sample' (Hjorth et al. 2012; Malesani, in prep.), the
GHostS sample® and the Keck GRB host project imaging cat-
alog?. Figure 19 shows the fit of the LSP versus host absolute

' http://www.dark-cosmology.dk/TOUGH
2 http://www.grbhosts.org/
3 http://www.astro.caltech.edu/~dperley/hosts
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Fig. 19. Relation of the LSP with host galaxy magnitude. The shaded
region indicates the uncertainty in the slope of the linear fit.

magnitude comparison. In spite of the dispersion, there is a
clear correlation that follows LSP = (—0.27 + 0.08) Myost.1700 —
(5.02 £ 1.59). We obtain correlation coefficients of r = —0.62
(for a sample of 19 data points) and p = —0.64, indicating a
probability of correlation of 0.997 (2.70).

Larger, more luminous host galaxies, contain more material,
and should produce, on average, stronger lines in the spectra of
GRBs that they host. Due to the random location of the GRB
within the galaxy, the relation between the strength of the lines
and the host magnitude will have an intrinsic dispersion, which
is also seen in the plot. We have done a similar exercise for LSP,
and LSPy looking for differences in the correlation, which could
be indicative of different locations for lower and higher ionised
species within the host, such as a higher ionisation near the GRB,
but found no significant difference.

4.2.8. LSP vs. galaxy offset

In this final section we compare the LSP with the projected offset
of the GRB afterglow with respect to the centroid of the host
galaxy. The offset values have been obtained from Malesani et al.
(in prep.). Figure 20 shows, in its lower panel, the LSP versus the
offset, using a colour coding for each object, where redder dots
imply higher extinction and bluer ones lower extinction. Those
objects for which there is no reliable extinction measurement are
coloured black. The top panel shows the histogram of offsets,
where we can see that the median offset is 1.16 kpc, similar to
the value of 1.3 kpc obtained by Bloom et al. (2002) for an HST
sample.

If the GRBs could happen at any position within the host
galaxy, we would expect that the maximum LSP would decline
as the offset increases, whereas the minimum LSP would be lim-
ited by the detectability of lines and would not depend on the
offset. In Fig. 20 we see that the first statement is matched, but
the second is not. We see how the minimum value of the LSP in-
creases as we increase the offset. A possible explanation to this,
is that GRBs only occur within limited areas of the host galaxies
(e.g. the most prolific star forming regions). In this case there
would be additional material, producing the minimum LSP in
an extended region of the galaxy where no GRBs would form.
Due to a projection effect, the minimum LSP value produced by
this extended region of the host is higher for larger offsets, as
depicted in Fig. 21 for a very simplified example. Figure 20 also
shows how the bursts at the top of the distribution, which are
the ones located behind most of the host galaxy material are also
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Fig. 20. Bottom: relation of the LSP with the projected offset between
the afterglow and the host galaxy. The colour coding indicates the ex-
tinction of the afterglow, being red the most extinguished and blue the
least ones, those bursts without a reliable extinction measurement are
indicated in black. Green lines are qualitative indicators of the distribu-
tion limits. Top: histogram of offsets. The red-dashed line indicates the
median offset.

Range \\H
a—& -
RA:,/
Range
Min Range 0 Offset R
P e X
R \ _'___,___-—r-‘“"’"-’
\ 0 Offset R

Min Range

Fig. 21. Cartoon showing a limited region of the host in which the GRBs
are generated (dark circle) and the effect that an extended region sur-
rounding the previous (or the lack of it) would have in the distribution
of LSPs as a function of the galaxy offsets. We indicate how the “range”
of intervening material from the inner region is reduced as the offset
increases, while the the “minimum” material, given by the extended
region increases with the offset.

the ones that show the highest extinction, as one would expect.
We have also considered if other biases would produce the in-
crease in the minimum LSP with the offset, like having fainter
afterglows at higher offsets, differences in the host galaxies, etc.
Although we have not found evidence of any significant bias, we
cannot discard other effects.

5. Summary and conclusions

We have used 69 low-resolution optical spectra of GRB after-
glows, covering the redshift range 0.12 < z < 6.7, to perform
a statistical study of the rest-frame equivalent widths of strong
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absorption features. 61 of those spectra come from the sample
presented by Fynbo et al. (2009) while the measurements of the
other 8 are presented in this paper. The study includes 22 spec-
tral features produced by 12 different atomic species. To obtain
a consistent statistical analysis we include in our sample both
detections and detection limits of these spectral features. A sum-
mary of the observations is presented in Tables 1 and 2. This
collection of observations is used for the following:

— For each spectral feature we calculate the average EW and
its standard deviation, from which we obtain a picture of the
typical GRB afterglow spectrum and the range of variations
that can be expected.

— Using these values we propose the use of the EW diagrams as
graphical tools to compare an individual GRB to the sample
and give a catalogue with all our 69 spectra.

— As compared with a sample of quasar intervening DL A spec-
tra, we find the GRB absorbers to be, on average, 2.5 times
stronger and slightly more ionised. The difference of line
strength is more significant in the case of the CIV that is
3.4 times stronger in GRBs. There is also an excess in the
C1vA1549/Si1vA1403 ratio. This excess of CIV can be re-
lated to the existence of an excess of Wolf-Rayet stars in the
environment of GRBs, consistent with the massive star ori-
gin of the explosions.

— We introduce the LSP as an overall measurement of the
strength of the absorption features in a GRB spectrum rel-
ative to the sample as a single number. We give the distribu-
tion of LSPs so that one can derive, for a specific spectrum
the percentile of line strength in which it lies. Similar LSPs
are obtained for each GRB afterglow spectrum considering
only low- and highly-ionised species respectively.

— We find correlations between the LSP and the extinction of
the GRB, the hydrogen column density and the brightness of
the host. However, the LSP is independent of the redshift and
the time at which the observation was performed.

— There is a correlation between the ionisation of the absorbers
in the GRB afterglow spectrum and the energy of the y-ray
emission, indicating that, either the GRB event is responsible
for part of the ionisation, or galaxies with higher ionisation
(i.e. stronger star formation) produce more energetic GRBs.

— When comparing the LSP with the projected offset between
the host and the afterglow, we detect a decay in the maximum
value as the afterglow lies further away from the galaxy, as
it would be expected. However, we also detect an increase in
the minimum LSP, which could be due to an observational
bias that we did not consider, but also due to a geometric
effect that could provide information on the structure of the
host galaxy. Larger samples will be needed to confirm this.

— Using the distributions of EWs of single species features
we use a CoG fitting method to derive the distribution of
their column densities and the number of components that
make those features. For this we assume that the distribu-
tion of velocities of the absorbing atoms is described by
<10g (b/km s_1)> = L.1 and 054 /kms1y = 0.3, as derived
from line profile fitting of a sample of high resolution GRB
spectra. From the fit we obtain that the average number of
components that produce features in GRB afterglow spectra
is 6.00f}'(2)(5). The column densities of each of the species are
given in Table 7.

— The most extreme ionisation ratios in our sample are
found for GRBs with low neutral hydrogen column density.
Whether this is due to ionisation by the GRB emission will
have to be determined in further detailed studies.
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Appendix A: Additional spectra

In this section we present further spectra complementing the
sample of Fynbo et al. (2009), analysed in an equivalent way.

A.1. GRB 081007

This spectrum has not yet been published. It was a 2700s expo-
sure obtained with FORS2 at the VLT using the 300I grating. It
shows evidence of 2 emission lines (see Table A.1 and Fig. A.1)
at a redshift of z = 0.530, in agreement of the redshift suggested
by Berger et al. (2008). The lack of [O 1IT]A5008 is probably due
to contamination by a sky line.

A.2. GRB081008

The data presented here (see Table A.2 and Fig. A.2) were ini-
tially published as a GCN circular (D’ Avanzo et al. 2008) and
later in a more detailed study (D’Elia et al. 2011). The obser-
vation was performed using FORS2 at the VLT with the 600B
grating and consisted of 3 x 900 s exposure. We obtain a red-
shift of 1.969 = 0.001, consistent with the value determined by
D’Elia et al. (2011). From the fit of the Ly« absorption, we de-
termine a neutral hydrogen column density of log (Ny;/cm™2) =
21.59 + 0.10.

Table A.1. GRB081007 (z = 0.530). Observed-frame equivalent
widths.

Wavelength Feature z EW
7438.2 H-54862.68  0.5297 emission
7589.5 [OIII] 4960.29  0.5300  emission

Table A.2. GRBO081008 (z = 1.969). Observed-frame equivalent
widths.

Table A.3. GRB090102 (z = 1.548). Observed-frame equivalent

widths.

Wavelength Feature z EW
3949.6 Crv+Clv 1549 8.9 +01.7
4096.0 Fell 1608.45 1.5466 7.8+1.2
4257.7 Alrr 1670.79 1.5483 47+1.0
4728.8 Alrnn 1854.72 1.5496 40+0.7
4746.4 Al 1862.79 1.5480 1.7+0.5
5975.1 Felr 2344.2 1.5489 7.6+22
6055.8 Felr 2374.5 1.5503 53+20
6072.4 Ferr 2382.8 1.5484 6.4+2.0
6590.9 Ferr 2587 1.5480 63+ 1.1
6620.4 FeIr 2600 1.5461 93+13
7134.0 Mgii+Mglr 2800 258 + 1.6
7266.9 Mgi 2852 1.5471 12774 +24

Table A.4. GRB 090516 (z = 4.111 + 0.006). Observed-frame equiva-

lent widths.

Wavelength Feature z EW
6327.8 Nv 1232.8 4.1329 124+03
6347.9 Nv 1242.9 4.1073

6393.6 S1 1250.6 4.1124 356+03
6410.6 S 1253.8 4.1129

6440.4 Sinr 1260.4 4.1098

6460.1 Sirr* 1264.7 4.1080

6658.5 O1 1302.2, SiIr 1304.4 349+0.2
6686.2 Simr* 1309.3 4.1067

6735.7 Nimr 1317.2 41136  23+0.2
6749.2 ?

6816.6 Ci+Cir* 1335 29.7 £0.2
6881.7 NiIr 1345.9 41131  72+03
7118.3 Sirv 1393.8 41071 145+0.2
7165.0 Sirv 1402.8 4.1076  8.8+0.2
7797.3 Sitr 1526.7 4.1073  20.7+0.3
7831.8 Simr* 1533.4 4.1075 3.8+0.2
7908.8 Crv+Clv 1549 30.0 £ 0.5
7963.0 ? 1.1 +0.2
8220.9 Fe1r 1608.5 4.1109 15.8+0.3
8318.8 Felr 2249.9 26974  0.8+0.2
8357.6 Ferr 2260.8 2.6967 1903
8536.2 Allr 1670.8 4.1090 232+03
8635.5 ? 1.0+£03
8667.7 Felr 2344.2 26975 63+03
8778.1 Felr 2374.5 26968 3.7+03
8811.5 Felr 2382.8 2.6980 10.5+0.3
9242.7 Sitr 1808.0 41121 24+03

A.3. GRB090102

Wavelength Feature Z EW
3741.5 Su+Siim 1259.9  1.9696 3.1+0.7
3755.7 Sir* 1264.74 1.9695 1.5+0.4
3793.1 C11277.25 1.9697 3.1+07
3865.9 Or 1302.17 1.9689  47+x05
3874.1 Sitr 1304.37 1.9701

3887.5 Simr*1309.28 1.9692 1.2+03
3964.3 CIr 1334.53 1.9706  42+0.3
4138.5 Sirv 1393.76 1.9693 1.4+0.2
4165.4 Sitv 1402.77 1.9694 1.3+£0.2
4434.0 ? 1.7£03
4532.5 Sirr 1526.71 1.9688 1.88 +0.14
4553.0 Simr* 1533.43 1.9692 1.13+£0.13
4600. Civ+CIv 1549 31+£02
47754 Felr 1608.45 1.9690 1.74 £0.15
4786.2 Ferr 1611.20 1.9706  0.90 +£0.19
4811.6 ? 0.84 +£0.19
4960.5 Al 1670.79 1.9690 2.34 +£0.13
5053.9 ? 0.51 £0.11
5367.9 Sirr 1808.01 1.9690 0.76 £ 0.12
5506.8 Al 1854.72 1.9691 0.87 £0.12
5530.8 Almr 1862.79 1.9691 0.51 £0.13
6015.7 Zn11 2026.14 1.9690 0.85 +0.15
6105.5 Crl1 2056.26 1.9692 0.76 £ 0.14
6123.2 Crii+Znir 2062.4  1.9690 0.72 +0.14
6133.9 Crl1 2066.16 1.9687 0.43 £0.15
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The spectrum presented here (see Table A.3 and Fig. A.3) has
only been published in a GCN (de Ugarte Postigo et al. 2009d).
The spectrum an exposure time of 2700s and was obtained with
AIFOSC at the 2.5 m NOT telescope. From the absorption fea-
tures we determine a redshift of 1.548 + 0.001.

A.4. GRB090516

The spectrum of GRB 090516 (see Table A.4 and Fig. A.4) has,
until now, only been reported in GCNs (de Ugarte Postigo et al.
2009b,¢). It was obtained with FORS2 at the VLT with the
300 V grism and an exposure of 2 x 1800 s. From the absorption
features we determine a redshift of 4.111 + 0.006. By fitting the
Lya absorption we determine a neutral hydrogen column density
of log (Ng;/ecm™2) = 21.70 + 0.10.
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Table A.S. GRB 090529. Observed-frame equivalent widths. z = 2.624.

Wavelength Feature Z EW
5532.3 Sim1526.7 26237 7.0+1.6
5611.7 CIv1548+1550 6.2+ 1.7

A.5. GRB090519

This spectrum has been only reported in a GCN circular (Thone
et al. 2009). It was obtained with FORS2 at the VLT and
grism 300 V with an exposure time of 3 x 1800 s. The spectrum
has low signal to noise ratio and shows no absorption features
(see Fig. A.5) and the redshift is determined by the identifica-
tion of the Lyman break as well as broad absorptions of Ly«
and Lyg.

A.6. GRB 090529

These data have been only reported in a GCN (Malesani et al.
2009). The spectrum is a 2 X 1800 s exposure obtained using
FORS2 with grism 300 V at the VLT. From a limited amount of
absorption features (see Table A.5 and Fig. A.6) we determine a
redshift of 2.624 + 0.003.

A.7. GRB090812

The data presented here (see Table A.6 and Fig. A.7) have pre-
viously been published only in the GCN circulars (de Ugarte
Postigo et al. 2009a). It is a FORS2 spectrum from the VLT,
which shows multiple absorption features at a common red-
shift of 2.4521 + 0.0010. From the Ly« absorption we deter-
mine a neutral hydrogen column density of log (Ny;/cm™2) =
22.30 £ 0.10.

A.8. GRB090814A

This spectrum (see Table A.7 and Fig. A.8) has only been pub-
lished in a GCN circular (Jakobsson et al. 2009). It was obtained
with FORS2 at VLT. Using a limited amount of absorption fea-
tures we determine a redshift of 0.694 + 0.002.

Table A.6. GRB 090812. Observed-frame equivalent widths. z = 2.452.

Wavelength Feature z EW

4351.3 Sitr 1260 .42 24523 383 +0.83
4365.2 Sir* 1264.74 24515  2.03 £0.50
4499.2 O1+Si1r 1303 7.59 £ 1.02
4608.3 Ci 1334.53 24531  6.71 £0.72
4811.9 Sitv 1393.76 24525 1.87+044
4840.5 Sitv 1402.77 24507 197 +£043
5270.2 Sir 1526.71 24520 2.62+045
5292.3 Simr* 1533.43 24513 0.96 +£0.28
5348.3 Crv+Crv 1549 3.85+044
5414.1 ? 1.48 +0.46
5483.9 ? 0.88 +0.26
5554.4 Ferr 1608.45 24533  6.44 £0.58
5596.7 Ferr* 1621.69 24512 1.29+£0.33
5638.7 Ferr*? 1.73 £0.45
5722.5 CI 1656.93 24537 142 +0.37
5767.6 Allr 1670.79 24520  3.88 +£0.28
6241.1 S1+Si 111808 292 +0.42
6276.3 Simr* 1817.45 24534  1.10 £0.37
6315.7 Mgl 1827.94? 1.05 £0.35
6402.2 Al 1854.72 24518  1.95+0.26
6434.3 Al 1862.79 24541 258 £047
6880.7 ? 431 +£0.47
9663.6 Zni+Cril+Mgl 2026 1.89 +0.26
7096.8 Cr11 2056.26 24513 099 £0.27
7118.8 Crli+ZnII 2062 1.74 £ 0.23
71314 CrlI 2066.16 24515  0.76 £0.24
7766.2 Felr 2249.88 24518  1.88 +£0.39
7805.1 Felr 2260.78 24524  1.84 +£0.32
7998.0 NiIr 2316.70 24523 147 £0.46
8051.7 Ferlr* 2333.52 24505 1.86 £0.33
8072.8 Ferr* 2338.72 24518  1.16 £0.33
8092.6 Fer 2344.21 24522  3.58 £0.30
8108.0 Ferr* 2349.02 24517  0.85+0.23
8147.4 Ferr* 2359.83 24525 146 £0.28
8168.7 Felr* 2365.55 24532 1.42+£045
8196.9 Fel1 2374.46 24521  4.09 +£0.34
8224.8 Ferr 2382.77 24518  6.24 +£0.36
8246.7 Ferr* 2389.36 24514 0.85+0.28
8270.8 Ferr* 2396.15 24517 170 £0.34
8284.7 Ferr* 2399.98 24520  1.55+0.49
8304.7 Ferlr* 2405.16 24529  3.80+0.46
8325.8 Ferr* 2411.25 24529  3.14+042
8697.3 ? 2.18 £0.48
8930.5 Fell 2586.49 24527 427 +0.74
8952.7 MnII 2594.36 24508  2.60 +0.63
8975.3 Fell 2600.23 24517 557 +048
8997.7 MniIr+Felr* 2607 2.76 £ 0.50
9018.1 Fenr*+Fell* 2612 232 +£048
9078.6 Ferlr* 2629.08 24531  5.02+0.71
9280.6 ? 1.82 £ 0.51
9347.5 ? 10.10 + 1.38

Table A.7. GRBO090814A. Observed-frame equivalent widths.
7z =0.694.

Wavelength Feature z EW

4744.6 Mgii+Mgir 2800 7.08 +1.34
6666.1 CaIr 3934.78 0.6941 427 +1.13
6720.7 Cart 3969.59 0.6930 458 +1.22
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Wavelength (A)

Fig. A.1. Spectrum of GRB 081007. The GRB afterglow is the central trace in the image.
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Fig. A.2. Spectrum of GRB 081008. The GRB afterglow is the central trace in the image.
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Fig. A.3. Spectrum of GRB 090102.
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Fig. A.4. Spectrum of GRB 090516. The GRB afterglow is the bright trace in the centre of the image.

GRB090519 e e e . . . | !
| l l ‘
i o
H!‘ll Il l\’ \! I|\|“‘l H “ | Il \l “‘I Wlﬂ | "‘ j ‘!i ‘ “’ i ll‘ll ‘!! Hl Ii ! M i‘ I1lK E
4000 5000 6000 7000 800 9000 7

Wavelength (A)

Fig. A.5. Spectrum of GRB 090519. The GRB afterglow is the weak trace in the centre of the image.

lm' RBOQO529

4000 5000 6000 7000 8000 9000
Wavelength (A)

Fig. A.6. Spectrum of GRB 090529. The GRB afterglow is the central trace in the image.

All, page 21 of 35


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219894&pdf_id=25
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219894&pdf_id=26
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219894&pdf_id=27

A&A 548, A1l (2012)

GRB090812

o [k le el el | e I lie @l ee

.—_‘_
1111

4000 5000 6000 7000 8000 9000
Wavelength (A)

Fig. A.7. Spectrum of GRB 090812. The GRB afterglow is the central trace in the image.

- GRB090814

[ ‘ @

Wavelength (A)

Fig. A.8. Spectrum of GRB 090814A. The GRB afterglow is the central trace in the image.

All, page 22 of 35


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219894&pdf_id=28
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219894&pdf_id=29

A. de Ugarte Postigo et al.: The distribution of equivalent widths in long GRBafterglow spectra
Appendix B: Line fitting

Figure B.1 shows the distribution of the EWs of each the lines. The thick black line histogram indicates only detections, whereas
the dotted histogram includes also the limits. The red line is the best fit of the complete histogram with a lognormal distribution
and the dashed blue line (when available) is a physical fit as described in Sect. 3.4. In a limited amount of features we also show in
green a histogram of EWs in a sample of damped Lyman-« systems (see Sect. 3.3).
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Fig. B.1. EW distribution of the different spectral features. The thick black line histogram indicates only detections, whereas the dotted histogram
includes also the limits. The red line is the best fit of the complete histogram with a lognormal distribution. In some cases there is a dashed blue
line for the physical fit, as described in Sect. 3.4. In green we show a histogram of EWSs, and its correspondent lognormal fit, of a sample of DLA
systems (see Sect. 3.3) for a subsample of lines.
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Appendix C: Catalogue of EW diagrams

Figure C.1 shows a catalogue of all the GRBs, where we show the

distributions calculated in this work.

A&A 548, Al1 (2012)
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Fig. C.1. Catalogue of GRBs and their spectral features. The GRB measurements are shown in red, while the average values and standard deviations
of the fits for the complete sample are drawn in red. The plots also indicate the redshift of the GRB and the LSP. The shaded regions indicate

regions of the spectra where there is no data.
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Fig. C.1. continued.
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