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The distribution of local times of a Brownian
bridge

Jim Pitman

1 Introduction

Let ( Lf , , t > 0, x E R) denote the jointly continuous process of local times of a standard
one-dimensional Brownian motion (Bt, t > 0) started at Bo = 0, as determined by
the occupation density formula [20]

t0f(Bs)ds=~f(x)Lxt dx
JO J-oo

for all non-negative Borel functions f. Borodin [7, p. 6] used the method of Feynman-
Kac to obtain the following description of the joint distribution of Lf and Bl for
arbitrary fixed x E R: for y > 0 and b E R

P(Lx1 ~ dy, B1 ~ db) = 1 203C0(|x | + |b - x| + y) e-1 2(|x|+b-x|+y)2 dy db. ( 1 )

This formula, and features of the local time process of a Brownian bridge described in
the rest of this introduction, are also implicit in Ray’s description of the joint law of

(.LT, :r E R) and BT for T an exponentially distributed random time independent of the
Brownian motion [19, 23, 6]. See [14, 17] for various characterizations of the local time
processes of Brownian bridge and Brownian excursion, and further references. These
local time processes arise naturally both in combinatorial limit theorems involving
the height profiles of trees and forests [1, 17] and in the study of level crossings of
empirical processes [21, 4]. 

’ 

.

Section 2 of this note presents an elementary derivation of formula (1), based on
Levy’s identity in distribution [15],[20, Ch. VI, Theorem (2.3)]

(L°, (Mt, klt - Bt) where lVlt := sup Bs, . (2)

and the well known description of this joint law implied by reflection principle [20,
Ch. III, Ex. (3.14)], which yields (1) for x = 0. Formula (1) determines the one-
dimensional distributions of the process of local times at time 1 derived from a Brow-

nian bridge of length 1 from 0 to b, as follows: for y > 0

P(Lf > b) = (3)

Section 3 presents a number of identities in distribution as consequences of this for-

mula. If x is between 0 and b then Ixl = Ibl, so the distribution of Lf for
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the bridge from 0 to 6 is the same for all .r between 0 and b. Furthermore, assuming
for simplicity that b > 0, the process ( L1, 0  .r  b ~ Bi = b) is both reversible and

stationary. Reversibility follows immediately from the fact that if ( B°‘b, 0  s  1 )
denotes the Brownian bridge of length 1 from 0 to b then

(b-B° ~,0.s1) ‘t (B~.O~~ 1). (4)

To spell out the stationarity property, for each x > 0 and 6 > 0 with 0  .r + 8  b,
there is the invariance in distribution

(~.O~~~i = b). (5)

Equivalently, for all such ;c and 03B8 and every non-negative measurable function f which
vanishes off the interval (0, 8~

10 f(0~bs - x)ds d 10 f(B0~bs)ds (6) 

Howard and Zumbrun [11] proved (6) for f the indicator of a Borel set, and (6) for
general f can be established by their method. Alternatively, (6) can be deduced from
the following invariance in distribution on the path space l~: for each 0  x  b

0  5  (B°‘6~ ~ C 1 ) ) ( ~ )

where 0  s  1) is derived from the bridge (B°"b, 0  s  1) by the following
path transformation:

B0~b03C3x+s - x if 0 ~ x ~ 1 - 03C3x
xB0~bx 

:= b - B0~b1-x if 1 - 03C3x  s ~ 1

with ax the first hitting time of x by 1). The invariance (7) can be
checked by a standard technique [5, 21]: the corresponding transformation on lattice
paths is a bijection, which gives simple random walk analogs of (7), (6) and (5); the
results for the Brownian bridge then follow by weak convergence. Formula (7) implies
also that the process (ax, 0  x  b) derived from (B°~’b, 0  s  1) has stationary
increments. It is easily shown by similar arguments that the increments of this process
are in fact exchangeable. According to the above discussion, for each b > 0 the process
of bridge occupation times

(10 1(0 ~ B0~bs ~ x) ds, 0 ~ x ~ b)
has increments which are stationary and reversible, but not exchangeable (due to
continuity of the local time process).

See [9, 16] for other examples of stationary local time processes. In particular,
it is known [16, Prop. 2] that if 0, x E R) is the process of local times

of a Brownian motion with drift 6 > 0, say aBt := Bt + bt, t >_ 0, then the process
(aL~, x > 0) is a stationary diffusion, with sL exponentially distributed with rate
8. The stationarity of this process is obvious by application of the strong Markov



390

property of 8B at its first hitting time of .r > 0. It is also known [23, ’Theorem 4.5]
that if T‘, is exponential with rate ib2, independent of B, then for each b > 0

= 6) ~ (’~,0 ~ ~ ~ ’B,) (8)

where ‘’,~b is the time of the last hit of b by ~B, and hence

d (~,0 ~ .c ~ b). (9)

The stationarity of (~L1~, :~~ > 0) then implies stationarity of (LT~, 0  x  b = b),
which is implicit in Ray’s description of this process [19, 23, 6]. This vields another
proof of the stationarity of ( Lt , 0  x _ b | Bt = b) for arbitrary t > 0, by uniqueness
of Laplace transforms.

2 Proof of formula (1).
As observed in the introduction, formula (1) for x = 0 is equivalent via (2) to Levy’s
well known description of the joint distribution of M1 and Afi - B1. . The case of (1)
with .y ~ 0 will now be deduced from the case with x = 0. It clearly suffices to deal
with ;r > 0, as will noiv be supposed. Let ~x := inf {t : Bt = x}, and set

~Bt := - x (t > 0).

According to the strong Markov property of B, the process xB := 0) is a
standard Brownian motion independent of Let and be the functionals of
xB corresponding to the functionals and L0t of B. Then for y > 0, b E R, and
a := we can compute as follows:

P(L1 > y, Bl E db)/db =  1) Z > y, E da)/da

=  1) ! > E da)/da

= 1 2P(M1 > x + y, M1 - B1 ~ da)/da

= > x + y, Bl E da)/da.

The first and third equalities are justified by the strong Markov property, the second
appeals to Levy’s identity (2) applied to and the fourth uses (2) applied to B.
The formula (1) for x > 0 can now be read from (1) with x = 0.

3 Some identities in distribution.

Let R denote a random variable with the Rayleigh distribution

P(R > r) = (r > 0). (10)

According to formula ( ~3 ),

$1= o) ~ (R - 2IxI)+ (11) )
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where the left side denotes the distribution of Z~ for a standard Brownian bridge. The
corresponding result for the unconditioned Brownian motion, obtained by integrating
out b in (1), is

(i2) >

Levy gave both these identities for .r = 0. For the bridge from 0 to b 6 R and .r > 0
the events > .~) and (Lf > 0) are a.s. identical. So (3) for y = 0 reduces to

result that

P(M1 > x | B1 = b) = e-2x(x-b) (0 b  x).

Let

03C6(z) := 1 203C0e-1 2z2 ; (x) := ~x 03C6(z)dz = P(B1 > x).
Then the mean occupation density at .r 6 R of the Brownian bridge from 0 to b ~ R
is

E(Lx1|B1 = b) = 10 1 s(1 - x) 03C6 (x - bs x(1 - x)) ds = (|x| + |b - x|) 03C6(b) . (13)

The first equality is read from the occupation density formula and the fact that 
has normal distribution with mean &#x26;.s and variance s(l 2014 ~). The second equality,
which is not obvious directly, is obtained using the first equality by integration of (3).
The case b = 0 of the second equality is attributed [21, p. 400, Exercise 3] to M.
Gutjahr and E. Haeusler. See also [18] for another approach to this identity involving
properties of the arc sine distribution. As a consequence of (13), for each b > 0 and
each Borel subset A of [0,6], the expected time spent in .4 by the Brownian bridge
from 0 to b is 

_

E(~l(B-~A)~=&#x26;)=t~ (14)

where ~ is the Lebesgue measure of A. Take A = [0,6] to recover the standard
estimate ~(6)  (~ (&#x26;)/&#x26;. For each b ~ R, the function of r appearing in (13) is the

probability density function of for U a uniform[0,1] variable independent of the
bridge. In particular, for b = 0, formula (13) yields

(1.5)

where the Rayleigh variable R is independent of U. This and related identities were
found in [I], where the reflecting bridge ()JS~*~),0 ~ ~ ~ 1) was used to describe the
asymptotic distribution of a path derived from a random mapping.

Recall that is the first hitting time of .r by the Brownian motion B. Let If
denote last time B is at .r before time 1, with the convention qf = 0 if no such time,
and set ~ = - cr~)~. By well known first entrance and last exit decompositions
[10], given B1 and 03B4x1 with 6( > 0, the segment of B between times 03C3x and 03B3x1 is a

Brownian bridge of length 6§/ from .r to z. Therefore,

(16)

where the Rayleigh variable R is independent of ~, and R given ~ > 0 may be
interpreted as the local time at 0 of the standard bridge derived by Brownian scaling
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of the segment of B between times ~x and qf. By consideration of moments, formula
(16) shows that the law of (If ~ Bl = b) displayed in formula (3) determines the law of
(6f ) Bi = b), and vice versa. As indicated by Imhof [12], the distribution of 6( given
Bi = b can be derived by integration from the joint distribution of ax and i’f given
B1 = 6, which is easily written down. By comparison with the formula for the joint
density of ~° and ~Bl~, due to Chung [8, (?.5)~, it turns out that

(03B4x1|B1 = 0, 03B4x1 > 0)  (03B301|B1 = 2x)  
B21 B21 + 4x2 (17)

where the second equality is obtained from Chung’s formula by an elementary change
of variable, as in [2, (6)-(8)], where the same family of distributions on [0,1] appears
in another context. Set a = 2x and combine (11), (16) and (17) to deduce the identity

B21 B21 + a2 R  (R - a|R > a ) (a ~ 0) ( 18)

where R and B1 are assumed independent. By consideration of moments, this iden-
tity amounts to the equality of two different integral representations for the Hermite
function [13, (10.5.2) and Problem 10.8.1]. 

’

If s is independent of B and exponentially distributed with rate 1, a variation of
(16) gives

L2E d ’Ya°~ R (19)
where and R are independent, hence

~  |B1| R (?

where Bi and R are independent. By consideration of moments, this classical iden-
tity is equivalent to the duplication formula for the gamma function [22]. Another
Brownian representation of (20) is

I B2a ~ _ (21)

where M1 is the final value of a standard Brownian meander. Compare with [20, Ch.
XII, Ex’s (3.8) and (3.9)], and [5]. See also [3, p. 681] for an appearance of (20) in
the study of random trees.
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