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Abstract 

 

What is known about the urban world is largely derived from local knowledge. This paper 

showcases substantial efforts at new data integration with existing technologies to develop a new 

suite of global datasets on urban population and extents. These new databases far surpass past 

efforts to construct a systematic global database of urban areas by combining census and satellite 

data and methods of analysis, in an integrated geospatial framework. The resulting data allow for 

inquiry into analysis of urban issues and population by environmental and other ecological 

characteristics in novel ways. This paper focuses on the methodologies employed to construct 

these new datasets. Summary results regarding population distribution at continent- and global-

levels are also given, as well as suggestions for future research.  
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INTRODUCTION 

 

Human settlements occupy a relatively small fraction of Earth's surface area but their 

extent and distribution have significant impacts on their surroundings, both from an 

environmental and a socio-economic perspective. By 2007, it is estimated that over half of the 

world’s population will reside in urban areas (United Nations, 2002). Despite increasing 

knowledge about the characteristics of urbanization, little is known about its spatial dimensions. 

For example, only guesswork has provided prior estimates on the share of the world’s inhabited 

land area that is urbanized, or on the classification of the world’s population by city-sizes other 

than the very largest ones (UN, 2002; UN 2002b). Even when cities are tallied by their population 

sizes and types (such as agglomerations), little effort has gone into systematically capturing the 

spatial dimension of these places.  

There are also increasing demands for greater specificity in defining the impacts of 

agricultural change and development, particularly with regard to the likely impacts of policy, 

technology, and institutional changes on poverty (Wood et al. 1999).  It is not only the growth of 

urban areas, but also the interconnection between urban and rural areas that is important to 

understand these impacts. Improved knowledge of the spatial distribution of urban and rural 

population is extremely important for assessing socioeconomic, demographic and environmental 

change in urban and rural areas.  

In order to understand and study the impacts of urbanization, population and physical 

factors need to be made available as detailed, spatially disaggregated data and reduced to 

comparable scales. Although there is ample research on urban growth as separate geographic and 

demographic phenomenon, there is little research and no dataset in which these parameters are 

integrated. This study proposes a new methodology to foster this integration. That methodology is 

the focus of this paper, along with the discussion of some analytical results and suggestions for 

future research. 

 

BACKGROUND 

 

While many environmental data are available already as spatial datasets, demographic data 

tend to be collected by administrative units and therefore require some form of spatial allocation 

to convert irregularly shaped census units to globally or regionally consistent population grids. 

Several researchers and institutions in recent years have used new methods and data to map the 
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global distribution of human population. The first major effort to generate a consistent global 

georeferenced population dataset was the Gridded Population of the World (GPW, Balk and 

Yetman, 2004), produced at the National Center for Geographic Information Analysis (NCGIA) 

in 1995 (Tobler et al., 1997), and updated by CIESIN in 2000 (Deichmann et al., 2001).  The 

inputs to the GPW dataset are solely administrative boundary data and population estimates 

associated with those administrative units. Other efforts then followed, generally incorporating 

satellite data and other ancillary data.  In the LandScan database, for example, developed by the 

Oak Ridge National Laboratory, “sub-national census counts are apportioned to each grid cell 

based on likelihood coefficients, which are derived from proximity to roads, slope, land cover, 

night-time lights and other data sets, (Dobson et al, 2000). A third effort by UNEP and partners 

includes an “accessibility” model, whereby access to roads is used as a means to reallocate 

population (UNEP, 1996a, 1996b, 2000, 2004, and CIAT, 2003).  

Each of these approaches has strengths and weakness (see Dooley, 2004): GPW uses a 

simple areal weighting scheme for reallocation and the best possible census and administrative 

data available, but does not model population distribution within the administrative units. Its 

output resolution is 2.5 arc minutes. LandScan, conversely, does not use very high-resolution 

population input data, but uses an extensive model to reallocate people on a 30 arc second grid. 

Since some of the data used to reallocate persons may be outcomes of interest (e.g., distance to 

roads, or land cover), LandScan must be used with caution in studies involving environmental 

outcomes. GPW attempts to represent decennial population counts, whereas LandScan attempts to 

capture ambient—or at risk—population. The Accessibility model builds on the GPW tradition, 

but takes into account road networks and populated places in the reallocation of population. 

Unlike LandScan, only roads and populated places are used, and there is no explicit effort to 

capture the ambient quality of the LandScan approach. Like GPW, its output resolution is also 

moderate (2.5 arc minutes). The study presented here forwards a new methodology to extend the 

initial GPW efforts, to improve output resolution, and to overcome some of the use limitations of 

LandScan, by accounting explicitly for urban areas.   

In the process of reallocating population to urban areas, it is necessary to first construct a 

spatial database of those areas. To accomplish that, satellite data were a necessary additional 

input. The Defense Meteorological Satellite Program (DMSP) Operational Linescan System 

(OLS) “night-time lights” dataset has been increasingly used to estimate aspects of human activity 

at the global level. Satellite imaging of stable anthropogenic lights provides an accurate, 

economical and straightforward way to map the global distribution of urban areas, and several 

studies of DMSP-OLS stable night lights have shown encouraging agreement between temporally 
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stable lighted areas and various definitions of urban extent. The stable lights for the 1994-1995 

time period have been produced for most of the Americas, Europe, Asia and Northern Africa 

(Elvidge et al., 1997b) and have been used for a variety of applications. As with the population 

databases, there have been some relevant uses of the night-time lights data. For example, Sutton et 

al. (1997) examined the potential use of the stable lights data to revise estimates of the population 

of urban areas around the world; Imhoff et al. (1997a, 1997b) used the stable lights to estimate the 

extent of land areas withdrawn from agricultural production; and Elvidge et al. (1997b, 1997c) 

found that the area lit from the stable lights of individual countries is highly correlated to the 

Gross Domestic Product. More recent efforts include a pilot study to map urban land cover by 

fusing the night-time lights dataset with GPW and a MODIS-derived land cover classification 

(Schneider et al. 2003), and Pozzi et al. (2003), which maps global urban population by 

integrating GPW and the night-time lights. None of these efforts, however, attempts to merge the 

lights directly with city-level census data to derive population estimates of urban areas. Thus, 

using GPW as a base, in 2000, CIESIN, IFPRI, the World Bank and CIAT began the multi-year 

effort of the Global Rural Urban Mapping Project (GRUMP). This effort aimed not only to 

construct an improved population grid, but also to construct a globally consistent database of 

urban areas. 

The methods presented in this paper are based on the premise that data may be combined 

from several disparate data streams: census (or census-type) inputs on the population size (of 

settlements and administrative areas), with associated names; and two key pieces of geographic 

information, latitude and longitude of settlements, and boundaries for administrative areas and 

urban extents (the latter being identified using the night-time lights and ancillary geographic 

datasets). The resulting dataset consists of three distinct products: a human settlements database, 

an urban extent database, and an urban-rural population grid or surface.  

 

METHODOLOGY 

 

This project aimed to produce three databases that could be used in an of themselves or in 

combination with each other. These databases are: 1) Human Settlements points, 2)  an Urban 

Extent ‘Mask’ and 3) an population grid or surface where population is reallocated in urban areas. 

Here we describe the methodology—and underlying data—used in the development of these 

datasets.  
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Human Settlements 

 

Although there are many gazetteers listing populated places, few of these contain 

population estimates for those named places. Similarly, databases of city population estimates 

rarely include geographic information, such as the latitude and longitude coordinates let alone 

area or other spatial information about each urban area. Several collections, such as the UN 

Demographic Yearbook (UN, 2002b) or the UN’s World Urbanization Prospects (UN 2002a) 

include coordinates, and type of urban area, for places of 100,000 and 750,000 persons, 

respectively. 

The GRUMP human settlements database is a global database of cities and towns of 1,000 

persons or more, where each settlement is spatially represented as a point, and has associated 

tabular information on its population and data sources. Population data were gathered primarily 

from official statistical offices (census data) and secondarily from other web sources, such as 

Gazetteer and CityPop
1
, or from specific individual databases when official statistical databases 

were not available. Based on the data available and applying UN growth rates, we estimated 

population in 1990, 1995, and 2000. In some cases, the records for cities and town included 

latitude and longitude coordinates. For those where coordinates were not available we matched 

the settlement name and administrative units with the National Imagery and Mapping Agency 

(NIMA) database of populated places. Although we automated the matching of places to 

coordinates found in the NIMA database, this process still required considerable validation with 

other sources, and sorting through multiple options (i.e., NIMA often provides several, slightly 

varying sets of coordinates to match a single place name in a given administrative unit). 

Nonetheless, we did not have means to consistently validate the positional accuracy of the NIMA 

coordinates for all cities, and therefore some of the cities and towns might not be accurately 

geolocated. Table 1 shows the distribution of data sources, while figure 1 shows the settlement 

points database in a portion of South America, by population size. 

                                                 
1 Gazetteer (www.gazetteer.de) and CityPop (www.citypop.de) are two publicly available datasets which contain 

collections of information from varying sources, not always specified.  

http://www.gazetteer.de/
http://www.citypop.de/
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Table 1. Distribution of population data sources by continent.  

Source Asia Africa Europe North America South America Oceania World Percentage

Census 9,666 2,525 6,641 27,493 4,889 451 51,665 73.2

World Gazetteer 2,210 561 4,799 243 74 168 8,055 11.4

CityPop 1,363 319 3,364 443 304 179 5,972 8.5

Others 7 737 0 119 4,002 1 4,866 6.9

Total 13,246 4,142 14,804 28,298 9,269 799 70,558 100.0  

Note: “Census” include also data from Statistical Yearbooks, Statistics from State Departments  and on-line 

Statistical Offices. “Others” include data from AFCities, ASCities, the World Bank, CIA Factbooks and CELADE 

(Latin American and Caribbean Demographic Centre). 



Lambert Azimuthal Equal Area Projection

0 250 500 km

Settlements by Population Size, 2000

<100K 100 to 500K 500K to 1 Million 1 to 5 Million 5 Million +
Center for International Earth Science Information Network (CIESIN),
Columbia University; International Food Policy Research Institute (IFPRI),
the World Bank; and Centro Internacional de Agricultura Tropical (CIAT),
2004. Global Rural-Urban Mapping Project (GRUMP): Urban Extents.
Palisades, NY: CIESIN, Columbia University. Available at
http://sedac.ciesin.columbia.edu/gpw.
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Urban Extent ‘Mask’ 

 

While much research has been undertaken to describe the extents, landscapes, and changes 

of local urban areas (Seto, 200X, Weeks et al. 200X) and applied to a variety of environmental 

and ecological changes (e.g., Tatem and Hay 2004), none has been undertaken in a systematic 

way at the global level. Efforts to use moderate-resolution vegetation-detecting optical satellite 

imagery prove too costly, and inconsistent, to detect built-up areas globally (Small, 200x, Tatem 

et al. 2004). While other satellite data, such as new radar data from the SRTM, holds promise for 

the detection of built-up areas globally (Ngheim et al., 2001), the effort has yet to be attempted.  

The GRUMP Urban Extent Mask attempts to somewhat crudely represent the extents 

associated to the human settlements. In particular we now describe the sources of the physical 

extents of the settlements and the methodology to assign population from the point database to the 

areal extents.  

The physical extent of settlements has been derived largely from NOAA’s the Night-time lights 

dataset (Elvidge et al., XXXX), which produced a composite data set of stable “city” lights using 

time series data from the DMSP-OLS for the period 1 October 1994 to 30 April 1995, where the 

pixel values are measurements of the frequency with which lights were observed, normalized by 

the total number of cloud-free observations. Additionally, we used one other global-scale dataset: 

Digital Chart of the World’s Populated Places (DCW): an ESRI product originally developed for 

the US Defense Mapping Agency (DMA) using DMA data and currently available at 1:1,000,000 

scale (1993 version). The “populated places” coverage is available for most countries and 

contains depictions of the urbanized areas (built-up areas) of the world that are represented as 

polygons at 1:1,000,000 scale.  

Additionally, in Africa and Latin America, two other sources of data were used to 

supplement the lights and DCW datasets. Tactical Pilotage Charts (TPC): standard charts 

produced by the Australian Defense Imagery and Geospatial Organization, at a scale of 

1:500,000, originally designed to provide an intermediate scale translation of cultural and terrain 

features for pilots/navigators flying at very low altitudes where used for Africa. Each chart 

contains information on cultural, drainage/hydrography, relief, distinctive vegetation, roads, sand 

ridges, power lines, and topographical features. Settlements are reported both as polygons and 

points. Polygons and points were digitized for a number of countries, especially where lights and 

DCW data did not adequately delimit urban areas.  

All the sources of urban extent were combined in order to obtain the maximum possible 

coverage for each country. The night-time lights were used as a baseline (due to its global 
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coverage), and then polygons that did not intersect any existing light were added from other 

sources. Therefore, the total number of urban polygons in each country is the number of lighted 

areas plus all the other polygons identifying settlements that were not already identified by the 

lights. These polygons are characterized only by the basic geographic attributes, such as area and 

perimeter and do not have population attribute data.  To create the Urban Mask from all the 

different sources we developed a hierarchical process, as follows. 

First, we assign population from the points to the settlement extents, based on a 3km 

buffer distance.
2
 If multiple points are present, as in the case of an urban agglomeration, the sum 

of the population of all points is assigned to the polygon. The name of the most populous city 

within the buffer is assigned to the polygon. Then, we estimate areal extents for points without 

polygons, based on a relationship between population size and areal extents for the points with 

known parameters. This relationship is derived from a logarithmic regression that predicts the 

expected geographic size of a place, given its population size. Where the number of observations 

is greater than 20 known relationships, we use country-specific regressions, otherwise regional 

regressions were used where regions were constructed according to the UN Statistics Division 

(UNSD) sub-continental regional codes. Based on these area values, we create circles, centered on 

the points. Finally, we add these newly created polygons to the existing ones to create a complete 

urban extent coverage for each country. Figure 2 shows the extent of urban places (as identified 

by the urban mask) in a portion of South America.  

There are two main problems that arise when using the night-time lights dataset as a 

baseline to identify urban extents: the insufficient detection of small settlements that are not 

frequently illuminated and the blooming effect. While the first one has been reduced by using 

ancillary data, such as DCW and TPCs polygons, the blooming effect still remains unsolved. The 

blooming effect is an overestimation of the real extents of urban areas, and is believed to be 

dependant on the intrinsic characteristics of the sensor (Elvidge et al., 2004). For a more detailed 

discussion and examples of the blooming effect, see the section under Discussion.  

 

                                                 
2 The selection of the 3km buffer was based on the instrinic error associated with the night-lights of 2.7 km (Elvidge, 

YEAR).  
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Center for International Earth Science Information Network (CIESIN),
Columbia University; International Food Policy Research Institute (IFPRI),
the World Bank; and Centro Internacional de Agricultura Tropical (CIAT),
2004. Global Rural-Urban Mapping Project (GRUMP): Urban Extents.
Palisades, NY: CIESIN, Columbia University. Available at
http://sedac.ciesin.columbia.edu/gpw.
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Population grid with urban reallocation 

 

The GRUMP population grid is a 30-arc second population distribution raster dataset that 

was developed by combining population data from the census administrative units and from the 

urban extent mask. To create the population surface, we developed a mass-conserving algorithm 

called GRUMPe (Global Rural Urban Mapping Programme) that reallocates people into urban 

areas, within each administrative unit. In particular we used data inputs from two vector sources:  

(1) Administrative polygons, containing the total population for each administrative unit; (2) 

Urban areas, containing the urban population for each area.  

These two data sets are combined in such as way that an intermediate (polygon) data set 

representing the urban and rural areas, but which does not assign populations into those areas, is 

produced.
3
 This intermediate dataset is then passed to GRUMPe, a stand-alone model written in 

C, that assigns population to each new polygon and labels it as rural or urban. Typically, the 

algorithm works on a country-by-country basis and uses the following pieces of information: The 

size and population of each urban area, denoted by a unique urban area identifier, the size and 

population of each administrative area denoted by a unique administrative identifier, the size of 

the intersect areas where the urban and administrative areas overlap, and the UN national 

estimates for the percentage of the population in urban and rural areas (UN, 2002). 

The goal of the algorithm is to reallocate the total population in each administrative unit 

into rural and urban areas while reflecting the UN national rural-urban percentage estimates 

closely as possible.  The algorithm was designed to have few constraints and to make the 

constraints simple and reflect common sense. There are 6 constraints in total: (1) The total 

population (urban + rural) within any given administrative units remains constant; (2) The urban 

population density in any given administrative unit must be greater than the rural population 

density in that administrative unit; (3) The rural population density in any given administrative 

unit cannot be lower than a national minimum rural population density threshold; (4) The rural 

population density in any given administrative unit cannot be greater than a national maximum 

rural population density threshold; (5) The urban population density in any given administrative 

unit cannot not be greater than a national maximum urban population density threshold; (6) The 

urban population density in any given administrative unit cannot not be lower than a national 

minimum urban population density threshold. 

The algorithm works on each administrative unit in turn, and checks the urban and rural 

populations within that administrative unit against constraints 2 to 5.  If any of the constraints are 

                                                 
3 Using the ArcInfo command IDENTITY  
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not met, then the rural and/or urban populations are adjusted literately to meet them while 

ensuring that constraint 1 is met.  These constraints and the national population density thresholds 

are controlled by parameters that are passed to the algorithm. If no parameters are specified then 

the algorithm will assign fixed values that have been empirically determined to be good first 

estimates. 

The adjustment in population is trivial when there are no or one urban area per 

administrative unit, and where the urban area lies wholly within the administrative unit.  It 

becomes increasingly complex however when there are more than one urban area, and urban areas 

overlap more than one administrative area (e.g., Cali, Colombia), and large urban areas contain 

more than one administrative area (e.g., Quito, Ecuador). All of these are common situations, and 

may require successive iterations to meet all the constraints. The algorithm can also be run on a 

region-by-region basis (such as states or other first-level administrative units), such that the 

national constraints (3 to 6) now become regional constraints and will better reflect the state-level 

variation in rural/urban population percentages in large countries like the USA. This approach 

was employed for most of the largest countries or countries with very large numbers of 

administrative units (e.g., South Africa).  

The resulting map, Figure 3 (on the following page)—a close-up of Cali, Colombia—

shows the data before and after running GRUMPe. Note how, where urban areas are present in a 

given administrative unit, the density of the GPW administrative units decreases after GRUMPe 

because people are reallocated into their respective urban areas. The final results from each 

country are then compared to the UN urban population estimates. Although the UN totals are 

useful as a benchmark, they are only that. Not only have recent studies shown the uncertainty 

associated with UN urban estimates (NRC, 2003), there are many reasons why our estimates may 

differ considerably from that of the UN’s. For example, our data stream may have included many 

more small settlements, including those below the urban threshold either given by the country, or 

implied by the region, in which case we would expect the comparison between percentages of the 

population living in urban areas to be quite different between the two. We estimate that in X% of 

the countries, we had a priori reasons to expect much different outcomes from the UN estimates 

(mostly but not always for the better), and in another Y% for them to match rather closely because 

our data streams matched closely those which they also report. In the remainder of the countries, 

we had no information either way to predict the closely to those estimates.  

The final stage is to convert the output coverage from GRUMPe into a grid, at 30 arc-

seconds resolution. 

 



Cali

Center for International Earth Science Information Network (CIESIN),
Columbia University; International Food Policy Research Institute (IFPRI),
the World Bank; and Centro Internacional de Agricultura Tropical (CIAT),
2004. Global Rural-Urban Mapping Project (GRUMP): Urban Extents.
Palisades, NY: CIESIN, Columbia University. Available at
http://sedac.ciesin.columbia.edu/gpw.
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RESULTS 

 

In addition to validating the data set (described in the next section), we initially 

constructed continent- and global-level summaries of the number, size and density of settlements 

and urban extents. Table 2 shows the characteristics of the population data for the three data 

products, including summary statistics for the year 2000. The minimum population size of 1 in the 

human settlements database corresponds to a few cities in the US census that are declining in 

population. While we included all settlements in the points database, we only included those with 

a population greater than 1,000 people in the urban mask. This explains the minimum population 

size of the urban extents. Even though not included in the table, we note here that the minimum 

areal size is less than 1 km
2
 (several places across the world) while the largest is that of Tokyo 

(which is a continuum that extends south to Osaka) with more than 30,000 km
2
. 

 

Table 2. Characteristics of the three data product.  

Data Product Measure Africa Asia Europe Oceania

North 

America

South 

America Global

 Min pop 

size

Max pop 

size

Settlement Points Total number 

of points

4,142 13,246 14,804 799 28,298 9,269 70,558 1 (various, 

USA)

18,326,722 

(Mexico City)

Urban Extents Total number 

of polygons

2,778 10,123 4,666 242 1,970 4,356 24,135 1,000 

(various, 

USA)

72,786,683 

(Tokyo)

Population Grid Total number 

of 

administrative 

areas

109,120 88,782 91,086 2,153 74,421 10,919 376,481 1 (various) 10,434,252 

(Brazil)

Note: as the GRUMP input are the GPW administrative units, we report that number as input of the urban-rural 

surface grid. 

 

An interesting example that shows the differences in data collection and spatial 

representation of the cities between the UN view and the GRUMP approach is that of Tokyo. 

Although the UN reports Tokyo as the largest city, with more than 26 million people in 2000 

(UN, 2002b), Tokyo is not the largest city in the settlements database, due to different data 

collection systems (the census data reports population for the city proper, while the UN might 

include some other neighboring settlements). Consistently with the UN numbers, Tokyo is the 

largest city when we look at the urban extents. In this case, though, the total population is much 

greater than what reported by the UN, because the lights extend far beyond the administrative 

boundaries of Tokyo. In particular the Tokyo light covers an area of more than 30,000 km
2
 and 

includes more than 500 other settlements, making it the largest urbanized area. Although, in the 

population grid this does not pose a problem, and while most of the land area around Tokyo is 
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likely urban, this is almost certainly an upper bound estimate of even an agglomerated view of the 

Tokyo metropolitan area.  

Figure 4. shows a continental breakdown of the number of settlements by population size, 

in the database (noting the truncated display for North America). This figure speaks both to the 

availability of data and to the world’s settlement patterns. There is much more information on 

smaller settlements for the more developed or urbanized regions of the world, i.e., in North and 

South America, Europe, and Oceania. While it is probably true that in these continents, as well as 

globally, there are many more small settlements than larger ones, the smaller ones require greater 

institutional capacity on the part of national statistical offices to track and disseminate information 

about. Thus, in Asia and Oceania, the GRUMP databases rely on less information about 

settlements below 20,000 persons. Cautious users, therefore, might want to apply a city-size 

threshold of 20,000 persons, if they are interested in making comparisons across countries that do 

not reflect data collection as much as settlement patterns.  

 

Figure 4. Settlements distribution by continent and population size.  
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Table 3 shows the distribution of the world’s population by city size classes, with associated 

population densities. While there is general agreement in the population totals, and overall 

proportions urban, GRUMP estimates that 6.7 rather than 3.7 of the urban dwellers reside in the 
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world’s largest megacities. It estimates close to 24,000 urban areas of 5,000 persons or more, in 

the year 2000. As expected, the geographically largest cities are the most dense with decreasing 

densities as city size declines.  

 

Table 3. Distribution of the world’s population by size class of settlements, in 2000,  as estimated by the UN 

and GRUMP.   

UN UN GRUMP

Size class of urban settlement 

(number of inhabitants)

Number of 

settlements

Population 

Density

Total 794,000 791,821 27

Urban area 295,000 303,784 2,778 1278 37.2 38.4

10 million or more 0 32,049 2 2208 0.0 4.0

5 million to 10 million 23,000 21,414 3 1948 2.9 2.7

1 million to 5 million 64,000 86,015 40 2529 8.1 10.9

500,000 to 1 million 26,000 31,657 45 2004 3.3 4.0

under 500,000 181,000 132,649 2,688 22.8 16.8

100,000 to 500,000 75,173 365 1357 9.5

50,000 to 100,000 22,797 322 863 2.9

20,000 to 500,000 20,336 649 580 2.6

5,000 to 20,000 14,343 1352 316 1.8

Rural area 498,000 488,037 -- 17 62.7 61.6

Distribution of the world's population by size class of settlement, 2000 

GRUMP

Total Population (000s) % of Total  Population

 

Note: The total number of settlements is different from that in Table 2, as the numbers in this table are calculated 

after the GRUMPe and the gridding processes by class of settlements. For technical reasons,  settlements just above 

or below 5,000 might be classified slightly differently in the pre-GRUMPe mask than in the post-GRUMP mask and 

associated 1 km population surface. 

 

A second analytic objective was to summarize urban patterns —both in terms of 

population and land areas-- by ecosystems. Table 4 shows the power of these new data, when 

integrated with other geographic data. Here the urban extent mask and the gridded population 

surface are overlaid with ecosystem boundaries from the Millennium Ecosystem Assessment 

(ref). This table, prepared for an assessment of urban systems (McGranahan et al., forthcoming) 

shows that coastal and island systems tend to be the most densely populated, followed by systems 

with water and other agricultural resources—namely, cultivated and inland water systems—but 

that in coastal areas, land area is disproportionately urban. Two systems—coastal and 

cultivated—also sustain high rural population densities. Forested and mountain ecosystems, 

which sustain the same total population as coastal ecosystems are much less urban, and thus 

sustain much lower population densities, even its urban areas.  

 These data suggest that roughly 3% of the earth’s surface is occupied by urban areas, the 

majority of which concentrated in coastal and cultivated environments. This is somewhat greater 
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than the often-cited suggestion of 1-2% of land area (ref). It is noteworthy that the although the 

highest share of urban land area is in the coastal zone (10.2%) is coupled with the highest share of 

urban population (64%), cultivated systems have 6.8% of their land area in cities, perhaps 

somewhat surprisingly. These areas are somewhat less urban (44.9%) other ecosystems, such has 

islands and water, with smaller shares of land going to urban area. Although many cultivated 

areas explicated omit urban centers from their ecosystem, smaller settlements, and the periphery 

of large settlements are commonly found in cultivated zones.   

 

 

DISCUSSION 

 

Advantages and disadvantages of the GRUMP methodology 

 

The methodology presented has both advantages and disadvantages compared to existing 

datasets, such as GPW, LandScan and other approaches. As compared to the approaches 

discussed in Pozzi et al. (2003), Schneider et al. (2003), the Accessibility model (UNEP et al., 

2004), and to LandScan (Dobson et al., 2000), this method has the advantage of using population 

data for settlements from census data, rather than predicting population density based on 

probability coefficients or lighted areas. Therefore, we have an independent and more or less 

reliable measure of population. Further, this methodology makes use of other GIS data to identify 

urban areas, compensating for the small settlements in poor countries that are not detected by the 

night-time lights. We know that the lights dataset has two main problems: the blooming effect 

(see below) and the insufficient detection of small settlements that are not frequently illuminated. 

While there is not yet a method to improve upon these two elements at a global scale, using 

ancillary data to identify small settlements has proved useful in several countries in Africa. As 

compared to GPW,  although this method produces a model surface, as opposed to a more 

heuristic one from GPW, it allows for improvements not only in resolution but also in the 

positional accuracy of human population distribution.  

As for GRUMPe—the mechanism through which the modeling occurred—it proved to be 

a good tool to refine GPW in countries where administrative data is coarse. Although the 

administrative data in Colombia is relatively good, the size of the units is such that the 

reallocation works very well. As shown in Figure 5 there are cases of relatively large 

administrative units with one or two cities within, and we can clearly see how the GRUMPe 

assigns people to the urban areas, decreasing the density of the remaining administrative unit.  
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Then, there are cases, like Cali, where the urban areas identified by the lights expand over 

several administrative units. Also in this case, the reallocation process outputs a population 

distribution that is more consistent with the notion that people tend to be more concentrated into 

the urban areas rather than uniformly distributed across an administrative unit. GRUMPe also 

proved to be an effective way to compensate for the blooming effect in some countries where 

administrative data include city boundaries. In this case the total population allocated to the light 

is larger than the census value for the same city, but, given the type of administrative data, the 

result is a structure that has a more densely populated urban core at the center of the light, 

surrounded by a lower-density outskirt, as shown in Figure 5. 

 

 

Figure 5 (see following page). Grump output in Eastern Europe, and close -up view of western Ukraine, 

showing the effect of the grumping process where administrative data include city boundaries smaller than the 

urban extents derived from the lights. 
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We also have found some instances where GRUMPe does not work as effectively as in other 

cases. First, in countries such as Malawi, where GPW is very detailed, there are more than 9,000 

administrative units, but only about 40 urban extents, most of them very small. Therefore 

GRUMPe does not provide any additional information on population distribution. This is not so 

much of a problem, rather than noteworthy for consistency sake, since most countries do not have 

such high- resolution data. Another example of the GRUMPe limitations is related to small, 

populated islands, like several islands in the Caribbean or in the Pacific. These islands might have 

one or two isolated small urban centers, but, due to the blooming effect, appear all lit. In this case, 

the reallocation of the population into urban areas and rural areas is not very effective, as the 

urban areas identified by the lights could cover the entire islands, even though the urban 

population is only a fraction of the total population, and the administrative data is generally good. 

Fortunately, inputs in the underlying administrative and population data for GPW version 3 have 

improved substantially for more than half of the world’s island nations (Balk and Yetman, 2004).  

Where the administrative data are poor in the sense that they attempt to approximate urban 

centers, but do so inadequately (e.g., the construction of small triangular shapes to represent urban 

centers in the former Soviet republics) and the lights data are moderate to poor, GRUMPe may 

assign too high a population density value to such a small area. In this case, its general assignment 

is correct, but the extent is limited both by the lights and the administrative data’s shortcomings.  

In sum, GRUMPe performs moderately well. Where administrative data and the lights data 

are good (x% of cases), GRUMPe does not perform very well. However, in these instances, there 

is less imperative for it to work well; it is only a problem in the event that it introduces error or 

degrades the data quality, both open questions at this point. Where administrative data are 

moderate or poor, and the lights (and more intensive substitutes) are moderate to good, GRUMPe 

performs very well (y% of cases). Where both the administrative data and the lights (or its 

substitutes) are poor GRUMPe just does not have much to work with (z% of cases). As is 

generally the case, there are no perfect substitutes for good data.  

 

Blooming Effect 

 

The blooming effect is an overestimation of the real extents of urban areas, and is believed 

to be dependant on the intrinsic characteristics of the sensor (Elvidge et al., 2004). Early efforts to 

threshold the lights globally, such as by Imhoff and colleagues (1997), are inappropriate in this 

context because their study sample was small and concentrated in a well-light region of the United 

States. Figure 6 shows examples of the extents of the urban areas of Quito, Ecuador, and Lagos 
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and Ibadan, Nigeria, as detected by Landsat and by the night-time lights. Note how much larger 

the night-time lights areas are. For Quito in particular, the area estimated by the Landsat polygons 

is 187 km
2
, while the area covered by the light is 1690 km

2
. A more detailed comparison of 

lighted area with built area estimates from Landsat imagery of 17 cities worldwide (Small et al., 

forthcoming 2005) shows that lighted areas are consistently larger than even maximum estimates 

of built areas for almost all cities in every light dataset. Thresholds >90% can often reconcile 

lighted area with built area in the 94/95 dataset but there is not one threshold that works for a 

majority of the 17 cities considered. Moreover, such a high threshold would result in the loss of 

several small settlements that are not frequently illuminated. The same study shows that, even 

though a 10% threshold could reduce the blooming effect without significantly attenuating many 

individual small settlements for the 1994/1995 dataset, this detection frequency threshold does not 

provide a globally consistent basis for reconciling lighted areas to urban extent. For this reason, 

and because detection is more of a concern than blooming for the global database, we did not 

apply any thresholds to the lights. 

Further, while blooming is noted to be a problem, it is probably much less of one for the 

production of a global population distribution grid because that redistribution is to go from even 

much coarser administrative units to these urban areas. Thus, the direction of the reallocation we 

argue is a vast overall improvement in the database. Furthermore, for the largest cities, where 

blooming is probably greatest, there tend to be better sub-urban administrative units, so that the 

population within the extents will show the detail of the underlying detail. Nevertheless, future 

work should continue to determine the possibility of reducing the lights, as appropriate, so that the 

blooming effect is minimized. 

A new generation of annual global OLS nighttime lights are currently in production for the 

1992-2003 time period.  The new products will report the average visible band digital numbers 

(DN) of lights, but will not be radiometrically calibrated.  NGDC plans to cross calibrate each of 

the annual products, but in relative sense, not absolute.  The Visible Infrared Imaging Radiometer 

Suite (VIIRS) instrument will continue the low light imaging measurements of the OLS, with 

substantial improvements in calibration, spatial resolution and levels of quantifications.  It is 

anticipated that the nighttime lights products derived from VIIRS data will be superior to those 

possible from the OLS. 

 



 

Figure 6. Night-time lights and urban polygons overlayed to Landsat scenes for Quito, Ecuador 
(top) and southern Nigeria (bottom). Urban areas are easily identifiable in purple. In the Quito 
image, the urban polygons are derived from digitization of urban areas from Landsat data, as 
part of the TREES project, while the polygons in the Nigerian map are DCW polygons. Note 
how in both cases the urban polygons are much smaller than the night-time lights estimates. 
In particular, the TREES polygons in the Quito urban area sum to 187 km2, while the area 
covered by the light is 1690 km2. The blooming is also apparent in Nigeria, where all cities in 
the Landsat image appear smaller than what detected by the lights, even though in this case 
the cities seem to bloom less that Quito. Also note how the DCW polygon underestimate the 
urban area of Ibadan (the large one in the northern portion of the image) while the lights 
provide a more accurate spatial representation of the city. 
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VALIDATION 

 

When producing these datasets, we faced two main problems: first the mismatch between 

the lights and the points, which leads to 1) the removal of several lights, and to 2) the creation of 

circles for the points; and second the blooming effect and the overestimation of the urban extents. 

The first type of problem is primarily dependant on population data collection and on coordinates 

availability. In some cases, the census or gazetteer just have poor points data to begin with. In 

some other cases, for a given settlement, the NIMA matching produces several inconsistent results 

and we have no means to validate the geolocation accuracy of one over the other, resulting in the 

removal of that given point from the database. The result is that often we have lights with no 

settlements (that will be removed from the Urban Mask) and settlements characterized by an 

artificially circular shape.  

 

Lost Lights 

 

To assess the extent of the “lost lights” we selected all the lights with no population and 

calculated the proportion of these unpopulated lights over the total number of lights for each 

country. … 

 

Circles 

 

To come… 

 

Overestimation 

As detailed in Elvidge et al. (2004), we know the lights tend to overestimate the actual 

extents of the urban areas. Since we use the areas of the light along with population data to 

estimate the areas of the settlements and to construct circles, it is very important that we also try 

to assess the extent of this overestimation. As previously mentioned, Small et al. (forthcoming 

2005) show that lighted areas are consistently larger than even the maximum estimates of built 

areas for almost all cities considered, and that only thresholding at very high frequency will 

reconcile lighted areas with built areas. To assess the extent of the overestimation, we used areal 

estimates from polygons derived from high resolution satellite data and compared those to lighted 

areas for corresponding settlements. In particular, we used the polygons from the TREES project 

for a sample of countries in Latin America.  
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 The TREES Project (Tropical Ecosystem Environment Observation by Satellites) was set 

up in the early 1990s, by the European Commission for global humid tropical forest monitoring, 

using medium-resolution satellite data (in particular SPOT and Landsat). Several sites in Latin 

America were identified according to the high (hot spot) and low range of deforestation. Satellite 

data for these sites were classified based on visual interpretation and in accordance to the 

CORINE land use/land cover classification system and supported by ancillary data (GET REF.). 

Only polygons  greater than 50 hectares were digitized at a scale of 1:100 000. We used the 

polygons classified as “urban” for 13 sites in Columbia, Ecuador and Peru, processed by CIAT. 

We found that the average ratio of area estimated by the TREES polygons to that of the lights is 

about 5%. It also appears that this proportion is not dependant on the size of the light or the 

TREES polygons. 

As we use DCW polygons on a global scale to supplement the lack of lights, we also 

compared the areal extents of DCW polygons with those of the lights in selected areas worldwide. 

In this case the ratio of DCW area to the area of the lights is about 7%. This should not be taken 

as an absolute ratio, because it was calculated only on a sample of 20 countries, and the DCW 

polygons are very inconsistent, in that they are very accurate in some countries (especially some 

European countries, where the ration can be as high as 30%), and very much inaccurate in others 

(especially African and Asian countries, where the ratio is often around 1%). 

This type of analysis gives us an indication of how large the lights are compared to other 

polygons, but it cannot be used as a sound method to shrink the lights. In fact we need to keep in 

mind that sometimes other polygons tend to underestimate urban areas, and can be either 

inconsistent across different countries or digitized according to standards of minimum areal 

extents.  

 

CONCLUSIONS 

 

One of the main objectives of this project was not only to construct an improved 

population grid that systematically accounts for urban centers, but also to construct a globally 

consistent database of those urban areas. As several studies show, there have been several 

attempts to map or model population distribution, but few of them account explicitly for urban 

areas, or attempt to merge the lights directly with city-level census data to derive population 

estimates of urban areas. The methodologies detailed here take a comprehensive and systematic 

approach to combine several data streams into estimates of urban extents and population 

distribution.  
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If we look at the three separate products of the Global Rural Urban Mapping Project 

(GRUMP) we can draw the following conclusions: Data gathered from the census or census-like 

sources seems to provide considerably more detailed information about population distribution for 

settlements under 500,000 people than the UN estimates. The Population Division actually 

collects information for smaller cities, but does not do so systematically. The Statistics Division 

collects some—less systematic—information for places of 100,000 or more, but neither they nor 

the Population Division attempt to collect data below 100,000 persons. We show here that nearly 

20% of the world’s urban population lives in cities of these sizes, thus GRUMP substantially 

contributes by amassing these data.  

Spatial information about cities is also very important and it is a piece of information that 

is missing entirely from the UN statistics. Despite the caveats about using the night-time lights 

dataset as a baseline for delineating urban extents (i.e., the blooming effect, etc), this project 

represent the first attempt to systematically map urban areas at the global level, by using satellite 

and geographic data without any prediction modeling. The Urban Extents Mask could certainly be 

considered the first global population dataset to explicitly include the extents associated to human 

settlements. 

The GRUMPe algorithm also presents some limitations (where administrative data and 

lights both very good or fairly poor, the performance of GRUMPe is suboptimal), but overall it 

seems to perform well, especially where administrative data are moderate or poor, and the lights 

(and more intensive substitutes) are moderate to good. Although the algorithm might still need 

some refinement to further improve the reallocation process, the methodology is overall 

conceptually sound and allowed us to improve the positional accuracy of human population 

distribution. 

Improved knowledge of the spatial distribution of urban and rural population is extremely 

important for assessing socioeconomic, demographic and environmental change in urban and 

rural areas. These products allow one to easily estimate the percentage of urban people living in a 

given environment, or a given country or region, based on an improved spatial distribution of 

population at a relatively fine scale (30 arc-second, nominally 1 km at the equator). As shown 

here, these data provide the first systematic assessment of the world’s urban land area (nearly 

3%), and how distributions by ecosystems differ dramatically.  Coastal zones are the most urban 

of all systems, and sustain the highest population densities, not only in the urban areas, but in the 

rural ones as well.   

These data can also be used to provide much greater information on distances to urban 

areas, where the places can be classified according to information about their population and 
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geographic size. Much attention has been made on the importance of moving toward an urban 

continuum (NRC, 2003, Woods, 2003) and these datasets are a first big step in moving in that 

direction. These data have already been used in studies of mortality (Balk et al., 2004) and hunger 

(Balk et al., 2004) in Africa, by combining these data with household survey data. Other early 

uses of the data have been to use the population surfaces in assessing malaria risk (Hay et al, 

200X) and dimensions of rurality (Chomitz et al., 200x). Continued uses will assist in 

contributing to the dialogue on how best to collect, interpret, and process information to maximize 

flexible and creative new uses of these data.  

The main challenge of this methodology, is the complex and time-consuming procedure 

that goes from collecting and processing the census data, to combining the city population with 

the spatial information about the settlements and finally to reallocating people from the 

administrative units into the urban centers. Some of that complexity could be reduced as 

institutional capacity increases in the production and distribution of urban data, as has already 

happened for administrative data over the past 10-15 years (see Balk and Yetman, 2004). Further 

gains may be made by establishing international guidelines on the definition and correspondence 

between metropolitan areas of different types (see Champion and Hugo, 2003). In hindsight, such 

guidelines would make an invaluable contribution in reducing the processing time, but also 

increasing the accuracy of the underlying point data, upon which both the extent mask and 

population surface are based. Finally, even though we estimated population for three time periods 

(1990, 1995, and 2000), users need to remember that the lights refer to one point in time only (the 

1994/1995 time period), therefore it would not be advisable to use these extents for any analysis 

of change in spatial parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The three GRUMP datasets (CIESIN et al., 2004a, 2004b, 2004c) are available freely at: 

http://beta.sedac.ciesin.columbia.edu/gpw. We also welcome users who notice such errors to 

report them to info@ciesin.columbia.edu. 

 

http://beta.sedac.ciesin.columbia.edu/gpw
mailto:info@ciesin.columbia.edu
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