THE DISTRIBUTION OF FREE PATH LENGTHS IN THE PERIODIC
LORENTZ GAS AND RELATED LATTICE POINT PROBLEMS

JENS MARKLOF AND ANDREAS STROMBERGSSON

ABSTRACT. The periodic Lorentz gas describes the dynamics of a point particle in a periodic
array of spherical scatterers, and is one of the fundamental models for chaotic diffusion. In
the present paper we investigate the Boltzmann-Grad limit, where the radius of each scatterer
tends to zero, and prove the existence of a limiting distribution for the free path length of the
periodic Lorentz gas. We also discuss related problems, such as the statistical distribution of
directions of lattice points that are visible from a fixed position.
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1. INTRODUCTION

1.1. The periodic Lorentz gas. The Lorentz gas, originally introduced by Lorentz [19] in
1905 to model the motion of electrons in a metal, describes an ensemble of non-interacting
point particles in an infinite array of spherical scatterers. Lorentz was in particular interested
in the stochastic properties of the dynamics that emerge in the Boltzmann-Grad limit, where
the radius p of each scatterer tends to zero.

In the present and subsequent papers [22], [23] we investigate the periodic set-up, where
the scatterers are placed at the vertices of a euclidean lattice £ C R? (Figure 1). We will
identify a new random process that governs the macroscopic dynamics of a particle cloud
in the Boltzmann-Grad limit. In the case of a Poisson-distributed (rather than periodic)
configuration of scatterers, the limiting process is described by the linear Boltzmann equation,
see Galavotti [15], Spohn [32], and Boldrighini, Bunimovich and Sinai [8]. It already follows
from the estimates in [9], [18] that the linear Boltzmann equation does not hold in the periodic
set-up; this was pointed out recently by Golse [17].

The first step towards the proof of the existence of a limiting process for the periodic Lorentz
gas is the understanding of the distribution of the free path length in the limit p — 0, which
is the key result of the present paper. The distribution of the free path lengths in the periodic
Lorentz gas was already investigated by Polya, who rephrased the problem in terms of the
visibility in a (periodic) forest [25]. We complete the analysis of the limiting process in [22]
and [23], where we establish a Markov property, and provide explicit formulas and asymptotic
estimates for the limiting distributions.

Our results complement classical studies in ergodic theory, where one is interested in the
stochastic properties in the limit of long times, with the radius of each scatterer being fized.
Here Bunimovich and Sinai [10] proved, in the case of a finite horizon and in dimension d = 2,
that the dynamics is diffusive in the limit of large times, and satisfies a central limit theorem.
“Finite horizon” means that the scatterers are sufficiently large so that the path length between
consecutive collisions is bounded; this hypothesis was recently removed by Szasz and Varju
[27] after initial work by Bleher [2]. Chernov later extended the central limit theorem for finite
horizon to higher dimensions [12]; complete proofs of this result are given by Balint and Toth
[1].

Since the point particles of the Lorentz gas are non-interacting, we can reduce the problem
to the study of the billiard flow

(L.1) o THIC,) — THK,),  (go,v0) = (q(t), (1))

where K, C R? is the complement of the set Bg + L (the “billiard domain”), and T'(K,) =
K, x Scllf1 is its unit tangent bundle (the “phase space”). Bg denotes the open ball of radius
p, centered at the origin. A point in T*(K,) is parametrized by (g, v), with q € K, denoting
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FIGURE 1. Left: The periodic Lorentz gas in “microscopic” coordinates—the
lattice £ remains fixed as the radius p of the scatterer tends to zero. Right: The
periodic Lorentz gas in “macroscopic” coordinates —both the lattice constant
and the radius of each scatter tend to zero, in such a way that the mean free
path length remains finite.

the position and v € Scll*1 the velocity of the particle. The Liouville measure of ¢, is

(1.2) dv(q,v) = dvolga(q) dvolslliq(v)
where volga and volga-1 refer to the Lebesgue measures on R? (restricted to KC,) and S‘f_l,
1
respectively.
The free path length for the initial condition (g,v) € T*(K,) is defined as
(1.3) T1(q,v;p) =inf{t >0:q+tv ¢ K,}.

That is, 71(q, v; p) is the first time at which a particle with initial data (g, v) hits a scatterer.
From now on we will assume, without loss of generality, that £ has covolume one.

Theorem 1.1. Fiz a lattice £ of covolume one, let ¢ € R\ L, and let X be a Borel probability
measure on S‘li_1 absolutely continuous with respect to Lebesgue measure.! Then there etists
a continuous probability density ®r q on Rsq such that, for every & >0,

(1.4) lir% M{v e ST p (g, v;p) > €)) = /00 P q(E)dE .
P 3

The limiting density is in fact “universal” for generic q, i.e.,

(1.5) D(§) := Pr,q(8)
is independent of £ and gq, for Lebesgue-almost every g. Theorem 1.1 is proved in Section 4, it
is closely related to the lattice point problem studied in Section 3. Explicit formulas and tail
estimates of the limiting distribution ®, 4(&) are worked out in [23]. In Section 4 we generalize
Theorem 1.1 in several ways. We consider for instance the distribution of free paths that hit
a given point on the scatterer, which will be crucial in the characterization of the limiting
random process in [22].

Theorem 1.1 shows that the free path length scales like p~(
position and time and use the “macroscopic” coordinates

(1.6) Q) V(1) = (0" a(p™ " Vt),w(p~ V1)),

IThe condition qgeR? \ £ ensures that 71 is defined for p sufficiently small. In Section 4 we also consider
variants of Theorem 1.1 where the initial position is near £, e.g., g € 0K,.

d=1)  This suggests to re-define



4 JENS MARKLOF AND ANDREAS STROMBERGSSON

v
o | _LLA

v V)
N

-

2p fixed

FIGURE 2. Left: How many lattice balls of radius p does a random ray of length
T = const X p*(dfl) intersect? Right: What are the statistical properties of
the directions of the affine lattice points £ + « inside a large ball?

We now state a macroscopic version of Theorem 1.1, which is a corollary of the proof of
Theorem 1.1 (see Section 9.2). Here

(1.7) T1(Q.Vip) = p tri(p™ "V Q, Vi p)

is the corresponding macroscopic free path length.

Theorem 1.2. Fix a lattice L of covolume one and let A be a Borel probability measure on
Tl(Rd) absolutely continuous with respect to Lebesque measure. Then, for every & > 0,

(1.8) lim A{(Q, V) € TH(p"'Ky) : Ti(Q.Vip) 2 €}) = /5 (e a

with ®(&) as in (1.5).

Variants of Theorem 1.2 were recently established by Boca and Zaharescu [7] in dimension
d = 2, using methods from analytic number theory; cf. also their earlier work with Gologan
[4], and the paper by Calglioti and Golse [11]. Our approach uses dynamics and equidistri-
bution of flows on homogeneous spaces (the details are developed in Section 5), and works in
arbitrary dimension. Previous work in higher dimension d > 2 includes the papers by Bour-
gain, Golse and Wennberg [9], [18] who provide tail estimates of possible limiting distributions
of converging subsequences. More details on the existing literature can be found in the survey
[16].

1.2. Related lattice point problems. The key to the understanding of the Boltzmann-Grad
limit of the periodic Lorentz gas are lattice point problems for thinly stretched domains, which
are randomly rotated or sheared. In Sections 2 and 3 we discuss two problems of independent
interest that fall into this category: the distribution of spheres that intersect a randomly di-
rected ray, and the statistical properties of the directions of lattice points (Figure 2). Section 6
discusses the general class of problems of this type.

Let us for example consider the affine lattice Z? 4 o, with the observer located at the origin.
The directions of all lattice points with distance < T' are represented by points on the unit
circle,

m+ «

(1.9) [t el

€ St for m e Z*\ {-a}, |m+al<T.

We identify the circle with the unit interval via the map (z,y) — (27)~!arg(z + iy), and
therefore the distribution of directions is reformulated as a problem of distribution mod 1 of
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the numbers
(1.10) 5 arg(m+ a1 +i(n+as2)), for (m,n) € Z*\{—a}, (m+a1)*+(n+az)® < T2
We label these N = N(T') numbers in order by

(1.11) — s <1 <&na <. <EvN <5

and define in addition {0 = v v — 1. It is not hard to see that this sequence (or rather: this

sequence of sequences) is uniformly distributed mod 1, i.e., for every —% <a<b< %,

(1.12) lim U SIS Ny, € fab)}

N—o00 N

This (classical) equidistribution statement follows from the fact that the asymptotic number

of lattice points in a fixed sector of a large disc is proportional to the volume of the sector.
A popular way to characterize the “randomness” of a uniformly distributed sequence is

the statistics of gaps. The following theorem, which is a corollary of more general results in

Section 2, shows that there is a limiting gap distribution when N — oo.

=b—a.

Theorem 1.3. For every a € R? there exists a distribution function Pa(s) on Rsq (contin-
uous except possibly at s = 0) such that for every s > 0,
L #H{ISGSN:NEN;—Enj-1) =8}

1.1 1

Py (s).

We will provide explicit formulas for Py(s), which clearly deviate from the statistics of
independent random variables from a Poisson process, where P(s) = exp(—s). It is remarkable
that, for a ¢ Q?, the limiting distribution P(s) is independent of o and coincides with the
gap distribution for the fractional parts of \/n calculated by Elkies and McMullen [13]; cf.
Figure 3. There is a deep reason for this apparent coincidence, which we will return to in the
next section.

The statistics are different for a € Q2. In particular Py(s) has a jump discontinuity at
s = 0 for every a € Q?, which exactly accounts for the multiplicities in the sequence (1.11);
removing all repetitions from that sequence results in a limiting gap distribution which is
continuous on all R>q, see Theorem 2.7 below. In the particular case o = 0 this recovers a
result of Boca, Cobeli and Zaharescu [3], which is closely related to the statistical distribution
of Farey fractions (see also Boca and Zaharescu [5]).

The only previously known result for non-zero values of e is by Boca and Zaharescu [6], who
calculated the limit of the pair correlation function on average over a. (The pair correlation
function is essentially the variance of the probability Ey (7, o) studied in Section 2.) Contrary
to the behaviour of the gap probability Pg(s), the limiting pair correlation function is the same
as for random variables from a Poisson process.

1.3. Outline of the paper. Sections 2—4 give a detailed account of the main results of this
paper. Section 2 discusses the statistical properties of affine lattice points inside a large sphere
that are projected onto the unit sphere. A dual problem is the question of the probability that
a ray of length T pointing in a random direction intersects exactly r lattice spheres whose
radius scales as T71/(4=1) The solution of the latter problem is provided in Section 3, and
applied in Section 4 to the distribution of the free path lengths of the Lorentz gas. Both of
the above lattice point problems fall into a general class of lattice point problems in randomly
sheared or rotated domains, which are discussed in Section 6. The central idea for the solution
of such questions is to exploit equidistribution results for flows on the homogeneous spaces
SL(d,Z)\ SL(d,R) and ASL(d, Z)\ ASL(d, R), which represent the space of lattices (resp. affine
lattices) of covolume one. We establish the required ergodic-theoretic results in Section 5.
The key ingredient is Ratner’s theorem [26] on the classification of ergodic measures invariant

2Boca and Zaharescu consider a slightly different sequence of directions, which is obtained by replacing the
last condition in (1.10) with max(|m + au|, |n + a2|) < T'. This sequence is however not uniformly distributed
modulo one, which explains the discrepancy with the Poisson pair correlation function observed in [6].
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FIGURE 3. Left: The distribution of gaps in the sequence y/n mod 1, n =
1,...,7765, vs. the Elkies-McMullen distribution. Right: Gap distribution
for the directions of the vectors (m — V2, n) € R? with m € Z, n € Z>y,
(m —v/2)? +n? < 4900. The continuous curve is the Elkies-McMullen distri-
bution.

under a unipotent flow. We provide useful integration formulas on SL(d,Z)\ SL(d,R) and
ASL(d,Z)\ ASL(d,R) in Section 7 and in Section 8 we apply these to our limit functions.
Detailed proofs of the main limit theorems in Sections 2—4 are given in Section 9. The proofs
for Section 2 are virtually identical to those of the corresponding theorems in Section 3.

2. DISTRIBUTION OF VISIBLE LATTICE POINTS

2.1. Lattices. Let £ C R? be a euclidean lattice of covolume one. Recall that £ = Z*M
for some M € SL(d,R) and that therefore the homogeneous space X; = SL(d,Z)\ SL(d,R)
parametrizes the space of lattices of covolume one.

Let ASL(d,R) = SL(d,R) x R? be the semidirect product group with multiplication law

(2.1) (M, &)(M', &) = (MM',EM' + &)
An action of ASL(d,R) on R? can be defined as
(2.2) y—y(M,§):=yM+&.

Each affine lattice (i.e. translate of a lattice) of covolume one in R? can then be expressed
as Z%g for some g € ASL(d,R), and the space of affine lattices is then represented by X =
ASL(d,Z)\ ASL(d,R) where ASL(d,Z) = SL(d,Z) x Z%. We denote by p; and p the Haar
measure on SL(d, R) and ASL(d, R), respectively, normalized in such a way that they represent
probability measures on X; and X.

If a € Q¢ say a = p/q for p € Z¢, q € Z~g, we see that

(2.3) <Zd + 2—9>7M - <Zd + 2—’)M
q q
for all
(2.4) v€T(q) :={y€SL(d,Z) : v=14mod ¢},

the principal congruence subgroup. This means that the space of affine lattices with & = p/q
can be parametrized by the homogeneous space X, = I'(¢)\ SL(d,R) (this is not necessar-
ily one-to-one). We denote by i, the Haar measure on SL(d,R) which is normalized as a
probability measure on X,.
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2.2. Basic set-up. We fix a lattice £ C R? of covolume one, and fix, once and for all, a choice
of My € SL(d,R) such that £ = ZMj. Given o € R? we then define the affine lattice
(2.5) Lo = (Z% + a)My = Z4(1, ) (M, 0).

Consider the set Pr of lattice points y € L4 inside the ball B% of radius 7', or, more
generally, the spherical shell

(2.6) Bi(c)={xcR: T <|x| <T}, 0<c<l.
For T large there are asymptotically (1—c?) vol(B4)T9 such points, where vol(B{) = n%/2/T'(4£2)
is the volume of the unit ball. For each T', we study the corresponding directions,

(2.7) lyl~'y e ST, for y € Pr=LaNBF(c) \ {0},

where Sfolfl C R? denotes the (d — 1)-sphere of radius p. It is well known that, as 7' — oo,
these points become uniformly distributed on S‘li_lz For any set 4 C S‘li_1 with boundary of
measure zero (with respect to the volume element volga—1 on S971) we have

1

. -1 vol d—l(il)
(2.8) i PWEPT : llyly ety | YO D
T—oo #Pr VOIS&#l (S(li 1)

Recall that volgs—s (S4=1y = dvol(BY).

2.3. Distribution in small discs. We are interested in the fine-scale distribution of the
directions to points in Pr, e.g., in the probability of finding r directions in a small disc with
random center v € S‘li_l. We define Dp(0,v) C Scll_1 to be the open disc with center v and
volume

od . _4
(29) Volszlifl (@T(O', 'U)) = mT .
The radius of D7 (o, v) is thus =< T-%(@=1 (if 7 > 0). We introduce the counting function
(2.10) Neg(o,v) =#{y € Pr « |lyll ™'y € D1(0,v)}

for the number of points in D7 (o, v). The motivation for the definition (2.9) is that it implies,
via (2.8), that the expectation value for the counting function is asymptotically equal to o
(for T'— oo and o fixed):

VOIS?_1 (@T(O')) 1— ¢

(2.11) / leC,T(a,v)dx(v)~v01(3%(c)) T volga 1 (Dr(e)) T = o,

where A is the probability measure on S‘ffl which assigns uniform mass to an arbitrary fixed

set 4 € S¢7! with boundary of measure zero, that is A(2) := volga—1 (AN LU)/ volga—1(L). Here
1 1

Dr(o) =D7(0,eq) is the disc centered at e; = (1,0,...,0).

Theorem 2.1. Let A be a Borel probability measure on Scll_1 absolutely continuous with respect
to Lebesgue measure. Then, for every o > 0 and r € Z>q, the limit

(2.12) Eea(r,0) = lim A({v € S41 N, r(o,v) =1})
—00
exists, and for fized ¢, a, v the convergence is uniform with respect to o in any compact subset
of R>g. The limit function is given by
pi({M € X1 : #(ZIM N &(c,0)) =1}) if € 7
(2.13)  Eealr,o) =< ps({M € X, : #((Z% + E)M N&(c,0)) =1} if o = IE) € Q?\ z¢
p({(M, &) € X : #((ZM +€) N€(c,0)) =7}) ifad QY

where

(2.14) ¢(e,0) = {(ml,...,xd) eR?: c<ay <1, |[(22,...,2q9)| < :le(c,J)},
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(d=1)/2

D)

(2.15) Alc,0) = <(1 - Cd)Ud (Bill)>ﬂ7 vol(BE1) =

vol
In particular, E. o(r,0) is continuous in o and independent of L and \.

In the above, we use the notation Z4 := Z¢\ {0}. Although the use of Z¢ is superfluous at
this point (since €(c¢, o) does not contain zero), it appears as the natural object in the proof.
This subtlety is due to the fact that for generic M we have Z¢M N &(0,0) # Z4M N &(0,0)
but ZIM N &(0,0) = Z¢M N €(0,0).

Theorem 2.1 says that the limiting distribution E,o(r, o) is given by the probability that
there are r points of a random lattice in the cone €(c,0), and E.q(r,0) for o ¢ Q7 is
the corresponding probability for a random affine lattice. Hence in particular E, o(r,0) is
independent of o when o ¢ Q.

Remark 2.2. We will furthermore prove that when ¢ = 0 the function E. (r,0) is C! with
respect to o > 0; see Section 8.5. We expect that the same statement should also be true for
any fixed 0 < ¢ < 1.

Remark 2.3. In the case ¢ = 0, d = 2 and a ¢ Q? our distribution coincides with Elkies and
McMullen’s limiting distribution [13] for the probability of finding r elements of the sequence
vnmod1l (n=1,...,N) in a randomly shifted interval of length o/N (N — o). Although
the two problems are seemingly unrelated, the reason for this coincidence is that both results
use equidistribution of translates of different orbits on the space of affine lattices X with
respect to the same test functions.

Remark 2.4. By a general statistical argument, cf. e.g. [13], [21], Theorem 1.3 is an immediate
corollary of Theorem 2.1 in the case d = 2, » = 0, with the limit function Py(s) explicitly
given by

d

(2.16) Py(s) = —£E07a(0,5) (s > 0); P (0) :==1.

The continuity of Py(s) for s > 0 follows from Remark 2.2.

To exhibit explicitly the group action which will play a central role in the proof of the above
statements, it is convenient to realize S¢~! as the homogeneous space SO(d — 1)\ SO(d) by
setting v = e; K with e; = (1,0,...,0) and K € SO(d). The stabilizer of e; is isomorphic to
SO(d — 1) (acting from the right), where SO(d — 1) is identified with the subgroup

(2.17) <% SO(;’_ 1)> © SO(d).

Then

(2.18) Dr(o,v) =D7(0)K = {x: 2K € Dp(0)}
and

(2.19) Ner(o, K) = #(Pr N Dr(0)K)

is the number of points in D7 (0)K. Note that N, (o, K) is left-invariant under the action
of SO(d — 1) and thus may be viewed as a function on SO(d — 1)\ SO(d). The statement
equivalent to Theorem 2.1 is now that, if A is a Borel probability measure on SO(d) absolutely
continuous with respect to Haar measure, then

(2.20) lim A{K € SO(d) : Nor(0,K) =r}) = E.o(r,0).

T—o00
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2.4. Visible lattice points. In the study of directions of affine lattice points it is natural to
restrict our attention to those points that are visible from the origin. That is, we consider the
set of directions without counting multiplicities. Non-trivial multiplicities are only obtained
when the Q-linear span of 1 and the components of a has dimension < 2. If a ¢ Q? then the
multiplicities are statistically insignificant; in fact they can only occur along at most a single
line through the origin, and thus restricting to considering only the visible lattice points still
yields the same limit distribution as in Theorem 2.1.

Hence from now on we will assume o € Q%. If a = 0 then the visible lattice points are
exactly the primitive lattice points, i.e. those points mM, € L for which m € Z¢, gcd(m) = 1.
In the general case o = ’5’ € Q? (q € Zso, p € Z%), the set of visible lattice points is:

(2.21) Lo=178My, 7% :={xec (Z'+a)\{0} : ged(qz) < ¢}.

From now on in this section we will assume that ¢ € Z~¢ is the minimal integer which gives
ga € 7. Given 0 < ¢ < 1 we set Pr = Lo N B&(c); then by a sieving argument using (2.21)
and (2.8) one shows that for any set ¢ € S9! with boundary of measure zero,

L HyePrnBi©) ¢« yllTy ey Vol ()

2.22 li — a1
(2.22) T—00 vol B&(c) / Volszlifl (sd=1
; —d —d —a\ 7! —d
with Kq :z( Z u(n)n ) Z t :( Z n ) Z .
n>1 1<t<q n>1 1<t<q
(n7Q):1 (tvq)zl (n7Q):1 (tvq)zl

When o € Z¢ this specializes to the well-known fact that the asymptotic density of the
primitive points in Z¢ is ((d)~!. It follows from (2.22) that if we introduce the following
analogue of (2.10) for visible lattice points:

(2.23) Nor(o,v) =#{y € Pr : |lyl| 'y € Dr(r;'0,v)},  Pr=LaNBHe);
then the expectation value for N is again asymptotically equal to o:

(2.24) lim Ner(o,v) dA(v) = o,

T—00 Scll—l
for any fixed 0 > 0,0 <¢ <1 and A as in (2.11).

Theorem 2.5. Let A\ be a Borel probability measure on Scllf1 absolutely continuous with respect
to Lebesque measure. Then, for every o > 0 and r € Z>q, the limit

(2.25) Eea(r,0) = lim \({v € S{™: Nor(o,v) =1})

exists, and for fived c,r the convergence is uniform with respect to o in any compact subset of
R>g. The limit function is given by

(2.26) no{M € Xy + #(ZEM N &(e,m'0)) =7})  (a=PeQY).

In particular, Eqa(r, o) is continuous in o and independent of L and .

Remark 2.6. The function E’oa(r, o) is C! with respect to o > 0. This is proved by adapting
the arguments of Sections 7.1 and 8.5 to the setting of visible lattice points.

In dimension d = 2, considering only visible lattice points gives a variant of Theorem 1.3
with an everywhere continuous distribution function: Take @ € Q?, and consider the set of
rescaled directions

(2.27) {&arg(z1 +ize) : @ = (1,22) € ZQX, 3+ a2k < T2}.
Let us label these M = M (T) numbers in order by

(2.28) L <bui<éup<...<&éum<?
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and define in addition é MO = é m,m — 1. Note that this is exactly the sequence which is
obtained from (1.11) by removing all repetitions. We now have:

Corollary 2.7. There exists a distribution function ﬁa(s) on R, continuous on all of R>g,
such that for every s > 0,

(2.29) Jim M1 <5 <M : M(Eny—Enrjo1) > s} = Pals).

Proof. Just as in Remark 2.4, the limit relation (2.29) follows from Theorem 2.5 together with
the fact M ~ k,mT? as T — oo (cf. (2.22)), and Py(s) is explicitly given by

(2.30) Po(s) = _%Eo,a(o,s) (5500  Py(0):=1.

Note that Eoﬂa(O, s) = Eo,a(0,r;'s) for all s > 0, since €(0, x, 's) is star shaped. Hence
(2.31) Pa(s) = k' Palry's)  for s> 0.

The continuity of ﬁa(s) for s > 0 follows from Remark 2.2, or Remark 2.6. Furthermore, in
Section 8.5 we will prove that (for d = 2),

(2.32) Ega(0,0) =1—re0, Vo€ [0,(29)7'],
and this implies that Py (s) is also continuous at s = 0. O

When o = 0, Corollary 2.7 specializes to give the limiting gap distribution for directions
of primitive lattice points in Z?2, which was proved earlier by Boca, Cobeli and Zaharescu [3].

The proofs of Theorems 2.1 and 2.5 are virtually identical to those of Theorems 3.1 and 3.7;
we will therefore only outline the differences in Section 9.4. In [24] we carry out a more detailed
statistical analysis of the distribution of visible lattice points, which yields generalizations of
Theorems 2.1 and 2.5, and also provide explicit formulas and tail estimates of the limiting
distributions.

3. THE NUMBER OF SPHERES IN A RANDOM DIRECTION

We now turn to a lattice point problem that is in some sense dual to the one studied in the
previous Section 2. Its solution will also answer the question of the distribution of free path
lengths in the periodic Lorentz gas, see Section 4 below for details.

3.1. Spheres centered at lattice points. We place at each lattice point y € L, a ball of
small radius p and consider the set Bg + L. The set of balls with centers inside the shell (2.6)
is

(3.1) {xeBl+y :yecLanBf(c)\{0}}.

Note that we remove any ball at y = 0 (this is only relevant in the case o € Z%). Furthermore
we will always keep p < m(Lq) := min{|ly|| : y € L& \ {0}}, so that 0 lies outside each of
the balls in our set. We are interested in the number N, 1(p,v) of intersections of this set
with a ray starting at the origin 0 that points in the random direction v € S‘f_l distributed
according to the probability measure A. That is

(3.2) Nex(p,v) == #{y € LaNBF(c) \ {0} : Rogv N (BL+y) # 0}
If p < Jly||, then a ray in direction v hits the ball Bg + y if and only if

(3-3) Iyl ="y € D(lyll~"p, v)

with the disc

(3.4) D(e,v) = (B +v)(1—2)2nsdt  (0<e<);

D(l,v)={weS{! . w-v>0}
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We will again use the shorthand D(e) = D (e, e1). The radius of this disc is ~ €, for ¢ — 0.
Hence the number of balls hit by a ray in direction v is

(3.5) Nor(p.v) = #{y € Lan B\ (0} ¢ 1o @(Hynlp,v)},

compare (2.19).
For any A as in (2.11), one finds for the expectation value as ' — oo, p — 0

-1
/ NC’T(;%,U) d)\('v) ~ / VOI(Q(HyH p)) dVOl(y)
syt YEBL (o), lyll>p

vol(Sffl)
(3.6) Nvol(Bf—l) i1 / dvol(y)
vol(S¢1) i) lylld!

= vol(B{ 1) (1 — ¢)p®'T.
This suggests the scaling p = o7 ~1/(@=1) with ¢ > 0 fixed.

Theorem 3.1. Let A be a Borel probability measure on Scllf1 absolutely continuous with respect
to volga-1. Then, for every o >0 and r € Zx, the limit
d >

(3.7) Fea(r,o) = Th_l}go A{v e 8¢ ZNC,T(UT_I/(d_l),v) —})

exists, and for fired o, the convergence is uniform with respect to o in any compact subset
of R>q, and with respect to c € [0,1]. The limit function is given by

p({M € X1 : #(Z4M N 3(c,0)) =7r}) if a € 74

(88)  Fualro) = pg({M € X, #(Z+ DM N 3(c,0) =r})  ifa =B eQi\ 2z
p{(M.&) € X : #((Z'M +€) N3(c,0)) =r}) if ad Q%

where

(3.9) 3(c,0) = {(#1,...,wq) ER e <y < 1, ||(22s. .., 29)|| < 0}

In particular, F, o(r,0) is continuous in o and independent of L and X.

Remark 3.2. In the case ¢ = 0 the function Fp o(r,0) is C! with respect to o > 0; we will
prove this in Section 8.3. (We expect the same should be true also for any fixed 0 < ¢ < 1.) If
a ¢ Q% then F. o(r,0) is independent of a; we denote this “universal” limit function simply
by F.(r,0). We prove in Section 8.3 that Fi.(r,0) is C? with respect to o > 0, for any fixed
0<c<l1.

Remark 3.3. We will give tail estimates for F, o(r, o) for general dimension d in [23]. In the
special case d = 2, explicit formulas for Fy(r,o) and Fyo(r, o) were given in [33], where these

limit functions came up in a different set of problems. Specifically, Fy(r,o) = b 0%, ASLy (20)

and Fyo(r,o) = QbffiSLQ (40) in the notation of [33, Section 8§].

3.2. A variation. Instead of rays emerging from the origin we consider now the family of
rays starting at the points p3(v) in direction v, where 3 : S‘ffl — R9 is some fixed continuous
function. We will keep p so small that, for all y € L4 \ {0} and all v € S¢!, the point pB(v)
lies outside the ball BY +y. Then the ray pB(v) + Rsov hits the ball BY + y if and only if

y — pB(v)
ly — pB(v)||

compare the analogous argument in the previous section. Hence the number of balls in (3.1)
intersecting this ray is N.r(p, v, B(v)), where

(3.10) € D(|ly — pB)| " p,v),

(3.11) Ner(p, v, w) := #{y € (LaNBf(e) \ {0}) — pw : € Q(Hyll_lp’v)}-

Y
Iyl
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Theorem 3.4. Let )\ be a Borel probability measure on Scllf1 absolutely continuous with respect
to Lebesque measure. Then, for every o > 0 and r € Z>q, the limit

(3.12) Feap(r,0) = lim M{v €8] Neg(oT ™Y1V v, B(v)) = 1})

exists, and for fixed o, B, \,r the convergence is uniform with respect to o in any compact
subset of R>q, and with respect to ¢ € [0,1]. The limit function is given by

(3.13)
Feag(r,o)
(1 x N{(M,v) € X1 x STV #(ZIM N 3p(c,0)) =7}) if o € 7
= (g x N{(M,v) € X, x STV #((24 + PYM N 3u(c,0)) =r}) ifa=Pe Q4\ 74
p({(M,€) € X : #((Z'M + &) N 3(c,0)) =7}) if a ¢ QY
where
(3.14) 3u(c,0) = 3(e,0) + O'HPI'Oj{,U}J_ 5('0)“ - e.

(Proj{v}l denotes the orthogonal projection from R onto the orthogonal complement of v.)

In particular F,. o pg(r,0) is continuous in o and independent of L, and if o ¢ Q% then
Feap(r,o0) = F.(r,0), independently of B and A.

Remark 3.5. Again, we prove in the case ¢ = 0 that the function Fi o g(r, 0) is C" with respect
to o > 0; see Section 8.3.

Remark 3.6. It will be useful for several of the results in Section 4 below, as well as in the
proofs in [22], to know that limy,_.o Ft,0,8(0,0) = 1 and limy_,o0 Ft o 8(7,0) = 0, and that this
holds uniformly with respect to the various parameters. This follows from the following two
basic bounds, which we prove in Section 8.4. More exact asymptotic formulas will be given in
[23].

Let vy := vol(BY™!) = w(dfl)/Z/F(di;). Then for all ¢ > 0 we have

[ee]
(3.15)  Frap(0,0) > 1—vg(l—c)o®™ ' andthus  » Fapg(ro) <wv(l—c)o? .
r=1

Furthermore, there exists a constant C' > 0 which only depends on r,d (thus C' is independent
of ¢, a, B, A) such that for all ¢ > 0 we have

(3.16) Foap(r,o) <C(1—c) tol™d

3.3. Spheres centered at visible lattice points. Now assume a = %’ € Q% and set

(3.17) Ner(p,v,w) := #{y € (LaNB(c) — pw : cD(||lyll"p, v)}.

Y
[yl
Theorem 3.7. Let \ be a Borel probability measure on Scll_1 absolutely continuous with respect
to Lebesgue measure. Then, for every o > 0 and r € Z>g, the limit

~

(3.18) Feap(r.o) = lim M{v € ST N (oT~ V@D o, B(w)) =1})

exists, and for fived a, B3, \,r the convergence is uniform with respect to o in any compact
subset of R>q, and with respect to c € [0,1]. The limiting function is given by

(3.19) Frop(r,o) = (g x N{(M,v) € Xg x STV 2 #(ZEM N 34(c,0)) =1}).
In particular, ﬁc,a,ﬁ(r, o) is continuous in o and independent of L.

Remark 3.8. The function ﬁo,a,g(r, o) is C'! with respect to o > 0. This is proved by adapting
the arguments of Sections 7.1, 8.1 and 8.3 to the setting of visible lattice points.
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3.4. Non-spherical objects. Instead of balls we now consider more general objects
(3.20) Or =T~ Y@ Vg —{ger?: TV Vg c Q)

where Q is a bounded open subset of R? which satisfies the technical condition that, for
Lebesgue-almost every v € S{!, the subset Proji,,1Q C {v}* has boundary of ((d — 1)-
dimensional) volume measure zero. This assumption is readily verified to hold for any “nice”
set Q; for instance it certainly holds whenever Q is convex, but also for much more general
sets Q.

As before we place translates of Q at lattice points, and consider the set

(3.21) {xeQr+y:yeLanBi(c))\{0}}
The number of intersections with a ray starting at the origin in direction v is
(3.22) Ner(Q,v) :=#{y € Lo NBF(c) \ {0} : Rogvn (Qr +y) # 0}

Theorem 3.9. Let A be a Borel probability measure on Scll_1 absolutely continuous with respect
to volga-1. Then, for every r € Z>o, the limit
d >

(3.23) Fea(r,Q) = lim M{v €S{™ : Ner(Qv) =1})

exists, and is given by

(3.24)
(A x ) ({(v, M) € ST XX+ #(Z4M 0 3(c, Q) = 1) if o €7
(A x 1) ({(v, M) € Sd ' ><X PH(Z )M N 3(e, Q) =1)) fa=PReQi\ 21
A x )({(v,9) € ST xX #(ng n 3(6 Qv)) =r}) if a ¢ Q7

where

(3.25) 3(C,Q,U):{m€Rd:c<:n-'v<1,R'vﬂ(Q—|—x)7é(Z)}.

In particular F, o(r, Q) is independent of L.

The analogous statement holds for visible lattice points. Assume a = %’ € Q¢ and set

(3.26) NCT(Q v) :=#{y € Lo Bl(c) : Rugv N (Qr 4+ y) # 0}.

Theorem 3.10. Let A be a Borel probability measure on Scll_1 absolutely continuous with
respect to Haar measure. Then, for every o > 0 and r € Z>, the limit

(3.27) Foa(r,Q) = lim M({veS{™ : Nur(Q,v) =1})
exists, and is given by

(3.28) (A ) ({(v, M) € S{71 x Xy« #(ZEM N 3(e, Q,v)) = r}).
In particular, ﬁc,a(r, Q) is independent of L.

All statements in this section are proved in Section 9.

4. THE PERIODIC LORENTZ GAS

We now show how the results of the previous Section 3 can be applied to the distribution
of free path lengths (Section 4.1). We will then generalize these results to provide joint
distributions of free path lengths and exact location of impact on the scatterer (Section 4.2),
and the distribution of the velocity vector after the first hit (Section 4.3).
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4.1. Free path lengths. Recall that the free path length for the initial condition (g,v) €
TH(K,) is defined as

(4.1) T1(q,v;p) =inf{t >0 : g+tv ¢ C,}.

The crucial observation is that if A is any given probability measure on Sﬁlil and0 < p<T,
(g,v) € Tl(le), then we have

(42) A{veS{ : Noriplp,v) =0})
<A{vesS{': n(quvip) >T})
<A\{v e Sﬁlil : Nor—p(p;v) = 0}),

where Ny 7 is as defined in (3.5) with affine lattice Lo, = £ — q (thus a = —gM; ' mod Z%).
Let

d
(43) Pal8) = ~geFoa(0,6717Y).
This defines a continuous probability density on Rsq (cf. Remark 3.2). If a ¢ Q¢ then ®4(€)
is independent of a and we write ®(£) for this function (as in (1.5)).
The following is a restatement of Theorem 1.1.

Corollary 4.1. Fiz a lattice £ = Z%M,. Let ¢ € R4\ £ and o = —qul, and let A be
a Borel probability measure on Silil absolutely continuous with respect to Lebesgue measure.
Then, for every & > 0,

oo

(4.4) lim A({v € S : o7y (g vip) > €)) = / (€.
p—0 ¢

Note here that the condition q ¢ £ is ensures that 71(q, v;p) is defined for all sufficiently
small p. Corollary 4.1 follows directly from (4.2) and Theorem 3.1; cf. the proof of Corollary 4.2
below.

The analogous result corresponding to the set-up of Section 3.2 is as follows. As in that
section we let 3 : S‘li_1 — R9 be a continuous function, and again let A be a Borel probability
measure on S‘ffl absolutely continuous with respect to Lebesgue measure.

If g € L, it is possible that the trajectory g + pB3(v) + Rsgv starts inside the scatterer (if
|IB(v)|| < 1), or will hit the scatterer at g (if ||3(v)|| > 1 and v is suitably chosen). In the first
case the corresponding free path length is undefined; in the second case 71(q + pB(v),v;p) =
O(p). The measure of directions with short free path lengths,

(4.5) A{vesi™ : m(g+pBv),vip) < im(La)})

is independent of p, for p sufficiently small.

In order to avoid these pathological cases we will from now on assume that 3 is such that
if @ € L, then the ray B(v) + Rsgv lies completely outside BY, for each v € S¢'. This
assumption will be in force throughout the remainder of Section 4.

Set

(4.6) Pa,p(8) = —d%FO,a,ﬁ(O, g/,

which, unlike ®4, depends on the choice of the measure A; cf. (3.13). The function ®, g(§)
again defines a continuous probability density on R+, see Remark 3.5.

Corollary 4.2. For every & > 0,

@) mA(ee St gt in(g+ B()vin) 2 ) = /5 D (€')dE"
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In this statement, 71 (q+pB(v), v; p) is well-defined for all v € S¢~! so long as p is sufficiently
small. (For if g € £ then, by our assumptions on 3, we have in particular ||3(v)|| > 1 for all

v.)

Proof of Corollary 4.2. Set C = 1+ supga-1 ||B||. Generalizing (4.2) we note that when p is
1

sufficiently small and T is sufficiently large, we have

(4.8) A{vesit: Nor+cp(p, v, B(v)) = 0})
<A{v eS{ (g + pB(v),v;p) > T
<M{v e St : Mor—colp,v,B(v)) =0}),

where Nyr is as defined in (3.11) with affine lattice Lo = £ — q (in (4.8) we used our
assumption that if g € £ then (8(v) +Rsov) NB{ = () for all v € S71). In particular, writing

1

Ty = £p' =%+ Cp and o(p) = T/ p we have, for any p > 0 sufficiently small,
(49) A{vest : pT (g +pB(v),v;p) > £})
_1
> A{ves{™ 1 Nom (o(p)Ty ©7,v,B(v)) = 0}).

But 7} — oo and o(p) — &YV as p — 0F; hence by Theorem 3.4 the right hand
side above tends to Fyqg(0,6/(@ 1), This equals f;o Pq (&) dE’, because of (4.6) and

limy—o0 £0,0,3(0,0) = 0 (see Remark 3.6). Hence we have proved
o)
(4.10) lim inf A({v € St p (g + pB(w),vsp) > €}) > / Do (¢ de.
p— ¢

But using the last inequality in (4.8) we obtain the same upper bound for the corresponding
lim sup, and hence (4.7) is proved. O

Remark 4.3. When £ = Z2, ¢ = 0, B(v) = v (say) and A\ = uniform measure on Si, Corol-
lary 4.2 specializes to the limit result proved in Boca, Gologan and Zaharescu [4]. Similarly
for £ = 72, Theorem 1.2 (which is basically a g-averaged version of Corollary 4.1; cf. also
Corollary 9.4 below) specializes to the limit result proved in Boca and Zaharescu [7]. The
known explicit formulas for the volumes Fj o(0,0) and Fy(0,0) in (3.8) in the case d = 2 (cf.
[33] and Remark 3.3) indeed agree, via (4.3) and (4.6), with the limit formulas obtained in [4]
and [7] using methods of analytic number theory.

Analogous results are valid for non-spherical scatterers, as direct corollaries of Theorem 3.9.

4.2. Location of the first collision. The position of the particle when hitting the first
scatterer is

(4.11) q1(q,v;p) == q + 71(q,v; p)v.
We are now interested in the joint distribution of the free path length (considered in the
previous section), and the precise location on the scatterer where the particle hits.

By definition there is a unique m € L such that q,(q,v;p) € Szfl +m; hence there is a
unique point w; = wi(q,v;p) € S‘ffl such that g,(q,v;p) = pw; + m. Let us fix a map
K : 897! — S0(d) such that vK (v) = e; for all v € S¢™!; we assume that K is smooth when
restricted to ¢! minus one point.® Tt is evident that —w; K (v) € S/ld_l, with the hemisphere
S’ldfl ={v=(v1,...,v9) €S : vy >0}

[loLll

) € SO(d). Then K is

3For example, we may choose K as K(e1) = I, K(—e1) = —I and K(v) = E(— UL) for
v E S‘ffl \{ei,—ei}, where v := (v2,...,v4) € R! and E(w) = exp <_Qw 1(1;

smooth when restricted to S¢~'\{—e1}.
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Recall that we are assuming that 3 is a continuous function Sd*]L — R% such that if g € £

then (B(v) + Rsov) NBE = () for all v € S9!, We will use the shorthand q,3(v) =q+pB(v)
for the initial position. For the statement of the theorem below, we define the following
submanifolds of X, and X, respectively:

(412) Xy (y)={MeX,:ye(Z'+a)M} (foryecR?\ {0} and fixed o € ¢~ 'Z%);
X(y)={geX: yEng} (for y € RY).
These submanifolds will be studied in Section 7, where we will introduce a natural Borel

probability measure vy on each of them.
We will also use the notation | = x — ( - e;)e; for € R?,

Theorem 4.4. Fiz a lattice £L = Z%My. Let ¢ € R¢ and a = —qM(fl. There exists a
function @4, : Rsg x ({0} x BI™H) x ({0} x R™Y) — Rsq such that for any Borel probability
measure \ on Sffl absolutely continuous with respect to Volsflz_l, any subset U C S’ldfl with
V01S¢li—l(au) =0, and any 0 < & < &, we have

(4.13) ﬁl)ii%)\({ves‘f_l : p7 (g, 5(v), v p) € [61,&), —wi(g,5(v),v;p)K (v) € 4U})

/E /ul /S  Pa(éw, (Bv)K () 1) dA(v)dw d,

where dw denotes the (d — 1)-dimensional Lebesgue volume measure on {0} x R4=1. The
function @4 is explicitly given by

(4.14)
(€ w,z) = Vy({M € X,(y) : (Z% + a)M N (3(0,¢,1) + 2) = @}) if a€q17?
’ vy({9 € X(y) : Z%N(3(0,¢,1) +2) = 0}) if a¢ QY

where y = £e; +w + z, and

(4.15) 3(61,02,0) = {(xl,...,:cd) S Rd 0 <71 <, ||(.1‘2, ,ZL‘d)H < J}.

Remark 4.5. Note that ®,(£, w, z) is independent of 3. For a € Q% the function ® (&, w, z) is
Borel measurable, and in fact only depends on (e and) the four real numbers &, ||z]], ||w]|, z-w.
Also for a € Q%, if we restrict to ||z|| < 1 [and if d = 2: z+w # 0], then ®4 (&, w, 2) is jointly
continuous in the three variables £, w, z. If a ¢ Q? then ® (&, w, z) is everywhere continuous
in the three variables, and it is independent of both a and z; in fact it only depends on £ and
|lw||. All these statements will be proved in Sections 8.1 and 8.2. In particular, if o ¢ Q¢
then the limit in (4.13) is independent of o, 3, A

Remark 4.6. It follows from (4.13) that

(4.16) / / o w,z)dwdé =1
{oyxBI~1
holds for almost all z € {0} x R, and from (4.13) and Corollary 4.2 that
(1.17) [ el w (B K @).) aNw)dw = Paple)
{oyxBd-1 Jgd-t

holds for almost all £ > 0. As a consistency check we derive in Section 8.3 (see Remark 8.12)
the relations (4.16) and (4.17) directly from the explicit formula (4.14). In fact it turns out
that (4.16) holds for all z € {0} x R and (4.17) holds for all £ > 0.

As a preparation for Theorem 4.8 below and for the results in [22], we also state a version
of Theorem 4.4 involving an arbitrary continuous test function.
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Corollary 4.7. Let A be a Borel probability measure A\ on Sffl absolutely continuous with
respect to volga-1. For any bounded continuous function f : S‘ffl xRsqg X S‘ffl — R,
1

(4.18)  lim i f(v, 07 71(q, 5(v), v; p), wi(g, g(v),v; p))dA(v)

- v, &, —wK(v)™! w v)K (v w vOlgd—1
_/Sa“ /Rw/sflf( & —wK(0) ) ®a(Swi, (B(v)K () 1) wi dA(v) dE dvolga- (w),

where w = (w1, ..,wq)-

Proof. For f with compact support the result follows in a standard way by approximating f
from above and below by linear combinations of characteristic functions and applying Theo-
rem 4.4. When extending to arbitrary bounded continuous functions f one uses (4.17), (4.6)
and Remark 3.6. (]

4.3. Velocity after the first collision. If a particle moving with velocity vg hits a spherical
scatterer at the point q; and is elastically reflected, its velocity changes to

(419) V1 =Yg — 2(’00 . wl)wl,

where w; € Scll_1 is the location of the hit relative to the center of the sphere, as defined in
Section 4.2. This implies
V1 — Vo
(4.20) w = —.
[|v1 — vo|
Theorem 4.8. Let )\ be a Borel probability measure on Scllf1 absolutely continuous with respect
to volga-1. For any bounded continuous function f : S‘ffl XRsg X S‘ffl — R,

1

: d—1 . .
(421) ll)li)r(l) S‘lifl f(UOHO Tl(qp,ﬁ(v())aUOvp)v'Ul(qp,ﬁ(v())av(hp))d)\(v())

-/ . L] (00,6010, 1) ) ditvolgga (1),

with the probability density po g defined by

(4.22) Pap(v0, €, v1) dvolga—i (v1) = Do (&, wi, (B(vo)K(v9))1) w1 dvolgi—1(w)
where
(4.23) v, = (e; —2(e1 - w)w)K (vy) L, w € S'ld_l.

Remark 4.9. The relationship between pa g(vo, &, v1) and @ (£, w, z) can be expressed more

explicitly as
1 _ v1 K (v
(4.24) Pap(vo, &, 1) = 7 [[on —wol? d‘I’a<£,—( 1K (vo)) 1

l[v1 — vo|

(Bv0) K (v0))1 )

The function pa, g(vo, &, v1) is independent of the choice of the function K : S{~' — SO(d),
since ® (&, w, z) only depends on the four real numbers 5, H'wH ||z]|, w- z (cf. Remark 4.5),

which in (4.24) can be expressed as &, Y———— ~(von)? V11— ) - vo)?, (v1-v0)(B(wo)-vo) —v1-Blvo)
||v1 vol| [lvi—wvol]
respectively.

5. EQUIDISTRIBUTION IN HOMOGENEOUS SPACES

This section provides the ergodic-theoretic results, which are the key ingredients in the
proofs of the main theorems. These equidistribution theorems are consequences of Ratner’s
classification of measures that are invariant under the action of a unipotent flow [26], and may
in particular be viewed as variants of Shah’s Theorem 1.4 in [28].
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5.1. Translates of expanding unipotent orbits. The following is a special case of Shah’s
Theorem 1.4 in [28]. Let G be a connected Lie group and let I' be a lattice in G.

Theorem 5.1. Suppose G contains a Lie subgroup H isomorphic to SL(d,R) (we denote the
corresponding embedding by ¢ : SL(d,R) — G), such that the set T\I'H is dense in I'\G.
Let \ be a Borel probability measure on R4 which is absolutely continuous with respect to
Lebesgue measure, and let f: T\G — R be bounded continuous. Then

' 1 T e—(dfl)t 0
(5.1) Jim Rf <<ﬂ <<t0 1d1> < 0 et1d_1>>> d\(z) = /F\Gfdm

where v is the unique G-right-invariant probability measure on T'\G.

Let us set
(5.2) n_ (@) = ((% 1561) ,0> € ASL(d,R)
and
(5.3) ot = ((e_(gl)t et13_1> ,0) € ASL(d,R).

Theorem 5.1 implies the following.

Theorem 5.2. Let A be a Borel probability measure on R~ which is absolutely continuous
with respect to Lebesgue measure, and let f : X — R be bounded continuous. Then, for every

o € RY\ Q? and every M € SL(d,R)
(5.4) lim f((Lag, @) (M, 0)n_(z)d") dA(z / f(g)dulyg

t—o0 Jpd—1
Proof. Let G = ASL(d,R), I' = ASL(d,Z) and define the embedding
(5.5) ¢ :SL(d,R) = G, M+ (15,0)(MMM™1,0)(14, —cx).

We now wish to establish that I'\I'H with H = ¢(SL(d,R)) is dense in I'\G. To this end it
suffices to show that

(5.6) (v,m)(1q,0)(MM,0) = (YMM, (o + m)MM)

are dense in ASL(d,R), as v, m and M vary over SL(d,Z), Z and SL(d, R), respectively. It

is evident that this is in turn is equivalent to showing that {(c +m)y !} is dense in R
Letting C C R?/Z% be the closure of the image of aSL(d,Z) C R? under the natural

projection R? — R?/Z9, our task is to show C' = RY/Z4. Since a ¢ Q? there is a choice of

v € SL(d, Z) either a permutation matrix or ({ ') which gives w = (w1,...,wq) := ay € C

with wy ¢ Q. Then by choosing 7/ = (% 1;1 1) € SL(d,Z) with appropriate a € Z4 1,
the point wy’ can be made to lie arbitrarily close to (w1,0,...,0) in R?/Z%. Hence since
C is closed we have (w1,0,...,0) € C. Now let y = (y1,...,7y4) € R? and € > 0 be given.
Then there is m € Z \ {0} such that |[mw; — y1|| < € (where ||z|| = infuez |z — n| as
usual). Letting v be any matrix in SL(d, Z) with top left entry m we have (mwy, *,...,x) =
(w1,0,...,0)y” € C, and hence since C is right SL(d, Z) invariant and mw; ¢ Q, an argument

as above shows (mwi,0,...,0) € C. Finally by choosing (again) 7" = <1 e ) € SL(d,Z)

0 144
with appropriate a € Z4~!, the point (mwy,0,...,0)7y" € C can be made to lie arbitrarily
close to (mwi,ys2,...,yq). Since € is arbitrary and C' is closed we obtain y € C. Hence

C =R4/7% as desired.
Having established the required density, Theorem 5.1 implies that for any bounded contin-
uous f: X — R

(5.7) Jim F((M aM)n(w)‘Pt(MaaM)1)d>\($)=/xf(g)du(9)

Ra-1
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Choosing the test function f(g) = f(g(M,aM)) completes the proof. O

We now extend Theorem 5.2 by considering sequences of test functions with additional
parameter dependence.

Theorem 5.3. Let A be a Borel probability measure on R4~ which is absolutely continuous
with respect to Lebesque measure. Let f : Rl x X — R be bounded continuous and f;
R x X — R a family of uniformly bounded (i.c., |f;| < K for some absolute constant K ),
continuous functions such that fi — f ast — 0o, uniformly on compacta. Then, for every

a R4\ Q?, M e SL(d,R),

(58)  Jim [ (e (L @)(M,0)n_(x)®') dA(z) = / (@, g) du(g)d\(x).
—00 Jpd-1 Ri-1x X

Proof. Let us first assume that f; and f have support in the compact set X € R%! x X. Hence

the convergence f; — f is uniform and all functions are uniformly continuous. Therefore, given

0 > 0 there exist € > 0,ty > 0 such that

(5'9) f($07g)_5§f(mvg) Sf(mmg)"i_(s
and
(5.10) f(@o,9) — 6 < film,g) < f(xo,9) +0

for all & € zg + [0,€)?71, t > t5. Now

fi(x, (1g, @) (M, 0)n_(z)®")d\(x)

Rd-1
(5.11) = ke%d:_l /€k+[076)d_1 fil@, (1q,0) (M, 0)n_(z)®")dA(x)
(8% n_\xr t £ .
<3 L, ek (00O 0 @8 iN@)
By Theorem 5.2,
lim ek, (14, @) (M, 0)n_ () ')A (z)
00 Jek+[0,e)?
(5.12) / F(ek, g)du(g /kﬂo . dX(z)
< [ o @)+ SN@to),
and so
G.13) timswp [ e, (L) (M. 0n-@)8)d\@) < [ [ feg)ix@)duto) + 25

An analogous argument shows

(5.14) liminf [ fu(x, (14, @) (M, 0)n_(2)®")dA(a / [ J(@.g)ax@)du(g) - 2

t—oo  Jpd-1

It therefore follows that the limit exists and
G15) i [ e ae)0Lon @)@ = [ [ fegii@)duo)
t—00 Jpd—1 Rd—1

We now extend the result to bounded continuous test functions f;, uniformly bounded
by |fi| < K. Given § > 0 we choose compact sets K1 C R and Ky C X so large that
(1 —AK1)) + (1 —pu(Ks)) <§/K. Let ¢ : R — [0,1] and cp : X — [0, 1] be continuous
functions which have compact support and satisfy Xic, S €1 and Xic, < €2, respectively. Write

(5.16) fr=f+ 2, with  fl(z,9) = ci(@)e2(9) fe(z,9),  f72=fe— [
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Then f} is compactly supported as in the previous paragraph. For f? we have, using Theo-
rem 5.2,

lim sup /]Rdl ‘ff(:c, (1d,a)(M,0)n,(a:)<I>t)| d\(x)

t—o0

(5.17) < K(1—XKy))+ limsup/]C K(1—co((1g, @)(M,0)n_(x)®")) dA\(z)

= K(1—-\Ky)) + K/X(l —c2(9)) du(g) < K(1 = X(Ky)) + K (1 — p(Ky)) < 6.

This upper bound shows that the statement of the theorem can be extended from compactly
supported to bounded test functions. O

5.2. Spherical averages. We will now show that the statement of Theorem 5.3 (and thus of
Theorem 5.2) holds when n_(x) is replaced by

(5.18) (E(z),0) = (exp (_Otw 0;”1> ,o>.

In fact we can prove a more general fact with almost no extra effort:

Corollary 5.4. Let Q C R~ be an open subset and let E1 : Q — SO(d) be a smooth map such
that the map Q > x — e Ey(x)~' € S has non-singular differential at (Lebesgue-)almost
all x € Q. Let A\ be a Borel probability measure on §2, absolutely continuous with respect to
Lebesque measure. We then have, for any bounded continuous function f : Q x X — R and
any family of uniformly bounded continuous functions f; : 0 X X — R such that f — f as
t — oo, uniformly on compacta, and for every o € R*\ Q?, M € SL(d,R),

G19) i [ fie (1) (OL0)(Ei().08) d\@) = [ f@.g)dulg)dN(@).
Q QxX

Remark 5.5. Taking Ei(x) = E(x) as in (5.18) is indeed a valid choice in Corollary 5.4, for

note that e; E(xz)~! = (cos||z||, —Siﬁiuﬁ:”x), and one checks that this map has nonsingular

differential except when ||z|| € {7, 27, 37,...}.

Proof of Corollary 5.4. We first prove that if &y € € is any point where the map = —
e1E1(x)~! has nonsingular differential, then there is some open neighborhood Qg C € of
x( such that (5.19) holds when (2 is replaced by € or by any Borel subset of (.

To see this, write Ey = E;(x¢) and

620 B =R =5 )= (00 iY)  ceRvwertt

Then Ey(x¢) = 14 and thus ¢(x¢) = 1 and v(xy) = 0. Furthermore the map  — (c¢(x),v(x)) €
S9=1 has nonsingular differential at & = @, since (c(x), v(x)) = e, Ey(x) ' = (e, By (x) ") Eo,
and thus also the map x +— & := —c(x) 'v(x) € R must have nonsingular differential at
x = xp. Hence there exists some bounded open neighborhood €, of ¢ with 9_6 C 2 such
that ¢(z) > 1/2 for all € Qf and such that  — Z is a diffeomorphism of ), onto a bounded

open subset ) € R4, Now for each « € Q) we have

(G21)  (Ba(@).0) =n_@) ((% Qi) (fv ;‘1’) ,0) —n (3) ((Ctvl g) ,0),

since writing out *Eo(x)E2(x) = 14 one gets the relations cw +vA = 0 and ¢ + v = 1, viz.
w—TA=0andc—xw=c"
Hence also

(5.22) (El(:n), 0) o' = (Eo,0)n_(F)2' <<t1f(($));dt A?:B)) , 0> :
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Now fix 2y as an open nelghborhood of xg such that Qy C Qf, and consider any Borel
subset B of Qy. Write B C Qo C QO for the images of B and ¢ under  — «. Let us
assume A(B) > 0, and let A be the measure on R%! which corresponds to A(B)~'A|p under
the diffeomorphism & — ; then X is a Borel probability measure with bounded support and

absolutely continuous with respect to Lebesgue measure. Since fNZO C SNZE), we may choose a
continuous cutoff function A : R¥~1 — [0, 1] such that Xg, <h<Xxg-

If f; and f are given as in the statement of the corollary, we may define a family of continuous
functions f; : R¥™! x X — R and a continuous function f : R%~! x X — R through

(5.23) 7@ 9) = h(@) s <:1:,g (( (($))€ A?:::)) ,0)) it 7 e O
'

7@.9) = h@) (:c,g (( @) A?m)> o)) it e 0,
fi@.9) = f(@.9) =0 if & ¢ Q.
(We here view x € € is a function of Z € Q)).) We then have fi(Z,g) — f(Z,g) as t — oo,

uniformly on compacta. Applying Theorem 5.3 for /\ ft, f , and with M replaced by M Ey,
we get

(5:24)  lim Jo(%. (14, @) (M Eo, 0)n_ ()" ) dX(&) = / f(@, g) du(g)dA(@).

oo Jrd—1 Ra-1x X

Here the left hand side equals, using A= X‘E and (5.22),

tim [ fi (m (14, @) (M, 0)(Ey (), 0) @t) dN(%)

t—o00
(5.25)
! lim / i (. (14, @) (M. 0) (1 (). 0)8") d ().
and right hand side equals (using the right invariance of )
(5.26) | t@odugd@ =aB)" [ @) dulg)ire),
BxX BxX

This proves our claim: (5.19) holds when €2 is replaced by any Borel subset B of €. We have
proved this under the assumption A(B) > 0, but it is trivially true also in the case A(B) = 0.

Now the proof of Corollary 5.4 is completed by a simple covering argument: Given € > 0
there is some compact subset K C € such that A\(K) > 1 — ¢ and the map Q > = —
elE(z)7 ! e Scll_1 has non-singular differential at every @ € K. Then by what we have proved
and since K is compact, there exists a finite family €y,...,€, of open subsets of 2 which
cover K and which have the same property as 2y above. Set By := 1 N K and, recursively,

= (QNK)\(B1U...UBj_;) for j = 2,...,n. Then each Bj is a Borel subset of 2 so that
(5.19) holds when € is replaced by B;. Furthermore K is the disjoint union of By, ..., By;
hence by adding we obtain that (5.19) holds when (2 is replaced by K. Using A\(K) > 1 —¢
and our assumption that the family f; is uniformly bounded, we obtain (5.19) upon letting
e —0. U

5.3. Characteristic functions. We recall the definition of limits of a family of sets {& }+>4,,
where tg is a fixed real constant:

(5.27) liminf & := U ﬂ Es, limsup&; := ﬂ U Es.
t>to s>t t>to s>t
We will also use the notation

(5.28) lim(inf &)° = U (ﬂé’) limsup&; := ﬂ R

>ty s>t t>tg s>t



22 JENS MARKLOF AND ANDREAS STROMBERGSSON

Note that lim(inf &)° is open and lim sup &; is closed.
If {€: >4, 1s a decreasing family and & = (5, & we write & | &3 if {€¢}i>¢, 1s an increasing
family and £ = Utzto & we write & T €.

Theorem 5.6. Let A be a Borel probability measure on R~ which is absolutely continuous
with respect to Lebesque measure, and let & be a family of subsets of R¥™1 x X. Then, for
a € RY\ Q7 and M € SL(d,R),

.29 timin [ e (e, @)(M,0)n-(@)8)d\@) = [ dulg)dA (=),
t—oo  JRd-1 lim(inf &)°

and

(5.30) 1imsup/ xe: (@, (La, @) (M, 0)n_(z)2")dA(z) </ dp(g)dA(x).
t—00 Rd-1 limsup &

If furthermore the set limsup & \ lim(inf &)° has measure zero,

(5.31) lim xe, (x, (14, ) (M, 0)n_(x)®")d\(z) :/ du(g)dX\(x).

t—o0 Jrd-1 lim sup &

Proof. We begin with the proof of (5.30). Define the closed set

(5.32) &= ¢
Clearly & C g’t - g}l for t > t1. So

(5.33) limsup /]R  Xeu(@, (14, 0)(M, 0)n_ () ')A ()

t—o00

< Tim sup lim sup / Xz (@, (1g, 0) (M, 0)n_()0!)dA(x).
Rd-1 1

t1—o0 t—o0

It follows from Theorem 5.3 (for a constant family of test functions f = f;) by a standard prob-
abilistic argument in which characteristic functions are approximated by bounded continuous
functions f (see e.g. [30], Chap. III) that

(5.34) limsup/]Rdl_1 Xg, (z, (1g,@)(M,0)n_(x)®")d\(x) §/~ du(g)dA(x).

t—o00 Ety

Since g}l | limsup &,

(5.35) limsup[ du(g)d\(x) :/ du(g)d\(x),

t1—oo JE&, lim sup &

and (5.30) follows. Relation (5.29) is established by taking complements, and (5.31) then
follows from (5.29) and (5.30). O

Remark 5.7. Let E; : Q — SO(d) be any map as in Corollary 5.4; then the assertions of
Theorem 5.6 also hold with n_(x) replaced by (E1(x),0): Let A be a Borel probability measure

on €2, absolutely continuous with respect to Lebesgue measure, and let & be a family of subsets
of R¥~! x X. Then, for a € R?\ Q% and M € SL(d,R),

(5:36)  lminf /Q xeu (@, (14, @) (M, 0)(Ex (), 0)8") dA(x) > /1 e HOD@),

and we have corresponding analogues of (5.30) and (5.31). The proof is exactly as the proof
of Theorem 5.6, except that Corollary 5.4 is used in place of Theorem 5.3.
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5.4. Corresponding results for SL(d,R). By following the same line of arguments as for
ASL(d,R), one can prove the analogous equidistribution results for any homogeneous space
I'\ SL(d, R) with I' a lattice in SL(d,R). The lattices relevant for our application are the con-
gruence subgroups I' = I'(¢). The main results are as follows (cf. Theorem 5.3, Corollary 5.4,
Theorem 5.6 and Remark 5.7 above).

Theorem 5.8. Let A be a Borel probability measure on R4~ which is absolutely continuous
with respect to Lebesque measure. Let f : R¥™1 x Xy — R be bounded continuous and f; :
RI-1 x Xy — R a family of uniformly bounded, continuous functions such that f; — f as
t — oo, uniformly on compacta. Then, for every M € SL(d,R),

(5.37)

) 1 —(d-1)t
b (el 2D 8 )i

Corollary 5.9. Let E; : Q — SO(d) be any map as in Corollary 5.4, let X be a Borel probability
measure on §2, absolutely continuous with respect to Lebesque measure, and let f : 2 x X, — R
and f; : Q@ x Xq — R be bounded continuous functions such that f; — f ast — oo, uniformly
on compacta. Then, for every M € SL(d,R),

e—(d—l)t 0

(3% Jim [ 1 (:B,MEI(;B)( . )) N(z) = /Q @M (na )

etld_l

Theorem 5.10. Let \ be a Borel probability measure on R*™1 which is absolutely continuous
with respect to Lebesgue measure, and let & be a family of subsets of R x Xy. Then, for
every M € SL(d,R),

(5.39)

lim inf ML= (T 0N s dpig(M)dA ()
tmin /Rd_lxa z, 0 151 0 elly 4 v /11m(inf€t)° Ha i

and

(5.40)
. 1 = e (d-1)t 0
s [ (e (3 12) (4 o))z [ o

If furthermore the set limsup & \ lim(inf &)° has measure zero,
(5.41)

I m(L @\ (@0 d\(z) = dy (M)d
00 Rd—lxgt T 0 144 0 elly_q (CC)_»/limsupé't fiq(M)dA().

Remark 5.11. Let Ey : Q — SO(d) be any map as in Corollary 5.4; then the assertions of
Theorem 5.10 hold with ( 01 o ) replaced with E;(x): Let A be a Borel probability measure

on 2, absolutely continuous with respect to Lebesgue measure, let & be a family of subsets
of R™! x X, and let M € SL(d,R). Then

—(d-1)t
(5.42) litrninf/ X& (m,MEl(m) <e 0 etlo >> d\(z) Z/ . dpg(M)dX(x),
- Ja d—1 lim(inf &;)°

and we have corresponding analogues of (5.40) and (5.41).

It should be noted that these statements for SL(d, R) are in fact consequences of the mixing
property of diagonal one-parameter subgroups of SL(d,R) on I'\ SL(d,R) (cf. the arguments
used in [14], [20]), and do not require an application of Ratner’s theory.

6. LATTICE POINTS IN THIN SETS
6.1. Affine lattices with irrational a. In the following we consider subsets B of R9~! x RY;

we use the notation

(6.1) Ble = {x} xRHYNB
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which we identify with a subset of R¢ by projection onto the R? component. Our goal in this
section is to study, for a given affine lattice, the limit distribution of the number of lattice
points contained in such a set B|, after it has been deformed, thinly stretched, and then
sheared (or rotated) by a random amount. As we will see in Section 9, the problems discussed
in Sections 2 and 3 correspond to special cases of the present question.

Theorem 6.1. Let A be a Borel probability measure on R4 which is absolutely continuous
with respect to Lebesgue measure, and let By be a family of subsets of R&1 x R? such that
DBy is bounded. Then, for r € Zso, a € R4\ Q% and M € SL(d,R),

(6.2) lim infk({:v ERT! : #(By|o@ 'n(x) N (Z + a) M) > r})

> (A x ,u)({(m,g) R 5 X ¢ #((lim(inf B,)°)| N Z%g) > r})
and

(6.3) lim sup/\({:c € RT: #(Bylo® 'n_(z) N (2! + a)M) > T})

t—o0

< (A x u)({(m,g) e R x X : #((limsup By) | N Z%) > r})
If furthermore the set lim sup B, \ lim(inf B;)° has Lebesgue-measure zero, then
(6.4) lim A({m e R #(By |0 'n_(z) N (24 + a)M}) > 7“})
t—00
= (A X u)({(:c,g) eRIx X #((lim sup By)|z N ng) > r})

We will require the following lemma for the proof of Theorem 6.1. Given a set B C R~ xR¢
and an integer r € Z~q, we define the subset

(6.5) E(B,r) = {(m,g) RV X X #(BlpNZ) > r}.

Lemma 6.2. Fizr € Z~g. Then the following statements hold.
(i) If A C B, then E(A,r) C E(B, 7).
(ii) If B, is a decreasing family of bounded sets, then ME(By,r) = E(NBy, ).
(iii) If B, is an increasing family of sets then U E(By,r) = E(UBy, ).
(iv) If B is open, then E(B,r) is open.
v) If B is closed and bounded, then E(B,r) is closed.
i)

(vi) IfB has zero Lebesgue measure, then E(°B,r) has zero measure with respect to volga-1 X .

Proof of (i). Clear. O

Proof of (ii). It follows from (i) that N:E (B¢, ) D E(NeB¢, 7). To prove the opposite inclusion,
let (z,g) € R¥! x X be an arbitrary point outside &(N;By,7), where g € ASL(d,R) is a fixed
representative for a point in X. Then #((NB)|» N Z%) < r. Because of our assumptions
there is a bounded set € C R? such that B;|, C € for all t > ¢, (for some constant ¢y € R). Let
F be the finite set [ := {m € Z¢ : mg € ¢}, and let [/ := {m € Z¢ : mg € (NyBy)|»} C F.
Then #F’ < r. For each m € F \ F’ there is some t > ty such that mg ¢ B|,; thus for
all sufficiently large ¢t we have mg ¢ By|, for all m € F \ F’. Hence for these ¢t we have
#(B|x NZ%g) < #F' < r. Hence (z,g) & ME(By, 7). O

Proof of (iii). It follows from (i) that U E(B¢, ) C E(UpBy¢, 7). To prove the other inclusion,
take an arbitrary point (z, g) € £(U;B¢, 7). Then there are r distinct vectors my, ..., m, € Z¢
with m;g € (UB¢)|z = Ut(Bi|e). Hence for ¢ sufficiently large we have mjg € B, for all
j=1,...,r. Hence (x, g) € U E(By, 7). O
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Proof of (iv). Assume that 9B is open. Take (g, gg) € E(B,r), where go € ASL(d, R) is a fixed
representative for a point in X. Then there exist r distinct points myq, ..., m, € Z? satisfying
m;go € Blay, L. (Lo, mjgo) € B. Writing Q = NI_, f;(B) where f; : R¥ x ASL(d,R) >
(x,g) — (x,m;g) € R¥1 x R4, we have (xq, go) € 2, and each (x,g) € Q projects to a point
in £(B,r). Also Q is an open subset of R¥"! x ASL(d,R), each f; being continuous. Since
(0, go) was arbitrary in £(B,r) we conclude that £(B,r) is open. O

Proof of (v). Assume that B is closed and bounded. Take (xq, go) € R?~! x X outside £(B, r),
where again gg € ASL(d, R) is a fixed representative for a point in X. Then #(B|z,NZ%0) < 7.

Let U; be a neighborhood of the identity in SL(d,R) such that ||yM — y|| < 3||y|| for
ally € RY, M € Uy. Let R = sup{|ly|| : ¥y € Upepa-1B|z}. Then U = Uy x B is
a neighborhood of the identity in ASL(d,R) = SL(d,R) x R, and for each y € R with
llyl| > 4R and g = (M, &) € U we have

(6.6) lygll = [lyM + &l = llyll = [lyM —yl| - [[€]| > 3llyll = R > R.

Hence yg ¢ B|, holds automatically for all g € U, = € R%"! and all y € R? with ||y|| > 4R.
Let F' be the finite set of points m € Z¢ which satisfy |[mgo|| < 4R and mgy ¢ B|s,. For each
m € F we choose some open sets Vi, € R and V7, € R such that (xg, mgo) € Vi x Vi, C
(8. Now set

6.7) U'=(900) N ( ({9 € ASL(AR) - mgeVi})s V=[] Vim.
meF meF

These are open subsets of ASL(d, R) and R, respectively, and (g, go) € V x U’. Furthermore,
if (x,g) € V x U’ then by construction mg ¢ B, for each m € Z? with mgg ¢ B|s,, and
thus #(Z% N B|,) < r since #(Zgy N Blg,) < r. Hence each (x,g) € V x U’ projects to a
point in R¥~! x X outside £(B,r).

Since (xg, go) was an arbitrary point outside (B, r) we conclude that £(B,r) is closed. O

Proof of (vi). Assume that B has Lebesgue measure zero. Note that
(volga_1 X 1) ({(m,g) € R % ASL(d,R) : 9B, NZ%g # @})

< Z (volga—1 xu)({(m,g) e R¥1 x ASL(d,R) : myg € %|m})

meZ

=3 /Rd 1/SL(dR /Rd m(M,€) € Bl )dvole(E)dul(M)dvole_l(:c),

meZzd

(6.8)

where I is the indicator function. The innermost integral equals volga(B|), since m(M, &) =
mM + & But vol(B|z) = 0 holds for almost every = € R~! and thus the total integral is
zero. Hence, a fortiori, £(B,r) has measure zero. O

Proof of Theorem 6.1. If r = 0 then the statements are trivial; thus from now on we may
assume r > 0. Define the decreasing family of sets

(6.9) & = 5(%, r).
s>t

These sets are clearly closed (cf. Lemma 6.2 (v)). Then
lim sup A({x € R #(By[o 2 'n_(z) N (Z + ) M) > r})

t—o00

(6.10) < limsup /]Rdl_1 Xz, (z, (14, @) (M, 0)n_(—z)®") dA(z)

t—o00

<[ dulgara)
lim sup &
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due to Theorem 5.6. (To be precise, to treat “n_(—a)” as above, one applies Theorem 5.6 to
N and &/, defined through X (B) = A\(—B) for B C R, and & = {(~=,9) : (x,9) € &}.)
In view of Lemma 6.2 (ii),

(6.11) hmsupé't ﬂé’t (ﬂu%s,r> = £(lim sup By, r),
t s>t
and hence
| dulgire) = [ dp(g)dA(z)
lim sup & E(limsup B¢,r)
(6.12) = (A x u)({(m,g) € R x X ¢ #((limsup By)| N Z%g) > 7“})

which proves (6.3). The proof of (6.2) is analogous, using Lemma 6.2 (iii) and (iv). Finally
(6.4) follows using Lemma 6.2 (vi) for » = 1, since A is absolutely continuous with respect to
volga-1, and

(6.13) &(limsup By, 7) \ €(lim(inf B;)°,r) C €(limsup B, \ lim(inf B,)°, 1).

Theorem 6.1 is easily generalized to multiple families of sets:

Theorem 6.3. Let A be a Borel probability measure on R3~1 which is absolutely continuous
with respect to Lebesgue measure. For each 7 = 1,...,m, let %gj) be a family of subsets of

R x R? such that Ut‘ng) is bounded. Then, for any ri,...,rm € Z>p, & € R?\ Q% and
M € SL(d,R),

(6.14) lirnian({:I; R (B9 .0 n_(2) N (29 + a)M) > 1j, j = 1m})

t—o0
> (A x u)({(m,g) e R X ¢ #((lim(inf BY))|n N Z0) > 1y, G =1,... m})

and

(6.15) limsup)\({:neRd 1. (%(J |« ® 'n_(x )O(Zd—l—a)M) > rj, jzl,...,m})

t—o0

g()\xu)({(ac g) € R x X : #((lim sup BY) |5 N Z%9) > 7}, j:1,...,m}).

If furthermore each set lim sup% \hm(mf%( )) (i =1,...,m) has Lebesque-measure zero,
then

(6.16) tlirgo/\({:c R #(BY 0 n_(x) N (2 + a)M}) >y, j=1,... m})

= (A x ,u)({(m,g) eRIx X : #((limsup%gj))\mﬂng) >y, ] = 1,...,m}>.

Proof. We may throw away each j for which r; = 0. Thus from now on r; > 0 for each j.
Define the decreasing family of sets

(6.17) :6 <U BY ,rj)

These sets are clearly closed (cf. Lemma 6.2 (v)). Now (6.10) generalizes in the obvious way.
In view of Lemma 6.2 (ii),
(6.18)

s = (16 - mm(u% n)=Ne(NUBP) = e (imansdn).

j=1 1t s>t j=1 t s>t j=1
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and hence (6.12) carries over to give a proof of (6.15). The proof of (6.14) is analogous, using
Lemma 6.2 (iii) and (iv), and noticing that

m m
(6.19) Uﬂg((ﬂ%?’) J) :mug<(masgj>) J)
t j=1 s>t j=1t s>t
Finally (6.16) follows using Lemma 6.2 (vi) for r = 1, since A is absolutely continuous with
respect to volga-1, and
(6.20)

( m &(lim sup %t ,T ) ( ﬁ lim 1nf‘B(J ) 6 lim sup %Ej)\lim(inf %Ej))o, 1).

J=1 J=1
O

Remark 6.4. The assertions of Theorem 6.1 and Theorem 6.3 also hold if n_(x) is replaced
by (E1(x),0)~! where E; : Q — SO(d) is any map as in Corollary 5.4. Specifically, if \ is
any Borel probability measure on (), absolutely continuous with respect to Lebesgue measure,

then for any given families Bt(j ) € R1 x RY as above, and any 1; € Z>g, a € R?\ Q7 and

M € SL(d,R), we have
(6.21) 1ig£fA({m e #(BY 071 (E(2),0) N (Z4+ a)M) > 1, j=1,... m})

> (A x ,u)({(m,g) EQxX : #((lim(inf%gj))o)\mﬂng) >y, ] = 1,...,m}),

and corresponding relations for the limsup and the limes, cf. (6.15) and (6.16). The proof
is exactly as the proofs of Theorem 6.1 and Theorem 6.3, except that Remark 5.7 is used in
place of Theorem 5.6.

6.2. The case of rational . Using the same strategy of proof, the above results can be
readily established for o € Q, if the space X is replaced by X, and the measure p by pq, for
some ¢ with a € ¢7'Z%. In the proofs one uses the following analogue of (6.5):

(6.22)  &(B,r) = {(m,M) R x X, : #(Blan (29 + )M\ {0}) > 'r}.

The reason for removing the point 0 is so as to make all of Lemma 6.2 valid in the present
setting. (Specifically, in the proof of the analogue of Lemma 6.2 (vi) we need to note that
fSL(d R) I(mM € Q) dpy (M) = 0 holds for each subset € C R? of measure 0. This is true for

each m € R except m = 0.)
We thus have the following.

Theorem 6.5. Let A be a Borel probability measure on R4 which is absolutely continuous
with respect to Lebesque measure. For each j = 1,...,m, let %gj) be a family of subsets of
R x R? such that Ut%gj) is bounded. Then, for any ri,...,rm € Z>o, o0 = %’ € Q% and
M € SL(d,R),

(6.23) lirnian({:I; e R #(BY 0 (@) N (2 + )M\ {0}) > rj, j=1,... m})

> (Axuq)<{( M) € R X, 1 #((lim (inf BY)%) | oN(Z94a) MA{0}) > 1y, j=1,. })

and

(6.24) limsup)\({x eRIL: (%gg lo® 'n_(x )ﬂ(Zd—l-a)M\{O}) >, j= 1,...,m})

t—o00

< (Axuq)<{(ac,M’) e R X, : #((limsup BY) |,N(Z44+a) M\{0}) > rj, j=1,... m})
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If furthermore each set lim sup %gj) \ lim(inf %gj))o (7 =1,...,m) has Lebesque-measure zero,
then

(6.25) tlirgo)\({a: e R (BP0 (@) N (28 + )M\ {0}) > rj, j=1,... m})
- (/\xuq)<{(:c,M’) e R“Ix X, : #((lim sup B[N (Z+a) M\{0}) > r;, j=1,... m})

Remark 6.6. The assertion of Theorem 6.5 holds if n_(z) is replaced by (E;(x),0)"!, where
E; : Q — SO(d) is any map as in Corollary 5.4. Compare Remark 6.4.

6.3. Visible lattice points. In the case of rational «, all results are equally valid for Zg‘ in
place of (Z¢ + ) \ {0}.

Theorem 6.7. Let A be a Borel probability measure on R4~ which is absolutely continuous
with respect to Lebesque measure. For each j = 1,...,m, let %Ej) be a family of subsets of
R~ x R? such that Ut%gj) is bounded. Then, for any r1,...,7m € Z>o, 00 = g € Q% and
M € SL(d,R),

(6:26) liminf A({w € R - £(BY |, n_(@) NZLM) > 1y, j=1,...,m})
—00

> (0 x pg)({(@, M) € R x X, ¢ #((lim(inf BY)°)|p N ZEM') > 1y, j = 1,...,m}),

and

(6.27) limsup A\({z € R*! : #(BY .0 "n_(2) N ZIM) > r;, j=1,....,m})

t—o00

< (A x pig) ({(, M) € R x X, ¢+ #((limsupBY) |, N ZIM) > ), j=1,...,m}).

If furthermore each set lim sup %gj) \ lim(inf %gj))o (7 =1,...,m) has Lebesque-measure zero,
then

(6:28) lim A({w e R : £(BY |0 'n_ (@) NZEM) > r;, j=1,...,m})
= (A x pg)({(m, M) € R x Xy ¢+ #((limsupBY) o N ZEM') > vy j=1,....m}).

Remark 6.8. Just as in previous remarks, the assertion of Theorem 6.7 holds if n_(x) is
replaced by (Ei(x),0)"!, where E; : Q — SO(d) is any map as in Corollary 5.4.

7. INTEGRATION FORMULAS ON X AND X,

In this section we prove some formulas for integrals and volumes in the spaces (X, p) and
(Xg, ftq), which we will need to be able to generalize a technique which was introduced in
Elkies and McMullen [13] in the case of d = 2 and (X, i) (cf. also [33]). The goal is to obtain
a more precise understanding of the explicit limit functions described in our main theorems;
we will achieve this in Section 8.

Recall that we have fixed 114 as the Haar measure on SL(d, R) normalized to be a probability
measure on X, = I'(¢)\ SL(d,R). This implies, via a well-known volume formula by Siegel,
that 1 can be explicitly given as the measure on SL(d, R) which satisfies

dt -1 —d
(7.1) din (M) = (g(z)g(s) . g(d)) (det(wiy)) “dayrdmrs - ... - daag
when parametrizing GL* (d,R) as (z;;) = tY4M e GL*(d,R), with M € SL(d,R), t > 0; cf.,
e.g., [31], [20]. From this it follows that

(7.2) Hg = Iq_lul; where I, := [I'(q) : I'(1)],
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and also that the Haar measure p on ASL(d,R) which we have normalized by pu(X) = 1, is
explicitly given by

(7.3) du(M, §) = dp (M)dg, (M, €) € ASL(d, R),

where d€ = d¢; - ... - d€g is the standard Lebesgue measure on R%.
The following lattice average formula is also due to Siegel (at least on X7). Recall that we
always keep d > 2.

Proposition 7.1. Let F € LY(R?), q € Z¢ and o € ¢~ Z%. Then

(7.4) /X

Proof. If a € Z% then one easily reduces to the case ¢ = 1, and then the formula is proved in
Siegel, [31]. (Cf. also [20, Sect. 3.7].)

From now on we assume « ¢ Z4 (and thus Z¢+a/\ {0} = Z¢+a). Write v = IE) with p € Z¢.
Let F C SL(d,R) be a fundamental domain for SL(d,Z)\ SL(d,R) and choose representatives
T; € SL(d,Z) so that SL(d,Z) = |_|§q:]L I'(¢)T; (with | | denoting disjoint union); then |_|JI‘1:1 T;F
is a fundamental domain for I'(¢). Hence

/X F(kM) dug(M —Ilz/ > F(KT;M) dpy (M)

(7'5) 9 ke€Zita kEZd+OL
= Iq’1 /fZF(qlngM) dpy (M),
(=1

where n,ma, ... € Z%\ {0} is an enumeration (with multiplicities taken into account) of the
points mTj, for m € p+qZ<, j € {1,...,1,}. For every vy € SL(d,Z), the list 71,127, ... can
be obtained as a permutation of n1,n9,.... (To see this, note that given v € SL(d,Z) there
are elements 71,...,77, € I'(g) and a permutation p of {1,...,I;} such that Tjy = v;T,;
for all j € {1,...,I,}. Also note (p + qZ%)~v; = p + qZ%) Recall that each orbit for the
action of SL(d,Z) on Z%\ {0} equals tZ4 for some t € Z~q, where 74 as before denotes the
set of primitive lattice points in Z?. It follows that for each t € Z~( there is some multiplicity

F(kM)dp (M) = / F(x)d.
1 keZi+a\{0} Rd

my € Zx>o such that the sequence mq,no,... visits each point in 7.4 exactly my; times. Now
the above integral may be rewritten as

(7.6) / Z me Z q tteM) duy (M).

X1 4—1 ceZd

Arguing as in [20, pp. 1150-1151] we find that this equals

(7.7) /Rd d:c—qc i:: / dx

Finally an argument as in [20 p. 1152(top)] shows that the constant in front of the integral

me

must actually be 1, i.e. Y 72, it q~%1,¢(d), and the proof is complete. O

The identity > ;7 = q~%1,¢(d) can of course also be proved by a more explicit compu-
tation: One easily reduces the situation to the case where ¢ is the minimal denominator of the
given @ € Q% in other words o = IE) where p = (p1,...,pq) € Z¢ has ged(q,p1,...,pq) = 1.

Then note that the SL(d, Z/qZ)-orbit of p + qZ¢ in Z¢/qZ? equals
(7.8) V={x+qZ" : x=(z1,...,2q4) € Z% ged(q,z1,...,24) = 1} C Z/qZ",
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and since # SL(d,Z/qZ) = I, we see that the sequence ni,no,... visits exactly those points
in Z¢ which belong to the preimage of V, and each such point is visited exactly I,/#V times.
Hence

m I I
(7.9) g = = =L ¢(d) (e)e™
Sy X =@

t>1, (t,q)=1 elg

On the other hand #V = ¢?3"_ u(e)e™?, and the identity follows.

elg
7.1. The submanifolds X,(y) of X,. Fix a = p/q € Q%. Given any y € R%\ {0} we define
(7.10) Xy(y) ={MeX, : ye (Z'+a)M}.

This set can be given the structure of an embedded submanifold in X, of codimension d, and
with a countably infinite number of connected components. To see this we first note that

Xq(y) = UkGZd—I—a\{O} Xq(ka y)> where
(7.11) Xq(k,y):={T(¢q)M € X, : M € SL(d,R), kM =y}.

One checks that for any k,k' € Z% + a \ {0}, we have X,(k,y) = X,(K',y) if k' € kI'(¢);
whereas X,(k,y)NX,(k',y) = 0 whenever k' ¢ kT'(g). Hence if S is any subset of Z?+a/\ {0}
containing exactly one representative from each orbit of the right action of I'(¢) on Z?+a/\ {0},
then we can express X,(y) as a disjoint union

(7.12) Xy(y) = | | X,(k.).
keS

To describe each X, (k,y) further we set

(7.13) H={geSL(d,R) : esg=e1} = {(t:'lv 21) cveR AeSL(d— 1,R)}.

This is a closed subgroup of SL(d,R) which is isomorphic with ASL(d — 1,R) (as defined in
(2.1)) through

(7.14) H> (tlv 2) — (A7 vtA™1) € ASL(d — 1,R).

We let 7 be the Haar measure on H given by dug(g) = d,ugd_l)(A) dv, with A, v as in (7.13),

ugd_l) the Haar measure on SL(d — 1,R) from (7.1), and dv the standard Lebesgue measure
on R4, In dimension d = 2 we have H = {(}9) : v € R} and we set duy = dv.

Now fix some My, M, € SL(d,R) such that k = eiMy, y = eitM,. Then X, (k,y) is
the image of M, 'HM, C SL(d,R) under the standard projection 7 : SL(d,R) — X, and
hi,hy € H give the same point W(M,c_lthy) = W(M,c_lthy) if and only if h; and hs belong
to the same left (MgI'(q)M, ' N H)-coset. This gives an identification of sets

(7.15) X, (k,y) = M_* ((M,J@)M,;1 N H) \H) M,

Since MkF(q)M,gl NH is a discrete subgroup of H, the quotient space (MkF(q)M,zl ﬂH) \H is
a connected (d* —d —1)-dimensional manifold, and hence X,(k,y) inherits a natural structure
as a connected (d? — d — 1)-dimensional manifold. One verifies that this structure does not
depend on the choice of M, or M, (since left or right multiplication by any fixed H-element
gives a diffeomorphism of H). Since the map H 3 h — Mk_thy € SL(d,R) is an immersion
we see that X (k,y) is a connected immersed submanifold of X,. Hence since the union (7.12)
is disjoint we have now given X,(y) a structure as an immersed submanifold of X, with a
countably infinite number of connected components. (X4(y) is even an embedded submanifold
of X4, but we will not need this fact.)

Note that pg induces a Borel measure on each quotient space (MkF (@) M, 'nH ) \H, which
we also call pg. We endow X,(y) with the Borel measure vy defined on each X4(k,y) as
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coming from (1,((d))" g under the identification (7.15). This measure vy, is independent of
the choices of S and matrices My, My, as is easily seen from the fact that p1p is both left and
right invariant.

Lemma 7.2. For any y € R\ {0}, T € SL(d,R) and any Borel subset £ C X,(y) we have
vy(E) = vyr(ET).

Proof. For any given subset £ C X,(k,y) we have &'T C X,(k,yT), and if we choose My =
MyT in the above definitions then these two subsets correspond to exactly the same subset
of (MgI'(q)M, ' N H)\H under the identification(s) (7.15). The lemma follows trivially from
this. (]

Proposition 7.3. Let £ C X, be any Borel set; then y — vy(€ N X4(y)) is a measurable
function of y € R1\ {0}. If U C R%\ {0} is any Borel set such that & C J,crr Xq(y), then

(7.16) 1q(E) < /U V(€ 1 X, (y)) dy.

Furthermore, if Vy, # yo € U : Xq(yy) N Xq(yo) NE =0, then equality holds in (7.16).

yeU

The following lemma will be required for the proof.

Lemma 7.4. For each y € R?\ {0}, choose some M, € SL(d,R) with ey My, =y. Then for
every f € LY(SL(d,R), u1,) we have

(7.17) /SL(dvR)f(M)duq( = q<< 5/ ” ([ sy du ) .

Proof. First of all the integral [, f(hMy)dpy(h) (if it exists) only depends on f and y, and
not on the choice of M,, since for a given y the matrix M, is uniquely determined up to left
multiplication by an element from H, and pp is right H-invariant. Hence we may fix the
following specific choices of My, for y = (y1,...,yq) with y; > 0:

/
(0 ) Y1 Yy . ,

7.18 My = My, __1 with = (y2,...,Yd);
(7.18) y (to s, Yy = (Y2, -, ¥d)
and for y = (y1,...,yq) with y; < 0:

(7.19) My =M Ko, where Ko = diag[~1,~1,1,...,1] € SL(d,R).

We may leave M, unspecified when y; = 0, since these y’s form a subset of R?\ {0} of
Lebesgue measure zero.

Write G = SL(d,R), Gt = {(mjx) € G : my1 > 0} and G- = {(mjx) € G
mi; < 0}. Then the map (h,y) — M = hMZ(,O) gives a diffeomorphism from H x {y €
R : y; > 0} onto G (indeed, the inverse is easily computed explicitly and seen to be
smooth). Furthermore in this parametrization we have, via a standard computation similar
to, e.g., [20, (3.70), case r = 1], duq(M) = (1,¢(d)) " *dpp (h)dy. Hence [,o f(M)dpug(M) =
(qC( )t f{yele >0} S5 f(hMy) dppr(h) dy. Similarly one verifies [, f(M)dug(M) =
(I,¢(d f{ye]Rd <0} Sy f(hMy) dpp (h) dy, and (7.17) follows by addition of these two. [

Proof of Proposition 7.3. Let F C SL(d,R) be a (measurable) fundamental domain for I'(¢)\ SL(d, R),
in the set theoretic sense. That is, we assume F N~F = () for all v € I'(q), and U, cp(y) +F =

SL(d,R). For each y € R%\ {0}, fix some M, € SL(d,R) with e;M, = y. Now for any
y € R\ {0} we have, via (7.12), (7.15) and the definition of v,

(7.20) € 0 Xw) = ()Y [, (M ) d ),

keS

where F; C H is any fixed fundamental domain for (MgI'(¢)M,, ' N H)\H, & denotes the pre-
image in SL(d,R) of £ C X, and X¢, 18 its characteristic function. We may choose 1 = HNF
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where 75 C SL(d,R) is any fixed fundamental domain for (MgI'(q)M, ' N H)\ SL(d,R), and
such an F» may be fixed as Fo = M (l—l’YGS(k) 7.7:) M;l, where S*)  T'(q) is any set of coset
representatives for (I'(q) N M, ' HM)\I'(q). Hence, since & C SL(d,R) is left I'(¢) invariant,

(7.21) vy(ENXy(y) = (LCD) D D /HXfmso(’Yle_thy) dpip ().
)

keS ’YES(k

But for each k € S and v € S*) we have eiMypy = ky = e1 My, and thus Mgy = hoMp,
for some hg € H; hence using the invariance of jz; we see that we may replace y~'M & ! with
M ’;vl inside the integrand. Furthermore, given 7,7 € I'(q) we have the following chain of
equivalent statements:
(7.22)  (T(q) N M, 'HMy)y = (I'(q) N M, 'HMy)y <= 'y~ € M, ' HMj

— eleW”y*le_l =e; < kv = k.
Hence by the definition of S and S®*), as k and + run through the double sum in (7.21), kv
visits each vector in Z? + a \ {0} exactly once. Hence

(723)  wmyEN X, ) = (L)Y / Norney (Mg "M daga ().
keZi+o\{0} H

Here for each k the function R?\ {0} > y — [}, Xy, (7riey) (BMy) dpur () is measurable (this
is implicit in Lemma 7.4); hence also the above sum (7.23) is measurable as a function from
RS R \ {0} into Rzo U {OO}

Now to prove (7.16), note that the assumption on U implies & = Ugeza o (o} €k Wwhere
Er:={M €& : kM € U}. We have by (7.23),

(7.24) /U vy(EN X, (y))dy = (1,¢(d))~* kEZZ;\{O} /U /H Xrne, (M 'hMy) dup (h) dy,

and for any k,y, h appearing in the above expression we have k(Mk_thy) =1y € U, so that
M, *h My, € & must hold whenever M, 'hM,, € &. Also for every y € R?\ (U U{0}) we have
k(M. 'hM,y) =y ¢ U, so that M, 'hM, ¢ E. Hence

_ -1 —1
723 [ mienXawnay = (c@)™ ST [ e () du ) dy

keZi+a\{0}
= > n(Mu(FNE) = Y ug(FNEk) 2 pg(F N E) = pg(E),
keZd+o\{0} keZd+ao\{0}

where we used Lemma 7.4, the invariance of jig, and & = Ugeziiajoy k- (To avoid any
confusion in the last step: Recall that we use p, to denote both a Haar measure on SL(d,R)
and the corresponding probability measure on X,.) Hence (7.16) is proved. To prove the final
statement about equality, note that the condition Vy; # y, € U : Xy(y) N Xy(y) NE =0
implies that the sets & are pairwise disjoint, and thus EkeZd—l—a\{O} g (.7-" N Ek.) =pue(€). 0O

Proposition 7.5. For each y € R?\ {0} we have vy(X,(y)) = 1.

Proof. Let us write o« = %’ with p = (p1,...,pq) € Z% We first show that without loss of
generality we may assume ged(q, p1,...,pq) = 1, i.e. that ¢ is the minimal denominator of the
given vector a € Q?. Indeed, any other denominator of o can be written as ¢’ = qqi, with
q1 € Zo; for each such ¢ there is a canonical covering map m : Xy — X, of index [I'(¢') :
I'(q)] = I, /1,, and it follows straight from the definition (7.10) that X, (y) = 7~ 1(X,(y)),
i.e. Xy(y) is a covering of the manifold X,(y) of index [I'(¢') : T'(¢)]. Furthermore the

measure 1/1(;1) on X, (y) lifts to [I'(¢') : I‘(q)]ul(f/) on Xy (y) (in an obvious notation). Hence if
y?(/q) (Xq(y)) =1 then also y;q/)(Xq/(y)) =1, as desired.



THE DISTRIBUTION OF FREE PATH LENGTHS IN THE PERIODIC LORENTZ GAS 33

Thus from now on we assume ged(q, p1,...,pq) = 1. By (7.12) and (7.15) we have

(7.26) vy(Xg(y)) = (1¢(d) ™D pr (MeT' ()M " 0 H)\H).
kesS

Given k = (ki,...,kq) € Z% 4+ o\ {0}, set ty := ged(qky, qka, . .., qks) € Z=o. Then (q/tx)k
is a primitive vector in Z?, and hence there is some v € T'(1) so that (¢/tx)k = e17. For each
§ > 0 we define g5 = diag[s,06~1,1,...,1] € SL(d,R). Then we may choose My, as My, := It /Y
(since this gives e; My = k). With this choice we have MgI'(q)M, "' = gtk/qI‘(q)gt_kl/q, since
I'(¢) is normal in I'(1). Note that o : H 5 h +— gtk/qhg;el/q € H gives an automorphism of H,
and hence MgI'(q)M,, ' N H = a(T'(¢) N H). Furthermore one verifies by a quick computation

that « scales the Haar measure with a factor (q/tg)?, i.e. ug(a(A)) = (¢/tk)%ur(A) for any
measurable A C H. Hence

d
(7.27) w(Xa@) = i O 1 (P(@) V).
q kesS

For each k = (ky,...,kq) € Z% + o\ {0} we have (tg,q) = 1, since gk € p + ¢Z¢ and
ged(q, p1,---,pa) = 1. On the other hand, given any ¢t € Z~o with (¢,q) = 1 we may choose
t* € Z so that t*t = 1 mod ¢; then ged(q, t*py,...,t*pg) = 1 since (q,t*) = 1, and thus there
exists some primitive vector m in t*p+¢Z?, 4 and then k = (t/q)m € Z¢+ «\ {0} has t, = t.
Furthermore, we claim that tg, = tg, holds if and only if k1I'(¢) = ka2I'(q¢). To prove the
nontrivial direction of this claim we assume that ki, ke € Z9+a\ {0} have t := t3, = tg,. Then
(q/t)k;j is a primitive vector in Z¢ and hence there are some 71,72 € I'(1) with (¢/t)k; = e17;.
Now both vectors e;~y; belong to t*p+ qZ% with t* as before; hence ewlfy;l = e; mod ¢Z%, so

/
that 71751 = (f; i) with 1 = 1 mod ¢ and =’ € ¢Z?!. Reducing mod ¢ we also see that
A mod q lies in SL(d — 1,7Z/qZ); hence there is some A’ € SL(d — 1,7Z) so that A’ = A mod ¢
[29, p. 21]. Now <i} j{)/ € I'(1), and this matrix has the same projection as 71751 in

SL(d,Z/qZ) = T(1)/T(q). Hence ~ := ;" <gv 2,) ~v2 belongs to I'(¢q), and we see that

e1717 = €172, and thus k1I'(q) = koI'(q), as desired.
It follows that (7.27) may be rewritten as

~ q"ur((T(qQ) NH)\H) _
- I,C(d) 2

(7.28) vy(Xq(y))

t>1

(t,9)=1

But note p7 (T'(¢)NH)\H) = #((T'(q)NH)\(D'(1)NH))-pr (D(1)NH)\H), where the second
factor equals one by the definition of u g, and the first factor is seen to equal #H (Z/qZ) with
H(Z/q7Z) = { <i} 21) € SL(d, Z/qZ)} (for this one uses the surjectivity of the map SL(d —
1,Z) — SL(d—1,Z/qZ), cf. 29, p. 21]). Also note that we have a decomposition of SL(d, Z/qZ)
analogous to the decomposition of SL(d, R) in the proof of Lemma 7.4: Take V C Z%/qZ% to be
asin (7.8). For each y € V we fix a matrix M, € SL(d,Z/qZ) whose first row equals y. (Such a
matrix exists, for we may lift y1, ..., yq to integers satisfying ged(ys,...,yq) = 1, cf. footnote 4
above, and then apply [31, VIII.1-2].) One then verifies that the map H(Z/qZ)xV > (h,y)
hM, € SL(d,Z/qZ) is a bijection. Hence I, = #SL(d,Z/qZ) = #H(Z/qZ) - #V. Finally

4This can for example be shown using Dirichlet’s theorem on arithmetic progressions, for by that theorem we
may find m; € t*p; +¢Z, j = 1,...,d such that m; = r; ged(pj;, ¢) with prime numbers ¢ <71 <712 <...<7Tg;
then m = (my, ..., my) lies in t*p + ¢Z% and is primitive.
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recall that #V = ¢? Zemu(e)e*d and oy ()21 t=% = ¢(d) D el p(e)e~?. Hence we obtain

_ ¢“#H(Z/qZ) q_
(7.20) n(X ) = 2T /qz@;”@e ‘1,

O
We next prove an analogue for X,(y) of Siegel’s lattice average formula, Proposition 7.1.

Proposition 7.6. Assumed > 3 and o = %’ withp = (p1,...,pq) € Z% and gcd(q, p1, - .., pq) =

1. If F: RY — R is a bounded measurable function of compact support, then for any
y € R4\ {0} we have

(7.30) /
Xq

where all sums and integrals are absolutely convergent.

_ —d a
m—l—a)M)dVy(M)_/wERd zyde+ Y 1Y F(;y),
t>1 a€t+qZ
(t,q)=1 (a,t)=1

meZd

We require the following lemma.

Lemma 7.7. Let F : R?* — R be a bounded measurable function of compact support. If d = 2
then we furthermore require that F(xe; + mesy) is a measurable function of x € R for each
fited m € Z. Let a = (v, ...,0q) with o € R and ag,...,aq € Z. Then

(7.31) / S F((m + ) M) duy (M)
(M@NHNH 5
_ i LV (Syen F((E+ ar)er) + [ epa Fla) da) d>3
Z@EZ F(({+a1)er) + ZmEZ\{O} fR (re; + meg)dx d=2.

Proof of Lemma 7.7. The right hand side in (7.31) is clearly absolutely convergent; it will be
clear from the proof that the left hand side is also absolutely convergent.
We first give the proof in the case d > 3. Write a = (ay,a’) € R x Z%! and express

1 0
M e H as M = <tv M1>7then

(7.32) (24 + a)M = |_| |_| (€+a1 (m+a)' (m+a)M1>
LEL meZd—1

and a fundamental domain for (I'(¢) N H)\H is given by {M € H : v € [0,¢)%"!, M; € F},
where F is any fixed fundamental domain for I'(¢)\ SL(d — 1,R). Set Fi(z,y) = > ,c; F(x

¢,y) where in the right hand side we identify R? with R x R?! in the obvious way. Since
o' € 7971, the integral in the left hand side of (7.31) can now be expressed as

(7.33) / / Fi(ay +m, mM) duy (M )dv.

[O,Q EZd 1
Note that f[o )Fl a+ bxr,y)dx = qu/ZFl(x,y) dz for any a € R and b € Z,y. Thus,
defining F5(y) == [, sz Fi(@,y) do = Jz F(z,y)dx (so that Fy(y) is defined for almost every
y € RI-1 and the function F» is measurable, by Fubini’s Theorem), we have f €[0,g)d-1 Fi(on+
m',y)dv = ¢® 1 Fy(y) for each m € Z%~1\ {0}, and hence (7.33) equals

(7.34) g?1 /f (Fl(al,O)—i— Y Fg(li)) dpn (M),

mezd—1\{0}
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The integrand in (7.34) only depends on the I'(1)-coset of M, i.e. the integration over F
may be replaced by Lgd_l) times an integral over I'(1)\SL(d — 1,R) = de_l); hence by
Proposition 7.1 (applied for “d — 1”7 and “q =1") we get

(7.35) — 0 (R0 + [ Bd),
yeRdfl

which gives the formula (7.31).
In the remaining case d = 2 we obtain as before (7.33) and (7.34), but with the inner
integration sign removed and instead just taking M; = 1 in the formulas. Now (7.34) agrees

with (7.31), and we are done. O

Proof of Proposition 7.6. We first prove the absolute convergence. It will be clear from the
proof below that it suffices to prove that the right hand side of (7.30) is absolutely convergent.
This is clear for the integral; thus we turn to the double sum. Assume |F(x)| < B for all
x € R? and take C' > 0 such that F(ry) = 0 whenever » < —C or r > C (for our given
y € R\ {0}). Then

(7.36) Z Y (F( )‘th_d(1—|—20q_1t)B
t>1

aet—l—qZ
(¢, q) (a,t)=

This is obviously absolutely convergent, since d > 3.

We now prove the identity. In view of (7.12) and (7.15) the left hand side of (7.30) decom-
poses as

-1
(7.37) % /M T %dF((m—ka)Mk hM,) dug (h).

For each fixed k € S we now perform the same manipulations as in the proof of Proposition 7.5,
just before (7.27)' we thus get (since Z4y~1 = Z% for every v € T'(1))

_ —d -1 —1
(138) = /F( oy o Ul 2 R My s (),
kES a) mezZad

where vy, is any map in I'(1) with (¢/tx)k = e17%x. Now note (for each k € S C Z¢ + '\ {0})
that a'ylzl € (k+ Zd)'ylzl = (tx/q)e1 + Z4. Hence Lemma 7.7 applies, giving

g1 I(d 1)
_ -1

(7.39) = o ,;tk <ee%F( (042 *)erg;, ;M )+/£€RdF(a:gtk/ny) da)

g1 I(d 1) J

T S (S F (G 0w)+ [ P de),

kcS ez

But we saw in the proof of Proposition 7.5 that when k runs through S then t; visits each
t € Z>0 with (¢,q) = 1 exactly once, and no other numbers. Also from that proof we

have I = #H(Z/qZ) - #V = (¢~ 1[ ) q Ze‘q (e)e™?, and recall Dot>1, (tg)=1 t=d =
C(d) D epq mle)e™ 4. Hence we get

(7.40) :LERdF(w)dw—l—( 3 t—d)—l > td;;F«%q—l—l)y).

t>1, (t,q)=1 t>1, (t,q)=1

In the last double sum we substitute e = (¢,t); thus £ = ely, t = et; with (¢1,¢t1) = 1, and the
double sum becomes
(7.41)

S X et X A((enn)= (X ) X oat ¥ ()
9)=1

e>1 1>l ez 1 e t1>1 act1+qZ
(e,9)=1 (t1,9)=1 (£1,t1)=1 (e,q (t1,9)=1 (a,t1)=1
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Hence we obtain the desired formula. O

We next turn to the case d = 2. In this case the integral in the left hand side of (7.30)
typically diverges. This is e.g. true for every continuous function F' > 0 which is not identically
zero along the line Ry, as is seen by following the proof of Proposition 7.6 and noting that
the sum Z(ttz)l 1 t—2 Zc(l@;rq? F(%y) now diverges. However we can prove that the integral

)= a,t)=
in the left hand side of (7.30) is finite if X,(y) is replaced by any subset

(7.42) Xy = || Xgky), (to€Zs0)
keS;tr<to

Proposition 7.8. Let a = p/q with p = (p1,p2) € Z? and ged(q, p1,p2) = 1. Let y € R*\ {0}
and let y € R? be any of the two vectors orthogonal to y with ||y|| = ||y||~!. Let F: R? - R
be a mon-negative, bounded measurable function of compact support such that F(zry + uy) is
a measurable function of x € R for each firted u € R. Then for any ty € Z~q we have

(7.43) /X<to Z (m + a)M) dvy (M)

meZ?

< 2 ( ) ( t 1)/ (zy+3§)da:.
I;to ae%;qZ EZZ\{O} ﬂZ’U q
(t,g)=1 (a;t)=1 (t,q)=
Proof. This follows by imitating the proof of Proposition 7.6 but noting the special form of
Lemma 7.7 when d = 2, and using the restriction tg < to from (7.42) in the treatment of the
¢-sum from (7.31). When treating the constant factor in front of the (“new”) second term,
one uses the fact that >, 72> 1. O

7.2. The submanifolds X (y) of X. These are analogous to the submanifolds X,(y) of X,
but we will see that many details are quite a bit simpler. Given any y € R? we define

(7.44) X(y):={ge X : yeZig}.
We will write I' = ASL(d, Z) throughout this section. Since Z? = OI' we actually have
(7.45) X(y)={Tg : g€ ASL(d,R), 0g =y} = {I'(M,y) : M € SL(d,R)}.

Furthermore one checks that M, My € SL(d,R) give the same point I'(M7,y) = I'(Mas,y) in
X if and only if SL(d,Z)M; = SL(d,Z)M,. Hence we get an identification of the sets X (y)
and X; = SL(d,Z)\ SL(d,R), through

(7.46) X(y)={(M,y) : M € X}

This gives X (y) the structure of an embedded submanifold of X, of dimension d? — 1. We
endow X (y) with the Borel probability measure vy which comes from p; on Xy under the
identification (7.46). Hence, automatically, vy (X (y)) = 1.

Lemma 7.9. For any y € R? h € ASL(d,R) and any Borel subset & C X(y) we have
vy(E) = vyn(ER).

Proof. This follows easily using the fact that 4 is invariant under the (right) action of SL(d, R)
on Xj. O

Proposition 7.10. Let £ C X be any Borel set; then y — vy(€ N X(y)) is a measurable
function from R¢ to R. If U € R? is any Borel set such that £ C Uyer X (y), then

(7.47) n(@) < [ wen X)) dy.

Furthermore, if Yy, # yo € U : X(y;) N X (y9) NE =0, then equality holds in (7.16).
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Proof. Let F; C SL(d,R) be a (measurable) fundamental domain for T'(1)\ SL(d,R), in the
set theoretic sense. Then

(7.48) F={(M§€ : MeF,Ec(0,1)'M}
is a fundamental domain for I'\ ASL(d,R). Now by the definition of v, we have for each
y € R,

(749)  ENX(y) = /f Yo, (M, 5) dpa (M) = /S M. y) dys (M),

X r ondyne (
L(d,R) (F1 xRA)NEY

where & denotes the pre-image in ASL(d,R) of & C X. But the set (F; x RY) N & is -
measurable, and recall from (7.3) that du(M,€) = dui(M)d€; hence by Fubini’s theorem,
(7.49) shows that y — 14(€ N X(y)) is a measurable function with respect to the Lebesgue
measure on RY.

Next, to prove (7.47) we note that (7.49) implies

(7.50) /va(gﬂX(y))dy = /Rd /SL(dR) Xr,xiryne, (Mo Y) dpn (M) dy = p((F1 x U) N &),

where we again used (7.3) in the last step. But it follows from our assumption & C ¢ X (y)
that each point in £ C X has at least one representative in (F; x U) N & C SL(d,R). Hence
p((Fr x U)N&) > pu(€) and (7.47) is proved. To prove the final statement about equality,
note that the condition Yy, # yy € U : X(y;) N X (yy) N E = 0 implies that each point in £
has ezactly one representative in (F; x U) N &, and thus pu((F1 x U) N &) = p(E). O

Proposition 7.11. If F € L'(R?) and y € R? then

(7.51) /X .
Yy

Proof. This follows directly from (7.46) and Proposition 7.1 (with a = 0, ¢ = 1). O

S Flmg)duy9) = F(w) + [ Fla)de.

d
meZ4d R

7.3. A thin region seldom contains an extra lattice point. It will be important for our
applications of Proposition 7.3 and Proposition 7.10 to know that if a bounded set U C R is
thin in at least one direction (i.e. contained between two parallel hyperplanes close together)
then a random lattice with a vertex in U is unlikely to have another vertex in U. Precisely,
we will need an upper bound on the integral in (7.52) below. Since this integral is obviously
monotone with respect to the set U, it suffices to consider the case when U is a translate of a
cylinder 3(cy, c2,0) (cf. (4.15)) with ¢ — ¢; small.

Lemma 7.12. Assume o € ¢~'Z%, fir C > 1 and write U = z + 3(c1,¢2,C). Then if d >3
we have

a5 [ n({pre X  #UN@E M) 2 2))dy < (- )

uniformly over all z € {0} x R¥™1 and C~! < ¢; < ¢g. If d = 2 then the same integral is
(7.53) < (ca —c1)?log(2+ (c2 — 1)),

uniformly over all z € {0} x [=C,C] and C~1 < ¢; < o < C. (In the first bound the implied
constant depends only on C,d; in the second bound it depends only on C,q.)

Proof. Just as in the proof of Proposition 7.5 we may assume ged(q, p1,...,pq) = 1, without
loss of generality. Take z € {0} x R¥™1 C~! < ¢; < ¢y and let U = z + 3(cy, c2, C). For each
y € U and M € X,(y) we have ) - xu((m + a)M) > 1 by the definition of X,(y), and
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the same sum is > 2 whenever #(U N (Z% + a)M) > 2. Hence, using also vy (X,(y)) =1 (see
Proposition 7.5), we have for each y € U,

(7.54)
Vy<{M € X,(y) : #(UN 2+ a)M) > 2}) < —1+/Xq(y 3" xv((m+ a)M) duy(M).

) meZ4d

If d > 3 then this is, by Proposition 7.6,

(7.55) =—1+vol(U)+ Y ¢ > XU(%?J) go(cg—c1)+it*d > XU(%y),

t>1 a€t+qZ t=2 ac’
(t,q)=1 (a,t)=1 (a,t)=1
where in the second step we used C~! < ¢; < ¢ to get >,y xv(ay) < 1+ O0(cy — c1). If
some ¢ > 2 gives non-vanishing contribution to the last sum then we must have 3y € U either
fora=t+1ora=1t—1. In the first case it follows that t+1 aq < t+1y1 < c9 so that ¢ > 62 617
in the second case it follows that —c > —y1 > ] SO that t > —<2—. Hence all t-values

Cl
which contribute to the sum must satlsfy t > —“ For each such t, a given a € 7Z gives

cg—cy”
non-vanishing contribution only if $y; < ¢y (implying a < t(c2/c1)) and $y1 > ¢1 (implying
a > t(c1/c2)); the number of such a’s is < #(Z N (ti—;,tg—f)) < 1+1(2 — &); hence the sum
n (7.55) is
756 < Y (1+Z-2))= > t’d(1+ta:2+$)
' N ¢ c 1+z
tzmax(2,6267161) t>max(2,z~1)

where z = 2 — 1. Hence if z <  then the full expression in (7.55) is (when d > 3)

— epnd—1
(7.57) <O(ca—c1) + O(a:d_l) + O(md_l) = 0(02 —c1+ (C2 cl) ),

C1
whereas if z > % we get
(7.58) <O0(ca— 1) +O(1 + ) :o(@_cl+2).

C1

Using C~1 < ¢; < ¢y the above is < O(cg — 1), in both cases. Hence we have proved
(7.59) yy<{M € X,(y) : #(UNZ+ a)M) > 2}) <O(cs—c1), Vyel,

where the implied constant depends only on C' and d. Since this bound is uniform over y € U
we obtain (7.52) by integration.
We now turn to the case d = 2. We take z € {0} x [-C,C] and C~! < ¢; < ¢y < C. Take

to € Z>10, to be fixed later. Recall the definition of Xéto)(y)7 (7.42). The left hand side in
(7.54) is

@60 = [ (1 D wm o)) an () ol (X,) \ XV ).

meZ?

Imitating the proof of Proposition 7.5 one shows that the last volume is < ¢ 1 Hence by
Proposition 7.8 the above is

(7.61)

<140+ S 2 Y XU( ) Y (Zt )/XU<$y+§§)dl‘.

1<t<tg a€Z veZ\{0 tlv
g2 \(0} 4
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Arguing along the same lines as before we find, with z = z—f -1,

(7.62) 14 3 7 ) XU(%y) <O(ez—ct)+ ) t‘%lﬂxiii)

1<t<to a€Z max(2,z1)<t<to
(a,t)=1

S O((CQ — cl)log to).

Finally we treat the last sum in (7.61). Let L = 1/4C2 + (cy — ¢1)2, the length of the
diagonal of U. If H%@H > L then fRXU<1‘y + gﬂ) dr = 0 for all y € U. Hence only
v € Z\ {0} with |v| < Lq||y||~! = Lq||y|| give contributions to the last sum in (7.61), and

since ||y|| < ca+]|2||+C < 3C and L < /5C it follows that these v’s are bounded in absolute
value by a constant which only depends on C,q. Hence the last sum in (7.61) is

U
(7.63) <o) Y / XU (a:y + —y) dz.
vez\{o} 'R q
Now for each v € Z~( for which the integral is non-zero, there exists some 2’ € R such that
'y + ”leﬂ € U (since y € U and U is convex); hence if the contribution from our v equals
f;f dz then U must contain the triangle with vertices 'y + %1@, 1Y + %ﬂ and 2oy + gﬂ,
1

which has area 35(xo — z1)||y| - %HﬂH = 2—1(1(:1:2 — x1). Note also that distinct v’s lead to

pairwise disjoint triangles inside U; hence the total contribution in (7.63) from positive v’s is
< 2qArea(U). Similarly for the negative v’s. Combining our bounds we have now proved that
for each y € U the left hand side in (7.54) is

(7.64) < O(t(;1 + (c2 — c1) log tp).

Choosing tg = max(10, [(ca — c1)7!]) and integrating over all y € U we obtain the bound
(7.53). 0

The corresponding bound in the case o ¢ Q¢ is as follows:

Lemma 7.13. Let d > 2 and C' > 1 and write U = z + 3(c1,¢2,C). Then
(7.65) / vy({9€ X(y) « #(UNZY) =2} ) dy < (2 - e1)?,
U

uniformly over all z € {0} x R™! and ¢; < ca. (The implied constant depends only on C, d.)

Proof. This follows by arguing as in the first part of the proof of Lemma 7.12 (up until (7.55))
but using Proposition 7.11 in place of Proposition 7.6. O

8. PROPERTIES OF THE LIMIT FUNCTIONS

8.1. An important volume function, for a € Q%. In this section we will prove some
“quasi-continuity” properties of the limit function ®4 (&, w, z) in Theorem 4.4, and for some
more general functions. These considerations will be of importance for the proof of Theo-
rem 4.4.

Given 7 € Z>o and a € ¢~ 'Z¢ we introduce the function

(81) f?‘(01762707‘z7y) = Vy({M € Xq(y) . #((Zd + Ol)M n (3(61762,0) + z)) = 7“})
in the domain
(8.2) Q= {(c1,¢2,0,2,9y) ERxR xR x ({0} x ]Rdil) XxRT:0<e <<y, 0< o}

Arguing as in the first paragraph of the proof of Proposition 7.5 we see that although the
function f, depends on the given vector a € Q¢, it does not depend on the choice of de-
nominator ¢ of a; hence from now on in this section we will always assume that ¢ is the
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minimal denominator of &, so that Propositions 7.6, 7.8 apply. We also write, for £ > 0 and
z,w € {0} x RI—1,

(83) FT( ) _fT(O 5,1,Z 581+1U+Z)
Thus the function ®4 (¢, z) in Theorem 4.4 is the same as Fy(§, w, z).

Lemma 8.1. For any K = <t0 K ) O(d) we have
1

(84) fr(61702707 zK7yK) = fT(01762707z7y)7
and for any § > 0 we have
(85) f?“(cl(sdilu625d71705717571z7571y) = fT(cl702707z7y)'

Proof. 1If K1 € SO(d—1) then the first claim follows immediately from Lemma 7.2 with T' = K,
using 3(cy,c2,0)K ! = 3(c1, ca,0). Similarly the second claim follows from Lemma 7.2 using
(8.6) 3(c1, e, U)Té_1 = 3(cl5d71, 00971, o6 1), for Ty := diag[élfd, 0y...,0].

To extend the first claim to general Ky € O(d — 1) it now suffices to treat the single case
K = K, := diag[l,...,1,—1]. Fix some v € SL(d,Z) such that ayKy = «, and thus
(Z 4+ a)yKg = Z% 4+ . Then a : M +— yKoMKj gives a well-defined diffeomorphism from Xy
onto X, and one checks by a straightforward computation that for any Borel subset £ C X, (y)
we have a(£) C X, (yKo) and vy(€) = vyk,(a(€)). Applying this with & = {M € X,(y) :
#((Zd + Ol)M N (3(61>027 U) + Z)) = T} we get f?‘(cla €2, 0, Z)y) = f?‘(clacQa g, ZKOvyKO)a as
desired. (|

Remark 8.2. Tt follows that F.({,wK,zK) = F.({,w, z) for all K as in the lemma, and hence
F.(&,w, z) only depends on the four real numbers ¢, ||z||, ||w]|, z - w.

We will now prove our main technical result about f,.(c1,c2,0, 2,y) being not too far from
continuous. For N € Z>o we let §n be the set of rational numbers strictly between 0 and 1
and with denominator < N, that is,

(8.7) In={%:hkeZ 0<h<k<N}
Given (c1,¢2,0,2,y) € Q and 6 € Fy we define

1 if yed Hz+3(c1,c0,0))
( ) 8( ) 8(61,CQ,U,Z,y>( ) {O lf y ¢ 5_1(z+3(61702,(7)).

For C > 1 we write

(89) QC — {<017CQ,U,Z,y>€Q : U?HzH?HyHSCa C_IS‘?AH?/Q‘} if d=2
{{c1,e2,0,2,9) € Q = o |lz]],[lyll < C; C71 < ||y} if d=>3.

Proposition 8.3. Fizd > 2 and r € Z>¢. Giwven C > 1 and € > 0 there exist some n > 0
and N € Z>o such that

(810) fr(01762707z7y) - fT(c,17C/270,7z/7y,) S €

holds for all {(c1,c2,0,2,y),(c,ch, 0", 2", y') € Qo satisfying |c1 — )| < n, |ea — | < 1,
‘0— - J/‘ =17 HZ - ZIH <1, Hy - y/H <n and 8(01,CQ,a,z,y)((5) = S(c,cho’ 2y ( ) for all 6 € Fn.

Proof. For certain technical statements in the following proof to be correct we need to in-
troduce the notation 3(ci,c2,0) = {x1€1 : ¢1 < z1 < ¢} when o = 0, but := 3(c1,c2,0)
when o > 0. I£t0>1and5>0begiven. If d > 3 then we choose 0 < 11 < 1 so
small that vol(l’)’f?l1 + 85(01,02,(7)) < § for all {(c1,¢2,0,2,y) € Q¢ (this is possible since
(c1,c9,0,z,y) € Q¢ implies 0 < ¢; < g < C and 0 < (); if d = 2 then we instead set
m = min(1,e/(20C D1<|v]<4C2q Dot t71)). We will denote by ||A]| the operator norm of

any d x d matrix A, viz. [|A]| = sup, egi-! |lvA||. Take n € (0,min(, %)) so small that
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HM(O —I|| < gl forall w € e —I—B , where M,S(,)) is as in (7.18). If d > 3 we take N so large
that D 5 4 < £ if d =2 we take N so large that vy (X,(y) \X(gN) (y)) <5 (cf. (7.42)).
Let (c1,¢9,0,2,y),(c},cy, 0,2, y') be any two points satisfying all assumptions in the

proposition, for our fixed n, N. Then ||y — ¥'|| < n < Cnlly||, and hence by our choice
of n we can find some T € SL(d,R) such that

(8.11) y =yT and [T-I||<  (<45)
(namely: let T = K~ 1M|(|0)|| Ly g1 K for some K € SO(d) with y = ||y|le1K). Then also
|77t -1 < % < 355 Hence, since the constraints in Q¢ imply that z 4 3(c1,c2,0) is

contained in Bgc> we have:
(8.12) T — z|| < §5; 2T ! —z|| < &, Vo € z+ 3(c1,c2,0)

(and similarly for 2z’ + 3(c}, &, o')).
Now by Lemma 7.2 we have

Il chy o’ 2 y') = vy ({M € Xo(y) = #((Z + )MT N (2 +3(c), 5, 07) =7})
(8.13) = vy ({M € X,(y) : #((Z"+ )M (& +3(ch, b, o NT ') =1}),

and hence
(8.14)

fT(01762707z7y) - fr(c/17cl270/7z/7y/) < Vy({M € Xq(y) : #((Zd + a)M N U) > 1})7

where U is the symmetric set difference

(8.15) U= (2 +3(c,cy )T A (2 + 3(ci, c2,0)).
But (8.14) is < [y > mezt Xu ((m + @) M) dvy, and by Propositions 7.6, 7.8 this is
: ) o, d a).
(8.16) ifd>3: <vol(U)+ > t ZXU(ty),
t=1 a€”Z
3 N a v
(8.17) ifd=2: < 5 —I—Zt*dZXU(gy) Z Zt 1 / XU(:L‘y—I— —ﬂ) dz.
t=1 a€”Z veZ\{0} tlv g

We now claim that

(8.18) U C B +0(z+3(ci,e2,0)).
Indeed, using |c1 — ¢}, |c2 — &), |0 — d’|, ||z — 2’| < n one verifies
(8.19) z+ 3(c1,c0,0) C (z’ + g(c/l, ch, J/)) + Bgn and

2’ +3(c), ch,0") C (= —i-g(cl,cQ,a)) + Bgn.
Hence using (8.12) and n < {5 we have
(z+3(c1,62,0))T C (z/+:3/(cﬁ,c/2,0’)) +Bg1/2 and

(8.20) (2/ 4+ 3(ch, ch, )T C (2 + 3(c1,¢0,0)) + Bgl/m
and since ||T — || < 7 implies Bf;l /QT*1 C B we also get
(8.21) (z+ 3(c1,02,0)) C (2" + 3(c;, ch, o) )T~ + B
Our claim (8.18) follows easily from (8.20) and (8.21), using also the convexity of the set
(2" +3(d), ¢y, o)) T

To see this take & € U. Then either x € (z’—|—3(c/1,c’2,a/))T*1 and x ¢ z+ 3(c1,c2,0); and

in this case (8.20) shows that there exists a point @’ € z + 3(c1, c2, o) with ||@’ — x| < 11/2.
Then some point on the line segment between x and x’ must lie in 8(z + 3(eq, c2, J))—q.e.d.



42 JENS MARKLOF AND ANDREAS STROMBERGSSON

Or else we have x ¢ (z’ + 3(0’1,0/2,0’))T*1 and * € z + 3(c1,¢0,0). (Thus ¢ > 0 and
3(c1,c9,0) = 5(61,02, 0).) Then, since (z’ + g(cﬁ, 0’2,0’))T_1 is convex, there is a hyperplane
II C R? through @ such that (2’ + 5(0/1,0’2,0/))T*1 lies in one of the closed half spaces
determined by II. Let o’ be that point which lies in the other half space, on the normal
line to II through @, with ||’ — || = ;. Then (8.21) implies @’ ¢ z + 3(c1,¢2,0) and
hence by our assumption on &, some point on the line segment between x and ' must lie in
O(z + 3(c1, ¢, a))—q.e.d.

If d > 3 then (8.18) implies that vol(U) < 5, by our choice of 7;.

Next we will show that dy € U with § € Q implies that § has a large denominator. For each
§ > 1 we have dy ¢ z + 3(c1,c2,0) since y1 > co, and also 6y ¢ (2’ + 3(c}, ch,0’))T ! since
dyT =0y’ ¢ (2/+3(c),ch,0)); hence dy ¢ U. Similarly oy ¢ U for each § < 0. Alsoif § € Fn
then our assumption (e, c, 0,2.4)(6) = S(c c).07,2/,3) (6) implies that the point dy either lies in
both sets z + 3(c1,c2,0) and (2 + 3(c},ch,0"))T~1, or else in none of them; thus dy ¢ U.
Hence it follows that dy € U for rational § can only hold if 0 < § < 1 and ¢’s denominator is
larger than N.

It follows from this that if d > 3 then the sum in (8.16) is < Y°,o v t7% < 5 and hence
since vol(U) < £ we have now shown that (8.14) is < ¢, i.e. the proof of the proposition is
complete.

If d = 2 then it follows that the first sum in (8.17) vanishes, and it remains to bound the
second sum in (8.17). Since U C B3, we get non-vanishing contributions in that sum only
when |v| < 4Cq||y|| < 4C%q. Furthermore it follows from (8.18) that U is contained in the
union of two translates of [0, co — ¢ +2n1] X [0, 2m1] and two translates of [0, 2nm1] x [0, 20 + 2n].
Using now the condition |ya| > C~! we see that for each translate B of [0, ca —c; +2m1] x [0, 211 ]
and any w € R?, the interval {x € R : 2y +w € B} has length < 2n;/|ys| < 2Cny, and hence
the total contribution from B to the v-sum in (8.17) is < 371 <, j<ac24 (240 t~12Cny, and by
our choice of 71 this is < {5. Similarly using |y;| > C~! one finds that the total contribution
from each vertical side is also < 5. Hence in total (8.17) is < 5+ 0+ G5+ G5+ 5+ 15 <&
and the proof is complete. O

We will now point out several consequences of Proposition 8.3. First, the following technical
lemma will be quite convenient to use in our proof of Theorem 4.4.

Lemma 8.4. Given any C, e and corresponding 1, N as in Proposition 8.3, then for all ¢,& > 0
and w,z € {0} x R satisfying O~ < ¢ < € < ¢ +min(n,c¢/N) and € + ||w|| + ||2|] < C
Jand if d = 2: ||w + z|| > C~], we have

(8.22) ‘f,n(O,c7 l,z, e +w + z) — Fr(f,w,zﬂ
= ‘fr(())cv L,z,6e1 +w+ Z) - fr(07£7 1,2,581 +w+ Z)| Se.

Proof. The assumptions imply that both (0,¢,1,z,{e; + w + 2z) and (0,&,1,z,8e; + w + 2)
belong to 2¢, and these 5-tuples differ only in the second coordinate, by an amount < 7; hence
by Proposition 8.3 we only need to check that s 1 2 ce, w+2) () = 5(0,¢,1,2,ce1+w+2) (0) holds
for every 6 € §n. Fix § € Fn; our task is now to prove that the point £e; + w + z either
belongs to both or none of the two sets 6~ 1(z + 3(0,¢,1)) and 5~ 1(z + 3(0,&,1)). Note that
6 < %; thus using 0 < € — ¢ < ¢/N we have £ < §~1c as well as £ < §~1¢. Hence the two
containment relations are both equivalent with ||w + 2z — 7 1z|| < §7!, and we are done. [J

We next prove several lemmas relating directly to the function F;..
Lemma 8.5. F,.(§,w, z) is Borel measurable.

Proof. We first take d > 3. It suffices to prove that the restriction of F;. to any given compact
subset K of Ry x ({0} x R4~1) x ({0} x R?1) is Borel measurable. Using Proposition 8.3
we see that on K we can obtain F), as a uniform limit of functions which take only a finite
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number of values, each level set being a finite union of sets of the form
(8.23) Bn {<§>wv z> €K : 3(0,§,l,z,§e1+w+z)(5) = s0(0), V6 € gN}>

with B a box region and sy some function from Fy to {0,1}. Since each such level set is a
Borel set we have thus expressed (F,)|x as a uniform limit of Borel measurable functions, and
we are done.

We now turn to the case d = 2. In this case an application of Proposition 8.3 as above
shows that the restriction of F,. to any given compact subset K of {({, wes, zes) : w+ 2z # 0}
is Borel measurable. Next, by a computation using the set-up from Proposition 7.5 one finds

(8.24) F.(&, —zeq,zey)

= ( Z t*2>_1 Z t2/R/ZI< Z #(Zﬂ(na:,na:—k%))zr) dx.

t>1 t>1 nez
(t,9)=1 (t,g)=1 q€(2—1)<nt<g€(z+1)

In particular F,.(§, —zeq, zes) is constant on any set of the form
(825) Ma1,a2 = {(672) : qg(z - 1) € [ahal + 1)7 qg(z + 1) € ((12,(12 + 1]} (a17a2 € Z)

This implies that also the restriction of F, to {({, wes, zes) : w+ z = 0} is Borel measurable,
and we are done. O

In particular this proves the claim about Borel measurability in Remark 4.5. This shows
that we may freely change order of integration in the right hand side of the limit formula
(4.13).

Next we prove the claim about continuity in Remark 4.5.

Lemma 8.6. If we keep ||w|| <1 and ||z|]| <1 [and if d = 2: z 4+ w # 0] then the function
F.(&,w, z) is jointly continuous in all three variables.

Proof. This is a simple consequence of Proposition 8.3 once we note that s\ ¢ 1,2 ce, +w+2)(6) =

1 holds for any € > 0, w € {0} x B¢~ 2z € {0} x B{™! and any 6 € §n. This fact follows from
0<é<oand [|w+z—06""z|| <||w][+ 0 =1z <1+ =1 =51 a

Lemma 8.7. For any fired z,w [if d = 2: assume z + w # 0/, the function F,({,w, z) is
continuous in the variable £ > 0.

Proof. This follows directly from Proposition 8.3 once we note that for any § € Fu, the
function s(g¢ 1 2 ¢e; +w+2) (0) is independent of €. Indeed, since § < 1, 5(g¢ 1 2 cei+wtz)(0) = 1
holds if and only if ||w + 2 — 6 1z|| < 61 O

Lemma 8.8. Let W be any bounded Borel subset of {0} xR~L; then the integral fw F.(§,w, z)dw
exists for all € > 0, z € {0} x RY™Y, and is jointly continuous in these two variables. In fact,
given any € > 0 and B > 1 there is some v > 0 such that

(8.26) /W|Fr(§, w,z) — F (¢, w,2)|dw < e

holds for all £,&' € [B~1, B], z,2' € {0} x BdB_l satisfying | — &'| <v and ||z — 2'|| < v.

Proof. Since 0 < F,.(§,w, z) < 1, the existence of the integral follows from the Borel measur-
ability proved in Lemma 8.5.

To prove (8.26), let ¢ > 0 and B > 1 be given. Applying Proposition 8.3 with &' :=
(2 + volg_1(W))"te in place of € and with C' = max(2B + supeyp ||w]|,4/€"), we get that
there are some > 0 and N € Z>9 such that ‘Fr(g,w,z) — F.(¢,w,2")| < ¢ holds for all
£,¢ € [B™L,B], we W and z,2' € {0} x B! satisfying |¢ — ¢'| < £ and ||z — 2/|| < £ and
500,61, cer+wtz) (0) = 80,61,z ce14wtz)(0), V0 € Fn. If d = 2 then we must also require
|lw+z|| > C~! and ||w+2/|| > C~!. The s-conditions are seen to hold if and only if, for each
§ € Fn, either both or none of ||jw — (671 —1)z|| < 6 ! and ||w— (671 —1)2'|| < 67! are true.
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For each § € §, the set of exceptional w’s is thus seen to lie in a union of two translates of the
region ¢~ (B‘liﬂl‘z 2| \B‘f—l). Hence, since 6! < N and Fy is finite, there is some v € (0, 2]
such that the volume of the total set of exceptional w’s is less than ¢’ whenever ||z — 2/|| < v.
For d = 2 we also have to consider the set of exceptional w’s satisfying ||w + z|| < C~! or
llw + 2'|| < C~1; this set has volume < 4C~! < &. Hence, since the integrand in (8.26)
is everywhere < 1, we see that for any &,¢ € [B™!,B] and 2,2’ € {0} x BE ! satisfying
|€ —¢'| < v (orjust < 2) and ||z — 2'[| < v, the integral in (8.26) is < (24 volg—1(W))e’ = ¢,
as desired. (]

8.2. An important volume function, for a ¢ Q¢. The questions treated in the last section
become much simpler if we consider the submanifolds X (y) in place of X,(y). Indeed, let us
define, in analogy with (8.1) above:

(8.27) frler,ca,002,y) = vy({g € X(y) : #(Z% N (3(c1,c2,0) +2)) =71}),
with the same domain €2 as before, and for ¢ > 0 and z,w € {0} x R~
(828) Fr(ngvz) = fr(0,§,1,2,561+w+2)-

It will be clear from the context which case of functions f,, F, ((8.1), (8.3) or (8.27), (8.28))

we are referring to.

Lemma 8.9. f,(c1,c2,0,2,y) in (8.27) satisfies the same invariance relations as in the X, (y)-
case (see Lemma 8.1), and also f.(c1,c2,0,2,y) = fr(c1,¢2,0,0,y — 2).

Proof. Cf. the proof of Lemma 8.1 but use Lemma 7.9 in place of Lemma 7.2, and also use
the transformation h = (14, —2) € ASL(d, R). O

Hence F,({,w,z) in fact only depends on ¢ and ||wl||. (In particular this is true for
Qq(é,w, z) = Fy(€,w, z), as pointed out in Remark 4.5.)

Proposition 8.10. The function f.(c1,c2,0,2,y) in (8.27) is continuous everywhere in €.

Proof. This follows by the same method of proof as in Proposition 8.3, but the details are
much simpler: Using Proposition 7.11 in place of Proposition 7.6 one finds that (8.16) is now
replaced by

(8'29) fr(cl,CQ,J,Z,y) - fT(Cllacl%U,azlay,) < VOI(U) +XU(y)a
and as before one sees that xy(y) = 0 and that vol(U) can be made arbitrarily small by taking
(cy, o', 2 y') close to (c1,c2,0,2,y). O

We end by remarking some relations which will be useful in Proposition 8.13 below and
in our discussion of explicit formulas in [23]. First, using (7.46) and the definition of v, just
below (7.46) we see that

(8.30) frleryeo,0,z,y) = mi({M € X1+ #(ZM N (2 — y + 3(c1,¢2,0))) =7}).
In particular we have
(8.31) F(éw,z)=pm({M e Xy : #(Z°Mn(—fer —w+ 3(0,£,1)) =r}).

Here —¢e; — w + 3(0,&,1) may be replaced by its pointwise negate, {e1 + w — 3(0,&,1), and
since w € {0} x R4~ this set is seen to equal w + 3(0,¢,1). Hence

(8.32) F(éw,z)=pm({Me Xy : #(ZMn(w+3(0,6,1)) =r}).
One may note that this volume is a special case of the limit function Fi o g(r,0) obtained

~1
in Theorem 3.4 for a« = 0. Indeed, using the relation ('w + 3(0,5,1)) <§t0 §1/81_1)> =

fﬁw—i—S(O, 1,£ﬁ) we see F.(§,w, z) = Fyog(r, fﬁ) holds for any choice of function 3(v)
such that HPrOJ{U}L B(v)|| = [|w]| for all v € sd-1.
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8.3. Differentiability properties.

Proposition 8.11. For any fived o, 3, \,r (and ¢ = 0) as in Theorem 8.4 with o € Q%, the
function Fy o, g(r,0) defined in (3.13) is C' with respect to o > 0.

Proof. In analogy with (3.14) we define 3,(c1,¢2,0) := 3(c1,c2,0) + O'HPI'Oj{,U}J_ B(v)]| - ez, so

/
that 34(c,0) = 34(c,1,0). Then 34,(c, c’,c’_ﬁa) = 3u(c,1,0) <f0 c/l/(d01)1d1> for all

¢ > 0, and hence, using also the invariance of 14, we have

(8.33)
Feap(r,o) = (pg x )\)({(M,'v) € Xy x S‘li_1 : #((Zd +a)M N Bv(cadfl,adfl, 1)) = 7“}),

To simplify the notation we write o = ¢ ﬁ. Now, for any £ > 0 and A > 0,
1 1
(8.34) (Fo,a8(r, (€ + 1) TT) = Foap(r,§71)) /h

s /Sd1 uq({M € X, #((Z9+ )M N 30,6 1) <7,
#((Z + a)M 1 3,(0,€ + 1)) = r}) dA(v)
_p! /Sd_l uq({M € X, #((Z9+ )M N 30,6 1) =1,

#((Z + Q)M 1 3(0,€ + b, 1)) > r}) dX(v).
If r > 1, then using Proposition 7.3 and Lemma 7.12 we find (cf. the discussion of (9.53)
below) that the first term in the right hand side of (8.34) equals, as h — 0,
(8.35)

€+h
oiog(n )+ [ [T [ a6z e bt ) dude (),
1 XDy

where zy, := ||[Proji,3. B(v)|| - e2. This tends to fscli—l f{o}xBf‘l Fo_1(§,w, zy) dw d\(v) as
h — 0, by Lemma 8.4. Treating the second term in (8.34) in the same way we obtain

(8.36) lim 57 (Foap(n, (€ + W) ™) = Foap(r 7))

—0
— / / (Fr,l(g,w,zv) — F.(§,w, zv)> dw d\(v).
sd=t J{oyxBé-t

This is valid also for r = 0 if we define F__; := 0. Inspecting the proof just carried out and using
the uniformity in the statements of Lemma 7.12 and Lemma 8.4 we see that the convergence
in (8.36) is uniform with respect to £ in any compact subset of R~(. Hence the formula (8.36)
is also valid in the limit ~ — 07, and Lemma 8.8 gives that Fy o g(r, o) is indeed C! with
respect to 0. We also note that (8.36) gives an explicit formula for the derivative. O

Remark 8.12. The explicit formula for the derivative, (8.36), specializes to the formula (4.17)
in Remark 4.6 in the case r = 0. (For recall (4.6), Fy(§,w, z) = ®o(&, w, z), and Remark 8.2.)

We also note that the argument in the above proof applies without changes to the case
when A is a (not absolutely continuous) probability measure which gives mass one to a single
point. Hence for each z € {0} x R4~! we have

(8.37) di#q({M € Xy (Z94+a)MN(3(0,6,1) +2) =0}) = —/ Do (&, w, z) dw;
3 {0}xB1

in particular the derivative in the left hand side is a continuous function of &, cf. Lemma 8.8.
The set in the left hand side of (8.37) has y1,-measure tending to 1 as ¢ — 07 and tending to 0
as £ — oo, cf. the proof of Remark 3.6 in Section 8.4. Hence, integrating (8.37) over £ € R+
we deduce the formula (4.16) in Remark 4.6, [} f{o}xg;i_l Do w, z)dwds = 1.
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Next we turn to the case a ¢ Q. Recall that in this case F. apg(r,0) is independent of
B, A, a, and we have introduced the notation Fi(r, o) for this function. Proposition 8.13 and
the ensuing remarks carry over directly to the case a ¢ Q?, with the usual changes of notation.
However, we can say more:

Proposition 8.13. For any fited 0 < ¢ < 1 and r € Zsq the function F.(r,0) is C* with
respect to o > 0.

Proof. The function F.(r,o0) satisfies the invariance relation F.(r,o) = Fy(r,o(1 — C)ﬁ)7
which follows directly from the definition (3.8), using the right ASL(d,R)-invariance of u.
Hence we may from now on assume ¢ = 0.

Arguing as in the proof of Proposition 8.11 we prove that Fy(r,o) is C! with respect to o.
The explicit formula (8.36) is still valid (with F,.(¢,w, z) now being given by (8.28), (8.27)),
although the integration over S‘li_1 may be skipped since in this case F).(, w, z) is independent
of z. Rewriting (8.36) using (8.32) we get

(8.38) iFo(r,fﬁ) :/ p({M e Xy + #(Z°M N (w' + 3(0,£,1)) =7 —1}) dw'’
d§ {0}x B!

—/ (M e Xy s #(ZM N (W' +3(0,6,1) = r}) du
{0} xB]

But here the right hand side can again be differentiated with respect to &, by repeating the
argument in the proof of Proposition 8.11 (with “a = 0”7 and letting w’ play the role of z, in
that proof); this leads to

(8 39) d_ZFO(r,n é‘ﬁ) :/ / (F(OLZO)(é— w wl) . QF(QZO)(§ w wl)
dg? ’ {0yxBI=t J{oyxBI! 2 T rl T

+Fr(°‘:0)(§, w, w’)) dw dw’,

0)

where “F*=%” means “F, as in (8.3), (8.1) with @ = 0, ¢ = 17 (and we understand FE‘;:
0 and chf:o) := 0). Hence (for our @ ¢ Q%) Fy(r,0) is indeed C? with respect to o, cf.
Lemma 8.8. ]
Remark 8.14. The formula (8.39) generalizes [33, Eq. (34)] from d = 2 to general d.

8.4. A uniform bound. In this section we prove the two bounds in Remark 3.6. If a € Q¢
we note that for each v € S‘ffl we have, by Proposition 7.1,

wa({M € X, : (Z4+ a)M N 34(c,0) = 0}) > 1—/ H((Z + )M  34(c, 0)) dptg(M)

q

(8.40) =1-vol(3u(c,0)) =1 —vy(1 — c)od L,

Integrating over v € S9! with respect to the measure A (cf. the definition (3.13)) we obtain
the first bound in (3.15); the second one follows using » 2 F oa8(r,0) = 1.

In the case a ¢ Q? the bound (3.15) follows using (7.3), (7.48) and a computation as in
(8.40), noticing f[o,l)dM #((ZM + &) N 34(c,0)) d€ = vol(34(c, o)) for each M € Fj.

The bound (3.16) is a direct consequence of the following lemma.

Lemma 8.15. If r € Z>o and B is any translate of a cylinder 3(c1,ca,0) (cf. (4.15)) in R?
of volume V', then

(8.41) pe({Me X, : #(Z°+a)MNB)<r}) <V Va € ¢~ 7%
and ,u({g eX : #(Z%nB)< 7“}) < VL

The implied constants depend only on r,d.
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Proof. The proof uses the methods in [20, section 3.6], but note that we work with a slightly
different notation in the present paper. We will prove the first bound in (8.41); the proof of
the second bound is quite similar. Since both sides in the inequality remain invariant if B is
replaced by BMj for any My € SL(d,R), we may assume without loss of generality that B is
a translate of a cylinder 3(cy, c2,0) with co —¢; = 0.

Every element M € SL(d,R) has a unique Iwasawa decomposition M = nak, where n
belongs to the group N of upper triangular matrices with 1s on the diagonal, a is diagonal
with positive diagonal elements, and k € SO(d). We let Fn be the set of all matrices in N
for which all entries above the diagonal lie in the interval (—%, %], and introduce the following
Siegel set (denoting a = diagay, ..., aq)):

(8.42) S = {nak :neFn,0< aj+1 < %aj (j =1,...,d— 1), k € SO(d)}

It is known that S contains a fundamental domain for X; = SL(d,Z)\ SL(d,R); we fix F C S
to be one such fundamental domain (in the set-theoretic sense). Choose representatives T} €
SL(d,Z) so that SL(d,Z) = | |~ T'(¢)T; (disjoint union); then | [T, T;F is a fundamental
domain for X, =I'(¢)\ SL(d,R).

Now let M be any element in |_|;n:]L T;F. Choose j so that Tj_lM € F, let the Iwasawa
decomposition of this matrix be 771M = nak, and let the row vectors of the same matrix be
bi,...,bg € R% Then using n € Fy and nak € S we see that ||bg|| < Z?Zlaj &g ay for
each k = 1,...,d. Using Tj € SL(d,Z) we see that #((Z? + a)M N B) = #((Zby + ... +
Zby) N (B —aM)). Choose &1,...,&; € R so that £1b1 + ... 4+ E4by is the center of the cylinder
B — aM, and take my,...,mg € Z so that & — my € (—%, %] for each k. Then the distance
from £1b1 + ... 4+ &by to any of the lattice points miby + ...+ mgbg + jby, for j =0,...,7, is
< 2(|b1]|+ ... +|bal]) +7||ba|| <4, a1. Hence using our assumption ¢z — ¢ = o, we see that
if ay <4, V'/? then all these lattice points lie in B — aM, so that #((Z + a)M N B) > r.
Hence the left hand side in (8.41) is < >, pug({M : Tj_lM = nak € F, a; > V4}). Using
(7.2) and the invariance of y; we see that this is < u1({M =nak € S : a; > V%)), and as
in [20, section 3.6] we see that this is < V1. O

8.5. Analogous results for Section 2. In this section we indicate how most parts of the
development in sections 8.1-8.3 carry over to the setting of Section 2.3, leading to a proof of
the claim in Remark 2.2 that the function Eg o(r, o) is C! with respect to o.

For any 0 < ¢; < cg and 0 > 0 we let

(8.43) @(01,62,0) = {(l‘l,... ,xd) € Rd 0 <1 <y, ||(.1‘2, ,xd)H < Jl‘l},

so that in particular €(c, o) (cf. (2.14)) equals €(c, 1, A(c, o)) up to a set of measure zero. (The
reason for using “<” in (2.14) is to make (9.66) below true without modification also when
00 =0.) Given r € Z>p and o € q_IZd we now introduce the function

(8.44)  gr(c1,09,0,2,y) == Vy({M € X,(y) : #((Zd +a)M N (&(c,c,0) + Z)) = T})

with domain €2 as in (8.2). Thus g,(c1, 2,0, 2, y) is defined exactly as f,.(c1,c2,0,2,y) in (8.1)
except that we use €(cq, c2,0) in place of 3(c1, c2,0). We also write, in analogy with (8.3), for
¢>0and z,w € {0} x R¥1,

(8'45) Gr(&,l‘]’z) :gr(o?g? ]‘7z7£el +w+z)'

Now the discussion in Section 8.1 up to and including Proposition 8.3 carries over to the
case of g,(c1,c2,0,2z,y) with very minor changes. In particular, if we replace 3(c1,ca,0) by
¢(c1,c2,0) in the definition of s(d), (8.8), and replace the definition of Q¢ in the case d = 2
(cf. (8.9)) by

(846) QC = {<01702707z7y> € : g, HZH, Hy” S Ca C_l S ‘?/1‘7 |y2 inl|}7
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then the statement of Proposition 8.3 holds with g.(c1,c2,0,2,y) in place of f.(c1,c2,0,2,y).
Using this, one then also proves that the statements of Lemma 8.4, Lemma 8.5 and Lemma 8.8
hold with g.,G, in place of f, F,, with the only difference that in Lemma 8.4 the condition
“land if d = 2: ||lw+z|| > C™']” must be replaced with “fand if d = 2: |||w+z||—&| > C71)7.

Similarly, in the case a ¢ Q¢, the discussion in Section 8.2 up to and including Proposi-
tion 8.10 carries over in the obvious way to the function

(8.47) gr(c1,e0,0,2,y) = vy({g € X(y) : #(Z% N (E(er,c2,0) + 2)) =7}).

Also the formulas (8.30) and (8.31) carry over, but (8.32) does not carry over, since the cone
€(0,£,1) does not have the necessary symmetry.

Now Proposition 8.11 carries over, i.e. the function Eg o(r, o) is C' with respect to o > 0
for any fixed o € R? and r € Z>y, as claimed. We remark that in the proof of this we actually
only need (8.44) with z = 0. The analog of the formula (8.36) is

i vol(Bffl) d _/ _
(8.48) dgEo,aCr, ) = {O}ngl(Gr_l(g,w,o) Gr(¢,w,0)) dw

Finally we turn to the special case d = 2 and a € Q? (say a € ¢ 'Z? with ¢ minimal).
We intend to prove (2.32) in Section 2.4, i.e. that Ey(0,0) = 1 — k4o holds for all o €
[0, (2¢)71]. Clearly, by (8.48), it suffices to prove that if 0 < & < (2¢)"1/? and |w| < ¢ then
Go(f,’weg,O) = Kgq, i.e.,

(8.49) vy ({M € Xy(w) : (Z* + )M N€(0,£,1) =0}) = Ky (where w = €e; + wes).

Let M € SL(d,R) be a representative for an arbitrary element in X,(w). Then there is
some k € Z* + o\ {0} such that kM = w. Set t = ged(gk); then %k is a primitive vector
in Z*, and thus Z? = Z%k + Zh for some h € Z*. Hence (Z* + a)M = (Z* + k)M =
Z%kM + ZhM + kM C Rw + ZhM. Also Rw 4+ nhM = Rw + nqt—éeg, and from this one
verifies (using 0 < € < (2¢)~Y/2, |w| < €) that each line Rw 4+ nhM (n € Z\ {0}) lies outside
€(0,&,1). Hence

(8.50)  (Z*+ )M NE(0,£,1) = Rw N (Z* + )M N €(0,&,1) = (w + Z4w) N €(0,&,1).

This set is empty if and only if ¢ < ¢q. Hence by mimicking the proof of Proposition 7.5 we
find that the left hand side of (8.49) equals

2 —
(8.51) d ”H((F(C N H)\H) S o= n? Y o,

‘1 1<t<q n>1 1<t<gq
(t q) (n,q):l (t,q):l

and we are done.

9. PROOF OF THE LIMIT THEOREMS IN SECTIONS 1-4

9.1. Proofs for Section 3. We first prove Theorem 3.4 (and thus Theorem 3.1, which is a
special case). Theorem 3.4 will be derived as a direct consequence of the general limit theorems
in Section 6, and our only serious task in the present section will be to compute the upper
and lower limits of an appropriate family of subsets of R¥~! x R? (see Lemma 9.2 below). In
fact we will carry this out for a generalized version of Theorem 3.4, see Theorem 9.1 below.
This generalization is interesting in its own right, and its proof is also a useful preparation for
the demonstration of Theorem 4.4 in Section 9.3.

First let us fix a parametrization of the sphere: Let Q be a bounded open subset of R¢~!
and let By : Q — SO(d) be a smooth map such that v = v(x) := e; By (x) " € S¢7! gives a
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diffeomorphism from 2 to Sﬁlil minus one point.> The fact that we miss one point in Sﬁlil
will not matter for us since the measure A is absolutely continuous.

Now for any subset 4 C S/ldfl ={ze€8%!' . 2z-e; >0} and any w € R% p > 0 such that
pw lies outside all the balls Bg +vy (y € Lo\ {0}), we define

O A paw) = #{y € (CanBHE\ (0D - pw : YE@) € Roger + il .

where we write U, = {z, : z € U} with z; := 2z — (2 -ej)e; = (0,29,...,24) for any
z=(z1,...,24) € R% Note that NC(L%) (p, z,w) is the number of points y € Lo N BE(c) \ {0}
such that the ray pw + Rsgv (v = v(x)) hits the ball Bg + y, with the extra condition that
—wy By (x) € U, where wy, = p~ ' (pw+ryv—y) € ST ' and 7, = inf{t > 0 : pw+tv € Bg—l—y}.
Here w,, is the location of the point where the ray first hits the y-sphere, relative to its center
y. Hence, similarly as in Section 4.2, w, always satisfies —wy F1(x) € S
we have

. In particular

U d—1
(92 Ner(prv(@).w) = NG (p. . w),
so that N ¢9 7 (p,z,w) generalizes our notation from (3.11). We will write A and B also for

the lifts of X and B to the variable . Thus ) is a Borel probability measure on R?~! with
bounded support (in fact A\ = A|q), which is absolutely continuous with respect to Lebesgue
measure. Furthermore 3 is a continuous function from Q to R%.

Theorem 9.1. For every subset {4 C S/1d71 with VOlS(li—l(au) = 0 and for all 0 > 0 and
r € Z>o, the limit

(9.3) FY j(r,0) = Jim A({zeQ N (oT 4D 2 B(x)) = r})

exists, and for fived o, 3, \, 1,8 the convergence is uniform with respect to o in any compact
subset of R>o and with respect to ¢ € [0,1]. The limit function is given by

(9-4)

Fo p(r,0)
_ g x VUM ) € Xy x Q2 #((Z0+ B)M N30 (c, 1,0,8)2) =1}) ifa=% €Q
p{(M, &) € X : #((Z2°M + &) n3M8(c,1,0)) =r}) if o ¢ Q7
where
(9.5) (01702, {y (W1, yq) €RT = ¢ <y < g, yJ_EailL};

(et e0,0,8) = {(m,y) € QxR : y € 30 (c1,e0,0) + (0B(z) Er ()1 }.
(41)

In particular F aﬁ(r o) is continuous in o and independent of L, and if a ¢ Q then it is also
independent of,B and .

Theorem 3.4 follows from Theorem 9.1 by taking 4 = S'ld_l. Indeed, 31 (c, 1l,0) =
3(c,0) (except if o = 0, but then both sets are of measure zero), and in the case o € Q% the
volume in (9.4) equals

(9.6) / ua({M € Xy - #((2+ )M (3(c,0) + (0B(@)Er(x))1)) =7} ) dA(@).
Q
Here we may replace “(o8(z)E1(x))L” with “o|[Proj,zyy1 B(x)|| - e2”, since (if d > 3) there

. . 1 0
1s a rotation <

0 K) € SO(d) which takes the second vector to the first, and p4 is invariant

5For example, we may choose Q = BZ™! and Ei(x) = K;'E(—=x) for any fixed Ko € SO(d), where
0
0 x
E(xz) = exp (_tz 0g1 )
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0
K
vectors are equal, or they correspond to each other under (é 9 ); in the latter case one chooses
Y0 € SL(2,Z) with ayo (§ °;) = a and then uses the fact that M — o (§ %) M (§ %) isa
well-defined automorphism of X, onto itself, which preserves 1,.) Hence we obtain the volume
in (3.13).

under the diffeomorphism X, > M +— M (% € Xy. (If d = 2: Then either the two

Proof of Theorem 9.1. To prove the desired uniformity, it suffices to show that, given any
continuous functions Ryg > T +— o7 € R>p and Ry 3 T — ¢p € [0,1] such that oo, =
lim7_, o o and ¢y, = limp_, o o exist, we have

(07)  lim A({z R N (T~ VD g, B(a)) =r}) = EY | 5(r,000).

Coo 7a):8

where the right hand side is given by (9.4).
In the following we let SL(d,R) and ASL(d,R) act on R?~! x R? by leaving the first entry
fixed and acting as usual on the second entry:

(9.8) g: R RY - R x RY, (z,y) — (x,y9).
Set, for any 0 > 0,0<c¢; <o, T >0,
(9.9)

30 (1, e0,0,8) = {(%y) QxR T < |yl <eT,

__1 1 T-! 0
y—oT Fi8(x)Ei(x) € Ryger + 0T 14 o 7Y@,
We then have for all x € (2,
(9.10) NS (0T~ VD 2, B(z)) = #(33(c, 1,0, 8) o @ (Er(2) ", 0) N(Z7+ a) My \ {0}),

with 7' = (@1t 50 long as T is large enough so that the left hand side is defined.
Now taking Lemma 9.2 (with ¢ = 1) below into account, we see that (9.7) and Theo-
rem 9.1 follow immediately from the Theorems of Section 6. (]

The flexibility of taking ca 7 # 1 in the following lemma is not needed for the proof of
Theorem 9.1, but it will be convenient later.

Lemma 9.2. Let or,c1,1,car be continuous functions of T'> 0 with or >0, 0 <ci7 <car
for all T > 0, and such that all three limits 0o = limr_oo 07, Cl.00 = limr_ooc17 and

2,00 = lim7_ o co 1 exist. Then the union UT213¥1)(01,T702,T, or,B) is bounded, and

(9.11) lim(inf 3 (c1.7, cor, 07, 8))° D 3™ (€1 005 9,005 Tow B)°
and
(9.12) lim sup 3((ru)(cl,Tac2,T>UT75) C 3 (€100, 2,00, Too, B)

(closures and limits taken in R4 x RY), where 3 (cy, ¢a, 0, 8) := 3 (cy, ca, 0, 8) (cf. (9.5))
if ¢1 < co, but 3(11)(01,01,0,,62:: {(ac,y) cQxRY: ye ({er1} xothy)+ (J,@(m)El(:n))J_}.
Furthermore the boundary of 3(5‘()(61702, o, B) intersects Q x R? in a set of Lebesgue measure
zero.

Proof. Let C = 1+ supq||B||. Take T' > 0 and consider an arbitrary point (x,y) €

1
33 (cir ear,0r,B). Set y = Tyrer + T a1y ; then e17T < |[y/|| < corT and g —
1 1
orT~=18(x)E () € Ruge; + opT 14, . From these we conclude

d
(9.13) —orT & Tsupl||B|| <y1 < cor and (y—orB(x)Ei(x))) € ori,.

Since 4; C B¢ the last relation implies ||y || < Cor. The first claim of the lemma follows
from the inequalities noted so far.
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Now let n > 0 be given, and take Tj so large that c17 > ¢100 — g, cor < Co00 + 1,
CJTTiﬁ < ¢ and o7 — 0] < n/C hold for all T > Ty. Let T > Tj and consider any
point (x,y) € Sgwu)(CLT,CZT,O'T,,@). Then by (9.13) we have y; > —CUTTiﬁ > —4, but

d
using ||y’|| > 10T we also conclude |yi| > 17 — CopT 41 > ¢ 00 — %". Together these
two inequalities imply in particular that y; > ¢1 00 — 1. Also, by (9.13), y1 < co17 < €200 + 1.
From (9.13) we also see that there is some w € $; such that (y — orB(x)Ei(x)); = opw.

Thus

(9.14) (¥ — 00cB(x) Er () L = 000w + (07 — 0oo)(w + (B(x) Ex(x)) L),
and here |w + (B(z)E1(x)) || < C and |01 — 00| < n/C, so that
(9.15) (y — 0s0B(m) E1 () L € oootly + By

Hence we have proved that for each T' > Ty we have
U
3(T)(01,T,C2,T,UT,,3) - {(m,y) EQXRY: ¢l —N<Y-e1 < oot

(9.16) (y — 0ouB(@)E1(2)) 1 € ooothi + Bg}.

We have seen that such a Ty exists for any 1 > 0; this fact leads easily to (9.12).
We now turn to (9.11). Assume (29,¥q) € 3™ (¢1.005 2,005 Too, 3)°, and take 7 > 0 so that

(9'17) (-’700 + B(Qir;l) X (yO + Bg,,]) C g(u)(cl,ooa €200, Uoon@)'

Then we must have 0o, > 0 and ¢ 00 < €200 Take T so large that each of the following five
inequalities hold when T > Tj:

or > 0; |U;'°—1|<L; O'TTid%dl <ﬁ;
(9.18) or Cox ) C

1,1 < Cloo + 15 o7 — Cox T 41 > ¢ oo — 1.
We then claim
(9.19) (@0 + BIY) x (yo + BY) € 3% (cir com,or. B), VT > T,

This implies (zo,yg) € lim(inf Sgwu)(017T7CQ7T7O'T,B))O, and hence (9.11) will be proved, since

(xo,yy) was arbitrary in g(u)(clm, 2,005 00, 3)°.
To prove (9.19), let (x,y) be an arbitrary point in (x +Bg_1) X (yo—i-Bfl]), and take T' > Tp.

Write y' = Ty1eq + Tﬁﬁyr Using CO’TTi‘i;il < n we get
(9.20) Ty, — 07T~ 71 8(x)Ey(x) - e1 > T — 0T~ 77 sup |B]| > 0.
Next (9.17) implies (y — oo B(x) E1 () | + ({0} ngfl) C 0oodly . In particular ||y || < Co,

and using |22 — 1| < 51— we get !‘;%; — 1] - [ly || < n and hence

(9:21) (v — oxB@)Bi(@) 1 + (22— 1)y, € ot

or
In other words (y — opB3(x)E1(x)), € opih,, and thus
(9.22) (Y — orT~ 18(@)Ei(x)), € orT 141,

Finally (9.17) gives 100 + 1 < y1 < 200 — 1, and using ¢17 < ¢100 + 1 and ¢ 00 — 1 <

__ad_ .
co, 7 — Cox,T -1 we obtain

(9.23) e1rT < ||| < corT.

But (9.23), (9.20), (9.22) imply (x,y) € S(Tu)(cl,T,CzT,UT,,@), and hence (9.19) is proved.
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Finally, the fact that (Q x R%) N 85(11)(@, co,0,3) has Lebesgue measure zero follows from
9.24) (A xRH N3 (ct,e0,0,8)
c{(z,y) e QxR : y-ei € {c1,m}, y, € o(B(@)Ei(w)) . + ({0} x BE))
U {(m,y) QxR : ¢ <y e <cy, y, €o(B(z)Er(x))L + 8(01&)},
using 9(4U, ) = (0U) |, and our assumption that volsﬁ_l(ail) = 0. O

The proof of Theorem 3.7 is almost identical to the proof of Theorem 3.4, using the theorems
of Section 6.3.

We proceed to the proofs of Theorems 3.9 and 3.10. To be in line with the notation used
in the previous proofs, we again write v = e; E1(z)~! (z € Q), and write A also for the lift of
A to the variable x. Set

(925) 37(c,Q) ={(z,y) e Xx R : T < |y|| < T,

! 0
Rspe1 N (QTEl( )—l—y 7& @} < 0 Tl/(d Dld 1)
For the counting function defined in (3.22) we have

(9.26) Ner(Q,e1Ey(x)™1) = #(37(c, Q)@ (Fy(x)71,0) N (24 + a) My \ {0})

with 7' = e(@=Df The primitive case is analogous.
Theorems 3.9 and 3.10 are again a consequence of the theorems in Section 6 and the following
lemma.

Lemma 9.3. The union Ur>137(c, Q) is bounded, and we have

(9.27) lim(inf 37(c, Q))° D 3(c, Q)°, limsup 37(c, Q) C 3(c, Q),
where
(9.28) 3(c, Q) == {(w,y) € 2 x RY:e<yr <1, (y2,..-,y4) € —(QE:(x)) . }

is a bounded set whose boundary intersects Q x R% in a set of Lebesgue measure zero.

Proof. This is very similar to the proof of Lemma 9.2 (but slightly easier, since ¢ and Q are
kept fixed). To prove the last statement one first verifies that

(@xR)ND3(, Q) C{(@.y) € QxR : yy e{e 1}, y, € ~(QE(@))1}

(9.29) U {(:c,y) cQxRY: yelel], y, e —8((QE1(:1:))L)}.

Here the first set clearly has measure zero, and the second set has measure

(9.30) (1- c)/ volga-1(0((QF1(x)) 1)) de,
xel)
which is zero exactly because of the technical assumption made just below (3.20). (]

Lemma 9.3 is applied in the following way: If a € Q¢ then by (9.26), Remark 6.6 and
Lemma 9.3 the limit in (3.23) exists, and equals

(9.31) / /X (6, Q) N (2 + @) M) = 1) dpy (M) dA(x)

But we have from (9.28), since v = e1 E1(x) "%

3(0, Q)|a; = {y ERd re<y-ep < 1, Relﬁ(QEl(m)—i—y) ?é@}

(9.32) —{yeR!:c<y-v<1, RonN(Q+y) #0}Ei(x)



THE DISTRIBUTION OF FREE PATH LENGTHS IN THE PERIODIC LORENTZ GAS 53

Hence by substituting M = M’'E;(x) in the inner integral in (9.31) we obtain the formula
stated in Theorem 3.9. The proof in the case o ¢ Q¢ is entirely similar, and so is the proof of
Theorem 3.10.

9.2. Averaging over a. Naturally, one can also prove a-averaged (or g-averaged) versions
of all the limit results obtained in the present paper. In this section we discuss this to the
extent necessary to give a proof of Theorem 1.2.

We first give an averaged version of Corollary 4.1. Recall that if o ¢ Q? then ®4(€) is
independent of a, and we write ®(§) for this function.

Corollary 9.4. Fiz a lattice L = Z2My and let X be a Borel probability measure on T1(R?) =
R? x Scll_1 which is absolutely continuous with respect to Lebesgue measure volga X volga-1.

1
Then, for every & > 0,

089 JmA(@) €T < o nla v 2 €)= [T )

Proof. By the Theorem of Radon-Nikodym we have d\(q,v) = f(q,v) dg dvolga-1(v) for some
1

non-negative function f € L'(R? x S¢71) with ||f||,1 = 1. By Fubini’s Theorem, the left hand
side of (9.33) equals

(9:34) i [ ([ 16 n(a,vi0) = €) 7 (@,0) dvolgg 1 (v) da,
Re NS¢ !

p—0

where the indicator function I ( . ) is interpreted as zero whenever q ¢ IC,. For almost every

q € R? we have f(q,-) € L'(S9!) and —qM; ' ¢ Q% and for each such (fixed) point g,
Corollary 4.1 implies that the inner integral in (9.34) tends to

(9.35) ( - f(q,v)dvolsf,l(v)) : /g T o de as p—o.

By Lebesgue’s Bounded Convergence Theorem (with g — [a-1 f(q,v) dvolga-1(v) as a ma-
1 1

jorant function), we may change the order between lim,_o and [, in (9.34), thus obtaining
(9.33). 0

Proof of Theorem 1.2. Let M be the set of non-negative functions f € L'(R¢ x Silil) with
[|fllrr = 1. By the Theorem of Radon-Nikodym and (1.7), our task is to prove that for each
f € M we have

(9.36)
lim / /S bri(g.v:p) > €) "4 f(p g, v) dvolge-r (v) dg = /é D) de',

In fact it suffices to prove (9.36) when f € M is continuous and of compact support, since the
subset of such functions is dense in M with respect to the L'-norm.
Using the L-periodicity of 71 (-, v; p), the double integral in (9.36) can be expressed as

(9.37) /Fm /Sd 1 1(40,0ip) 2 €) {10 ST f(p" g, v) } dvolia (v) day,

q€qy+L

where F' C R? is a fundamental parallelogram for £. But for f continuous and of compact
support, the expression within the brackets in (9.37) tends to h(v) := [pa f(q,v)dgq as p — 0,

uniformly with respect to v € S1 and g, € I'. Hence Theorem 1.2 follows from Corollary 9.4,
applied with d\(q,v) = xr(q)h(v) dq dvolga-1(v). O
1
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9.3. Proofs for Section 4.

Proof of Theorem 4.4. As in Section 9.1 we fix a smooth map E; :  — SO(d) such that
v=wv(x) = e B (x)~! € S9! gives a diffecomorphism between the bounded open set Q C R%~!
and S¢~! minus one point. However we now make the extra requirement that By (x) = K (v(z))
for all = € Q.5

We again write A and 3 also for the lifts of A and B to the variable . Now the measure
appearing in the limit in (4.13) equals, with g, g(x) = q + pB(z):

(9.38) AM({z € Q : p"'1i(q,5(x), v(x); p) € [£1,%), —wi(g, g(w), v(w);p) € UE (x) " }).
This is well defined for p small; more specifically, if p is sufficiently small then (g, g(= ), (z)) €
TY(K,) for all z € €, so that m1(q, g(x), v(x); p) and (if 11 < 00) wi(q, g(x), v(x); p) are de-
fined. (For recall that if g € £ then by our assumption on 8 we have ||3(x)|| > 1 everywhere.)
For technical reasons we will prove Theorem 4.4 under the extra assumption that & > 0.

This is no loss of generality, for once that proof is complete, the remaining case £&; = 0 follows
by a simple limit argument, using Corollary 4.2 in the form lim,_o A({v € S‘li_1 s pflr <
€}) = 1 — Fyap(0,6/0471) together with the fact that limg .o Fp o g(0,€Y@D) = 1 (cf.
Remark 3.6).

The measure in (9.38) can be bounded from above and below using the counting function

/\/’C(L%) (p,x,w) (cf. (9.1)), taken with respect to the affine lattice Lo = L — g, as follows. We

will use the shorthand notation N, 1 (p, z, w) = NésTlld l)(p,ar:, w), which is natural in view
of (9.2). Let C = 1+ supq ||B||. Now for any 0 < & < & and any p > 0 so small that
Ep 4 —Cp >0, Ep "+ Cp < &op' =% — Cp and (g, (), v(x)) € Tl(le) for all € Q, we
have:
(9.39)

)‘({m €N NO,T1(0,$,,6($)) =0, NCQ TQ( 7m)16(m)) > 1, N03,T3(p,$,5( < 1})
< )‘({:B €N pdilTl(Qp,B(m% ( );P) [61762) _wl(Qp,,B(:B)v ( ) EuEl })
< )‘({m SR ./\/’07T4(p,$,5($)) =0, NC5 T5( ,$,5($)) > 1}))
where T; > 0, ¢; € [0,1] are defined through T = T = 313 = Ep 4+ Cp, Ty =
§op' ™4 — Cp, Ty = Ts = Lop' ™ + Cp, Ty = c5Ts = &1p' 0 = Cp.

To prove (9.39), let & be any point in Q with Ny7, (p,z, B(x)) = 0, J\/’C2 TQ( ,x,B(x)) > 1
and N, 1 (p, @, B(x)) < 1. To show the first inequality in (9.39) it suffices to prove that these
conditions imply 71 := 71(q,, g(®),v(2); p) € [p' %1, p' %) and wy = wi(q, g(x), v(x); p) €
—UE (x)!

It follows from NCQ TQ( ,x,B(x)) > 1 that there is some y € L4 \ {0} with &p'~7 + Cp <
lly|| < &p'=¢ — Cp and (y — pB(x))E1(x) € Rugey + pih; . Since U C S’ld_1 it follows that

there exist w € Y and ¢ > —p such that (y — pB(x))E1(x) = te; + pw. This implies in
particular that ||y|| — Cp <t < ||y|| + Cp, and thus

(9.40) Gt <t < &pth
Set y' :=y+q € L\ {q} and recall v = v(z) = e; F1(x)"}; then our equality says
(9.41) q,5(x) +tv =y — pwk; ()7t

This implies 73 < ¢t. Furthermore, using N1, (p, z, 3(x)) = 0 together with our requirement
that if ¢ € £ then (B(v) + Rsgv) N B{ = () for all v € S9!, we conclude & p'~¢ < 7.

We claim that in fact 71 = ¢ holds. Assume the opposite; then we have &p' % < 7 <
t < &p'~9 By the definition of 7| there exists some y” € L4 \ {0} such that p3(z) +

OFor example, we may choose Q = BE™! and E; (z) = K (e1 E(z)Ko) where E(x) = exp (_Ocz 0 1 ) and Ko

is any fixed matrix in SO(d) such that v = —e1 Ko is the unique point where K (v) is not smooth.
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(11 +e)v € BI +y” for all sufficiently small &€ > 0. Then |jy”|| < 71 + Cp, and also since
Nor (p,z,B(x)) = 0 we must have ||y”|| > T = c3T53; hence we see that y” — pB(x) lies
in the set defining NV, 1, (p, x,B3(x)). But y — pB(x) also lies in this set, and from 7 < t
we see that y # y”. Hence Ny 1y (p, &, B(x)) > 2, contradicting our assumptions. Having
thus proved 71 = ¢t we obtain w; = —wEl(:B)*l by the definition of w;, and hence both
T € [E1p' 7 E9p ) and wy € —UF;(z)~!. Hence the proof of the first inequality in (9.39)
is completed.
The proof of the second inequality in (9.39) is easier, and we leave it to the reader.
Continuing onwards, let us note the following mild generalization of (9.10). For all o > 0,
c>0,d >0, e Qand any T > 0 so large that the left hand side is defined, we have
(9.42)

N T~ 77,2, B(2)) = # (35, (e, ¢ ¢TI0, @)]a® ! (B ()71, 0) N (Z1+ )Mo \ {0}),

with T/¢/ = e(4=1t, This follows directly from (9.10) combined with the invariance relation

1 5[ / 0
(943) 3’%;)0/(0/670/76, dilgaﬂ) = ( )(67170 B) (to 1/ (d—- 1)1d 1>

which can be verified straight from the definition (9.9).

_ i
In (9.39), introduce o71,...,05 through p = 0;7; 4=1. Using (9.42) and T} = 2Ty = c3T3
we see that when p is sufficiently small, the left hand side in (9.39) can be expressed as

A({weQ : #(3T1/&(o,51,g;ﬁal,ﬁ)\mqﬁ(m(m)*l,o) N (24 + a) My \ {0}) =0,
(9.44) #(350)e, (61, £, (L) ™10, 8)[x 07 (Er(2)7,0) N (Z0 + @) My \ {0}) >
# (3176 (61, £, (2) 7103, )20~ (Br(@),0) N1 (27 + )Mo \ {0}) < })

—1)t . . (sd-t

with e@ = T1/&;, and using the notation 3. 7(c1,c2,0,0) = SCT )(01702, 0,3). Recall

1
that all ¢, 0,7} are functions of p, and, when p — 0, we have T, — o0, 01 — &, 092,03 —

1
d—1

5, and cg,c3 — &1 /&. Note that eld=1)t =T /& =pi= + 3] C b is strictly decreasing as a
function of p for small p > 0; hence for small p (< large t) we may instead view p as a function
of t; then also all ¢;, 0;, T are functions of t. Now, using an obvious shorthand notation, we
have the following sieving type identity for (9.44):

Az e #ED =0, 452 >1, #F%) < 1})
(945) =A({z : #F2 >1)) —A({z : #FY > 1, #F2 > 1})
“A{z - #FD > 1, #FY) > 2)) A ({a - #FYD > 1, #F2 > 1, #F5) > 2}).

To each of the four terms in the right hand side we can now apply the Ej(x)-variant of
Theorem 6.3 (see Remark 6.4) and its analogue for rational a (Theorem 6.5, Remark 6.6), in
conjunction with Lemma 9.2. If o € ¢~'Z% then we obtain that as p — 0, (9.44) tends to

O x ) ({ (M) € 2 x Xy & #(3(0.60,1,8)] 1 (29 + a)M) =0,
(9.46) #(3(61,6,1,8)|x N (2 + ) M) > 1,
#(3(4,£,1,8)[« N (Z* + a)M) < 1})

(Note that here we need not remove 0 from the set Z? + a, since 0 is anyway not contained

in any of the sets 3(0,&1,1,8)|e or 3(€1,&2,1,8)|e.) In the case a ¢ Q¢ we obtain the same
expression but with p, X and Z? in place of fq, Xq and 74 + a.
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Similarly, the right hand side in (9.39) can be expressed as (using also Ty = ¢5T5)

/\({:c cq : #(3T4/51(0,51,§;ﬁa4,ﬂ)|m<1>*t (Exy(z)™",0) N (Z% + a)My \ {0}) =0,

(9.47) #3006, (61,2, (2)7 7105, 8)l@" (Br(2) 1, 0) N (27 + a) My \ {0}) > 1})

5

with e~ = T, /¢, and as p — 0 this is seen to tend to (if a € ¢~ 1Z%)

(< pg) ({ (@ M) € 2% X+ #(3(0.60,1,8)) N (27 + 0)M) =0,

(9.48) #3060, 6,1,8)e N (27 + a)M) > 1}).

Hence we conclude: Given any 0 < & < &2, the liminf of the expression (9.38) as p — 0
is bounded below by (9.46), and the lim sup is bounded above by (9.48) (both with the usual
modifications if a ¢ Q%). In order to get successively sharper bounds we will now split the
original interval [£1,&2) into many small parts, and apply the bounds just proved to each
part. We will also use the results on integrals over (X, u) and (X, 1g) which we developed
in Sections 7 and 8. We will give the details for the case a € ¢~'Z%, but exactly the same
proof with very small changes of notation works also in the case a ¢ Q% in particular all
expressions below containing fo(...) of Fy(...) will remain unchanged, except that they refer
to the definitions (8.27), (8.28) in place of (8.1), (8.3); also some of the continuity issues below
are slightly easier in the case a ¢ Q¢ since we can refer to Proposition 8.10 for all that we
need.

Thus from now on we assume « € ¢~ 'Z%. Recall that we have defined ((8.1) with r = 0)

(9.49) foler,e2,0,2,y) = vy ({M € Xy(y) : (3(c1,c0,0) + 2) N (24 + )M = 0})

and Fy(&,w,z) = f0(0,&,1,2,€e; + w + z). (And Fy(&, w, z) is the same as P, (£, w, z) in
(4.14) in Theorem 4.4.) Our goal now is to prove that the expression in (9.38) tends to

(9.50) / . / 5 /u B w0, 7a) dwded) @),

where z4 := (B(x)E1(x)) . Recall that we have already seen in Lemma 8.5 that the function
Fy(&,w, z) is Borel measurable on the (£, w, z)-product space; in particular we are allowed to
freely change order of integration in (9.50); hence our present aim is equivalent with proving
the limit formula (4.13) in Theorem 4.4.

Let 0 < & < & be given once and for all. Take € > 0 arbitrary (we will take ¢ — 0 in
the end). Fix a constant C so large that C' > 1 + & +supq ||3]], C > &' and if d = 2 then
also require 2071 < e. Next choose 7 > 0 and N € Z>5 as in Proposition 8.3, for 7 = 0 and
our fixed C' and e; if necessary shrink 7 further so that n < £ /N. By Lemma 7.12 we may
also assume, after possibly shrinking n further, that for every set U = 3(c1,c2,1) + z with
z € {0} x Bg_l and ¢; < ¢ satisfying & < ¢1 < ¢ < & and ¢ — ¢; < 1, we have

(9.51) /Uyy<{M € X,(y) : #(U Nz + a)M) > 2}) dy < e(cg — ).

We fix a splitting £ = 01 < 0 < ... < 0, = & of the interval [£1, &) such that 0,1 —6; <n
for each 7 =1,2,...,n — 1. Note that (9.38) can be expressed as
(9.52)

n—1
Z)\({m €Q : p' (g, (), v(x); p) € 10,0,11), wi(q,g(x),v(z);p) € —UE(x)'}).
=1
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We now apply (9.46) and (9.48) for the liminf and limsup of each term in this sum. We get
that the liminf of the total expression is

> nzl/meﬂ g ({M € Xy #((3(0.6,,1) + ) N (B + a)M) =0,
! #((39(0;,0;41,1) + 22) N (Z4 + @) M) > 1,
(9.53) #((3(05,0541,1) + 22) N (2! + a)M) <1}) dA(@),
where 3 (¢, ¢o, 0) is defined as in (9.5).

We will next apply Proposition 7.3 to bound each term from below. Let usfix j € {1,...,n — 1}
and x € 2 for the moment, set

S = {M € X, #((3(0,0;,1) + 25) N (Z¢ + a) M) =0,
(9.54)
(3 (65,61,1) + 22) 1 (24 + @) M) > 1}

and denote by S’ the subset of S which appears in (9.53) for our fixed j,xz. Set U =
309(6,,0,41,1) + 2z; then S C Uyer Xq(y) and also Yy, # y, € U+ Xy(y1)NXq(y2)NS" =0,
since U C 3(0;,0j41,1) + z4. Hence Proposition 7.3 applies, yielding

(9.55)
o(S') = /U vy (5' N X, (y)) dy

> [ 080X, (w) dy
—/Uz/y({M € X,(y) : #((3(9j,9j+1,1) + z) m(zd+a)M) > 2}) dy.

Here the first integral in the right hand side equals f@ijﬂ fiu f0(0,60;,1, 25, ée1+w+2z4) dw d

(recall (9.49)), since each M € X,(y) with y € U automatically fulfills #((3(11) (05,0;41,1) +
Zz) N (Z% + a)M) > 1; and the second integral is bounded from above by £(;11 — 6;), by
(9.51). Adding this over all j and & we have now proved that the total expression in (9.53) is

n—1

Oj+1
056 = —cl-e)+ | D /6 /u Fo(0,05, 1, 20 €e1 + W+ 2a) duw dé A (x).
=170 .

T

Now for each (z, j,&, w) which appears in the above integral, and which satisfies ||w + z|| >
C~1if d = 2, Lemma 8.4 applies, and yields

(957) ‘f0(079]7 1,237661 +w+ Zw) - FO(§7w’zw)| <e.

If d = 2 we note that the set {w : |Jw + z4|| < C~'} has measure < 2C~! < ¢ (viz., the
1-dimensional Lebesgue measure dw), and for these w’s the difference in (9.57) is certainly
< 1, since 0 < foy, Fy < 1 everywhere. Hence (9.56) is

(9.58) > 9e(6y — £1) + /meﬂ /52 /u (—5 + Fy(€,w, zm)) dw dé d\ ().

In conclusion, we have proved that this last expression is a lower bound for the liminf of
(9.38). But this is true for any £ > 0; hence the liminf is in fact

(9.59) >/mEQ /5 /m Fo(&,w, 2) duw de dA(x).
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The treatment of the limsup is similar but a bit easier: With S and U as before we need
only notice that by the upper bound in Proposition 7.3 we have

Mq(S)S/uy(SmX( ) dy
(9.60) .
/meg / / f0(0,0;,1, 2z, Ee1 +w + 2) dw d€ dA(x).

Now Lemma 8.4 is applied as before, and we obtain that the limsup of (9.38) is

(9.61) <e(br— &)+ /mGQ /& /u (s + B, w,zm)) dw de d\(x).

Hence, by letting ¢ — 0 and combining with our result for lim inf, we have finally proved our
claim that (9.38) tends to (9.50) as p — 0. This completes the proof of Theorem 4.4. O

Proof of Theorem 4.8. Let A and f be given as in the statement of the theorem. By (4.19),
the left hand side of (4.21) equals

: d— . .
(962) ll)li)r(l) Sd*l Q(UO’P 17—1(qp,,3(v0)7v0ap)7wl(qp,,B(UO)v’U()vp))d)\(v())’
where g(vg, &, wy) = vo,f, v — 2(vg - wl)wl) Using Corollary 4.7 we obtain
[ / £ (w0, 6,00 — 2(vg - (WK (v0) " )wK (v0) ")
S/d 1 Rso
(9.63) XPa (& w i, (B(vo)K (vo)) 1) wi dA(vo) dE dVOlSd 1(w).

Now change the order of integration by moving the integral over w € S'ldfl to the innermost
position, and then apply the variable substitution (4.23) in the innermost integral; note that

this gives a diffeomorphism w — v from S/ldfl onto {1 \{vo} (the inverse map is given by
w = w) Recalling (4.22) we then see that (9.63) equals the right hand side of (4.21),

[[vo—v1]]
and we are done. O

9.4. Proofs for Section 2. Introduce F; : 2 — SO(d) as in Section 9.1 and write \ also for
the lift of A to the variable & € R?~1, as before. Set

- T! 0
960 €rleo) =y RN} s T <yl <7 ol e e} (T gy, )
Then
(9.65) Ner(o.erBr(z) 1) = #(Cr(c,0)2 " (Bi(2) 1, 0) N (27 + )My \ {0}),

with 7' = eVt As before, Theorem 2.1 and Theorem 2.5 now follow from the theorems in
Section 6 and the following lemma.

Lemma 9.5. Fix 0 < ¢ < 1. Let o be a continuous non-negative function of T > 0 such that
the limit 0oo = limp_.oc o exist. Then the union Ur>1Cr(c,or) is bounded, and

(9.66) lim(inf €7 (¢, 07))° D €(c, 0x0)°, limsup €7 (c,o7) C €(¢,000),
where €(c, o) is as in (2.14). The boundary of €(c,0) has Lebesgue measure zero.

Proof. From (2.9) we have D(or) = (€1 + B ) N S9! where

doso

(1— cd)vol(zs’f—l)) _

(9.67) T%TT — ( = A(c,000) as T — oo,

1
In particular, for T sufficiently large, if y is any point in €7 (c, O'T) andy = Tye1+T a1y,

rT/4— TT ’

then ||y'|| "'y’ € Dr(or) implies y; > 0 and ||y, || < o thus y3 > 0 and |y || <
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(A(e,000) + m)y1, where n > 0 can be made arbitrarily small. With these observations the

proof of Lemma 9.5 is easily completed by mimicking the proof of Lemma 9.2. (]
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