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ABSTRACT
The distribution of fitness effects of new mutations is a fundamental parameter in genetics. Here we

present a new method by which the distribution can be estimated. The method is fairly robust to changes
in population size and admixture, and it can be corrected for any residual effects if a model of the
demography is available. We apply the method to extensively sampled single-nucleotide polymorphism
data from humans and estimate the distribution of fitness effects for amino acid changing mutations. We
show that a gamma distribution with a shape parameter of 0.23 provides a good fit to the data and we
estimate that .50% of mutations are likely to have mild effects, such that they reduce fitness by between
one one-thousandth and one-tenth. We also infer that ,15% of new mutations are likely to have strongly
deleterious effects. We estimate that on average a nonsynonymous mutation reduces fitness by a few
percent and that the average strength of selection acting against a nonsynonymous polymorphism is !9 3
10"5. We argue that the relaxation of natural selection due to modern medicine and reduced variance in
family size is not likely to lead to a rapid decline in genetic quality, but that it will be very difficult to locate
most of the genes involved in complex genetic diseases.

IT has been estimated that each of us receives more
than one harmful amino acid mutation each gen-

eration (Eyre-Walker and Keightley 1999). But how
harmful are these mutations on average, and what pro-
portion of mutations are weakly, mildly, and strongly
deleterious? In short, what is the distribution of fitness
effects of new mutations? This question is central to un-
derstanding several topics in human biology, including
the genetic basis of disease and the likely consequences
of relaxing natural selection through modern medicine
and better living standards (Muller 1950; Crow 1997;
Lynch et al. 1999). Furthermore, the distribution of
fitness effects is central to our understanding of many
other problems in genetics and evolution, including
the maintenance of genetic variation (Charlesworth
et al. 1993), the long-term survival of small populations
(Lande 1994; Lynch et al. 1995), and the basis of the
molecular clock (Ohta 1977).

Although the distribution of fitness effects is an im-
portant parameter in genetics and evolutionary biology,
relatively little is known with certainty about its form.

Mutagenesis and mutation-accumulation experiments
suggest that the distribution of fitness effects is highly
leptokurtic, such that most mutations appear to have
effects of ,1% (Keightley 1994, 1996; Davies et al.
1999; Vassilieva et al. 2000; Estes et al. 2004). This has
been broadly corroborated by studies of DNA sequence
evolution, although the precise form of the distribu-
tion inferred by different studies varies considerably.
Piganeau and Eyre-Walker (2003) and Loewe et al.
(2006) found that a gamma distribution, with a shape
parameter of less than one, was consistent with non-
synonymous data from animal mitochondria and Dro-
sophila, respectively, whereas Nielsen and Yang (2003)
and Sawyer et al. (2002) showed that a normal dis-
tribution was consistent with similar data.
These studies were based on different methods, each

with its own advantages and disadvantages. However,
they all share two limitations. First, they are based on
relatively little information. Generally these methods
use either divergence data or divergence data in associ-
ation with a single statistic summarizing polymorphism
data, which limits the power of these analyses. Second,
the use of divergence data introduces the problem of
adaptive substitutions, whichmay influence estimates of
the distribution of fitness effects (although note that this
should not be a problem for the method of Loewe et al.
2006, which estimates the proportion of adaptive substi-
tutions). Furthermore, estimates basedona combination
of divergence and polymorphismdatamay be affected by
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differences in effective population sizes associated with
the polymorphism and divergence data, respectively.

Despite these potential limitations, previous work has
progressed toward a more precise quantification of the
distribution of fitness effects in humans. Fay et al. (2001)
used human single-nucleotide polymorphism data to
infer that!20%of amino acid changingmutations were
neutral in humans, with a further !20% of the remain-
ing deleterious mutations being sufficiently weakly
selected to contribute to polymorphism. Eyre-Walker
et al. (2002; see also Yampolsky et al. 2005) used an
estimate of the effective population size to estimate that
.70% of mutations in humans are deleterious with
strengths of selection .10"4. The distribution of fitness
effects for nonsynonymous mutations that are strongly
deleterious is much harder to estimate in humans be-
cause these mutations will only very rarely be seen. On
the basis of data on mutations responsible for Mende-
lian disease, Yampolskyet al. (2005) have suggested that
!25% of mutations have effects of .1%.

The aim of this work is twofold: first to develop a
method by which the distribution of fitness effects can
be inferred, overcoming some of the limitations of pre-
vious methods by using polymorphism data alone and
incorporating information from the distribution of al-
lele frequencies, and second to give a more complete
estimate of the distribution of fitness effects of non-
synonymous mutations in humans.

MATERIALS AND METHODS

Method: Under a standard population genetic model it is
possible to write down expressions for the number of single-
nucleotide polymorphisms (SNPs) we expect to observe in j
out of n alleles at both selected (e.g., nonsynonymous) sites
Pn( j) and nonselected (e.g., intron) sites Pi( j):

Pnð jÞ ¼ 2NeurjLn
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u is the nucleotidemutation rate,Ne is the effective population
size, and Ln and Li are the numbers of nonsynonymous and
intron sites, respectively. H(Ne, s, x) is the time that a new
semidominant deleterious mutation of heterozygous selec-
tion strength s spends between x and x 1 dx (Wright 1938)
and Q(n, j, x) is the probability of observing a mutation at

frequency x in the total population in j of n sequences. We do
not attempt to infer the direction of mutations, so a SNP
segregating at a frequency of x is equivalent to a SNP at a
frequency of 1 " x. We do not orientate SNPs for a number of
reasons: (i) the method works well without orientating them,
(ii) the method is more general since an outgroup is not
needed, and (iii) even with a close outgroup, some SNPs are
likely to be misorientated. D(u, l, s) is the distribution of fit-
ness effects that we assume here to be a gamma distribution,

Dðu; l; sÞ ¼ ulsl"1e"us

GðlÞ ; ð5Þ

where l is the shape parameter and u is a parameter that is
related to the mean of the distribution, g ¼ Nes ¼ l=u.
Goodness-of-fit tests suggest that the gamma distribution is a
satisfactory fit to the data (see results). We assume that all
selected mutations are deleterious, although selection can be
sufficiently weak that they are effectively neutral.

The rj parameters take into account some of the effects of
demographic change. We allow each frequency category to
have its own effectivemutation rate urj, where rj is themutation
rate of the jth frequency category relative to the mutation rate
for singletons. For example, under population size expansion
the allele frequency distribution of neutral mutations is
skewed toward rare alleles so the rj values are less than one.
In essence we are assuming that demography affects the allele
frequency distribution of both neutral and selected mutations
to a similar extent. In reality this is not the case: under
population size expansion, for example, the allele frequency
distribution of selected mutations is likely to be skewed more
dramatically than that of neutral mutations. However, simu-
lations (see below) suggest that the approximation works well
and we introduce a method by which any residual bias can be
corrected if the demography of the population being studied
is known.

If we assume free recombination between sites, we can write
down the likelihood of observing the data for a single gene,
given the parameters of the model, because the numbers of
SNPs in each frequency category are Poisson distributed,

Z ¼
Yk

j¼1

X ðPið jÞ; P̂ið jÞÞX ðPnð jÞ; P̂nð jÞÞ; ð6Þ

where

X ðm; xÞ ¼ e"mmx

x!

and k is the number of frequency categories. The likelihood
for multiple genes is obtained by multiplying the likelihoods
of individual genes.
Statistical analysis: Since the model for multiple genes is

parameter rich, we estimated the parameters of our model
using a Monte Carlo Markov chain running the Metropolis–
Hastings algorithm; this is Bayesian inference with a uniform
prior. We allowed each gene to have its own Ne and u values
with the effective mutation rate parameters, rj, and parameters
of the gamma distribution, l and g, shared between genes. In
effect we are assuming that demography affects all loci to a
similar extent and we are estimating the overall distribution of
fitness effects across loci.

All parameters, except the mutation rates, were given
uniform priors with large bounds. The mutation rates were
constrained to vary by twofold around the genomic average.
This is in linewith recent estimates of the variation in themuta-
tion rate that is observed in the human genome (Webster
et al. 2004). We needed to place bounds on the mutation rate
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because our data include genes that had some intron SNPs but
no nonsynonymous SNPs. The pattern in such genes can be
explained by any combination ofNe and u so long asNe!s is very
large; this means that Ne can become infinitely large and u
infinitely small. Each chain was run for a burn in of 1,000,000
steps before being sampled for a further 50,000,000 steps.
Convergence and mixing were checked graphically.

Data: The data were downloaded from the Environmental
Genome Project (EGP) website (http://egp.gs.Washington.
edu) (Livingston et al. 2004). These comprise 320 autosomal
genes resequenced in 90 individuals. Due to technical prob-
lems, on average only 170 of the 180 alleles were successfully
resolved. However, all sites were subsequently treated as being
from a sample of 170 alleles—i.e., the allele frequency was
multiplied by 170 to yield an estimated number of alleles
containing the SNP. Calculations (not shown) suggest that this
is a good approximation, and one that is necessary tomake the
method computationally tractable. Although it is possible to
calculate the likelihood of the data for every frequency
category individually, this is very time consuming. We there-
fore chose to group frequency classes according to the
following scheme: we considered singletons by themselves
and then grouped SNPs that were present in 2–3, 4–7, 8–15,
16–31, and 32–85 alleles.

The number of nonsynonymous sites was calculated assum-
ing a transition:transversion ratio of 3:1: i.e.,Ln¼L01 2L2/51
L3/3, where Lx is the number of x-fold degenerate sites. CpG
sites experience a 10-fold highermutation rate than other sites
(Sved and Bird 1990). We therefore calculated effective
numbers of intron and nonsynonymous sites by multiplying
CpG sites by 10: i.e., Ln ¼ Ln(non-CpG) 1 10 & Ln(CpG). The
analysis was also run excluding CpG sites with similar results
[b ¼ 0.21 (0.14–0.27), g ¼ 487 (145, 1949)].

Simulations: Simulations were performed to test the behav-
ior of themethod. Forward simulations had to be used because
there is currently no other way in which to simulate population
size changes with selection. The simulation was performed
using a pseudo-sampling variance procedure (Kimura 1979)
in which random genetic drift was simulated by generating
numbers from a binomial distribution. A haploid population
subject to mutation, selection, and genetic drift was simulated
according to three demographic models. In the first model we
follow the scheme set out by Adams and Hudson (2004): the
population was allowed to equilibrate for 4N0 generations
before being reduced to a size of fintN0 and then allowed to
grow exponentially to a size of frecN0 over the course of 2tN0

generations. In each simulation 500,000 selected and neutral
sites were independently simulated—i.e., free recombination
was assumed. The mutation rate was selected such that
2frecN0u ¼ 0.005, which prevents violation of the infinite-sites
assumption, and the parameters of the gamma distribution
were set at l ¼ 0.23, g ¼ 425, the values of the gamma dis-
tribution estimated from the data. We simulated data with a
variety of different demographic parameter values. In the
secondmodel we simulated amodel of population admixture.
The population was allowed to equilibrate for 4N0 generations
before being split into two equal sized populations of size
N0/2, which were then allowed to evolve independently for
2tN0 generations before being remixed for the generation
in which sampling takes place. Finally, we simulated a popula-
tion according to the demographic model of Williamson
et al. (2005) since they estimated demographic parameters
for the data that we have used here. In this model the popula-
tion was allowed to equilibrate for 4N0 generations before
being expanded instantly to a size of frecN0, where it remained
for another 2tN0 generations until sampled (please note that
we use a different nomenclature from that of Williamson
et al.).

RESULTS

Description: The method we have developed is con-
ceptually simple. Using standard population genetic
theory it is possible to write down expressions for the
number of polymorphisms we expect to observe segre-
gating at a particular frequency in a sample of DNA
sequences. We can write these expressions both for neu-
tral mutations and for mutations that are subject to
selection and in which the strength of selection is drawn
fromsomedistribution.Hereweassumethatthedistribu-
tion of fitness effects can be described by a gamma
distribution. This is a flexible monotonic distribution
that can take a variety of shapes. It is governed by two
parameters, a shape parameter (l) and the mean of the
distribution (g). The method allows the mutation rate
and effective population size to differ between loci and it
can also accommodate demographic change (e.g., pop-
ulation size expansion and contraction).
Themethod requires that there are two types of site: a

set of sites at which all mutations are neutral and sites at
which some of themutations are subject to selection.We
assume here that mutations in introns are neutral and
estimate the distribution of fitness effects for mutations
that change an amino acid. Although some parts of
introns do appear to be subject to selection in some or-
ganisms (Shabalina and Kondrashov 1999; Bergman
and Kreitman 2001; Keightley and Gaffney 2003;
Andolfatto 2005; Haddrill et al. 2005), there is little
evidence of this in humans (Keightley et al. 2005).
We have applied our method to 320 genes sequenced

in humans as part of the Environmental Genome Project
(Livingston et al. 2004). These genes are thought to be
involved in our interaction with our environment, so
they are not a random selection of genes, but they
represent by far the largest data set of human genes for
which there are carefully sampled SNPs. The depth of
sampling is particularly useful, since mutations of quite
strong effect have some chance of being sampled, and
hence we have more information about the distribution
of fitness effects for a broader spectrum of selection
coefficients. In total there are 965 nonsynonymous and
30,065 intron SNPs in the data. A summary of the data is
shown in Figure 1. In line with previous results, non-
synonymous SNPs tend to segregate at lower frequen-
cies than intron SNPs (Cargill et al. 1999), which is
consistent with some of them being deleterious. Intron
SNPs are also skewed toward rare variants relative to the
expectation for neutral mutations in an equilibrium
population; this pattern is consistent with selection,
population size expansion, or admixture. Since there is
little evidence that intron sites, other than those involved
in splicing control, are subject to selection in humans
(Keightley et al. 2005) we assume that this skew is due to
population size expansion and/or admixture.
Parameter estimation: Using ourmethod we estimate

the shape parameter of the gamma distribution to be
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0.23 with 95% credibility intervals of 0.19–0.27 and the
mean of the distribution to be 425 (225, 766) (Figure 2).
Note that the mean of the distribution is not necessarily
the same as the mean strength of selection, although it
is very close in this case. This is because mutations
cannot be more than lethal, so s cannot be .1. To cal-
culate the mean strength of selection it is necessary to
know the effective population size and then to condense
all the probability density above s ¼ 1 at 1. If we assume
thatNe¼ 10,000 inhumans ( Jorde et al. 1997) thenNes¼
425 and !s ¼ 4.3%.

Goodness of fit: To assess whether the gamma
distribution fits the data satisfactorily, we performed a
goodness-of-fit test by summing the data across genes
and finding the maximum-likelihood estimates of the
parameters of the model. The maximum-likelihood
values were found by simulated annealing (Kirkpatrick
et al. 1983). Such maximum-likelihood analysis is not
practical on the unsummed data since the model has too
many parameters. The maximum-likelihood estimates
(l ¼ 0.24, g ¼ 333) are similar to the Bayesian estimates
for the summed [l ¼ 0.23 (0.17, 0.28), g ¼ 392 (180,
1149)] and the unsummed data (see above). The model
yields a good fit to the data (x2 ¼ 4.82, d.f.¼ 3, P¼ 0.19).

Simulations: Past demographic changes and admix-
ture present a potential problem for any method that
seeks to infer selection from the allele frequency dis-
tribution. Demographic effects can mimic the action of
natural selection: for example, population size expan-
sion will skew the allele frequency distribution toward
rare alleles, which is also the pattern expected if purify-
ing selection were acting on slightly deleterious muta-
tions. This could be a problem in the current analysis
since human populations have had a complex demo-
graphic history, with African populations showing evi-
dence of expansion, and European populations showing
evidence of a bottleneck followed by expansion (Adams
and Hudson 2004). Furthermore, population mixture
can also skew the allele frequency and the EGP data are

sampled from the current American population, which is
a mix of many populations.

Ideally we would like to simultaneously estimate the
demography of our population and the distribution of
fitness effects. Although progress is being made in this
direction (Williamson et al. 2005), current models are
quite simple and it is not clear how easy it will be to
extend themethods of Williamson et al. from estimating
a single selection coefficient, as they have done, to
estimating a distribution of effects. Instead, we have
chosen to test the robustness of our method by simulat-
ing data under a number of demographic models that
involve population size expansion, bottlenecks, or ad-
mixture. We have also investigated our method under a
demographic model estimated from other human data
by Adams and Hudson (2004) and from this data set by
Williamson et al. (2005).

Our method generally estimates the shape parameter
with little bias under all demographic models (Table 1).
However, the mean of the distribution is overestimated
when there has been a sharp increase in population size;
this overestimation can be very large if the increase in
population size has been dramatic. The reason for this
is as follows. In an expanding population, deleterious
mutations experience higher effective population sizes
than neutral mutations because they tend to be younger

Figure 2.—The distribution of fitness effects of deleterious
mutations represented as either (a) a continuous or (b) a dis-
crete function. The dashed lines in a and the solid lines in b
represent the 95% credibility intervals. (a) A transformation
of the gamma distribution to a log-scale. Note also the differ-
ence in the minimum values for a and b.

Figure 1.—The allele frequency distribution of nonsynon-
ymous (solid bars) and intron (shaded bars) SNPs relative to
the values expected for neutral mutations in an equilibrium
population (open bars). Alleles have been grouped into the
classes used in the analysis. Singletons were treated by them-
selves and then SNPs that were present in 2–3, 4–7, 8–15, 16–
31, and 32–85 alleles were grouped together.
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on average (Otto and Whitlock 1997). As a conse-
quence, there are fewer deleterious mutations segregat-
ing than one would expect given the apparent effective
population size estimated from neutral variation, and
the mean strength of selection acting on deleterious
mutations thus appears to be higher. In contrast to pop-
ulation size expansion, bottlenecks and admixture have
relatively little effect on the parameter estimates.

Simulations conducted under demographic models
with parameters estimated from other human data sug-
gest that the average strength of selection has possibly
been overestimated by a few fold (Table 1). If we take the
demographic model of Williamson et al. (2005) as the
most appropriate, since this was estimated from the EGP
data, then it seems that the mean strength of selection

has been overestimated by approximately fourfold and
the shape parameter slightly underestimated.
Correcting for demography: If we have a good demo-

graphic model then it should be possible to remove
any biases completely from our estimation using stan-
dard bias correction methods; if we find that the mean
strength of selection is generally overestimated under
the demographic model, by say threefold, then wemight
guess that the true value of the mean is threefold lower
thanwe estimate from the data.We formalize this strategy
as follows. First, estimate the parameters of the distri-
bution of fitness effects using our method; let these esti-
mates be g0 and l0. Second, estimate the demographic
model using the neutral data. Third, simulate data un-
der the demographic model using g0 and l0 and then

TABLE 1

The effect of demography on the parameter estimates

fint frec t l g

Equilibrium
1 1 0 0.24 (0.22, 0.25) 308 (216, 440)

Expansion
1 2 0.25 0.21 (0.18, 0.25) 1,114 (420, 2,687)

4 0.20 (0.17, 0.24) 1,890 (738, 4,780)
8 0.20 (0.19, 0.22) 2,436 (1,766, 3,436)

16 0.16 (0.12, 0.22) 36,900 (2,450, 187,000)
1 2 0.5 0.20 (0.17, 0.22) 1,570 (783, 3,190)

4 0.21 (0.18, 0.21) 2,180 (1,770, 3,130)
8 0.16 (0.12, 0.20) 27,000 (2,930, 177,000)

16 0.15 (0.12, 0.19) 64,200 (6,130, 218,000)
1 2 1 0.22 (0.20, 0.25) 637 (376, 1,070)

4 0.20 (0.17, 0.22) 2,750 (1,090, 6,760)
8 0.19 (0.15, 0.23) 8,630 (1,910, 30,700)

16 0.19 (0.12, 0.27) 26,200 (1,090, 158,000)

Bottleneck
0.01 1 0.01 0.24 (0.20, 0.29) 156 (67, 347)

0.1 0.19 (0.15, 0.24) 540 (197, 1,450)
1 0.18 (0.16, 0.21) 628 (292, 1,380)

0.1 1 0.01 0.20 (0.17, 0.21) 474 (228, 995)
0.1 0.22 (0.19, 0.25) 267 (152, 469)
1 0.19 (0.16, 0.21) 643 (304, 1,351)

Admixture
0.125 0.19 (0.16, 0.21) 981 (480, 1,968)
0.25 0.19 (0.16, 0.21) 1,190 (576, 2,620)
0.50 0.20 (0.18, 0.23) 569 (307, 971)
1.0 0.22 (0.20, 0.24) 421 (261, 675)

Adams and Hudson
African–Hausa 1 3.1 6.1 0.22 (0.20, 0.25) 453 (370, 899)
African–American 1 1.9 0.27 0.21 (0.19, 0.23) 841 (523, 1,231)
European 0.19 2.0 0.035 0.22 (0.20, 0.25) 356 (221, 2,191)

Williamson et al.
1 6.25 0.028 0.19 (0.17, 0.21) 1,600 (968, 2,765)

Data were simulated under a variety of different models assuming the shape parameter of the distribution was 0.23 and the
mean was 425.
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reestimate the parameters of the distribution; let these
estimates be ge1 and le1. Now let our corrected estimates
of g and l be

gi ¼
g0

geði"1Þ
gði"1Þ

li ¼
l0

leði"1Þ
lði"1Þ: ð7Þ

We repeat the process until gi ¼ gi"1 and li ¼ li"1.
As an example consider the demographic model of
Williamson et al. (2005), which was estimated using the
neutral variation in the EGP data set. When we simu-
lated data under thismodel using g0¼ 425 and l0¼ 0.23
and estimated the parameters of the gamma distribu-
tion we obtained ge1 ¼ 1600 and le1 ¼ 0.19 (Table 1).
Substituting these values into Equations 7, our cor-
rected estimates of g and l are g1 ¼ 425 &425/1600 ¼
113 and l1¼ 0.23 & 0.23/0.19¼ 0.28. If we then simulate
data using these parameter estimates for the gamma
distribution under the Williamson et al. model and re-
estimate the parameters of the gamma distribution we
get ge2 ¼ 342 (250, 515) and le2 ¼ 0.22 (0.20, 0.23).
These values are similar to g0 and b0, demonstrating that
we have almost entirely corrected our estimates for the
demographic model; i.e., we have found the values of g
and l, which when simulated under the demographic
model yield estimated values of g and l that are similar to
those we estimated from the EGP data.

Unfortunately, themodel of Williamson et al. (2005)
does not fit the frequency distribution of either neutral
or selected SNPs very well (goodness-of-fit tests yield
x2-values of 113 and 13 for neutral and selected dis-
tributions, respectively, P , 0.0001 and P ¼ 0.0234) so
we cannot currently conclude that the true values of
l and g are 0.28 and 113, respectively. To correct our
estimates properly we need a better demographic
model. However, this analysis suggests that the shape
parameter is likely to be fairly accurate and the mean
strength of selection overestimated by a few fold.

DISCUSSION

We have used human SNP data to estimate the dis-
tribution of fitness effects of mutations that change an
amino acid in humans. Assuming that the distribution
can be described by a gamma distribution we estimate
the shape of this distribution to be 0.23. The distribu-
tion is well estimated with small credibility intervals for
each class of mutations (Figure 2) and a goodness-of-fit
test shows that the model provides an adequate de-
scription of the data. We infer that the average strength
of selection acting against a nonsynonymousmutation is
Nes ¼ 425 or !s ¼ 4.3% if we assume an effective pop-
ulation size of 10,000 individuals ( Jorde et al. 1997).
Under this distribution we infer that 19% of mutations
are effectively neutral (i.e., have Nes , 1) and that 14%

of mutations are slightly deleterious (1 , Nes , 10),
such that they segregate in the population at moderate
frequencies, but never become fixed. The remainder of
the mutations are strongly deleterious such that they
contribute little to polymorphism or divergence. We
infer that 23, 31, and 13% have effects of Nes ¼ 10–100,
100–1000, and 1000–10,000, respectively. If we use the
values of l and g corrected using the demographic
model of Williamson et al. (2005) the proportions
are fairly similar: 20% (Nes , 1), 19%, 32%, 28%, and
1% (1000 , Nes , 10,000), the principle difference be-
ing the lack of amino acid mutations with very strongly
deleterious effects.

However, it should be noted that we have no direct
information about the distribution of fitness effects of
mutations with fitness effects of Nes . 100 or Nes , 1.
This is because mutations with effects .100 have a very
small probability (,5% that of a neutral mutation) of
being detected in a sample of 170 chromosomes, and
mutations with selection strengths of ,1 are all effec-
tively neutral. Our estimate of the distribution beyond
these limits is therefore a projection based on the as-
sumption that the distribution is well described by a
gamma distribution. To investigate whether this pro-
jection is reasonable we reran the analysis, allowing a
proportion of mutations, d, to be strongly deleterious;
this can be achieved bymultiplyingEquation 1 by (1" d),
with d being another parameter in the model that is
estimated. Thismeans that the gamma distribution is no
longer constrained to allocate some of its density to
strongly deleterious mutations and could therefore
take a very different shape and have a different mean
if needed; in this analysis the gamma distribution is
estimated from the SNPs, not from the nonpolymorphic
sites. Under this model the parameter estimates are l¼
0.23 (0.18, 0.29), g ¼ 240 (47, 584), and d ¼ 0.10 (0.29,
0.01), which yields a distribution that is very similar to
the one estimated without the d-parameter; the distri-
butions look almost identical for Nes , 100 and have a
very similar proportion of mutations .Nes ¼ 100 (0.40
and 0.47 for models with and without d, respectively).
This suggests that the gamma distribution is a reason-
able approximation, since the gamma distribution in-
ferred from the polymorphism data alone is similar to
that inferred with all the data (i.e., including sites that
have no polymorphism) and predicts a similar number
of strongly deleterious mutations.

Previous results: The distribution of fitness effects es-
timated here is quite similar to that estimated for hu-
man mitochondrial data using a different method (l ¼
0.39, g ¼ 700) (Piganeau and Eyre-Walker 2003). It
is also quite similar to the distribution estimated by
Yampolsky et al. (2005), using a variety of different ap-
proaches. If we assume that Ne ¼ 10,000 in humans
( Jorde et al. 1997) we infer from our estimate of the
distribution that !11% of mutations have an effect of
,10"5; 8%, 10"5–10"4; 37%, 10"4–10"2; and 44%,.10"2.
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The numbers given by Yampolsky et al. (2005) are 12,
14, 49, and 25%, respectively. However, we may have
overestimated themean strength of selection; if the true
distribution is actually l ¼ 0.28 and g ¼ 113, as we
estimate using the demographic model of Williamson
et al. (2005), then the proportions are 10, 10, 51, and
29%, which agree very closely with those of Yampolsky
et al. (2005).

However, the results are not in such good agreement
with those of Eyre-Walker et al. (2002), who inferred
that 16%ofmutations had effects,10"6; 15%, 23 10"5–
23 10"6; and 69%,.23 10"5; the corresponding num-
bers from our analysis are 7, 7, and 86%. The dis-
crepancy may be due to adaptive evolution, which will
tend to increase the apparent proportion of neutral
mutations, when divergence data are used to infer the
distribution, and to the fact that we may have over-
estimated the mean strength of selection.

The distribution we have estimated for humans is also
consistent with the results of mutation-accumulation and
mutagenesis experiments in other organisms (Keightley
1994, 1996; Davies et al. 1999; Vassilieva et al. 2000;
Estes et al. 2004). These have suggested that most mu-
tations have small effects and that the mean strength of
selection on mutations is between a few percent and a
few tens of percent (Lynch et al. 1999; Charlesworth
et al. 2004; Fry 2004). However, it is important to ap-
preciate that many of the estimates from the mutation-
accumulation andmutagenesis experiments were derived
under the assumption that all mutations have the same
effect; this means that the mean strength of selection is
overestimated. Furthermore, these experiments generally
measure the effects of all types ofmutationoccurring in all
parts of the genome, whereas we have estimated themean
strength of selection against point mutations that alter an
amino acid. And finally, it should be emphasized that our
estimate of the mean strength of selection depends
heavily on the shape of the part of the distribution for
which we have no direct information (i.e., for Nes. 100)
and that it might have been overestimated.

Mean strength of selection acting on polymorphisms:
Although our estimate of themean strength of selection
must be treated with caution, we can estimate the mean
strength of selection acting upon segregating polymor-
phisms with much better accuracy since this is the part
of the distribution for which we have direct informa-
tion. To be precise we estimate the average strength of
selection acting upon a randomly sampled nonsynon-
ymous polymorphism. This quantity can be calculated
as

Nesp ¼
Ð 0
‘

Ð 1
0 Dðc; l; sÞH ðNe; s; xÞxNes & dx & dsÐ 0

‘

Ð 1
0 Dðc; l; sÞH ðNe; s; xÞx & dx & ds

ð8Þ

For the EGP data we estimate Nesp ¼ 0.85, where sp is
the strength of selection acting against nonsynonymous
polymorphisms. This is in contrast to the estimate ob-

tained by Williamson et al. (2005) of 4.45 from the
same data. This could be due to any one of several
differences between the methods. First, the method of
Williamson et al. (2005) does not estimate the mean
strength of selection. Rather, it estimates a quantity that
might be regarded as the ‘‘effective’’ selection pressure
acting against the nonsynonymous mutations; their
method assumes that all nonsynonymous polymor-
phisms are equally deleterious and then estimates the
strength of selection that would give the frequency dis-
tribution observed. Second, the discrepancy could
be due to the way in which the two methods handle
demography. The method of Williamson et al. is un-
biased under the demographic model they implement
(an instantaneous increase in population size). In con-
trast, our method tends to overestimate the mean
strength of selection.However, this is not likely to explain
the discrepancy. Even if we assume that we have over-
estimated themean strength of selection by fourfold, the
mean strength acting upon polymorphisms is much the
same, Nesp ¼ 0:87.
It is also of interest to estimate the average strength of

selection acting against deleterious mutations that are
eventually removed by natural selection, i.e., the average
strength of selection acting upon polymorphisms with
Nes. 1 (Loewe et al. 2006). We estimate this to beNes¼
7.61 using Equation 8 and 8.44 using the harmonic
mean (Loewe et al. 2006). These are similar to the values
obtained in Drosophila (Loewe et al. 2006). This may
seem odd given that Drosophila has a much bigger ef-
fective population size than humans. However, analyses
show that the mean strength of selection acting against
segregating mutations depends on the shape of the dis-
tribution but not strongly on the mean (our unpub-
lished results).
Assumptions: The method assumes that there is no

dominance, epistasis, or advantageous mutation and
that there is free recombination. The first and second of
these assumptions are unlikely to be important. In effect
we have estimated the distribution of heterozygous effects
of mutations across the various genetic backgrounds that
the mutations experience. Our method is likely to be
seriously biased only if a large proportion of deleterious
mutations are completely recessive or if mutations of
very small effect tend to be recessive or dominant. Ad-
vantageous mutations subject to directional selection
are also unlikely to be a problem since they contribute
relatively little to polymorphism if selection is relatively
strong (i.e., Nes. 25) (Smith and Eyre-Walker 2002),
and although they may skew the allele frequency dis-
tribution of linked variants, this pattern persists only
for a short period of time—!0.1Ne generations (Kim
and Stephan 2002). However, advantageous mutations
subject to balancing selection may be a serious problem
since they will skew the allele frequency distribution
toward common alleles in a way in which our model
may not be able to cope. To investigate this further, we
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repeated our analysis without genes that had high levels
of nonsynonymous polymorphism; the results remained
qualitatively unchanged [e.g., ignoring genes with $10
nonsynonymous polymorphisms; l ¼ 0.22 (0.18, 0.27),
g¼ 962 (398, 1963)]. We have also assumed that there is
free recombination between SNPs. There are two con-
sequences if this assumption is violated. First, we will
have underestimated the credibility intervals on our
parameter estimates because we will not have taken into
account the variance associated with the coalescence
between alleles. Second, we will have ignored possible
Hill–Robertson interference between selected muta-
tions (McVean and Charlesworth 2000). This latter
effect is unlikely to be serious since levels of non-
synonymous diversity are very low in humans (Cargill
et al. 1999) and most genes are separated by substantial
amounts of intergenic DNA and hence have a moderate
amount of recombination between them.

Molecular clock: The distribution of fitness effects we
have estimated has a number of implications. First, it
suggests that the molecular clock will not be very robust
to changes in effective population size. Ohta (1977)
showed that if all mutations were deleterious and the
distribution of fitness effects was exponential then the
rate of evolution, f, was expected to be proportional to
the reciprocal of the effective population size. Similarly
Kimura (1979) showed that if the distribution was
gamma distributed with a shape parameter of 0.5, the
rate of evolution was expected to be proportional to
1

ffiffiffiffiffiffi
Ne

p
. Since a gamma distribution with a shape param-

eter of 1 is an exponential distribution, this suggests the
generalization f ! 1=N l

e , where l is the shape parame-
ter of the gamma distribution (Chao and Carr 1993) (a
result we will prove elsewhere). We thus expect moder-
ate changes in the rate of evolution in response to
increases or decreases in effective population size. For
example, if the population size increases 10-fold we
would expect the rate of evolution to decline by !40%
unless there is an increase in the rate of adaptive
evolution.

Our estimate of the distribution appears to be fairly
consistent with the ratio of nonsynonymous to synony-
mous substitution rates in primates and rodents. Let
us assume that synonymous mutations are neutral and
that the distribution of fitness effects for nonsynon-
ymous mutations is gamma. Although there is some
evidence of selection on synonymous codon use in both
murids and hominids (Keightley and Gaffney 2003;
Urrutia and Hurst 2003; Chamary and Hurst 2004;
Chimpanzee Sequencing and Analysis Consortium
2005), the level of selection seems to be small and quite
similar in the two lineages; for example, the rate of
synonymous substitution appears to be !70% of the
intron substitution rate in both groups (Keightley and
Gaffney 2003; Chimpanzee Sequencing and Analysis
Consortium 2005). Further, let us assume that a small
proportion of nonsynonymous mutations are advanta-

geous and that these cause a proportion a of the non-
synonymous substitutions to be adaptive, the others
being neutral or slightly deleterious. Under these con-
ditions the rates of synonymous (dS) and nonsynon-
ymous (dN) substitution are expected to be

ds ¼ u

dN ¼ uk

N l
e ð1" aÞ

;
ð9Þ

where u is the nucleotide mutation rate and k is a con-
stant. Hence we expect dN/dS in primates divided by
dN/dS in rodent to be

z ¼ mlð1" arÞ
ð1" apÞ

; ð10Þ

where m is the ratio of the rodent and primate effective
population sizes and ar and ap are the proportions of
nonsynonymous substitutions that are adaptive in ro-
dents and primates, respectively. If we assume these
proportions are similar then z ¼ ml. The effective popu-
lation sizes of humans and chimpanzees are in the range
of 10,000–30,000 (Eyre-Walker et al. 2002), while our
only estimate for a rodent, the house mouse, is in the
range of 450,000–810,000 (Keightley et al. 2005). We
would therefore expect dN/dS to be approximately two-
fold higher in primates than in rodents. The ratio of the
nonsynonymous and synonymous substitution rates is
0.31 in human–chimpanzee and 0.16 in mouse–rat
(Eyre-Walker et al. 2002); the ratio of these numbers
is 1.9.

Decline in fitness: For many years geneticists have
pondered the potential consequences that modern
medicine might be having upon our genetic quality
(Muller 1950; Crow 1997; Lynch et al. 1999)—med-
icine relaxes natural selection, which allows potentially
harmful mutations to accumulate. This may pose a risk
to our population if selection is reimposed sometime in
the future. Estimates of the rate at which amino acid
mutations occur and their average effect allow us to esti-
mate whether this is likely to be a problem. We estimate,
using the numbers in Eyre-Walker and Keightley
(1999), but a revised estimate for the number of genes
(25,000), that we receive on average 1.8 amino acid
mutations per generation. Our estimate for the average
effect of mutations is 4.3%, so the decline in genetic
quality per generation is predicted to be 1.8 3 4.3 ¼
7.7%. This estimate must be treated with caution since
the mean strength of selection depends largely on mu-
tations whose distribution we have no direct estimate of.
However, there are also several reasons to believe that
the rate of decline in our genetic quality is likely to be
,7.7% per generation. First, natural selection cannot
be completely relaxed, and it is far from relaxed for
most of the world’s population. Second, our estimate
of the mean effect of mutations is likely to be over-
estimated by two- or threefold due to population size
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expansion. Third, although we have not included muta-
tions that lie outside genes or mutations that are not
single-nucleotide changes, these are unlikely to contrib-
ute much to the decline in genetic quality. While a fair
amount of DNA outside genes is subject to natural
selection (Dermitzakis and Clark 2001; Dermitzakis
et al. 2003; Keightley and Gaffney 2003; Keightley
et al. 2005), the selection upon these sequences is often
quite weak (Keightley et al. 2005), and indels are
relatively infrequent in mammals (Ophir and Graur
1997). So it seems that, at worst, human populations will
suffer a decline in genetic quality of a few percent, or
less, per generation.

Variance in fitness: However, our estimate of the dis-
tribution of fitness effects suggests that, while a decline
in genetic quality may not be a problem in humans,
locating the genes involved in genetic disease may be.
Let us assume that the distribution of effects of muta-
tions affecting some trait, say predisposition to heart
disease, is similar in shape to the distribution of fitness
effects and that the number of mutations that poten-
tially affect the trait is very large. Then the variance in a
trait contributed by alleles with effects v segregating at a
frequency x is

V ðxÞ ¼
ð‘

0
Dðl; l; vÞH ðNe;b

g

Ne
v; xÞU ðv; xÞ dx; ð11Þ

where U ðv; xÞ ¼ 2xð1" xÞv2 and b is a parameter that
measures the association between the trait and fitness:
when b¼ 1 the trait is fitness and when b¼ 0 the trait is
neutral with respect to fitness. Many human diseases
may not be strongly associated with fitness because they
affect people later in life when they are past their natural
reproductive age (Wright et al. 2003), although older
individuals do help raise their grand-offspring.U(v, x) is
the variance in the trait contributed by a mutation of
effect v segregating at frequency x. The trait is arbitrarily
scaled such that the mean effect of a mutation on the
trait is 1. If we use our estimates of l and g it is evident
that unless the trait and the alleles that affect it are
completely neutral, the majority of the variance in the
trait is contributed by alleles segregating at very low
frequency (Figure 3). This is in agreement with a recent
study of alleles associated with low levels of HDL cho-
lesterol, in which most of the putatively harmful alleles
were at very low frequency (Cohen et al. 2004). This may
also explain why it has proven difficult to locate genes
for many complex human genetic diseases and why
many of the results cannot be replicated (Cardon and
Bell 2001). The fact that some alleles of fairly large ef-
fect do segregate at moderate frequency (Lohmueller
et al. 2003) suggests that a few alleles associated with
diseasemay be completely neutral with respect to fitness
or have been subject to positive selection.

Conclusions: The distribution of fitness effects is cen-
tral to the understanding of many problems in genetics

and evolution. Here we have attempted to provide a
detailed description of this distribution, by fitting a pop-
ulation genetic model to extensively and deeply sam-
pled single-nucleotide polymorphism data in humans.
Although there are limitations to this method, particu-
larly for inferring the distribution of fitness effects of
strongly selected mutations, we estimate that the vast
majority of amino-acid-changing mutations in humans
have mild effects of between 1/1000 and 1/10. The esti-
mated mean strength of selection against nonsynon-
ymous mutations is a few percent, which suggests that
declines in fitness due to modern medicine in humans
are unlikely to be a problem. However, the distribution
does suggest that it will be difficult to locate themajority
of mutations involved in genetic disease unless the dis-
ease is completely unassociated with fitness or some of
the mutations have been subject to positive selection.
Software to run this analysis is available from A.E.W.
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