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The Distribution of Money and Prices
in an Equilibrium with Lotteries1

Aleksander Berentsen Gabriele Camera Christopher Waller

University of Basel Purdue University University of Notre Dame

14 January 2004

Abstract

We construct a tractable ‘fundamental’ model of money with equilibrium heterogeneity in

money balances and prices. We do so by considering randomized monetary trades in a

standard search-theoretic model of money where agents can hold multiple units of indivisible

‘tokens’ and can offer lotteries on monetary transfers. By studying a simple trading pattern,

we can analytically characterize the monetary distribution. Interestingly, such distributions

match those observed in numerically simulated economies with fully divisible money and price

heterogeneity.

Keywords: Money, Search, Lotteries, Price Dispersion, Wealth Distribution.

1The paper has benefitted from insightful comments of two anonymous referees, whom we thank.

We also thank participants at the conference “Recent Developments in Money and Finance,” held

at Purdue University in May 2003, and the EPRI/University of Western Ontario Money Conference

held in October 2003.



1 Introduction

A classic question in monetary theory concerns the effect of money creation in

economies when there is a non-degenerate distribution of money holdings (e.g. Bew-

ley, 1983). Recent work has explored this question within the context of models based

on the Shi-Trejos-Wright monetary search models where money has a ‘fundamental’

allocative role. Molico (1997), Deviatov and Wallace (2001), and Berentsen, Camera

and Waller (2003) are such examples.

The main difference of the approaches followed in these papers lies in how the au-

thors set up their models in order to study the non-degenerate monetary distributions

that arise. These modeling choices affect the extent and the cause of non-neutrality

in the model. Molico (1997) studies a model of fully divisible money and goods using

numerical methods. The key result is that lump-sum monetary injections are non-

neutral due to redistributive and real balance effects. A second approach has relied on

analytical methods in models with manageable—although less general—distributions of

money holdings. By considering a model where agents can hold at most two indivisi-

ble tokens, Deviatov and Wallace (2001) show that money is non-neutral as it affects

the quantities traded and the frequency of trading. Berentsen, Camera and Waller

(2003) consider fully-divisible money and goods but focus on simple (two-point) dis-

tributions.2 Changes in the money stock are neutral but changes in the money growth

rate affect the distribution and the quantities traded.

This study complements this literature by proposing a model where we relax

the indivisibility of money along two dimensions. Agents can hold multiple units of

indivisible money, as in the divisible-goods framework of Camera and Corbae (1999).

We augment it by allowing agents to engage in randomized monetary trades, as

proposed by Berentsen, Molico and Wright (2002). The possibility to offer lotteries

on money transfers further relaxes the indivisibility of money because it allows flexible

monetary offers. This cures some of the inefficiencies arising from the indivisibility.
2This is achieved by building on the degenerate distribution model of Lagos and Wright (2002),

introducing additional trading periods.
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We say ‘some’ because only average expenditure is affected — actual expenditure

remains subject to nominal rigidities since the money is either spent or not.

We focus on an equilibrium where it is in every agent’s best interest to engage

in ‘small’ nominal trades. To capture this notion we consider the following spend-

ing pattern. Buyers spend no more than one token per trade and spend it with a

probability less than one. This leads to a tractable analytical characterization of

the equilibrium distribution of money and prices, using three parameters: the initial

supply of money, the curvature of preferences, and the agents’ storage capacity. The

use of lotteries leads to analytical tractability mainly because in equilibrium traded

quantities do not dependent on the initial quantity of money (they only depend on

preferences), and every single-coincidence match leads to exchange.

The flexibility in monetary offers allowed by lotteries improves the efficiency of

the decentralized monetary solution along the intensive and extensive margins. It

expands the set of nominal offers and so it lessens bilateral trading inefficiencies (e.g.

see Berentsen and Rocheteau, 2002). However, it cannot entirely eliminate them, due

to equilibrium heterogeneity in valuations. Furthermore, the use of lotteries amplifies

the beneficial distributional effects possible in models with multiple money inventories

(e.g. see Camera, 2003). This raises the volume of trade, by lowering the fraction

of agents who cannot buy or sell, and it also improves bilateral trading efficiency, by

lowering the dispersion in valuations. A key result is that, within the equilibrium

we study, changes in the initial money stock only affect the extensive margin — the

lotteries adjust to keep the quantities traded in each match unchanged.

The most striking result, perhaps, is that even under this simple trading pattern,

the density function of money is hump-shaped, with few agents holding little or too

much money. This is interesting, as this shape closely resembles that seen to arise

from numerical simulations of economies with heterogeneous prices but fully divisible

money (Molico, 1997).

What generates this result? The agent’s equilibrium valuation of a token falls in

his nominal wealth. It follows that the probability of a money transfer increases in

the buyer’s wealth but decreases in the seller’s. Thus the poorest agents accumulate
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wealth easily, while the richest deplete it quickly. Once averaged across the entire set

of traders, this spending pattern resembles that arising under fully divisible money,

where the poor spend less than the rich but also earn more per trade. This leads

to a density function with thin tails, and a coefficient of variation that is low, and

decreases as money becomes more divisible.

2 Environment

The environment is as in the continuous-time model of Camera and Corbae (1999).

There is a [0, 1] continuum of infinite-lived agents of J ≥ 3 specialization types, in
equal proportions. Each type specializes in consumption and production of divisible

nonstorable goods, where we let Xi be the set of goods that agents of type i consume

but cannot produce. An agent suffers disutility −q from production of q > 0 goods,

and enjoys utility u(q) from consumption of a quantity q > 0 of a desired good. We

work with u (q) = q1−γ
1−γ , γ ∈ (0, 1) , so that q∗ = 1 is the quantity maximizing u(q)−q.

The instantaneous discount rate is r.

Agents meet bilaterally according to a Poisson process with arrival rate α. In a

random match between agents of types i and i0, the probability that i produces a

good in Xi0 and i0 produces a good in Xi is zero, while the probability that i produces

a good in Xi0 but i0 does not produce a good in Xi is x ∈ (0, 1). Hence, αx is the
rate at which an agent has a single coincidence match, when he meets someone who

can either consume his production or produce what he likes.

Fiat money is randomly distributed initially in indivisible units that an individual

can freely dispose of, or accumulate up to the bound N ∈ N+. We denote the

initial money supply by M ∈ [0, N ] and the individual nominal balances by n ∈
N ≡ {0, 1, .., N} . Let mn (t) be the probability that at time t a randomly chosen

agent has accumulated n units of money, so that
PN

n=0mn (t) = 1. In this case

{m0 (t) , ...,mN (t)} defines the distribution of money in the economy, a probability
measure on N that must satisfy M =

PN
n=0 nmn (t).
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3 Symmetric stationary monetary equilibrium

We focus on equilibria where strategies and distributions are invariant functions of

time, and agents in an identical state adopt identical strategies. For this reason,

conjecture the existence of a distribution of money satisfying

ṁn(t) = 0 ∀n, t. (1)

3.1 Terms of Trade

Agents can be either buyers or sellers, depending on the realization of the match.

Those without money can only be sellers, since exchange must be quid-pro-quo, those

with N money can only be buyers, due to the money inventory constraint. We refer

to agents with large balances as being ‘rich,’ as opposed to those with small balances,

the ‘poor.’

We allow the possibility of randomized exchange, along the lines of Berentsen,

Molico and Wright (2002), as follows. Consider a single-coincidence match between a

buyer with b ∈N\ {0} money balances and a seller with s ∈ N\ {N} money balances.
Let d denote a positive monetary transfer from the buyer to the seller. Here d must

be feasible, that is the buyer cannot offer more than he has or than the seller is

able to accept. Technically, d ∈ Ds,b = {1, 2, ...,min {b,N − s}}. Let qs,b (d) denote
the amount of goods requested by the buyer, given d, and let τ s,b (d) denote the

probability of transferring d to the seller.3

The terms of trade are endogenously formed via bilateral bargaining. We use the

generalized Nash protocol where θ ∈ [0, 1] is the buyer’s bargaining power, and 1− θ

3A referee suggests an interesting extension would be to lift the restriction to choosing one single

d first, thus generalizing the model to one where τs,b(d) is a probability measure on Ds,b ∪ {0}. This
more general formulation would allow to consider strategies where buyers put probability mass on

several possible transfers (e.g. τs,b(d) > 0 for d = 0, 1, 2, 3), or make transfers with a deterministic

component (e.g. τs,b(0) = 0 and τs,b(d) > 0 for d = 1, 2, 3). We surmise this formulation would

lead to the following result. In equilibrium a buyer would always put some probability mass on the

largest feasible transfer when he is in a match with a seller who values money more than the buyer,

and would never do so otherwise.

4



the seller’s. For tractability, we restrict the buyer’s strategy to choose a single value

of d first, and then to bargain with the seller over qs,b(d) and τ s,b (d) . It follows that

the terms of trade in this match will be defined by the list {d, qs,b (d) , τ s,b (d)}. By
agreeing to this list, paired agents agree to implement the following trading plan. The

seller produces qs,b (d) goods for the buyer and, conditional on qs,b(d), the buyer gives

d units of money to the seller with probability τ s,b (d) and none otherwise. Ex-ante

commitment to the trade is assumed, so ex-post renegotiation cannot occur.4

Let Vn denote the stationary expected lifetime utility to an agent who has n units

of money, at some date. In a match between buyer b and seller s, where the terms of

trade are given by {d, qs,b (d) , τ s,b(d)}, the seller’s expected net surplus from trade is

−qs,b(d) + τ s,b(d) (Vs+d − Vs) .

It has two components. The first is deterministic and it comprises the produc-

tion loss −qs,b(d). The remaining component is the expected net continuation value
τ s,b(d) (Vs+d − Vs) from receiving d units of money with probability τ s,b(d). This is

the continuation value Vs+d minus the reservation value Vs. Similarly, the buyer’s

expected surplus is

u[qs,b(d)]− τ s,b(d) (Vb − Vb−d) .

Because we are interested in an economy where agents want to engage in ‘small’

nominal trades, we conjecture existence of an equilibrium in which every single-

coincidence match sees the probabilistic exchange of exactly one unit of money. Tech-

nically, in all single-coincidence matches (s, b), we have d = 1 and τ s,b (1) ∈ (0, 1), so
that we drop the index d when understood.

This conjectured pattern of exchange can be a monetary equilibrium only if ∀n

Vn+1 > Vn ≥ 0 (2)
4A referee suggests to think of this as a multi-stage process. First, the buyer chooses one d, and

then the traders bargain over q and τ . Next, the seller produces the agreed-upon goods for the

buyer. Finally, the lottery is run and the buyer gives d units of money to the seller based on the

lottery’s realization. Goods transfers are deterministic, in equilibrium, as goods are divisible. Money

transfers can be probabilistic due to indivisibilities (see Berentsen, Molico and Wright, 2002).
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otherwise no-one would produce for money. Suppose (2) holds. When qs,b > 0 we

define the nominal price in the match by τ s,bq
−1
s,b , and the realized nominal payment

is either zero or q−1s,b . Thus, randomized exchange convexifies the space of possible

nominal offers, although it does not expand the set of feasible monetary transfers. In

equilibrium, if a monetary transfer occurs, its amount d = 1 is independent of the

match’s composition, and the bargained nominal price.

Solving the bargaining problem, under this trading pattern, leads to the following

Lemma 1 Given (2), if d = 1 and τ s,b ∈ (0, 1) in all single coincidence matches
(s, b), then

τ s,b =
qs,b

Vs+1 − Vs

1− θγ

1− γ
and qs,b =

µ
Vs+1 − Vs
Vb − Vb−1

¶ 1
γ

. (3)

Proof. In Appendix.

The key result is that, despite the greater flexibility on nominal offers allowed by

lotteries, the quantities traded in equilibrium are generally inefficient, qs,b 6= 1 (where
qs,b > 0 given (2)). The intuition is this. Heterogeneity in money holdings implies

that a buyer meets sellers that can be richer or poorer than him. If rich and poor

agents value money differently, something we later prove to be true, then nominal

prices and traded quantities will vary across matches.

Technically, the payoffs in the Nash product include period utilities, but also the

traders’ net continuation values Vs+1 − Vs and Vb − Vb−1. These differences measure

the agent’s valuation of money as a function of his nominal wealth. Unless s = b− 1,
buyer and seller value money differently, thus q∗ cannot maximize the Nash product.

If the seller values money more than the buyer, then the seller is willing to produce

a lot per unit of money and the buyer wants to spend a lot. Conversely, if the buyer

values money more than the seller, not only the latter wants to produce little per

unit of money, but the buyer wants to moderate his expenditure. We later show

that in equilibrium the value of money falls in the agent’s nominal wealth, that is

{Vn+1 − Vn} is a positive and decreasing sequence. Hence, expression (3) indicates
that small purchases take place when the seller is richer than the buyer, qs,b < q∗ if
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s > b− 1. Conversely, qs,b > q∗ if s < b− 1.5

A second interesting result is that, given quantities and value functions, the proba-

bility of the monetary transfer falls in the buyer’s bargaining power, τ s,b is decreasing

in θ. This tells us that the nominal price of goods falls in each match as the bargaining

power shifts to the buyer, a feature that we will exploit later on.

3.2 Value Function

Under the conjecture that d = 1 and τ s,b ∈ (0, 1) ∀b, s, we can discuss the value
function. Given the recursive structure of the problem facing an agent, the value

function must satisfy

ρV0 =
NX
b=1

mb [−qn,b + τn,b (Vn+1 − Vn)] (4)

ρVn =
N−1X
s=0

ms [u(qs,n)− τ s,n (Vn − Vn−1)] +
NX
b=1

mb [−qn,b + τn,b (Vn+1 − Vn)] , n 6= 0, N(5)

ρVN =
N−1X
s=0

ms [u(qs,n)− τ s,n (Vn − Vn−1)] (6)

where ρ = r/αx capture the extent of trading frictions, acting effectively as a discount

factor. Specifically, a small ρ corresponds to an economy where trading opportunities

arise frequently or where agents are patient. The first summation of the Bellman

equation (5) indicates that the trader expects to earn surplus u(qs,n)−τ s,n (Vn − Vn−1)

from matches where the agent is a buyer facing a seller with s units of money. These

matches occur with probability ms. The agent can also earn some surplus, −qn,b +
τn,b (Vn+1 − Vn) , from matches where he sells to buyers holding b units of money.

Recall that agents without money can only be sellers, and those who have n = N can

only be buyers. Therefore V0 is obtained by dropping the first summation from (5),

and VN by dropping the second.
5This explains why randomized trades are always efficient in Berentsen, Molico and Wright (2002).

They study the special case where the distribution of money is degenerate (s = b − 1 = 0 in all

matches).
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Using (3), equation (5) can be rearranged as

ρVn = γθ
N−1X
s=0

msu (qs,n) + γ (1− θ)
NX
b=1

mb
qn,b
1− γ

dropping the first summation if n = 0, and the second if n = N . Notice that expected

purchases,
PN−1

s=0 msu (qs,n) , and sales,
PN

b=1mb
qn,b
1−γ , both contribute to the agent’s

lifetime utility, as every trade generates surplus to the agent. Since the surplus share

is a function of the trader’s bargaining power, θ and 1−θ multiply the first and second
summation, respectively. The parameter γ, the inverse of the intertemporal elasticity

of substitution, appears because of the specific CRRA formulation of preferences.6

A definition of the monetary equilibrium, for the conjectured trading pattern,

follows.

Definition 2 Given N and M , a stationary monetary equilibrium with d = 1 and

τ s,b ∈ (0, 1) ∀s, b is a list {Vn,mn, qs,b, τ s,b}n,s,b∈N that satisfies (1)-(6).

4 Characterization of Equilibrium in a Special Case

In proving the existence of an equilibrium where all monetary transfers are random,

it is convenient to focus on the case θ = 1. The reason is that τ s,b falls in the buyer’s

bargaining power. Therefore an equilibrium where ‘small trades’ take place (d = 1)

is easier to support when buyers can make take-it-or-leave-it offers to sellers. In this

case the following holds

Lemma 3 Let θ = 1. If d = 1 and τ s,b ∈ (0, 1), then V0 = 0 and Vn = anV1 for

n ≥ 1 with
ρV1 =

γ

1− γ

N−1X
s=0

ms

as+1
, (7)

6Consider u(qs,n) − τs,n (Vn − Vn−1). Substitute for τsb to get u(qs,b) − qs,b(Vb−Vb−1)
Vs+1−Vs =

u(qs,b)

µ
1− qs,bu

0(qs,b)
u(qs,b)

¶
once we recognize that (3) implies u0(qs,b) =

Vb−Vb−1
Vs+1−Vs . CRRA preferences

imply
qs,bu

0(qs,b)
u(qs,b)

= 1− γ.
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where a1 = 1 and {an}Nn=2 solves the N − 1 recursive equations

a
γ

1−γ
n (an − an−1) = 1. (8)

Moreover, a2 = a2 (γ) ∈ (1, 2) and {an − an−1} is a decreasing positive sequence.
Therefore, the sequence {Vn − Vn−1}Nn=1 is decreasing and positive, and 0 ≤ Vn <∞.

Proof. In Appendix.

The first thing we notice is that lifetime utilities depend only on the CRRA

coefficient, γ, and the distribution of money. In particular, V0 = 0 when θ = 1,

since no surplus is ever earned from sales, and Vn > 0 otherwise. Furthermore,

lifetime utility Vn rises in money holdings, but it does so at a decreasing rate, so that

in equilibrium richer agents value each unit of money increasingly less than poorer

agents. Consequently, there is heterogeneity in money valuations. As we will see

shortly, this has a crucial implication for the propensity to spend across matches, for

the equilibrium flows of money generated by market transactions, and therefore for

the distribution of money balances.

An important result is that trade between buyer b and seller s takes place at

a nominal price that depends entirely on the seller’s nominal wealth. The nominal

price of the transaction corresponds exactly to the seller’s valuation of money,

τ s,b
qs,b

=
1

Vs+1 − Vs
.

There are two implications. First, the price rises with the seller’s wealth s, because

the value of an additional unit of money, Vs+1 − Vs, falls in s. Therefore, there is

equilibrium price dispersion. Second, while an arbitrary seller s sells goods at the

same price 1
Vs+1−Vs to every buyer, the amount of goods sold and the likelihood of a

money transfer hinge on the buyer’s nominal wealth, b. Richer buyers always make

larger purchases and are more likely to spend their money on average, as qs,b and τ s,b

increase in b.7

7This differs in an important way from the equilibrium d = 1 in Camera and Corbae (1999). There,

the price in the match (b, s) is also (Vs+1 − Vs)
−1. However, every buyer makes the same nominal

offer to seller s, and so every buyer purchases an identical quantity from that seller, independent of

the buyer’s nominal wealth.
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To prove it, use Vn = anV1 and (8). Equilibrium lotteries and quantities are

τ s,b =
a

1
1−γ
b

as+1V1
and qs,b =

µ
ab
as+1

¶ 1
1−γ

. (9)

Evidently, {qs,b} and {τ s,b} are positive sequences increasing in b and decreasing in s.
That is, (i) richer buyers buy more because they offer to spend a unit of money with a

higher probability, relative to poorer buyers, and (ii) everyone buys more when they

find a low price. This feature of equilibrium spending patterns is key to identifying

the shape of the distribution {mn}, as we next discuss.

4.1 Stationary distributions

If d = 1 and τ s,b ∈ (0, 1) ∀s, b, then (1) gives rise to N + 1 steady-state conditions

that, once normalized by αx, are

m1

N−1X
s=0

τ s,1ms = m0

NX
b=1

τ0,bmb (10)

mn+1

N−1X
s=0

τ s,n+1ms +mn−1
NX
b=1

τn−1,bmb = mn

N−1X
s=0

τ s,nms +mn

NX
b=1

τn,bmb, n 6= 0, N(11)

mN

N−1X
s=0

τ s,Nms = mN−1
NX
b=1

τN−1,bmb (12)

To interpret them, consider equation (11). Its left-hand-side collects all the inflows

into mn and the right-hand-side collects the outflows. Since all trades involve (by

conjecture) the stochastic exchange of only one unit of money, the endogenous variable

mn grows as buyers with n+ 1 units of money spend one unit in matches with some

seller. In a steady state, the buyer transitions to a lower nominal wealth position with

probability
PN−1

s=0 τ s,bms. The second term indicates that sellers with n− 1 units of
money can obtain one more unit with probability

PN
b=1 τn−1,bmb. Outflows are due

to sellers with n units of money that acquire one more unit, mn
PN−1

s=0 τ s,nms, and

buyers with n units who spend one, mn
PN

b=1 τn,bmb. The expressions that account

for changes in the extreme asset positions, 0 and N, are similarly explained.

If we use the equilibrium value of τ s,b in (10)-(12), we obtain the following.

10



Lemma 4 Let θ = 1. If d = 1 and τ s,b ∈ (0, 1) ∀s, b, then there exists a unique
stationary distribution of money {mn} that satisfies

mn = m
N−n
N

0 m
n
N
N

nY
i=2

a
φn−N

N
i

NY
j=n+1

a
φ n
N

j , n 6= 0, N (13)

NX
n=0

m
N−n
N

0 m
n
N
N = 1 and M =

NX
n=0

nmn (14)

where φ = 2−γ
1−γ . Moreover for n 6= 0, N

m2
n

mn+1mn−1
=

µ
an+1
an

¶φ

. (15)

Proof. In Appendix.

Expression (15) implies that the stationary distribution has more mass in the

interior, i.e. {mn} is a hump-shaped sequence (see Figure 1). The reason is simple.
In equilibrium {τ s,b} is a sequence decreasing in s and increasing in b. This means

that, given b, poor sellers receive money more frequently than rich sellers. Thus

poor sellers quickly increase their money holdings, while rich sellers do so slowly.

Furthermore, given s, poor buyers choose to spend their money less frequently than

rich buyers. Those who are poor are unlikely to get poorer and very likely to increase

their wealth. The opposite is true for rich agents. Both of these features tend to

generate a distribution with a large mass of agents in the center of it, thin tails, and

a low coefficient of variation.

Interestingly, there is a sharp distinction between the distribution of money ob-

tained in this study, relative to the censored-geometric distributions arising in the

absence of lotteries but under a similar spending pattern.8 The most striking feature,

however, is another. The simple transaction pattern we study generates a density

function remarkably similar to that numerically found when agents trade with fully
8Examples of equilibria where buyers have heterogeneous and bounded holdings, but everyone

spends the same amount of money, can be found in Berentsen (2002), Camera and Corbae (1999)

and Zhou (1999). One can easily verify that when an = 1 for all n then (13) is as in Berentsen, or

(15) is as in Zhou or Camera and Corbae.

11



divisible money under an identical bargaining protocol (Molico, 1997). This similar-

ity emerges, despite (i) the very different underlying equilibrium spending patterns,

and (ii) even when N is relatively small (see Figure 1), which limits considerably an

individual’s ability to spend small fractions of money balances.

10 20 30 40
n

0.02

0.04

0.06

0.08

0.1

0.12

mn N=40 γ=0.8

M = 15

M = 20

M = 25

Figure 1: Stationary distributions for N = 40 and γ = 0.8, for M = 15, 20, 25

The intuition is as follows. If buyers can offer any fraction of their balances there

is no need to use lotteries. Poor buyers generally spend less than the rich, and poor

sellers work harder to earn more money per trade. Now consider our equilibrium with

randomized trades on imperfectly divisible balances. Anyone who spends money,

transfers the same amount — one unit — to every seller. The probability to make

(receive) a transfer, however, increases (decreases) in the agent’s wealth. Thus, our

model generates monetary flows that, once averaged across the entire set of traders,

resemble the monetary flows arising when nominal balances are fully divisible.

4.2 Individually Optimal Strategies

We now provide a condition sufficient to guarantee that, under take-it-or-leave-it

offers from buyers to sellers, the conjectured strategy d = 1 and τ s,b ∈ (0, 1), is

12



individually optimal in every single-coincidence match (s, b). To do so, we must

consider three requirements. First, given our restriction on choosing only one d

before bargaining over quantities and probabilities, we need to prove that no monetary

transfer will involve more than one unit of money, i.e. d = 1 ∀s, b. Second, we must
make sure that every transfer will be random, i.e. τ s,b < 1 ∀s, b. Finally, we need to
prove that every buyer offers to spend something in every single-coincidence match,

i.e. τ s,b > 0 ∀s, b. The next lemma provides a sufficient condition capable to satisfy
these three requirements.

Lemma 5 Let θ = 1 and consider an equilibrium where d = 1 and τ s,b ∈ (0, 1)
in each single-coincidence match (s, b). If ρ ≤ ρ̄ then this strategy is individually

optimal, with

ρ < ρ̄ =
γ

1− γ

1

a
1
γ

N

N−1X
s=0

ms

as+1
. (16)

Proof. In Appendix.

The first step in proving this lemma is to demonstrate that no buyer deviates

from equilibrium to propose a lottery on several units of money. The reasons is

that doing so can only worsen the terms of trade he faces. To see why, note that

our specification of preferences implies the buyer’s surplus from offering a lottery on

some d in order to buy q goods, is γu(q). Thus, buyers choose d to consume as much

as possible. Since Vn is concave, a larger d lowers the seller’s valuation of the money

offered, relative to the buyer’s. This reduces the seller’s willingness to produce per

unit of money, which is bad for the buyer. If the buyer wants to consume more he

should simply raise τ s,b, avoiding the unfavorable distortions generated by offering

lotteries on larger monetary transfers.

Given that d = 1 is individually optimal, the next step requires us to show that

in equilibrium a buyer would never offer to spend money with certainty, i.e. τ s,b < 1.

As expected, patience is the key ingredient to achieve this. Inequality (16) guarantees

that every monetary transfer proposed in every match will be random. Notice that ρ̄
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depends solely on γ,M, and N,via the sequences {an} and {ms}. Numerical analysis
(see Table 1, where M = 1.5) shows that ρ̄ rises in γ, and tends to fall in N , for N

large.

γ = 0.2 γ = 0.5 γ = 0.8

N = 2 0.002996 0.112579 0.987207

N = 3 0.000902 0.12068 1.55035

N = 4 0.000286 0.093182 1.53607

N = 5 0.000112 0.072671 1.44424

N = 6 0.000052 0.058982 1.36238

Table 1 - The upper bound ρ̄

These findings are quite intuitive. As N increases the average buyer can spend a

progressively smaller fraction of his money balances. Thus as N rises every buyer,

including the richest, will find it less compelling to resort to lotteries. At some

point the richest buyer will prefer to spend at least one unit of money. That is,

the constraint τ0,N ≤ 1 binds as N rises above a certain threshold, given ρ and

γ. Now recall that ρ captures the extent of trading frictions, and the curvature of

preferences grows with γ. Consider a match (b, s) = (N, 0) where the buyer’s incentive

to spend more than one unit of money is the strongest. There is a trade-off between

the diminishing marginal utility and trading frictions. When ρ is small the agent

does not discount much the future so he limits current expenditures to spread out

consumption over time. When γ is large agents have less of an incentive to spend a

lot, because marginal utility of consumption decreases very sharply. Hence, the buyer

limits his current consumption by reducing the monetary offer d and the probability

of spending it. Thus trading more than one unit of money is suboptimal when ρ is

sufficiently small and γ is sufficiently large. Note that τ0,N falls as γ rises.9

Finally, it is easy to show that every buyer—even the poorest—offers to spend

something in every single-coincidence match. The reason is he can always offer money
9Notice, therefore, that the use of lotteries allows us to study economies where N →∞. Without

lotteries, this is not possible since poor buyers would not buy from sellers that are too rich (see

Camera and Corbae, 1999).
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with a small enough probability that allows him to consume a small quantity, while

limiting the risk of giving away a very valuable unit of money. Interestingly, this is

quite different from models without lotteries. In those models some trades may not

take place in equilibrium, when the seller values money very little, relative to the

buyer, as the seller’s (nominal) reservation price, 1
Vs+1−Vs , is too high for the buyer.

When lotteries on money transfers are possible, instead, the buyer can always choose

a small enough probability τ s,b that matches the seller’s reservation price. This allows

the buyer to get at least some consumption that generates flow utility larger than

the expected loss (in terms of net continuation payoffs).

Existence of an equilibrium follows from the results listed in the previous lemmas

Proposition 6 Let θ = 1. If ρ ≤ ρ̄, then there exists a stationary monetary equilib-

rium with d = 1 and τ s,b ∈ (0, 1) ∀s, b.

We emphasize that the allocation achieved in this equilibrium is superior to that

achieved in the absence of lotteries, for two distinct reasons.

First, lotteries improve bilateral trading efficiency as agents can make nominal

offers that, on average, are smaller than otherwise possible (see Berentsen and Ro-

cheteau, 2002). This helps push qs,b closer to q∗ in every match, a positive ‘intensive

margin’ effect. Bilateral trading inefficiencies remain, however, due to equilibrium

heterogeneity in money holdings and valuations.

Second, lotteries amplify the positive ‘extensive margin’ effects associated to the

agents’ ability to spend only part of their balances (see Camera, 2003). The ran-

domized money transfers foster a redistribution of money from rich to poor agents,

shifting the distribution’s mass closer to mean holdings and away from the tails. This

has two beneficial consequences. It raises the volume of trade, by lowering the fraction

of penniless agents (who cannot buy) and richest agents (who cannot sell). It also

increases bilateral trading efficiency, by reducing the dispersion in money holdings,

hence the disparities in valuations responsible for the inefficient selection of qs,b.

These considerations lead us to wonder whether there is an optimum quantity of

money, capable of maximizing these beneficial effects.
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4.3 The optimum quantity of money

Define welfare W , as satisfying W =
PN

n=1mnρVn. Using Vn = anV1 and V1 from

Lemma 3

W =
NX
n=1

mnanρV1.

It is obvious that W is a function of M — since it affects the distribution of money —

and of γ, that affects {an} . Therefore, let M∗
N denote the initial quantity of money

that maximizes W.

For N = 2 one can prove that M∗
2 = N/2 = 1 and, surprisingly, is independent

of γ. In order to find M∗
N for N > 2 we have to resort to numerical simulations (see

Table 2).

γ = 0.2 γ = 0.5 γ = 0.8

N = 2 1 1 1

N = 3 1.4987 1.4921 1.4649

N = 4 2.0168 1.9974 1.9302

N = 5 2.5605 2.5224 2.4084

N = 6 3.1272 3.0658 2.9016

Table 2- The optimal M

The simulations suggest that the optimal quantity of money M∗
N is approximately

equal to N/2. The latter is the optimal quantity in a similar model where prices are

exogenously fixed and lotteries are not allowed (see Berentsen, 2002).

The implication of this numerical experiment is that changes in the initial money

stock, such that the conjectured equilibrium does not break down, are non-neutral.

For M < M∗ there are too many agents with insufficient money balances (too few

buyers) while for M > M∗ agents have too much money (too few sellers). Note that

for given values of N and γ, small changes inM do not affect the quantities traded in

any match since from (9) they only depend on γ. Therefore, changes inM only affect

the volume of trade via its effects on the extensive margin, i.e. via the distribution

of money holdings.

Because non-neutralities in this model depend on the measure of poor agents,
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who face the most stringent constraints in their consumption ability, it is natural to

ask how the distribution changes as we increase the degree of divisibility of money.

More concentrated distributions would imply less significant extensive margin effects

from changes in money. Below, we report the coefficient of variation as we change

the degree of divisibility of money. This is done by increasing proportionately M

and N , maintaining their ratio fixed. This is equivalent to making the initial money

supply more divisible, while keeping it constant (see Camera, 2003). Table 3 reports

the coefficient of variation when M/N = 0.5 and γ = 0.8.

N M coeff.ofvariation

1 0.5 1

2 1 0.6800

3 1.5 0.5568

4 2 0.4940

5 2.5 0.4539

6 3 0.4246

7 3.5 0.4014

8 4 0.3823

9 4.5 0.3659

10 5 0.3517

Table 3 - Divisibility and Dispersion

As money becomes more divisible we move down the coeff. of variation column, and

the distribution becomes more tightly concentrated around the mean (the coefficient

of variation falls). Thus, increased divisibility appears to reduce the monetary non-

neutralities that impinge on a beneficial redistribution of money.

Finally, we also consider how the stationary distribution of money holdings is

affected when the curvature of preferences changes. Our simulations indicate that

if γ is small, then the distribution is more concentrated around the mean. This

can be explained as follows. If γ is small, the marginal utility of consumption does

not decrease very sharply, therefore agents are not so eager to smooth consumption

across time. This makes them more willing to spend money to acquire goods in each

17



meeting, which generates higher prices. Higher prices lead to a concentration of the

distribution around the mean as can be seen in Figure 2.

5 10 15 20 25 30
n

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mn N=30 M = 15

γ = 0.1

γ = 0.9

Figure 2: Stationary distributions for N = 30 and M = 15, for γ = 0.1, 0.9

5 Conclusion

We have presented an analytically tractable search-theoretic model of money that

accounts for equilibrium heterogeneity in money balances and prices. The model

relaxes the typical indivisibility of money of the Shi-Trejos-Wright framework by

augmenting it with the possibility of holding multiple inventories of indivisible tokens

and of engaging in randomized monetary trades.

The most striking result, perhaps, is the model’s ability to generate monetary dis-

tributions that closely resemble those observed in numerical simulations of economies

with fully divisible money and goods, and non-degenerate money distributions (Molico,

1997). The flexibility in monetary offers granted by lotteries improves the efficiency of

the decentralized monetary solution along the extensive margin. It also lessens inten-

sive margin inefficiencies, without completely curing them, however. In fact, trades

remain generally inefficient since the non-degenerate equilibrium monetary distribu-

tion leads to heterogeneity in valuations of money. Because price-formation occurs
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via a process of bilateral bargaining, trades are inefficient when buyer and seller

value differently the monetary offer. Numerical experiments indicate that as money

becomes more divisible these inefficiencies are diminished since the distribution of

money becomes more concentrated around the mean.

We think our approach can be successfully employed to study of a variety of issues

pertinent to economies that allow for non-degeneracy of price and money holdings

distributions. Such issues include the effects of money creation on welfare, and on

the distribution of prices and money.

19



References

Berentsen, A. (2002). On the distribution of money holdings in a random-matching

model. International Economic Review 43, 945-954

Berentsen, A., M. Molico and R. Wright (2002). Indivisibilities, lotteries and mone-

tary exchange. Journal of Economic Theory 107, 70-94

Berentsen, A., and G. Rocheteau (2002). On the Efficiency of Monetary Exchange:

How Divisibility of Money Matters. Journal of Monetary Economics 49, 1621-1650

Berentsen, A., G. Camera and C. Waller (2003). The Distribution of Money Balances

and the Non-Neutrality of Money. Manuscript. University of Basel.

Bewley, T. (1983). A Difficulty with the Optimum Quantity of Money. Econometrica,

51 (5), 1485-1504

Camera, G. (2003). Distributional Aspects of the Divisibility of Money. An Example.

Manuscript, Purdue University

Camera G. and D. Corbae (1999). Money and price dispersion. International Eco-

nomic Review 40, 985-1008

Deviatov A. and N. Wallace (2001). Another Example in which Lump-sum Money

Creation is Beneficial. Advances in Macroeconomics: Vol. 1: No. 1, Article 1.

Green E. and R. Zhou (1998). A rudimentary model of search with divisible money

and prices. Journal of Economic Theory 81, 252-271

Molico, M. (1997). The distribution of money and prices in search equilibrium. Ph.D.

Dissertation, The University of Pennsylvania

Shi S. (1995). Money and Prices: A Model of Search and Bargaining. Journal of

Economic Theory 67, 467-496.

Trejos A. and R. Wright (1995). Search, Bargaining, Money and Prices. Journal of

Political Economy 103, 118-141.

Zhou R. (1999). Individual and aggregate real balances in a random matching model.

International Economic Review 40, 1009-1038.

20



Appendix

Proof of Lemma 1. Suppose it is optimal for every buyer to choose d = 1. The

optimal offer pair {qs,b, τ s,b} solves the Nash program

max
qs,b,τs,b

[u (qs,b)− τ s,b (Vb − Vb−1)]θ [−qs,b + τ s,b (Vs+1 − Vs)]
1−θ s.t τ s,b ≤ 1

Suppose that Vs+1 > Vs, otherwise no trade would take place. Substituting for τ s,b,

consider the Lagrangian

max
λs,b,qs,b,τs,b

[u (qs,b)− τ s,b (Vb − Vb−1)]θ [−qs,b + τ s,b (Vs+1 − Vs)]
1−θ + λs,b (1− τ s,b)

where λs,b is the multiplier on τ s,b ≤ 1, independent of d because in the equilibrium
conjectured every buyer offers d = 1. The equilibrium qs,b, τ s,b and λs,b must satisfy

three sufficient and necessary first-order conditions

u0 (qs,b)
θ

1− θ
=

u(qs,b)− τ s,b (Vb − Vb−1)
−qs,b + τ s,b (Vs+1 − Vs)

Vb − Vb−1
Vs+1 − Vs

θ

1− θ
=

u(qs,b)− τ s,b (Vb − Vb−1)
−qs,b + τ s,b (Vs+1 − Vs)

− λs,bA

λs,b (1− τ s,b) = 0

where A =
h −qs,b+τs,b(Vs+1−Vs)
u(qs,b)−τs,b(Vb−Vb−1)

iθ ≥ 0. Note how qs,b and τ s,b generally depend on

both the seller’s and the buyer’s wealth positions, via their reservation values Vs+1−Vs
and Vb−Vb−1, and their relative bargaining powers, θ/ (1− θ) . Two cases might arise,

depending on whether the constraint τ s,b ≤ 1 is binding or not.

1. If τ s,b = 1 then λs,b > 0. Hence u0 (qs,b) = 1−θ
θ · u(qs,b)−(Vb−Vb−1)−qs,b+Vs+1−Vs .

2. If τ s,b ≤ 1 then λs,b = 0. Hence u0(qs,b) =
Vb−Vb−1
Vs+1−Vs ⇒ qs,b =

³
Vs+1−Vs
Vb−Vb−1

´ 1
γ
. That

is the marginal utility from consumption from spending d = 1, with probability

τ s,b, must be equal to the ratios of the value of that unit of money to seller

and buyer. Notice that since Vs+1−Vs
Vb−Vb−1 6= 1, in general, the quantity trade will

be generally inefficient, unless buyer and seller ‘swap’ wealth positions (i.e.

s = b− 1).
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From the first order conditions we obtain

τ s,b = (1− θ)
u(qs,b)

Vb − Vb−1
+ θ

qs,b
Vs+1 − Vs

=
qs,b

Vs+1 − Vs

·
(1− θ)

u (qs,b)

qs,bu0(qs,b)
+ θ

¸
=

qs,b
Vs+1 − Vs

1− θγ

1− γ

so that we see that, given qs,b
Vs+1−Vs , τ s,b decreases in θ.¥

Proof of Lemma 3 If d = 1 and τ s,b ∈ (0, 1), then for n 6= 0, N

ρVn =
γ

1− γ

N−1X
s=0

ms

µ
Vs+1 − Vs
Vn − Vn−1

¶ 1−γ
γ

Note that

ρVn (Vn − Vn−1)
1−γ
γ =

γ

1− γ

N−1X
s=0

ms (Vs+1 − Vs)
1−γ
γ

is independent of n. It follows that for n ≥ 2 :

Vn (Vn − Vn−1)
1−γ
γ

Vn−1 (Vn−1 − Vn−2)
1−γ
γ

= 1⇒ Vn
Vn−1

=

µ
Vn−1 − Vn−2
Vn − Vn−1

¶1−γ
γ

⇒ VN
V1

=

µ
V1 − V0

VN − VN−1

¶1−γ
γ

because of a telescoping product.

If we let a1 = 1, a0 = 0, and Vn = anV1 then Vn
Vn−1 =

an
an−1 and Vn − Vn−1 =

(an − an−1)V1. Therefore we can find {an}Nn=1 recursively:

a2
a1
=
³
V1−V0
V2−V1

´ 1−γ
γ ⇒ a

γ
1−γ
2 (a2 − 1) = 1 (since a1 = 1)

a
γ

1−γ
n (an − an−1) = 1 ∀ 2 < n ≤ N

Thus an is a function solely of γ, hinging on a2 = a(γ). It is easy to see that a2 > 1

and a2 < 2 because a
γ

1−γ
2 (a2 − 1) increases in a2 and at a2 = 2 does not satisfy

the equality above. Also, {an − an−1} is a positive but decreasing sequence (because
an−an−1 = 1/a

γ
1−γ
n , an−an−1 must be decreasing in n). Therefore Vn is an increasing

function of n, and {Vn − Vn−1} is a decreasing sequence.

22



Use the result that Vn − Vn−1 = (an − an−1)V1. Then:

ρV1 (V1 − V0)
1−γ
γ = γ

1−γ
PN−1

s=0 ms (Vs+1 − Vs)
1−γ
γ

ρV1 (V1)
1−γ
γ = γ

1−γ
PN−1

s=0 ms (as+1 − as)
1−γ
γ V

1−γ
γ

1 (use Vs − Vs−1 = (as − as−1)V1)

ρV1 =
γ
1−γ

PN−1
s=0 ms (as+1 − as)

1−γ
γ

ρV1 =
γ
1−γ

PN−1
s=0

ms
as+1

(use (as+1 − as)
1−γ
γ = a−1s+1)

where we notice that V1 <∞ since {as+1 − as} is a converging sequence.
Using the definition of an, τ s,b =

a
1
γ
b

as+1V1
. Hence, {τ s,b} is a sequence increasing in

b and decreasing in s.¥

Proof of Lemma 4 To start we notice that (10) - (12) imply

mn

NX
b=1

τn,bmb = mn+1

N−1X
s=0

τ s,n+1ms ∀n 6= N (17)

which means that the expected money flow to sellers with n units of money, must

be equal to the expected money outflow of buyers with n+ 1 units of money. To see

why this holds, start with (10), and then use it in (11) with n = 1. Observe that

only the summations to the extreme left and extreme right of (11) are left (the inner

summations cancel out). Then repeat it recursively, for each n < N.

Now use (17) replacing the lotteries by their expressions given in (9) to get

mn
an+1

PN
b=1 a

1
1−γ
b mb = mn+1a

1
1−γ
n+1

PN−1
s=0

ms
as+1

∀n 6= N

⇒ mn+1

mn
a
2−γ
1−γ
n+1 =

PN
b=1 a

1
1−γ
b mbPN−1

s=0
ms
as+1

⇒ mn
mn+1

= m0
m1

a
2−γ
1−γ
n+1 ∀n 6= N

(18)

since (10) implies m1
m0
=

PN
b=1 a

1
1−γ
b mbPN−1

s=0
ms
as+1

after one substitutes for (9).

We can use the last line of (18) for any two adjacent n and n+ 1 to obtain

m2
n

mn+1mn−1
=

µ
an+1
an

¶ 2−γ
1−γ

∀n 6= 0, N (19)

This tells us that
n
an+1
an

oN−1
n=1

is a decreasing sequence so that
n

mn
mn+1

mn
mn−1

oN−1
n=1

is

a decreasing sequence also. It follows that
n

mn
mn+1

oN−1
n=1

cannot be an increasing
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sequence, i.e. mn > mn+1 ∀n 6= 0, N cannot be an equilibrium. Now use the last line

of (18). We see that m0 > m1 is not possible (it would imply mn > mn+1 ∀n 6= 0,N).
Thus m0 < m1 must hold. Since mn > mn+1 ∀n 6= 0, N is not possible, then the only

equilibrium is mn < mn+1 for some 1 ≤ n < n∗ and mn > mn+1 for n ≥ n∗. That is,

{mn} is hump-shaped.
Since mn+1

m0
= mn+1

mn
× mn

mn−1 × ...× m1
m0

and mn
mn+1

= m0
m1

a
2−γ
1−γ
n+1 then

mn+1

m0
=

µ
m1

m0

¶n+1

Πn+1j=1a
− 2−γ
1−γ

j for all n 6= N.

Let An+1 = Π
n+1
j=1a

− 2−γ
1−γ

j for n 6= N , and notice that A0 = 1. Then, the stationary

distribution solves the system of N + 1 non-linear equations in N + 1 unknowns.:

mn+1 = m0

³
m1
m0

´n+1
An+1 ∀n 6= 0, N

m0 +
PN−1

n=0 m0

³
m1
m0

´n+1
An+1 = 1PN−1

n=0 (n+ 1)m0

³
m1
m0

´n+1
An+1 =M

These expressions can be rewritten to yield (13) and (14).

We next show uniqueness of the stationary distribution for any N and money

supply M ∈ (0, N). The first thing to note is that m0 +
PN−1

n=0 m0

³
m1
m0

´n+1
An+1 =

1 implies ∂m1
∂m0

< 0. Thus, for any N and m0 there is a unique M that satisfies

mn+1 = m0

³
m1
m0

´n+1
An+1 and m0 +

PN−1
n=0 m0

³
m1
m0

´n+1
An+1 = 1. Next, note thatPN−1

n=0 (n+ 1)m0

³
m1
m0

´n+1
An+1 = M implies that m0 is monotonically decreasing

in M (recall that ∂m1
∂m0

< 0). Accordingly, for any n and M ∈ (0, N) there is a unique
{mn} satisfying (13) and (14).¥

Proof of Lemma 5 Let θ = 1. Suppose d = 1 and τ s,b ∈ (0, 1) ∀b, s is an equilib-
rium. Consider the strategy of a representative buyer b in a match with a seller s. To

prove individual optimality of the strategy proposed we take three steps. Finally, we

prove that every single coincidence match will result in a trade. That is the buyer

always puts a positive probability on the transfer of d = 1.
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1. First, we prove that if a buyer offers a lottery on the transfer of d ∈ Ds,b

units of money, then d = 1 is individually optimal. The proof is by means of

contradiction. Pick any feasible offer d and suppose that the buyer wants to

offer a lottery. Since the buyer extracts the seller’s entire surplus, then the

optimal transfer probability must satisfy τ s,b(d) ∈ [0, 1] and

τ s,b(d) =
qs,b(d)

Vs+d − Vs
.

Given this probability, the buyer chooses qs,b(d) to maximize his surplus

u[qs,b(d)]− τ s,b(d)(Vb − Vb−d) = u[qs,b(d)]− qs,b(d)
Vb − Vb−d
Vs+d − Vs

.

Since u(q) = q1−γ
1−γ , then optimal consumption is

qs,b(d) =

µ
Vs+d − Vs
Vb − Vb−d

¶ 1
γ

. (20)

The implication is that, given d ∈ Ds,b, when τ s,b(d) and qs,b(d) are optimally

chosen then the buyer’s surplus is u[qs,b(d)]− qs,b(d)qs,b(d)
γ , or

γu[qs,b(d)]. (21)

Clearly the d that maximizes (21) must generate the largest quantity, i.e. it

must maximize qs,b(d) =
³
Vs+d−Vs
Vb−Vb−d

´ 1
γ
. It is easily proved that

Vb−Vb−d
Vs+d−Vs =

(Vb−Vb−1)+(Vb−1−Vb−2)+...+(Vb−d+1−Vb−d)
(Vs+d−Vs+d−1)+(Vs+d−1−Vs+d−2)+...+(Vs+1−Vs) ≥

Vb−Vb−1
Vs+1−Vs ∀d ≥ 1

since Vb − Vb−1 < Vb−1 − Vb−2 < .. < Vb−d+1 − Vb−d, while Vs+1 − Vs > Vs+2 −
Vs+1 > ... > Vs+d − Vs+d−1, because {Vn+1 − Vn} is a decreasing sequence, in
equilibrium. That is, raising d above one, increases the numerator and decreases

the denominator of the ratio Vb−Vb−d
Vs+d−Vs . Since

Vb−Vb−d
Vs+d−Vs ≥

Vb−Vb−1
Vs+1−Vs ∀d ≥ 1, then it

follows that setting d ≥ 2 is worse than offering d = 1. Offering a lottery on

d ≥ 2 is suboptimal because, in the equilibrium conjectured, it simply reduces

the quantity consumed by the buyer, hence his surplus.

2. Now we provide a condition guaranteeing that τ s,b < 1 is individually optimal.

That is, offering d = 1 with certainty is suboptimal. In the conjectured equi-

librium τ s,b(1) = τ s,b, defined by (3) for θ = 1. Because {τ s,b} is increasing in
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b and decreasing in s, it follows that a sufficient condition for τ s,b(1) < 1 is

τ0,N < 1. Using the results in the prior Lemmas, this amounts to the inequality
a
1/γ
N
V1

< 1 that, substituting for V1 can be rearranged as

ρ < ρ̄ =
γ

1− γ

1

a
1
γ

N

N−1X
s=0

ms

as+1
.

It is seen that the sequences {an} and {ms} only depend on γ, M, and N .

3. Finally, we prove that every buyer offers to spend something in every single-

coincidence match, i.e. τ s,b > 0 ∀s, b is individually optimal. Since τ s,b =

qs,b
Vs+1−Vs in equilibrium, the buyer’s expected surplus is positive in every possible

match, i.e. u(qs,b) − τ s,b (Vb − Vb−1) ≡ γu(qs,b) > 0 ∀s, b. In equilibrium qs,b =³
Vs+1−Vs
Vb−Vb−1

´ 1
γ
.Therefore τ s,b > 0.¥
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