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THE DISTRIBUTION OF GAS AND LIQUID
WITHIN THE CUTTLEBONE

By E. J. DENTON AND J. B. GILPIN-BROWN*

The Plymouth Laboratory

(Plates I and II and Text-figs. 1-7)

We have previously given an account of the general properties of the cuttlebone

and the way in which the cuttlefish uses it as a variable buoyancy tank

(Denton & Gilpin-Brown, 1961a, b; Denton, Gilpin-Brown & Howarth,

1961). Here we shall describe how the liquid and gas which the cuttlebone

contains are distributed amongst its hundred or so chambers, and attempt

to interpret this distribution in terms of the behaviour of the cuttlefish.

e
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d

Text-fig. 1. Diagram of a cuttlebone (condition in winter) in which only every fourth lamella

has been drawn. The true numbers of the chambers are those given along the dorsal surface of

the bone. The siphuncular surface is marked xy, and it can be seen that the inflexion, z, is
associated with a number of thin chambers of small volume. The letters d and e refer to

the experiment described on p. 368.

The chambers of the cuttlebone will be numbered from the newest to the

oldest chamber (Text-fig. I). Chamber no. 1 is the incompletely formed

chamber lying ventrally and anteriorly; its volume in an adult cuttlefish

is between I and 2 mi. The oldest, i.e. the first-formed chamber, is approxi

mately no. 100 and its volume is less than 10-3 mi. In general the volume of

a chamber decreases with increasing number, but on the siphuncular surface

of a cuttlebone (xy) a marked inflexion can be seen (this is shown by the

letter z in PI. I and Text-fig. I), and associated with this inflexion there are

a number of very thin chambers of small volume. Despite this complication

it is quite clear that the newer chambers, having the larger volumes, are those

most important in determining the buoyancy of the cuttlefish. The older

chambers, although of small volume, have a disproportionate effect on the
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posture of the cuttlefish for, since they lie well towards the posterior end of

the animal, they will, when gas-filled, tend to make the cuttlefish float tail

upwards.

It seems possible that the ' pumping out' of a newly formed chamber might

be achieved by a mechanism different from that used to control the amount

of liquid in the older ones. The siphuncular walls of the newest few chambers

are whiter and more silvery in appearance than the corresponding walls of

the older chambers. It was found moreover (Denton & Gilpin-Brown,

1961 a) that these few are the only chambers which do not lose liquid when

the external pressure is reduced. Two simple explanations of this may be

suggested:

(i) Liquid is not initially pumped out through the siphuncular wall of a chamber but
through the broad ventral wall separating the first and second chambers. The

siphuncular walls could, on this hypothesis, be initially impermeable to liquids
but become permeable later when six or so more chambers have been added.

(ii) The siphuncularwalls of the newest chambers are permeable but the siphuncular

ends of these chambers do not contain liquid.

It is shown that the second of these possibilities is the correct one.

The second chamber is the one which is being 'pumped out' for the first

time. It is known that liquid is extracted through the siphuncular walls of

the other chambers. If, therefore, liquid in the second chamber were found

at its siphuncular end, it would be fairly clear that it was being pumped out

through the permeable siphuncular wall. There would have to be some

differences, e.g. in wettability and dimensions, between the different parts of

this chamber to ensure both that the initial 'bubble' is formed away from the

siphuncular end and that the column of liquid within the chamber is not

completely broken during the pumping out. However, liquid, when present

at all in the second chamber, was rarely found at its siphuncular end. The

second chamber was indeed the only one in which liquid was not so localized.

The following explanations of this may be given:

(i) Liquid is initially extracted through the siphuncular wall but there is no
adequate mechanism to ensure that the column of liquid stretching inwards from
the siphuncular wall is not broken. The liquid left behind is, however, little by
little shaken down to this wall and then extracted.1

(ii) Some liquid is extracted through the broad ventral wall of the chamber.
Arguing againt this hypothesis is the fact that the living epithelium covering the
ventral surface is separated from the wall of the second chamber by the liquid
filled incomplete parts of the first.

(iii) Liquid is first taken from the siphuncular end of the chamber and water then

evaporates from the deeper wet parts of the chamber on to the siphuncular
surface and is there taken away. The obvious difficulty of this hypothesis is that
a progressively stronger salt solution will be left in the deeper parts of the cuttle
bone and evaporation will be brought to a stop. We might keep this explanation

1 Water might be transported by living cells but no such cells could be found within
the chambers.
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if: either (a) the liquid in chamber I were not a salt solution but contained

organic substances which were later condensed into the solid parts of the cuttle
bone, leaving behind pure water which could be removed by evaporation; or
(b) the salts in the liquid were themselves condensed into the solid structure of
the bone leaving pure water behind.

Here it is shown that the water in the first chamber contains sodium and

potassium in concentrations close to those of sea water and that these ions

are not left behind when the water is initially removed. Since the salts and

water leave the newly formed chamber together and, since they are not pushed

out by gas pressure, it seems likely that liquid is extracted osmotically. The

possibilities listed under (iii) above may therefore be excluded.

It has previously been shown (Denton & Gilpin-Brown, r96ra) that when

the cuttlefish changes its density by increasing or decreasing the gas space

within its cuttlebone the mass of gas within the cuttlebone remains approxi

mately constant. This has been explained in terms of the osmotic movement

of liquid and the slowness of diffusion of gases into and out of the cuttlebone.

On this hypothesis we should expect that the pressure of gas would be

particularly low in a newly pumped chamber. This is shown to be the case.

An estimate of the rate of diffusion of nitrogen (the principal gas in the

cuttlebone) into and out of the cuttlebone is made on the basis of an experiment

in which the rate of entry of carbon dioxide was studied.

METHODS AND RESULTS

The permeability of the siphuru:ular wall

The following experiment was designed to find out whether or not the

siphuncular walls of the newest chambers are permeable to liquid.
Two cuttlebones were taken and the membranes covering their

siphuncular surfaces were wiped off. One was placed under sea water for

about 2 h. It was then gently dried on a cloth and placed under reduced

pressure. Liquid which had soaked into the cuttlebone now came freely

from the siphuncular surface, even from the newest chambers (apart from

the first incomplete chamber). The second cuttlebone was placed for

30 min in sea water under a pressure of +5 atm. When the cuttlebone

was brought back to atmospheric pressure, liquid was observed to flow

freely from all the newest chambers except the first. These two experiments

demonstrate that in all the chambers, except perhaps the newest of all,

which is incomplete, the siphuncular surface is freely permeable to water.

Sodium and potassium in different parts of the cuttlebone

An experiment was made to decide between the various mechanisms sug

gested for the initial pumping out of a newly formed chamber. The following

parts of a fresh cuttlebone were scraped off, each into a separate weighing
24 JOU~. MAR. DIOL. ASSOC. VOL. 41, 1961
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bottle: (a) the 1st chamber; (b) the 2nd chamber; (c) the 3rd chamber;

(d) the anterior regions of some of the older chambers (around the 20th),

see Text-fig. I; (e) the posterior regions close to and including the siphuncular

surface, of a number of chambers older than 20 (Text-fig. I). Great care was

taken during the scraping to keep the lids on the weighing bottles as much as

possible to avoid losses of water by evaporation from the material already
collected.

Each of the samples in the weighing bottles was then treated successively

as follows: (i) weighed; (ii) extracted with distilled water, and the sodium

and potassium content of the extract measured using a flame photometer

Extract I; (iii) dried at 1I00 C to constant weight; (iv) ashed in a silica

crucible at 6500 C to constant weight; (v) the ash extracted with distilled

water and after the calcium in the extract had been precipitated with am

monium oxalate the sodium and potassium contents were measured

Extract 2; and (vi) after water extraction, the ash dissolved in strong hydro

chloric acid which was then neutralized with ammonium hydroxide, the

calcium precipitated with ammonium oxalate, and the total sodium and

potassium in the residual solution found-Extract 3.

TABLE 1.ANALYSES OF SUCCESSIVE CHAMBERS

Sample

... a
bcde

Dry weight (g)

0'2820'2660'3250'3560'323
Weight water

4'27
0'460'0150'0242'67

Dry weight
Ash weight

0'54
0'53-0'540'55

Dry weight

Sodium (mg) J 1st extract

45'06'74'94'327'0
. 2nd extract

5'34'1-4'33"3
Dry weIght 13rd extract 0'9

1'0-2'01'5

Total sodium (mg) 51
12-II32

Dry weight
Bound sodium (mg)

65
-6
5--Dry weight

For explanations of the letters a to e, see text.

The results of this experiment are summarized in Table I. The weight of

potassium in the extracts was always about 5% of the sodium (in sea water

it is about 4%). Three conclusions can be drawn from the experiment.

(I) The siphuncular ends of the older chambers (sample e) can be seen

to contain much water, whilst the anterior ends (sample d) contain very little.

This might have been expected, for we have previously found that liquid

exchanges in the cuttlebone are made across its siphuncular surface.

(2) All the samples of cuttlebone contained approximately the same pro

portion of 'bound' sodium and potassium. Here by 'bound' we mean the

sodium and potassium which was only extractable after ashing. This amounted

to about 10% of the sodium in the first chamber. Since the solid parts account
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for about 10% of the total volume of a chamber! the amount of sodium

trapped in the formation of the solid parts is approximately equal to the

sodium in an equivalent volume of sea water.

(3) During the initial pumping out of a newly formed chamber almost

90 % of the 'free' sodium and potassium which the chamber initially con

tained is removed with the water. If we compute the ratio:

Free sodium (mg)

weight of water lost on drying (g)

for the samples (a) to (e) we obtain the values: la, 14,32, 18, 10 respectively

(sea water has a corresponding value of II). The sodium concentration is

appreciably higher in the third chamber (c) and in the anterior regions of

the older chambers (d), and this might suggest that water is extracted actively.

However, the amounts of water in samples (c) and (d) were extremely small,

15 and 24 mg respectively, and a small amount of evaporation during the

collection of these samples may have taken place. These figures in no way

invalidate the conclusion that the salt and water in a new chamber are largely

removed together.

The distribution of liquid in the cuttlebone

Three methods were used to determine the distribution of liquid in a
cuttlebone.

(I) A cuttlebone was cut sagitally into two halves and one half was placed

cut side downwards in a tray containing a small depth of a solution of Sudan

Black in xylene. This solution is sucked by capillary action into the dry

regions of the bone but it does not penetrate into the wet regions. Mter about

half an hour the bone was removed and examined. The black regions indicated

those parts of the bone containing no water, the white regions those parts

containing water.

(2) A longitudinal section about t cm thick was cut from a cuttlebone and

examined by transmitted light under a dissecting microscope. The regions

containing water appeared lighter than those which were dry. The wet parts

could be marked directly on the bone.

(3) The lamellae of the cuttlebone were scraped off one at a time and

places where liquid was seen were marked on the outside wall of the succeeding

chamber.2 We could distinguish (a) regions where no liquid could be seen,

(b) regions in which liquid was visible, and (c) regions in which liquid freely

welled up on scraping.

1 The figure of 10 % was found by an experiment on the chambered parts of the bone.

2 The newest chambers contain gas under relatively low pressure and it is possible that

on puncturing a chamber air will rush in and perhaps displace liquid from its natural position.

Usually, but not invariably, the newest chambers were punctured half way along their lateral

margin.

2~-2



37° E. J. DENTON AND J. B. GILPIN-BROWN

Each chamber is subdivided by about six thin chitinous membranes

running parallel to the main walls of the chamber and examination of the

distribution of liquid within a chamber, using method 2 above, showed that

liquid extends from the siphuncular end by differing amounts in the different

subchambers. By combining methods 2 and 3 on the same cuttlebone it was

shown that condition (c) corresponds to at least two of the seven or so sub

chambers being full of liquid.

Each method has some special advantage; the first is the quickest, the

second allows the distribution of liquid within the subchambers to be seen,
and the third ensures that the whole extent of each chamber is examined. All

three methods gave the same general results. The first chamber, which is

incomplete, is always full of liquid. The succeeding eight or so chambers are

usually dry, whilst in the remaining chambers the liquid is all localized at the

siphuncular ends of the chambers. The oldest chambers (i.e. those older than

the thin chambers associated with the inflexion in the siphuncular surface)

are usually very wet, and often almost completely filled with liquid. These

chambers are only emptied when the bone becomes of exceptionally low

density. In all chambers, apart from the first two, liquid, when present,

increased progressively towards the siphuncular end. The siphuncular ends

of the chambers were very wet indeed.

The most complete results are those given by the third method. This was

applied to cuttlebones chosen to cover a large range of densities. The results

for four of these cuttlebones are given in Text-fig. 2 where two quantities

are plotted as ordinate; first the length of the chamber in the midline of the

cuttlebone, and secondly that part of the chamber which contained liquid in

sufficient quantity that it welled up on scraping (criterion (c), above).

The pressure of gas within individual chambers of the cuttlebone

The pressures inside the individual chambers were studied in the following

two experiments.

Experiment A

Freshly dissected cuttlebones were placed under sea water contalmng

Sepia ink. The chambers were then opened under ink by slowly drawing a

sharp edge along the centre of the siphuncular surface, i.e. along the line xy

of Text-fig. 1. The bones were left for about an hour under ink and then taken

out, dried gently and sawn up. Sections of such a bone are shown in PI. 1.
It can be seen that ink has been drawn much more extensively into the newest
chambers than into the others. The newest chambers are indeed almost

completely filled with ink and must, before puncturing, have contained gas

at very low pressures. Practically no ink has penetrated the older chambers

(zx); this is because these chambers are already almost full of water.
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Text-fig. 2. Graphs showing the distribution of liquid in the chambers of four cuttlebones

of widely differing densities. The ordinate represents distance along a chamber measured

from the siphuncular surface, which therefore corresponds to the base line. The inflexion, z,
marks the thin chambers of very small volume (see Text-fig. I). The regions containing
liquid (category of (3) c,p. 369)are shown by the hatched areas. This category is such that at least

two of the seven or so subchambers making up a chamber contain liquid. The number of
subchambers filled with liquid increases progressively towards the siphuncular end.
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Experiment B

The volumes of the gas spaces and the pressures of gas within individual

chambers were determined quantitatively using the apparatus shown in

Text-fig. 3.

Cuttlebone driven this way

~

Clip

Mercury manometer

Rubber patch

Bead of mercury

B

A

Text-fig. 3. A, Diagram (not to scale) of apparatus used to determine the gas pressures
within the cuttlebone. The cuttlebone is shown in cross-section and three chambers have
already been punctured. B, Diagram of the tip of the needle of the hypodermic; it has been
bent over to avoid the needle blocking with material from tne walls of the cuttlebone.

A rubber patch was stuck on to the anterior ventral surface of the cuttlebone.

Two rubber bands were passed round the bone and the patch to make quite

sure that it did not slip. The bone was held vertically in a clamp carried on
a horizontally lying Palmer adjustable stand.

Explanation of Plate I

This cuttlebone has had its chambers punctured under sea water containing Sepia ink by
a scratch along its siphuncular surface (xy). A, A longitudinal section; B, a section showing
the same cuttlebone after cutting away its anterior end to allow the lateral penetration of
ink to be seen. Ink has been extensively drawn into the newer chambers which contain
gas under low pressures. In this plate the cuttlebone is shown ventral side upwards.
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AIm!. graduated pipette was held horizontally in a second stand and this

contained somewhere along its length a bead of mercury. The tapered end

of the pipette was connected by a short piece of rubber tubing to a no. 14

hypodermic needle whose point had been bent as is shown in the detail B

of Text-fig. 3. The other end of the pipette was connected by narrow bore

tubing to a mercury manometer made of wide bore tubing. By raising and

lowering one arm of the manometer the pressure of gas in the pipette could

be varied in a known way.

The bead of mercury was brought close to the end of the pipette farthest

from the open needle. The bone was now moved slowly on to the hypodermic

needle so that this slowly punctured the bone through the rubber patch.

(The tip of the needle had been bent so as not to be blocked by a neat core

taken from the material of the cuttlebone.) The bead of mercury was watched

carefully. Suddenly a marked displacement of this bead towards the needle

was seen; the puncturing was then stopped. The needle had clearly penetrated

into some gas space containing gas at less than atmospheric pressure.

D sing the mercury manometer the gas pressure was varied and

the positions of the mercury bead in the pipette found for various

pressures.

These measurements finished, the cuttlebone was slowly driven farther on

to the needle until a second sudden displacement of the mercury bead was

observed. The puncturing was again stopped and volume and pressure

measurements again made. This procedure was repeated a number of times,

the needle being pushed farther and farther into the bone. Finally the needle

was withdrawn. After finding the volume and density of the bone, this was

sawn up and shaved gently with a scalpel to expose the path of the needle.

The number of chambers punctured could then be counted. This number was

equal to one more than the number of steps in pressure on puncturing. Since

the newest chamber is incompletely formed and full of liquid this means

that each change in displacement of the mercury bead corresponded to the

puncturing of one chamber of the cuttlebone.

Text-fig. 4 shows a plot of volume change against the reciprocal of the

pressure for the gas in the second chamber of a cuttlebone together with some

gas in the measuring pipette. It can be seen that the points fall on a straight

Explanation of Plate n
A. A cuttlefish was kept in the dark for 2 days. Its cuttlebone which had then a low density

(0'53) was punctured, under sea water containing Sepia ink, by a scratch along the siphuncular

surface. The ink has penetrated very far into the older chambers (marked zx) showing that the

pressure of gas within these chambers must have been very low before puncturing.

ll. Similar to A except that the cuttlefish had not been kept in the dark. The cuttlebone's

density was about 0·62. Ink has not penetrated into the older chambers because these

were already almost full of liquid. In this plate the cuttlebones are shown ventral side

upwards.



374 E. J. DENTON AND J. B. GILPIN-BROWN

line, as Boyle's law would predict. This is true for the individual chambers

of the cuttlebone. The volumes indicated by the application of Boyle's law

correspond closely to estimates made of the volumes of the chambers from

their physical dimensions.

It is now possible using Boyle's law to calculate the volume ofthe individual

chambers and the pressures of gas within them before puncturing. The calcu

lation which gives the volume of the gas space and the pressure of gas in the

first chamber is given as an example.

+1.0

+0.8

+0.6

~

.s
~ +0.4
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..,

§ +0.2
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1fP(atm)
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Text-fig. 4. Graph showing that the gas within the second chamber obeys Boyle's law.
A straight line is given on plotting Ifpressure against volume change.

Before puncturing let VI be the volume of the gas space within the first

chamber, and PI the pressure of gas in this chamber, and let VA be the

volume of gas between the tip of the needle and the mercury bead in the

pipette, and P.A the pressure of gas within the pipette.

After puncturing the first chamber let Vb be the volume of the gas space

between the tip of the needle and the mercury bead at pressure Pb and let Vc
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be a corresponding volume at the pressure Pc. Using Boyle's law, which was

shown to be valid here, we may now write the equation:

(VI + Vb)Pb = (VI + Vc)Pc,

and from this we can find VI. We can now substitute the value for VI in the

equation:

PIVI+PaVa = (VI+Vb)Pb = (VI+VC)PC,

and so find Pl. This kind of calculation we can repeat for each successive

puncturing and so find the volumes of gas spaces and the pressures
within successive chambers. I

1.0

0.8

§ 0.6$
~"
~"
.t 0.4

A

o 2 4 6 8 10 12

Volume (mI.)

B

O. 2 4 6 8 10 12 14 16

Volume (mI.)

Text-fig. 5. Graphs showing as abscissa the cumulative volumes of the chambers of the

cuttlebone starting from the most recently formed gas-filled chamber (chamber 2). The ordi

nate is pressure of gas within the individual chambers. A is for a cuttlebone in which the
newest 10 gas-filled chambers were punctured in turn. B is for a cuttlebone in which, after

puncturing the first four gas-filled chambers individually, several were deliberately punctured

together.

Text-fig. 5 shows results obtained in this way on two cutdebones. Here

the cumulative volumes of the chambers punctured are plotted against the

pressures of gas within these chambers before puncturing. It can be seen that

the pressure of gas is much lower in the newest chambers than in the some

what older ones and that by the time we reach about the tenth chamber the

pressures are close to the figure of about 0,8 atm found as the average pressure

of gas within the cuttlebone (Denton & Gilpin-Brown, 196ra).

1 The' dead space' between the tip of the needle and the end of the pipette can be readily

found. The needle is closed by pushing it into a rubber bung and the readings of the mercury

bead along the pipette are measured for various pressures. The volume of 'dead space' and

pipette is found by using Boyle's law.
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The slowness of diffusion of gases into the cuttlebone

To find at what rates gases within the cuttlebone will come to equilibrium

with gases in the tissues around the cuttlebone a freshly dissected cuttlebone

(Text-fig. 6, A) was placed in sea water saturated with carbon dioxide and

through which carbon dioxide was being bubbled. Its changes of density with

time were then found. A second cuttlebone (B) was soaked in sea water until
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Text-fig. 6. An experiment to determine the rate of diffusion of CO2 into the cuttlebone.

A, A fresWy dissected cuttlebone was placed in sea water saturated with CO2, B, A cuttlebone

was initially soaked in sea water until it reached constant density and then at time 0 hrs it was
transferred to sea water saturated with CO2,

it attained constant density (Denton & Gilpin-Brown, 196Ia, fig. II) and
then transferred to carbon dioxide saturated sea water. Carbon dioxide was

chosen because it is much more soluble than either nitrogen or oxygen in sea

water and will therefore come more quickly to equilibrium.

The results of this experiment are shown in Text-fig. 6. The curve A

appears rather complicated but its form can be simply explained in terms of

our knowledge of the cuttlebone. At first (as with the cuttlebones offigure II
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of Denton & Gilpin-Brown, 196Ia) water was pushed into the cuttlebone by

the difference in pressure between the inside and outside of the bone. As this

process slowed down the cuttlebone density then began to decrease, for

carbon dioxide was all the time diffusing into the cuttlebone much more

quickly than the gases inside could diffuse out. The gas pressure inside the

bone therefore rose and water was expelled through the siphuncular surface.

This process became increasingly fast as more and more liquid was expelled

and the diffusion path for carbon dioxide became shorter; finally, when all

the liquid available had been expelled from the cuttlebone its density

remained almost constant, but the pressure of gas in the bone continued to

rise. At the end of the period of soaking the cuttlebone was punctured and

a stream of gas bubbles came from the hole, showing that the pressure of gas

was above atmospheric.1 The curve B shows very similar results, but here

the first phase, in which sea water is taken up, has been avoided by the

initial soaking in sea water.

For convenience the numerical results of this experiment are given during
the course of the discussion.

The slowness of gaseous diffusion into a cuttlebone was also shown by an

experiment in which a cuttlefish was kept in the dark for 2 days so that its

cuttlebone became of very low density, 0'53. This cuttlebone was placed under

Sepia ink and all its chambers were punctured in turn by a scratch along the

siphuncular surface. It can be seen (Pi. II) that the ink has penetrated very

deeply into the older chambers which are usually filled with liquid, but which

in this cuttlebone will have just been pumped out. We thus see that the pressure

of gas within these chambers was very low, and we have reproduced here the

low pressures found in a newly formed chamber. In this case, of course, the

liquid has certainly been pumped out from the siphuncular ends of the

chambers, but we are not certain yet that this is the case for the newest
chambers.

Capillarity

It seemed possible that surface tension forces (capillarity) might be used to

ensure that liquid remained at the narrow siphuncular ends of the chambers,

and we have already seen that a xylene solution is quickly drawn by capillarity

into the narrow gas-filled space of the bone.

Cuttlebones, both fresh and dried, were sawn sagitally into two halves,

and half cuttlebones were placed cut side downwards in a trough containing

a shallow depth of a solution of aniline blue in water. Those parts of the

chambers far away from the solution were punctured to make sure that the

liquid could enter freely.

The watery solution of aniline blue was not taken up at all.

1 This experiment resembles that in which a porous pot filled with air is placed in an

atmosphere of hydrogen at the same pressure. The hydrogen diffuses into the pot much more

quickly than the air diffuses out, and the gas pressure inside the pot therefore rises.
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It therefore seems that the inside walls of the chambers of the cuttlebone

are not very' wettable' and we have no evidence that surface forces are used

to localize liquid at the siphuncular ends of the chambers. This is in

agreement with earlier conclusions (Denton & Gilpin-Brown, 1961a).

DISCUSSION

The slowness of equilibration of gases in the cuttlebone is partly because the

distance for diffusion is great, but also because the large gas space into which

the gases diffuse will hold, at a given pressure, a great deal more oxygen and

nitrogen than will an equivalent volume of water. We can get some idea of

how slow equilibration will be from the experiment on the uptake of carbon

dioxide. Here, when the densities of the cuttlebones were about 0'6, the

rates of uptake of carbon dioxide were such that the times for the cuttlebones

to move only half way towards equilibrium would have been about one day.

Now, for a given partial pressure difference, nitrogen diffuses in water at

only about loth the rate at which carbon dioxide diffusesl (Hufner, cited by
Krogh, 1919) and so the half time of equilibrium for nitrogen would not be

I but 40 days. This explains why, when the cuttlefish changes the volume of

liquid within the cuttlebone, the mass of gas within the chambers remains

almost constant for a long time. It also explains why the pressure of gas

within the newest chambers is so low for these will have been formed recently

and insufficient time will have elapsed for equilibrium to be attained. The

distribution of pressures in the newest chambers (Text-fig. 4, p. 374) shows

that it is not until we reach about the 9th chamber that equilibrium is

approximately attained. Since the chambers are probably only laid down at

a rate of three to five a month, this probably represents a period of 2 months,

a very long time when we remember that these chambers are almost dry and

the diffusion path for gases is relatively short.

Since differences in pressure of gas as well as differences in liquid content

are maintained between neighbouring chambers, the principal walls of the

chambers must be impermeable to both liquids and gases.

The pattern of water distribution in the cuttlebone has been shown to be

a fairly simple one, and the following account summarizes the results both

of the experiments which have been described here and many other observa

tions on the cuttlebone. In all cuttlebones the newest chamber (no. I) is

incomplete and filled with liquid. The second chamber, although often dry,

may contain some liquid but this is rarely localized at the siphuncular end.

In cuttlebones of density around 0,6 the oldest and most posterior chambers

1 The difference in diffusion rates arises principally because carbon dioxide is much more

soluble than nitrogen in water so that for a given partial pressure difference there are many

more molecules of carbon dioxide than nitrogen available for diffusion. Since the ratio of
solubilities of nitrogen and carbon dioxide does not differ very much between pure water

and sea water (Harvey, 1955) we may use the value of 410th here.
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are almost completely filled with liquid; whilst the second to about the loth

chambers, that is those most newly formed, are dry. In very light cuttlebones

(densities close to 0'5) there is very little liquid visible anywhere, and even

the oldest chambers have been pumped dry. In very dense cuttlebones

(densities close to 0'7) almost all the chambers, including most of those newly

formed, contain liquid.

The distribution of liquid in cuttlebones of densities around 0'62, i.e.

densities close to the cuttlebone density which will make an animal neutrally

buoyant is a rational one. The older chambers, which are very posterior, are

kept fairly full of liquid, and the newer chambers, which lie more centrally

along the length of the animal (Text-fig. 7), are kept dry. This means that

~;i{\

Text-fig. 7. Diagram summarizing our knowledge of the cuttlebone. The cuttlebone here
represented has a density of about 0·6. Liquid within the cuttlebone is marked black. It can

be seen that the oldest and most posterior chambers are almost full of liquid. If they were
filled with gas, this would tend to tip the tail of the animal upwards. The newest 10 or so

complete chambers, which lie centrally along the length of the animal, are completely filled
with gas. These chambers can give buoyancy without disturbing the normal posture of the
animal.

The hydrostatic pressure (H.P.) of the sea is balanced by an osmotic pressure (o.P.) between

cuttlebone liquid and the blood. In sea water the cuttlebone gives a net lift of 4 % of the

animal's weight in air and thus balances the excess weight of the rest of the animal. Note.

The black markings in this figure have quite a different meaning from those of Plates I and II.

when the animal is approximately horizontal its centre of gravity is brought

under its centre of buoyancy so that it can remain in this posture without

effort. The cuttlefish can, however, both pump out the older chambers and let

liquid into the newer ones. Since the main body of liquid lies at the siphun

cular, i.e. posterior, ends of the chambers, when water is pumped out of the

cuttlebone this will tend to bring the tail up. Having the tail slightly higher

than the head is probably a good posture for the cuttlefish when it hunts over

the sea bottom. It is certainly the posture which a cuttlefish takes in an

aquarium tank as it prepares to attack a crab or prawn.
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SUMMARY

The newest chamber of a cuttlebone is always incomplete and full of a watery

solution. This contains sodium and potassium in concentrations close to those
of sea water.

The second newest chamber contains a gas space and sometimes contains

liquid. This liquid is rarely localized at the siphuncular end of the chamber.

It is not certain that liquid is initially extracted through the siphuncular wall

of the chamber, although this is possible.

When liquid is pumped out of a newly formed chamber the salt which it

initially contains is not left behind, either free or bound into the structure of
the bone.

The 3rd to about the roth newest chambers usually contain no visible

liquid. But their siphuncular walls are permeable to liquid and liquid does

enter these chambers when the cuttlebone becomes very dense.
At cutdebone densities around 0,6, i.e. close to values which will make the

cuttlefish neutrally buoyant, the older and more posterior chambers are

almost full of liquid. This liquid can, however, be pumped out. When a

cuttlebone has a density around O· 5 very little liquid can be seen in any of its
chambers.

The pressure of gas within a newly' pumped out' chamber is very low, but

by the time a chamber has become the ninth newest the pressure of gas is

close to the average value for the whole cutdebone, i.e. about 0,8 atm.

The low pressure of gas found in the newest chambers is explained by the

slowness with which gas diffuses into a space created by the active removal of

liquid.

It is estimated, from an experiment on the diffusion of carbon dioxide into

the cuttlebone, that it would take over a month following a change in density

of the bone, for the nitrogen in the bone to go half way to equilibrium with

the nitrogen in the tissues. This explains why, when the cuttlefish changes the

density of its cutlebone, the mass of gas within the cuttlebone remains almost
constant.

The normal distribution of liquid within the cuttlebone is such that the

cuttlefish can easily remain with its body horizontal in the sea. When the

cuttlebone is made less dense, the change in the distribution of liquid will

tend to tip the tail of the animal upwards.
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