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0. Summary. Statistical problems involving angular observations may arise
in diverse scientific fields, either from direct measurement of angles—say the
direction of winds or of glacial pebbles or of fracture planes—or they may arise
from the measurement of times reduced modulo some period and converted into
angles—say time of day when train wrecks occur. Specifically, we consider a set
of n points £, situated on a unit circle and assumed to constitute a sample from
a distribution having the p.d.f. g(¢), where 0 < ¢ < 2x. Let the n random unit
vectors thus defined have the components sin §, and.cos £, , and set

01) V =Xecos§, We=2sing, R =+TV+ W

Let P(r, n) be the probability that R < r,and let @ = 1 — P(r, n).

This paper shows how the statistics V and R provide tests for the uniform
distribution g(¢) = 1/2x. The distribution of E on the hypothesis of uniformity
was derived by Kluyver as a solution to Pearson’s random walk problem, and
is tabulated here for use in significance tests. The distribution of V is derived
here, but has not been calculated.

To illustrate the type of tests that might employ the statistics R and V,
consider a carnival wheel—first from the standpoint of the punter who suspects
bias, second from the standpoint of the mechanic who has attempted to in-
troduce bias. The punter, by studying the performance of the wheel, might wish
to answer two questions: first, does the wheel differ credibly from an unbiased
wheel? second, what is the direction and extent of the bias, if any? An answer
to the first question is obtainable from the distribution of R, and an answer to
the second has been provided by Mises. The mechanic, on the other hand—be-
cause he knows the direction of the bias, if there is a bias—might better use the
statistic V as a test of his success, and he might appropriately modify the Mises
approach in estimating the extent of the bias.

1. Pearson’s random walk. In 1905 Pearson [13] posed the following problem:

“A man starts from a point O and walks a distance a in a straight line; he
then turns through any angle whatever and walks a distance a in a second
straight line. He repeats this process n times.

Received April 6, 1954.

1 This is a revised version of a paper presented at the Kingston meeting of the Institute
of Mathematical Statistics in September 1953, under the title “The Integral Solution of
Pearson’s Random Walk Problem and Related Matters.”’
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234 J. ARTHUR GREENWOOD AND DAVID DURAND

“I require the probability that after these n stretches he is at a distance be-
tween r and r - 6r from his starting point, 0.”

Thus, Pearson was assuming a sample of n random angles &, from the uniform
distribution g(¢) = 1/2w, and his required probability is the differential.

(1.1) %P(r, n) or.

After Pearson’s statement of the random walk problem, Rayleigh [16] ob-
served an analogy to the theory of vibrations and deduced the asymptotic
formula

(1.2) V Q(r, n) = exp[—r"/n].
Then Kluyver {7] obtained a solution, showing that the probability of B =< ris
(13) Plr,n) =1 [ @I"a(re) d.

]

This formal result can easily be found by bivariate characteristic functions, but
the transformation from rectangular to polar coordinates is difficult to make
rigorous.

Both Kluyver and Pearson were loath to attempt direct quadrature of (1.3)
or its p.d.f. (see [14], p. 5), and Pearson devoted his efforts toward developing an
asymptotic approximation (Section 6). We, however, felt that Pearson’s series
could best be checked by quadratures and that, with the advent of extended
tables of the Bessel functions and improved calculating equipment, this was now
feasible. Table 1 presents quadrature values of Kluyver’s integral. Table 2
presents interpolated 5 percent and 1 percent points for r, and for several funec-
tions of r that may be useful in making significance tests. A discussion of the
calculation procedure appears in Sections 4 and 5.

2. The problem of Mises. In another problem involving the summation of
random unit vectors, Mises [12] considered vectors distributed according to
the p.d.f.

__explk cos(t — a)}
() SaTolh) ,
of which the uniform distribution is a degenerate case (k = 0). He then showed
that a joint maximum likelihood estimate of the concentration parameter k& and
the modal angle « is obtainable from the vector sum by means of the relations

(2.2) Rcosa =), cost =V, Rsina = sing = W.

Recently Gumbel, Greenwood, and Durand [6] christened (2.1) the “circular
normal distribution,” tabuAlated the integral thereof, and calculated a table for
converting R/n = @ into k, the maximum likelihood estimate® of k.

(2.1)

2 According to Mises ([12], eq. 16), R/n = I:(k)/I.(k), which is tabulated by Gumbel et
al. (6], p. 140).
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236 J. ARTHUR GREENWOOD AND DAVID DURAND

TABLE 2
5 and 1 percent poinis for r and derived functions
5 percent — P(r, n) = .95 1 percent — P{r, n) = .99

n
r r/n re 3= r¥/n r r/n r2 z=rn
6 4.141 .6901 17.14 2.8573 4.951 .8251 24.51 4,085
7 4.491 .6416 20.17 2.8819 5.394 L7705 29.09 4,1561
8 4.818 .6022 23.21 2.9014 5.797 .7246 33.61 4.2007
9 5.118 .5686 26.19 2.9102 6.185 .6872 38.25 4.2504
10 5.402 .5402 29.19 2.9187 6.550 .6550 42.90 4.2899
11 5.674 .5158 32.19 2.9262 6.893 .6266 47.51 4.3195
12 5.932 .4943 35.18 2.9320 7.220 .6017 52.13 4.3441
13 6.179 .4753 38.18 2.9370 7.533 .5795 56.75 4.3651
14 6.417 .4584 41.18 2.9413 7.833 .5595 61.36 4,3829
15 6.646 .4431 44 .18 2.9450 8.122 5415 65.97 4,3983
16 6.868 .4293 4717 2.9482 8.402 - .5251 70.59 4,4116
17 7.083 .4166 50.17 2.9511 8.672 .5101 75.20 4.4234
18 7.291 .4051 53.16 2.9536 8.934 .4963 79.81 4.4338
19 7.494 .3044 56.16 2.9558 9.188 . 4836 84.42 4.4430
20 7.691 .3846 59.16 2.9579 9.435 .4718 89.03 4.4514
21 7.884 .3754 62.15 2.9597 9.677 .4608 93.64 4.4589
22 8.072 .3669 65.15 2.9613 9.912 .4505 98.24 4.4657
23 8.255 .3589 68.15 2.9629 10.142 .4409 102.85 4.4719
24 8.435 .3514 71.14 2.9642 10.366 .4319 107.46 4.4775
o0 2.9957 4.6052

Accordingly, if the punter wishes a joint maximum likelihood estimate of the
direction and extent of bias in the carnival wheel, he may easily obtain this if he
is willing to assume that the wheel is biased according to the Mises distribution
law. Moreover, if he wishes to test whether the observed performance of the
wheel is consistent with the uniform hypothesis - = 0, he may do so by a simple
extension of Mises’ argument. In fact, the likelihood ratio for testing k = 0
against the alternative k = k and a = & is

(2m) " _ L@
(27 Lo(E)] exp{kZ cos (£, — &)] exp [kR]’

From the fact that the second derivative of In Iy(k) is the variance of the linear
distribution of cos £, and therefore essentially positive, it can be shown that the
above ratio, for fixed n, is a decreasing function of R alone, where R has the dis-
tribution (1.3) on k = 0. The test of ¥ = 0 then consists in comparing R or R’
with the tabled values of » or #* (Table 2). An example will be given in Section 8.

The above hypothesis & = % and « = a—the punter’s alternative—is but one
of several against which uniformity might be tested. In fact, twelve possible
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hypotheses can easily be formed by coupling one of the three a-hypotheses with
one of the four k-hypotheses:

0= a<2r, aqSas o, a = a,
k = kE* > 0, (k* unknown), k=k, kEzk, kez kb z=1l.

In particular, « = o and k = k* > 0 is the appropriate alternative for the
mechanic who has attempted to bias the carnival wheel; the mechanic, unlike the
punter, knows the position of the mode if there is a mode. And if he rejects uni-
formity, the mechanic needs to estimate only the parameter k.

The mechanie’s problem is of special interest because of its relation to the work
of Mises, who formulated his “Kriterium der Ganzzahligkeit” ([12], p. 495 ff.)
in hopes of showing that atomic weights are integers subject to error. The ob-
served atomic weights reduced modulo 1 and transformed into angles are subject
to a test of the uniformity hypothesis against the alternative « = 0 and k =
E* > 0. In making this test, Mises proceeded to estimate k from the statistic
&; but, on the alternative stated, V and not R furnishes a maximum likelihood
estimate of %.

The likelihood In L = —n In Ij(k) + kV — = In 2x. Setting

d Ii(k)

E]—CInL = —-nr(k)—l-V—O,
we find that V/n = I,(k)/I,(k), so that the recent table ([6], p. 140) applies.
The distribution of V is derived from the characteristic function of cos &,

21
o(z) = 2%]; =% dt = Jo(z).

Therefore, the sum of n independent cosines has the characteristic function
{Jo(x)]" and the distribution function

1 [~ Al — ™
¢+g [ @rt=

sin vx
T

dr = C + 1 fw [To(z)]™ dz.
7 Jo

z
When v = 0, the integral vanishes; therefore C = % and the probability that
V =< v takes the form

1.1/ » Sin vz
(2.3) 5+ [0 W@l 222 g

on the hypothesis k = 0. In the limit, V is normally distributed with mean zero
and variance n/2.

3. Nonzero & and the power function. Under some circumstances the me-
chanic may feel sanguine that he has effectively biased the wheel and yet have
doubts whether the direction of bias is exactly zero, as designed. Then, an
entirely different sort of test would be needed—in fact one analogous to the
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linear ¢{-test for the difference between an observed mean and its hypothetical
value. But the construction of this test—and several others that might be use-
ful—requires investigation of the distribution of E or of & — «, either jointly
or severally, on the hypothesis &k = &, > 0.

On this hypothesis the joint distribution of V and W (or of R and &), the dis-
tribution of R, and the distribution of V' can be obtained by an artifice due to
Fisher® [4], which derives these distributions painlessly from those on the hy-
pothesis £ = 0. Fisher seems to effect his derivation by means of the following

LemMa. Let F(z, y) and G(z, y) be two distribution functions such that

(3.1) dF(z,y) = Ae™t" dG(z,y), A7 = f f " 4G(, y).

Denote the distributions of the n-fold convoluiions of F(x, y) and G(x, y) respec-
lively by F,(v, w) and Gu(v, w). Then

(3.2) dF (v, w) = A" ™ dGQ,(v, w).
To prove this let

¢(t, u) — ff ei(tz+uﬂ) dF(x, y)’

ot u) = ff D 4G (e ),

where the integrals are Stieltjes integrals extended over the z, y-plane. Then

&, ) = ff ST G () ),

V't u) = f f e ) 4. (v, ).
By hypothesis (3.1)
o(t, u) = ff T 46 gQi(x, )

= AY[(t — ia), (u — 4b)].
The characteristic functions of the left and right sides of (3.2) are, respectively,
¢"(t, w) = At = da), (w — WD)};
[[[ e arem ag, 0, w) = 4°9°1 — i), (u — D).
The equality (3.2) follows from the equality of the characteristic functions.
? Fisher’s work is concerned with the spherical analogue of the Mises distribution (2.1).

Although the trigonometry is more involved in three dimensions than in two, the algebra
is much simpler. See Rayleigh [17], p. 338 ff.
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On the hypothesis k = 0, the differential of (2.3) is

dP = @f Jo@)]" cos vz dz.
T 90

Therefore, by (3.2) the differential of probability on the hypothesis & = %, and
a=0is

- ekl” d?) ® n _—ive
dP = m iw [Jo(x)] e d:l:,
so that
PV < : [o Tl e g
( =U)—m °Q[o(fc)] P L.

This distribution is the power function of V against the Mises alternative a =
Oand k =k > 0. )

To obtain the distributions of W and R, one first writes down the differential
of the joint probability of V and W on the hypothesis ¥ = 0. The probability
density function corresponding to (1.3) is circularly symmetric and has the form

TR Y| S V@) do = = | S o@Tolrz) © dz,

so that

dv dw
2

dP(V 2v, W 2 w) = f Jo@)"Jolz\/v? + wd)z dz.

0

It will be convenient to use Pearson’s notation of ¢,(v* 4+ w’) for the integral
above. Then, on the hypothesis « = Oand k = %, > 0

(35) dP(V £ v, W = w) = @n) L) "¢, (" + w?) dv dw.

This differential does not readily yield the marginal distribution of W. Probably
a convenient approximation is to substitute Pearson’s Laguerre function ex-
pansion for ¢,(v* 4 w’) and integrate v out (see Section 6).

The distribution of B can be obtained by transforming (3.5) into polar co-
ordinates,

eklrcosﬁ d’n ( r2)
2o Lo(k))]™

whence dP(R < 7) = [Lo(k)| " Io(krr) ¢a(r") r dr. Integration by parts then
gives

(3.6) dP(V £rcosB, W Zrsinp) = r dr dg;

PR S1) = [h(kl)rﬂ[n(klr)P(r, W = [ kLG9 PG, ds],

where P(r, n) is the function of (1.3). This last distribution is, in fact, the power
function of R against the Mises alternative @« = 0 and &k = k; > 0. It is also the
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power function against the Mises alternative @ = o® (unknown) and k = &, > 0,
because R is unaffected by increasing all the £ by an arbitrary constant. The
distribution of & can be evaluated after expanding (3.6) in Laguerre functions.

4. Calculation of Kluyver’s integral. The integral has been evaluated for
n = 6(1)24 and » = 0(.1)6(.5)12(1)n, and for such other values at intervals of
.05 or .1 as were necessary to embrace the 5 percent and 1 percent points of R.
Table 1, as published here, is an abridgment. Evaluation of the integral for
n = 3, 4, or 5 would have required special treatment, such as: (A) tabulating
J1 to values much greater than the present upper tabled limit of 100; (B) re-
placing J, and J: by their asymptotic series and then expanding the integral
into a series of sine integrals for » = 3 or 5, or a series of Fresnel integrals for
n = 4; (C) an extension by quadratures as performed by Pearson and Blakeman
({14}, pp. 16-20), but carried on digitally instead of graphically. For n = 2
the distribution of R is simply (2/7) arc sin »/2.

The integration formula used was the integral of Bessel’s interpolation formula
carried to 8 differences. For an interval of integration » = .04 was used for r £
10, and h = .02 for r = 10; agreement at r = 10 was good.

There were three chief sources of error in the integration:

(A) The integration was truncated at rx = 100, the upper limit of the J; table.
This error is larger than that explained in (B) following for n = 6, 7, and 8; for
n = 4 or 5 it would have been prohibitive. For n = 7 arguments for J; above
100 were supplied.

(B) The integration was often truncated for |Jo(x)|" less than 107°. This was
by no means systematic, however, since for many of the integrations additional
arguments were conveniently included.

(C) The remainder term, involving ninth differences and greater, was neg-
lected.

The values P(1, n) = 1/(n + 1) and P(n, n) = 1, known by elementary
analysis, furnish a partial check on the aceuracy of the integration. In most of
the table discrepancies were less than 107°, and nowhere were they as great as
10~°. We believe that Table 1 is accurate to 5 decimals as given, with the ex-
ception of n = 6, where an error of 1 in the fifth place can easily have occurred_

b. Interpolation of percentage points. Because of discontinuities in its deriva-
tives with respect to r, Kluyver’s integral (1.3) presents problems of interpola-
tion, both direct and inverse. These discontinuities have been discussed by
Rayleigh [17] who investigated the behavior of the leading term in the asymp-
totic expansion of the Bessel function product. He found that the derivatives
of order 3(n — 2) for n even and 3(n — 3) for n odd are discontinuous?* at
the points n — 2k, for k = 0, 1, 2, 3, etc. Although the integral

[ @)

+ For a discussion of discontinuities in the sum of n reetangular variables, see Cramér
[3], p. 245, and Fisher [4], p. 298.
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where the upper limit of quadrature X is a large number, has continuous de-
rivatives of all orders, these derivatives become large for the same points n — 2k.

For the problem of inversely interpolating the 5 percent and 1 percent points.
(Table 2), the singularities of (1.3) were not particularly troublesome because
none of the desired points happen to fall unéomfortably close to a singularity.
Thus, for the interpolation of Q(r, 6) = .05, the function was evaluated for the
five arguments 4.10, 4.15, 4.20, 4.25, and 4.30, which do not include the sin-
gularity » = 4.00. Although singularities are less dangerous for large n—since the-
order of the first discontinuous derivative increases—they were avoided when-
ever convenient, and in no case did an interpolation use points on both sides of
a singularity. Table 2 presents interpolated 5 percent and 1 percent points for
r, and for several functions of r that may be useful in making significance tests.
The first three of these functions—namely, r, 7/n, and *—should all be correct to
four significant figures, as tabled. The function z, given to five significant figures
for comparisons in Section 7, may possibly contain an error of about 2 in the
last figure.

6. Pearson’s asymptotic expansion. Pearson derived an asymptotic expansion
for the probability density function (3.4) corresponding to (1.3). This expan-
sion is, in effect, a series of Laguerre functions

B _ kTN g o2 oy e @i s dlil(—a)
fG&*) = e Z;,chz(lcr), Lx) = ¢ Eg(xe = ?:;W—_t)'

To derive the ¢;, Pearson essentially used [Jo(x)]" as a moment generating
function, thus obtaining the expansion

(6.1) = [ W@raeme i = Lo 2 oL

or, with z = r*/n,

(6.2) 27r dr 1 f Jo@) " Jo(rz)z dz = dz e™* 2, c; Li(2).
27 Jo i=0

Each ¢; ([14], p. 9) is of order n™°, where 8 is the integral part of 2(1 4 7). Pearson
derived the ¢, through ¢, which contains terms in n ™",
From the well-known relation

[ L@ i = L) — Dl

z

the series on the right of (6.2) may be integrated term by term as

(6.3) Qr,n) = ¢~ {1 + ?; cilLi(z) — iLi—l(Z)]}-
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Rearranging (6.3) in descending powers of n and omitting contributions of
order n™* and n™°, which appear in ¢s and ¢ , we get,

_ - 1 7 1 1122 198 92

©4) 1 428 692 1632° 1452 457
e R

24n} T2 Rr T 4 6!

This series is more convenient for computation than (6.3). Table 3 compares
for n = 7 and 14 the value of P(r, n) = 1 — Q(r, n) obtained by quadratures
with Rayleigh’s approximation P(r, n) = 1 — ¢, Pearson’s approximation
(6.3) through ¢, and the approximation (6.4) through n™°. It appears that
either (6.3) or (6.4) gives roughly three-decimal accuracy for n = 7, and that,
if anything, (6.4) is a little better than (6.3). Although three reliable decimal
places provide a fair degree of accuracy over most of the curve, they are clearly
insufficient for estimating percentage points in the extreme tail.

7. Series expansion of the percentage points. Having obtained Q(r, n) as
an expansion in powers of z and n~!, we now attempt to obtain an expansion
for z in terms of Q(r, n) and n~. Since the Rayleigh approximation above ob-

viously leads to z = —InQ(r, n), it is convenient to set
(7.1) y = —InQ(r, n)

and expand z in powers of y. To do this, set

(7.2) z=y+ 2 am "

Then ¢’Q(r, n) = exp Y, an"*, whence we obtain
a=1C2y — ), @ =402 — 3 — o),
a = zhe(—12y + 424" — 85 — o).

For n = 7, 14, and 21, Table 4 gives the successive approximations to the 1
percent and 5 percent points and compares them with the values obtained by
inverse interpolation. Even when four terms (through a;) are used, good ac-
curacy is not achieved for n = 7. Three terms give fair three-place accuracy
for n = 14 and four-place aceuracy for n = 21, so that three terms suffice to
extend Table 2 beyond n = 24. However, three terms may be inadequate to
obtain points in the extreme tail, such as the 0.1 percent point, if these are
desired. For example, @(12, 21) = .000,648,77 by quadratures. The three-term
approximation for z is 6.8590 against the correct value 144/21 = 6.8571. The
fourth term is —.0015, and the four-term approximation is therefore 6.8575.

8. An example of the R-test. Forrest [5] gives 651 observed times of break-
down due to lightning in the British electrical grid system for the eight years
1940—47. The observations fall into two groups: 588 for the summer months
(April-September) and 63 for the winter months (October-March). The summer



Various calculations of Kluyver’s integral for
n =7 and 14

TABLE 3

Per,n) =r fo " o) Jr2) de

P(r, n) by quadrature

{— e rn

(6.3) througl)l cs

(6.4) through n2

(Rayleigh) (Pearson
n=7
0.5 .03229 .03508 .03284 .03272
1.0 .12500 .13312 .12430 .12500
1.5 .26141 .27489 .26106 .26078
2.0 41782 .43528 .41819 .41819
2.5 .57455 59052 .57469 .57497
3.0 71404 72355 71305 .71339
3.5 82278 .82623 .82279 .82289
4.0 .90039 .RO830 .90095 .90082
4.5 .95066 .94458 .95065 .95046
5.0 97864 .97188 .97857 .97846
5.5 .99205 .08672 .99219 .99219
6.0 .99788 .99416 .99779 .99785
6.5 .99976 .99761 .09962 .99968
7.0 1.00000 .99909 1.00003 1.00006
a =14
0.5 .01709 01770 .01709 .01709
1.0 .06667 .06894 .06668 .06667
1.5 .14398 .14846 .14401 .14399
2.0 .24193 .24853 .24196 .24194
2.5 .35207 .36009 .35208 .35207
3.0 .46583 .47421 .46583 .46583
3.5 .57555 .58314 .57569 .57555
4.0 67524 .68109 .67521 .67524
4.5 .76099 .76459 76098 76099
5.0 .83105 .83232 .83104 .83105
5.5 88547 .88476 .88548 .88548
6.0 .92570 .92357 92571 .92570
6.5 .95397 .95109 .95399 .95397
7.0 .97285 .96980 .97286 .97285
7.5 .98481 .98201 .98481 .98481
8.0 199197 .98966 .99196 .99196
8.5 .99601 .99427 .99600 . 99601
9.0 .99815 .99693 .99814 .99815
9.5 .99920 .99841 .99920 .99921
10.0 .99969 .99921 .99969 .99969
11.0 .99997 .09982 .99997 .99997
12.0 1.00000 .99997 1.00000 1.00000
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TABLE 4

Various calculations of the 5 and 1 percent points for
n = 7,14, and 21

5 percent points
Plr, n) = 95

1 percent points
P(r, n) = .99

Yy
ax
az
as
- n=7
Yy + a/7
y -+ /7 + ax/49
¥ + a1/7 + a2/49 + a;/343
z, by interpolation
n =14
¥y + a,/14
¥ + ay/14 + a:/196
¥ + ai/14 + a2/196 + a;/2744
2z, by interpolation
n =21
y + a,/21
y -+ a1/21 4 a./441
¥y + a1/21 + a,/441 + a»/9261
2z, by interpolation

+2.9957 3227
—0.7457 3683
—0.2480 4699
+0.1574 8945

2.8892
2.8841
2.8846
2.8819

2.9425
2.9412
2.9413
2.9413

2.9602
2.9597
2.9597
2.9597

+4.6051
—2.9993
—1.4725
—1.3736

4.1767
4.1466
4.1426
4.1561

4.3909
4.3834
4.3829
4.3829

4,4623
4.4590
4.4589
4.4589

7019
1302
7372
8651

breakdown times have a rough resemblance to a Mises distribution with a
conspicuous mode at about 1700 hours, though the fit is not first-rate, owing
to an apparent secondary mode in the early morning. The winter breakdown
times are given in the table below, and it is by no means certain that this dis-
tribution differs significantly from the uniform.

We propose to test the hypothesis £ = 0 against the alternative £ = k* > 0
and 0 £ o < 2x. To this end, we reduce the midpoints of the hourly time inter-
vals to angles (0-1: 7°.5, ete.) and include the corresponding sines and cosines
in Forrest’s table.

GM.T. Freq. Sines Cosines
0-1 1 .1305 .9914
1-2 .3827 .9239
2-3 1 .6088 .7934
34 3 .7934 .6088
4-5 1 .9239 .3827
5-6 2 .9914 .1305
6-7 1 . 9914 —.1305
7-8 3 .9239 —.3827
8-9 0 .7934 —.6088
9-10 7 .6088 —.7934

10-11 0 .3827 —.9239

11-12 1 .1305 —.9914

G.M.T. Freq.

12-13
13-14
14-15
. 15-16
16-17
17-18
18-19
19-20
20-21
21-22
22-23
23-24

(- W G C RPN RGO

Sines Cosines
—.1305 —.9914
—.3827 —.9239
—.6088 —.7934
—.7934 — .6088
—.9239 —.3827
—.9914 —.1305
—.9914 .1305
—.9239 .3827
—.7934 .6088
—.6088 .7934
~.3827 .9239
—.1305 .9914
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From this layout, it is a simple matter to calculate the statistics
W = —13.3393, V = —3.2652, R’ = 188.59.

Since the corresponding percentage points for 7* have not been tabulated for
n > 24, it is necessary to calculate an approximate value for z after the method
of Section 7. From the two-term formula (7.2), specifically y + a./63, the 5
percent approximation 2.9835 is obtained, which compares with R*/n = 2.993.

9. Unsolved problems. We have indicated in Section 3 how the distribution of
& — a may be obtained for known k. To test the significance of an observed
discrepancy with no a priori information about k is an obvious extension of the
problem in linear statistics solved by the ¢-test. For large n one can replace k
by k and treat it as known; for small n the appropriate test is unknown.

On the assumption of discrete sample points measured without error, (1.3)
is a suitable mathematical model. Forrest’s data, to which we applied (1.3),
are sparse data grouped at the midpoints of class intervals. We do not know the
effect of such grouping on V, W, or R, or on any estimators derived from them.

Although we have shown that R provides a likelihood ratio test for £ = 0
against the composite Mises alternative 0 £ o < 2r, and k = £* > 0, and
that V provides a likelihood ratio test against the Mises alternative a = oy,
and &k = k* > 0, we feel that these results are by no means conclusive because
of the existence of other unimodal, symmetrical p.d.f.s. For example, Levy
[9], [10], Marcinkiewicz [11], Perrin ([15], p. 20), Wintner [18], [19], and Zernike
(120], pp. 477-478) have discussed wrapped-up normal and Cauchy distributions
—that is, the angle { is assumed to have the normal or Cauchy distribution but
the angles ¢, £ &+ 2%, £ &+ 4x, -, are indistinguishable. Arnold ([1], p. 6)
has shown that ¥V and W jointly provide consistent estimates of the parameters
of this distribution. Brooks and Carruthers ([2], p. 199) have translated a bivari-
ate normal distribution into polar coordinates with the origin removed from the
center of the distribution and have integrated out with respect to the radius.

Arnold and Krumbein have indicated problems wherein angles are identifiable
only modulo r. A workable approach is to use the distribution Ce**** and the
statistics

Vo= 2 cos2¢,, W, = D sin2¢,, Ry = \/V}+ Wi
This solution is not unique, and the merits of alternative solutions should be
studied.

Spherical distribution problems have received some attention, both as gen-
eralizations of circular problems and on their own merits. A few examples might
be mentioned. Arnold [1] has extended the Mises distribution and the wrapped-up
normal to the surface of the sphere. Rayleigh [17] has shown that the spherical
analogue of R has for distribution a set of elementary functions abutting with
discontinuous derivatives as in Section 5, and Fisher has given an explicit formula
for this distribution. The spherical analogue of the V statistic is distributed as
the sum of n rectangular variables (Fisher {4], p. 296).
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