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0. Preface: Seduced by zeros

0.1. The prime number theorem, a brief history. A prime number is a positive
integer which has no positive integer factors other than 1 and itself. It is difficult to
determine directly from this definition whether there are many primes, indeed whether
there are infinitely many.

Euclid described in his Elements, an ancient Greek proof that there are infinitely
many primes, a proof by contradiction, that today highlights for us the depth of abstract
thinking in antiquity. So the next question is to quantify how many primes there are up
to a given point.

By studying tables of primes, Gauss understood, as a boy of 15 or 16 (in 1792 or
1793), that the primes occur with density 1

log x at around x. In other words

π(x) := #{primes ≤ x} is approximately
∑

n≤x

1
logn

≈ Li(x) where Li(x) :=
∫ x

2

dt

log t
.

This leads to the conjecture that π(x)/Li(x) → 1 as x → ∞, which is hard to interpret
since Li(x) is not such a natural function. One can show that Li(x)/ x

log x → 1 as x→∞,
so we can rephrase our conjecture as π(x)/ x

log x → 1 as x → ∞, or in less cumbersome
notation that

(0.1.1) π(x) ∼ x

log x
.

It is not easy to find a strategy to prove such a result.
Since primes are those integers with no prime factors less than or equal to their

square-root, one obvious approach to counting the number of primes in (
√
x, x] is to try to

estimate the number of integers up to x, with no prime factors ≤ √
x. One might proceed

by removing the integers divisible by 2 from the integers ≤ x, then those divisible by 3, etc,
and keeping track of how many integers are left at each stage. No one has ever succeeded
in getting a sharp estimate for π(x) with such a sieving strategy, though it is a good way
to get upper bounds (see §3).

In 1859, Riemann wrote his only article in number theory, a nine page memoir con-
taining an extraordinary plan to estimate π(x). Using ideas seemingly far afield from the
elementary question of counting prime numbers, Riemann brought in deep ideas from the
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theory of complex functions to formulate a “program” to prove (0.1.1) that took others forty
years to bring to fruition. Riemann’s approach begins with the Riemann zeta-function,

ζ(s) :=
∑

n≥1

1
ns
,

which is well-defined when the sum is absolutely convergent, that is when Re(s) > 1. Note
also that by the Fundamental Theorem of Arithmetic one can factor each n in a unique
way, and so

(0.1.2) ζ(s) =
∑

n≥1

1
ns

=
∏

p prime

(
1− 1

ps

)−1

,

when Re(s) > 1.
The Riemann zeta-function can be extended, in a unique way, to a function that is

analytic in the whole complex plane (except at s = 1 where it has a pole of order 1).1 As
we describe in more detail in §0.8, Riemann gave the following remarkable identity for a
weighted sum over the prime powers ≤ x:

(0.1.3)
∑

p prime
pm≤x
m≥1

log p = x−
∑

ρ: ζ(ρ)=0

xρ

ρ
− ζ ′(0)
ζ(0)

,

counting a zero with multiplicity mρ exactly mρ times in this sum. By gaining a good
understanding of the sum over the zeros ρ on the right side of (0.1.3) one can deduce that

(0.1.4)
∑

p prime
pm≤x
m≥1

log p ∼ x,

which is equivalent to (0.1.1). To be more precise, the Riemann Hypothesis, that all such
ρ have real part ≤ 1

2 , implies that each
∣∣∣xρρ

∣∣∣ ≤ x1/2

|ρ| , and one can then deduce from (0.1.3)
that ∣∣∣∣∣∣

∑

pm≤x
log p− x

∣∣∣∣∣∣
≤ 2

√
x log2 x,

for all x ≥ 100; or, equivalently,

|π(x)− Li(x)| ≤ 3
√
x log x.

These estimates, and hence the Riemann Hypothesis, are far from proved. However we do
not need such a strong bound on the real part of zeros of the Riemann zeta-function to

1In other words, there is a unique Taylor series for (s − 1)ζ(s) around every point in the complex
plane.
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deduce (0.1.1). Indeed we shall see in §0.8 how one can deduce the prime number theorem,
that is (0.1.1), from (0.1.3) simply by knowing that there are no zeros very close to the
1-line,2 more precisely that there are no zeros ρ = β + it with β > 1− 1/|t|1/3. Note that
there are no zeros ρ with Re(ρ) > 1, by (0.1.2).

Clever people near the end of the nineteenth century were able to show that the prime
number theorem would follow if one could show that ζ(1 + it) 6= 0 for all t ∈ R; that is
there are no zeros of the Riemann zeta-function actually on the 1-line. This was proved
by de la Vallée Poussin and Hadamard in 1896.

Exercises. 0.1) Show that Li(x) = x/ log x + O(x/(log x)2) and then give an asymptotic series expansion
for Li(x). (Hint: Integrate by parts, and be careful about convergence issues).

0.2) Let p1 = 2 < p2 = 3 < . . . be the sequence of primes. Show that the prime number theorem, (0.1.1),
is equivalent to the assertion that pn ∼ n logn as n → ∞. Give a much more accurate estimate for pn

assuming that the Riemann Hypothesis holds.

0.3) Show that the prime number theorem, (0.1.1), is equivalent to the assertion

θ(x) :=
X

p≤x

log p ∼ x,

where we weight each prime by log p. (Hint: Restrict attention to the primes > x/ log x.)

0.4) Show that the prime number theorem, (0.1.1), is equivalent to the assertion

(0.1.4) ψ(x) :=
X

p prime
pm≤x
m≥1

log p ∼ x.

0.2. Seduced by zeros. The birth and life of analytic number theory. The
formula (0.1.3) allows one to show that the accuracy of Gauss’s guesstimate for π(x)
depends on what zero-free regions for ζ(s) have been established; and vice-versa. For
instance, if 1

2 ≤ α < 1 then

ζ(β + it) 6= 0 for β ≥ α if and only if |π(x)− Li(x)| ≤ xκ for x ≥ xκ,

for any fixed κ > α where xκ is some sufficiently large constant. More pertinent to what
is known unconditionally is that

ζ(β + it) 6= 0 for β ≥ 1− 1
(log x)α

if and only if |π(x)− Li(x)| ≤ x

exp(c3(log x)κ)
,

where κ = 1/(1 + α). The best result known unconditionally is that one can take any
α > 2

3 and hence any κ < 3
5 . This result is over fifty years old – the subject is desperately

in need of new ideas.
These equivalences can be viewed as expressing a tautology, between questions about

the distribution of prime numbers, and questions about the distribution of zeros of the
Riemann zeta-function, and whereas we have few tools to approach the former, the theory

2The “β-line” is defined to be those complex numbers s with Re(s) = β.
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of complex functions allows any number of attacks and insights into the Riemann zeta-
function. For more than 150 years we have seen many beautiful observations about ζ(s)
emerge, indeed it is at the center of a web of conjectures that cover all of number theory, and
many questions throughout mathematics. If one believes that the charm of mathematics
lies in finding surprising, profound conjectures between hitherto completely different areas,
then Riemann’s is the ultimate such result.

If one asks about the distribution of primes in arithmetic progressions then there
are analogous zeta-functions to work with, and indeed an analogous Generalized Riemann
Hypothesis.

0.3. Can there be analytic number theory without zeros? Is it really necessary to
go to the theory of complex functions to count primes? And to work there with the zeros
of an analytic continuation of a function, not even the function itself? This was something
that was initially hard to swallow in the 19th century but gradually people came to believe
it, seeing in (0.1.3) an equivalence, more-or-less, between questions about the distribution
of primes and questions about the distribution of zeros of ζ(s). This is discussed in the
introduction to Ingham’s book [I1]: “Every known proof of the prime number theorem is
based on a certain property of the complex zeros of ζ(s), and this conversely is a simple
consequence of the prime number theorem itself. It seems therefore clear that this property
must be used (explicitly or implicitly) in any proof based on ζ(s), and it is not easy to
see how this is to be done if we take account only of real values of s. For these reasons, it
was long believed that it was impossible to give an elementary proof of the prime number
theorem.3

In 1948 Selberg found an elementary proof of a formula that counts not a weighted
sum of primes up to x, but a weighted sum of those integers that are either prime or the
product of two primes, namely:4

(0.3.1)
∑

p prime
p≤x

log2 p+
∑

p,q prime
pq≤x

log p log q = 2x log x+O(x).

We will give Selberg’s proof of (0.3.1) in section 4.2. Such a formula is so close to the
prime number theorem that it would seem to be impossible to prove without zeros of ζ(s).
But what Selberg had done was to construct a formula in which the influence of any zeros
close to the 1-line is muted, and hence can be proved in an elementary way.5 From the

3An even better quote is due to Hardy: “No elementary proof of the prime number theorem is known
and one may ask whether it is reasonable to expect one. Now we know that the theorem is roughly
equivalent to a theorem about an analytic function... A proof of such a theorem, not fundamentally
dependent on the theory of functions, seems to me extraordinarily unlikely. It is rash to assert that a
mathematical theorem cannot be proved in a particular way; but one thing seems clear. We have certain
views about the logic of the theory; we think that some theorems, as we say, “lie deep” and others nearer
to the surface. If anyone produces an elementary proof of the prime number theorem, he will show that
these views are wrong, that the subject does not hang together in the way we have supposed, and that it
is time for the books to be cast aside and for the theory to be rewritten.”

4Here we introduce the “Big Oh” notation. That f(x) = O(g(x)) if there exists a constant c > 0
such that |f(x)| ≤ cg(x) for all x ≥ 1. We also can write f(x) ¿ g(x).

5See Ingham’s insightful Math Review of Selberg’s article for a detailed discussion.
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brilliance of this formula, Erdős quickly deduced the prime number theorem, followed by
a proof of Selberg shortly thereafter.

Other elementary proofs have appeared, most using some formula like (0.3.1). There
is another approach using a non-obvious re-formulation of (0.1.1):

0.4. The Möbius function. The Möbius function, µ(n), is given by the coefficients of
the inverse of the Riemann zeta-function; that is by

(0.4.1)
1
ζ(s)

=
∏

p prime

(
1− 1

ps

)
=

∑

n≥1

µ(n)
ns

,

where Re(s) > 1. More explicitly µ(n) = 0 if n is divisible by the square of a prime,
and µ(n) = (−1)k if n is the product of k distinct primes. Note that µ(n) is an example
of a multiplicative function, that is a function f : N → C for which f(mn) = f(m)f(n)
whenever (m,n) = 1; in particular f(pe11 p

e2
2 . . . pekk ) = f(pe11 )f(pe22 ) . . . f(pekk ) if p1, . . . , pk

are distinct primes.
One can easily predict the number of µ(n) that are 0, but it seems far less obvious

how many equal +1, and how many −1. Since multiplying n by one more (new) prime
causes µ(n) to change sign, one might guess that there are roughly equal numbers of +1
and −1 amongst the µ(n). This guess can be formulated as

lim
x→∞

1
x

∑

n≤x
µ(n) exists and equals 0,

which can be re-written more simply as

(0.4.2)
∑

n≤x
µ(n) = o(x).

What is surprising is that this statement is easily shown to be equivalent to (0.1.1),6 and
several elementary proofs of the prime number theorem focus on proving this statement.
Moreover the formulation (0.4.2) is key to the theory developed in this book.

0.5. Halász’s Theorem. Let f(n) be any multiplicative function for which |f(n)| ≤ 1
for all integers n ≥ 1. We are interested in determining when the mean value of f(n) up
to x is “large”, that is > δ in absolute value for some fixed δ > 0. There are some obvious
examples: If f(n) = 1 then the mean value is 1. The correct generalization of this is to
take f(n) = nit, for some fixed real number t. Then

1
x

∑

n≤x
nit ≈ 1

x

∫ x

u=0

uitdu =
1
x

x1+it

1 + it
=

xit

1 + it
.

Now this has absolute value 1/
√

1 + t2, so we must have |t| = O(1/δ) (which we will also
write as |t| ¿ 1/δ) to obtain a mean value of size > δ. Hence the absolute value of the

6Which will be proved in section 1.5.
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mean-value tends to a limit as x → ∞. Surprisingly this does not imply that the mean-
value tends to a limit as x→∞: Indeed in our last example the mean value rotates around
the origin slowly, since xit does as x increases, whereas the size of the mean value tends to
a limit.

What other examples have large mean value? An obvious class of examples come from
minor alterations to the ones we have above. For instance if f(p) = 1 for all primes p 6= 3,
and f(3) = −1, then f has mean value → 1

2 as x→∞. In general, if f(n) is close to nit,
the mean value can be large. In this case we say that f(n) is “nit-pretentious”, in that it
is pretending to be that simple function. We will need to give a formal definition of this a
little later, but that is complicated so for now we remain deliberately vague.

Halász’s great theorem states that if the mean-value of f is large in absolute value,
then f must be nit-pretentious for some real number t for which |t| ¿ 1/δ.

0.6. Sketch of a proof of the prime number theorem. Now let us apply this to the
mean value of the Möbius function: If (0.4.2) is false then there exists a fixed δ > 0 such
that there are arbitrarily large x for which |∑n≤x µ(n)| ≥ δx. By Halász’s theorem we
deduce that there exists a real number t, with |t| ¿ 1/δ, for which µ(n) is nit-pretentious.
We will now give a heuristic that we will develop into a proof in the main part of this
book: µ(n)/nit is 1-pretentious, if and only if

∑

n≥1

µ(n)
n1+it

behaves much like
∑

n≥1

1
n
,which diverges to ∞.

Now 1/ζ(1+ it) should be much like
∑
n≥1 µ(n)/n1+it according to (0.4.1).7 This suggests

that µ(n)/nit is 1-pretentious if and only if ζ(1 + it) = 0. Hence we need to show that
ζ(1+it) 6= 0, as did Hadamard and de la Vallée Poussin did in 1896 (see section 0.1 above).

In the proofs of Hadamard and de la Vallée Poussin one shows that if ζ(1 + it) = 0
then ζ(1 + 2it) = ∞, which is impossible as ζ(s) is analytic at all s 6= 1. Most textbooks
give an easy proof of the first deduction via an inequality of Mertens: If σ > 1 then

(0.5.1)
∣∣ζ(σ)3ζ(σ + it)4ζ(σ + 2it)

∣∣ ≥ 1.

We know that (σ − 1)ζ(σ) → c1 as σ → 1, since ζ(s) has a pole of order 1, at s = 1,
for some constant c1 6= 0. As ζ(s) is analytic at s = 1 + it, and as ζ(1 + it) = 0,
therefore ζ(σ + it)/(σ − 1) → c2 as σ → 1. Inserting these into (0.6.1) we deduce that
|(σ − 1)ζ(σ + 2it)| À 1 as σ → 1, and hence ζ(s) has a pole at s = 1 + 2it.

Our proof of this deduction is less magical than the use of Mertens’ inequality, but
arguably more straightforward: If µ(n) is nit-pretentious then µ(n)2 is n2it-pretentious.
This can happen if and only if

∑

n≥1

µ(n)2

n1+2it
behaves much like

∑

n≥1

µ(n)2

n
,which diverges to ∞.

7But notice that (0.4.1) is only a valid identity when Re(s) > 1 and hence not truly valid in our
current situation.
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Now
∑
n≥1 µ(n)2/n1+2it should be much like ζ(1+2it)/ζ(2+4it), and ζ(2+4it) converges

to a non-zero constant. Therefore µ(n)2 is n2it-pretentious if and only if ζ(1+2it) diverges.

There are various ways in which one can show that µ(n)2 cannot be n2it-pretentious.
Our proof will use upper bounds on the number of primes in short intervals, proved using
sieve methods, to establish that p2it rotates around as p varies, and so cannot almost
always be pointing more-or-less in the positive real direction.

Exercise. 0.5) Use (0.1.2) to show that ζ(s) has no zeros with Re(s) > 1. (Hint: Consider the Euler product

for ζ(s) in this range.)

0.7. Multiplicative Number Theory is the title of Davenport’s classic book on the
distribution of prime numbers, though the contents of that book mostly stem out of Rie-
mann’s seminal idea.8 In this text we rework the basic results on the distribution of primes
to be a consequence of results on the distribution of mean values of multiplicative func-
tions, stemming mostly from the fundamental idea of Halász. As in Davenport’s book we
will prove theorems on π(x) and π(x; q, a), the number of primes up to x that are ≡ a
(mod q), focussing on uniformity in x, including the Bombieri-Vinogradov theorem, and a
new simpler proof of Linnik’s theorem as well as Vinogradov’s three primes theorem. We
will prove an improved Polya-Vinogradov Theorem, as well as Burgess’s Theorem. Qual-
itatively we get all the same results, often with substantially easier proofs, quantitatively
we often get poorer error terms. The biggest advantage of our approach is that our results
are applicable to all multiplicative functions with values inside the unit disk; the biggest
disadvantage is that we have not yet proved the Siegel-Walfisz Theorem, and this lack of
uniformity is a substantial impediment to several applications of this theory.

We make no claims about giving an elementary proof of the prime number theo-
rem. Our proof of Halász’s theorem does use complex analysis: Fourier transforms and
Plancherel’s formula. This last may be regarded as the simplest non-trivial result in the
area, and in our applications could easily be proved without complex analysis, though it
seems artificial to try to do so. Since our results are so general, the proofs, as one might
expect, use less tools designed for a particular problem (like zeta functions that satisfy a
“functional equation”).

We mostly choose to work with multiplicative functions with values inside the unit
disk. Many of the technical results about multiplicative functions can be extended to wider
classes, though not all, and not without some significant complications. Books by Elliott
[El] and Tenenbaum [Te] are probably the best sources for advanced material in this area.

0.8. More details / more sketch for the proof of the prime number theorem.

The existing data lends support to Gauss’s belief that π(x) is well-approximated by
Li(x).

8In his preface Davenport calls his book “... a connected account of analytic number theory in so far
as it relates to problems of a multiplicative character...”
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x π(x) = #{primes ≤ x} Overcount: [Li(x)− π(x)]

108 5761455 753
109 50847534 1700
1010 455052511 3103
1011 4118054813 11587
1012 37607912018 38262
1013 346065536839 108970
1014 3204941750802 314889
1015 29844570422669 1052618
1016 279238341033925 3214631
1017 2623557157654233 7956588
1018 24739954287740860 21949554
1019 234057667276344607 99877774
1020 2220819602560918840 222744643
1021 21127269486018731928 597394253
1022 201467286689315906290 1932355207
1023 1925320391606803968923 7250186214

Table 1. The number of primes up to various x.

One may make more precise guesses from the data in Table 1. For example one can see that
the entries in the final column are always positive and are always about half the width
of the entries in the middle column. So perhaps Gauss’s guess is always an overcount
by about

√
x? We have seen that if the Riemann Hypothesis is true then the difference

between Li(x) and π(x) is never much bigger than
√
x; however Gauss’s guess is not always

an overcount. In 1914 Littlewood showed that the difference changes sign infinitely often,
it probably first goes negative at around 10316 (which is far beyond where we can explicitly
compute all primes in the foreseeable future). Littlewood’s proof involves zeros far away
from the 1-line and we are currently unable to propose a proof using our methods.9

The Prime Number Theorem, was proved in 1896, by Hadamard and de la Vallée
Poussin, following a program of study laid out almost forty years earlier by Riemann.
Riemann’s idea was to use a formula of Perron to extend the sum in (0.1.3) to be over all
prime powers pm, while picking out only those that are ≤ x. The special case of Perron’s
formula that we need here is

1
2iπ

∫

s: Re(s)=2

ts

s
ds =

{
0 if t < 1,
1 if t > 1,

for positive real t. We apply this with t = x/pm, when x is not itself a prime power, which

9Our methods work best when the classical proof proceeds by showing that the zeta function zeros
that are close to the 1-line are sparse.
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gives us a characteristic function for integers pm < x. Hence

∑

pm≤x
p prime
m≥1

log p =
∑

p prime
m≥1

log p · 1
2iπ

∫

s: Re(s)=2

(x/pm)s

s
ds

=
1

2iπ

∫

s: Re(s)=2

∑

p prime

log p
pms

xs

s
ds.

Here we were able to safely swap the infinite sum and the infinite integral since the terms
are sufficiently convergent as Re(s) = 2. Recognizing that

∑

p prime

∑

m≥1

log p
pms

= −ζ
′(s)
ζ(s)

,

at least for Re(s) > 1, we obtain the closed formula

(0.8.1) ψ(x) =
∑

p prime
pm≤x
m≥1

log p = − 1
2iπ

∫

s: Re(s)=2

ζ ′(s)
ζ(s)

xs

s
ds.

To evaluate (0.8.1), Riemann proposed moving the contour from the line Re(s) = 2,
far to the left, and using the theory of residues to evaluate the integral. What a beautiful
idea! However before one can possibly succeed with that plan one needs to know many
things, for instance whether ζ(s) makes sense to the left, that is one needs an analytic
continuation of ζ(s). Riemann was able to do this based on an extraordinary identity of
Jacobi. Next, to use the residue theorem, one needs to be able to identify the poles of
ζ ′(s)/ζ(s), that is the zeros and poles of ζ(s). The poles are not so hard, there is just the
one, a simple pole at s = 1 with residue 1, so the contribution of that pole to the above
formula is

− lim
s→1

(s− 1)
ζ ′(s)
ζ(s)

xs

s
= − lim

s→1
(s− 1)

( −1
(s− 1)

)
x1

1
= x,

the expected main term. The locations of the zeros of ζ(s) are much more mysterious.
Moreover, even if we do have some idea of where they are, in order to complete Riemann’s
plan, one needs to be able to bound the contribution from the discarded contour when
one moves the main line of integration to the left, and hence one needs bounds on |ζ(s)|
throughout the plane. We do this in part by having a pretty good idea of how many zeros
there are of ζ(s) up to a certain height, and there are many other details besides. These
all had to be worked out (see, eg [Da] or [Ti], for further details), after Riemann’s initial
plan – this is what took forty years! At the end, if all goes well, then one has the exact
formula

(0.1.3) ψ(x) =
∑

p prime
pm≤x
m≥1

log p = x−
∑

ρ: ζ(ρ)=0

xρ

ρ
− ζ ′(0)
ζ(0)

.
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Amazing! A precise formula for the weighted sum of prime powers, in terms of the zeros of
an analytic continuation of a function. What an unexpected and delightful identity. This
clearly runs deep and is so profound that it must lead to all sorts of insights. Indeed this
has been the basis of much of analytic number theory for the last 150 years.

Using the right-side of (0.1.3) is, in practice, easier said than done. For one thing,
there are infinitely many zeros of ζ(s) that effect the sum – it seems odd to deal with an
infinite sum to understand a finite problem, that is the number of primes up to x. We can
address this problem by truncating the sum over zeros at a given height T , and to have
real part ≥ 0, that is consider only those ρ with10 0 ≤ Re(ρ) ≤ 1 and |Im(ρ)| ≤ T . One
then has the approximation,

(0.8.2) ψ(x) = x−
∑

ρ: ζ(ρ)=0
0≤Re(ρ)≤1
|Im(ρ)|≤T

xρ

ρ
+O

(
x log2(xT )

T

)
,

in the range 1 ≤ T ≤ x, and the sum is known to be over only finitely many zeros.
As we discussed above, we bound the sum on the right side of (0.8.2) simply by taking

the absolute value of each term, so we miss out on any potential cancelation (and one might
guess that there will be quite a bit). Hence if βT ≥ Re(ρ) for all ρ for which ζ(ρ) = 0 and
|Im(ρ)| ≤ T , then our sum is ≤ xβT

∑
ρ

1
|ρ| and it can be shown that this sum over the

zeros in this box is ¿ log2 T .

Exercise. Assume that if ζ(β + it) = 0 then 1 − β ≥ 1/|t|1/3. Deduce the prime number theorem (using

the above discussion).

Selecting T = x1−β log2 x we deduce that

(0.8.3) |θ(x)− x| ¿ xβ((1− β) log x+ log log x)2.

Let π(x; q, a) denote the number of primes ≤ x that are ≡ a (mod q). A proof
analogous to that proposed by Riemann, reveals that if (a, q) = 1 then

(0.8.4) π(x; q, a) ∼ π(x)
ϕ(q)

,

once x is sufficiently large. However in many application one wants to know just how
large x needs to be for the primes to be equi-distributed in arithmetic progressions mod q.
Calculations reveal that the primes up to x are equi-distributed amongst the arithmetic
progressions mod q, once x is just a tiny bit larger than q, say x ≥ q1+δ for any fixed
δ > 0 (once q is sufficiently large). However the best proven results have x bigger than the
exponential of a power of q, far larger than what we expect. If we are prepared to assume
the unproven Generalized Riemann Hypothesis we do much better, being able to prove
that the primes up to q2+δ are equally distributed amongst the arithmetic progressions
mod q, for q sufficiently large, though notice that this is still somewhat larger than what
we expect to be true.

10We already saw that ζ(s) has no zeros ρ for which Re(ρ) > 1. Moreover the zeros with Re(ρ) < 0
are easily found: These “trivial” zeros lie at ρ = −2,−4,−6, . . . and have little effect on the formulas
above.
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1. Introduction

1.1. The prime number theorem. As a boy Gauss determined that the density of
primes around x is 1/ log x, leading him to conjecture that the number of primes up to x
is well-approximated by the estimate

(1.1.1) π(x) :=
∑

p≤x
1 ∼ x

log x
.

Less intuitive, but simpler, is to weight each prime with log p; and, as we have seen, it is
natural to throw the prime powers into this sum, which has little impact on the size, so
that, defining

Λ(n) :=
{

log p if n = pm, where p is prime, and m ≥ 1
0 otherwise,

we conjecture that

(1.1.2) ψ(x) :=
∑

n≤x
Λ(n) ∼ x.

The equivalent estimates (1.1.1) and (1.1.2), known as the prime number theorem, are
difficult to prove. Our primary goal at the beginning of this book, is to give a new proof
of the prime number theorem that highlights the techniques that we develop herein.

Short of (1.1.1), there are several ways to obtain good bounds on the number of
primes up to x. Perhaps the easiest is to note that all of the primes in (N, 2N ] divide the
numerator of the binomial coefficient

(
2N
N

)
, and so

∏

N<p≤2N

p ≤
(

2N
N

)
≤ 4N ;

from which it is not hard to deduce that

(1.1.3) θ(N) =
∑

p≤N
log p ≤ (log 4) N,

and that

(1.1.4) π(N) ≤ (log 4 + o(1))
N

logN
.

Lower bounds for π(N) of the right order can be obtained by a modification of this method:

Exercise. (i) Show that there are [N/q] integers ≤ N that are divisible by q, and hence the difference in the

number of integers in the numerator and denominator of
`2N

N

´
that are divisible by q is [2N/q] − 2[N/q],

which equals either 0 or 1.

(ii) Deduce that if pk divides
`2N

N

´
then pk ≤ 2N . Moreover show that p divides

`2N
N

´
if N < p ≤ 2N , but

does not if 2N/3 < p ≤ N .
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(iii) Prove that the largest
`2N

k

´
occurs when k = N , so that

`2N
N

´ ≥ 4N

2N+1
.

(iv) Deduce that N log 4 +O(logN) ≤ θ(2N)− θ(N) + θ(2N/3) + (logN)π(
√

2N).

(v) Use (1.1.3) and (1.1.4) to deduce that θ(2N)− θ(N) ≥ N
3

log 4 +O(
√
N), and hence that

π(N) ≥
„

log 4

3
+ o(1)

«
N

logN
.

Since the Riemann-zeta function is absolutely convergent for Re(s) > 1, we can ma-
nipulate this series, more-or-less at will in this range. Various functions of ζ(s) will be of
importance to us, in particular

−ζ ′(s) =
∑

n≥1

logn
ns

,

−ζ
′(s)
ζ(s)

=
∑

n≥1

Λ(n)
ns

,

1
ζ(s)

=
∑

n≥1

µ(n)
ns

,

where we (again) define the Möbius function,

µ(n) :=
{

0 if p2 divides n, for some prime p
(−1)k if n = p1p2 . . . pk, where p1, p2, . . . , pk are distinct primes.

The Möbius function is an example of a multiplicative function: That is a function f(.)
with the property that

f(mn) = f(m)f(n) whenever (m,n) = 1.

One can show that if n = pa1
1 p

a2
2 . . . pakk , where p1, p2, . . . , pk are distinct primes, then

f(n) = f(pa1
1 )f(pa2

2 ) . . . f(pakk ).

Our main goal in this section will be to prove that the prime number theorem (1.1.1)
is equivalent to the conjecture that

(1.1.5) M(x) =
∑

n≤x
µ(n) = o(x).

That is that the mean value of a certain multiplicative function, that lives inside the unit
disc, tends to 0. The main study in this book are the mean values of such multiplicative
functions in some generality.
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1.2. Integrals of monotone functions.
Exercises. 1.2.1) Define sN :=

PN
n=1

1
n
− logN . Since 1/t is a decreasing function one sees that
Z n

n−1

dt

t
>

1

n
>

Z n+1

n

dt

t
.

Use this to show that sN > 0 for all N ≥ 1, and that if N > M > 1 then 0 < sM − sN < 1
M

. Deduce that

(1.2.1)
NX

n=1

1

n
= logN + γ +O

„
1

N

«
,

where we define the Euler-Mascheroni constant

γ := lim
N→∞

NX

n=1

1

n
− logN.

1.2.2) Use the fact that log t is an increasing function to deduce, by analogous arguments, that

(1.2.2) logN ! = N logN −N +O(logN).

Improve this to logN ! = N logN − N + 1
2

logN + c + O(1/N), for some constant c, by showing that

logN =
RN+1/2

N−1/2
log t dt+O(1/N2). (Establishing that c = 1

2
log 2π yields Stirling’s formula.)

Another approach to this formula is to use the identity

log n =
∑

d|n
Λ(d),

to deduce that

logN ! =
∑

n≤N

∑

d|n
Λ(d) =

∑

d≤N
Λ(d)

[
N

d

]
= N

∑

d≤N

Λ(d)
d

+O


∑

d≤N
Λ(d)


 .

By (1.1.3) and (1.2.2) we deduce that

(1.2.3)
∑

p≤N

log p
p

= logN +O(1).

Exercises. 1.2.3) Use (1.2.3) to show that if there exists a constant c > 0 such that ψ(x) ∼ cx then c = 1.

1.2.4) Use partial summation on (1.2.3) to show that
X

y<p≤x

1

p
= log

„
log x

log y

«
+O

„
1

log y

«
;

and then use this to show that there exists a constant c such that

(1.2.4)
X

p≤x

1

p
= log log x+ c+O

„
1

log x

«
.

From this deduce that there exists a constant γ such that

(1.2.5)
Y

p≤x

„
1− 1

p

«
∼ e−γ

log x
.

(In fact γ is the Euler-Mascheroni constant. There does not seem to be a straightforward, intuitive proof
known that it is indeed this constant.)

If f(n) is any function with |f(n)| ≤ 1 for all n then, by (1.2.2),

(1.2.6)

∣∣∣∣∣∣
∑

n≤N
f(n) log(N/n)

∣∣∣∣∣∣
≤

∑

n≤N
log(N/n) = N logN − logN ! ≤ N +O(logN).



14 ANDREW GRANVILLE AND K. SOUNDARARAJAN

1.3. Dirichlet series, convergence and Möbius inversion..

Exercises. Begin by establishing that

(1.3.1)
X

ab=n

µ(a) =

(
1 if n = 1

0 otherwise.

Remind yourself what the Möbius inversion formula is and prove it using (1.3.1).
Since τ(n) =

P
d|n 1, use Möbius inversion to obtain that

(1.3.2) 1 =
X

ab=n

µ(a)τ(b)

Similarly starting with

logn =
X

d|n
Λ(d),

use Möbius inversion to obtain von Mangoldt’s formula

(1.3.3) Λ(n) =
X

ab=n

µ(a) log b.

Now
∑
a|n µ(a) log n = 0 by (1.3.1), so writing b = n/a in (1.3.3) we have Λ(n) =∑

a|n µ(a) log 1/a. Therefore, by Möbius inversion,

(1.3.4) µ(n) log 1/n =
∑

ab=n

µ(a)Λ(b).

Exercises. Suppose that, for every ε > 0 we have |fn|, |gn| ¿ nε. Prove that
P

n≥1 fn/ns is absolutely

convergent for Re(s) > 1. Deduce that if

X

n≥1

hn

ns
=
X

a≥1

fa

as
·
X

b≥1

gb

bs
then hn =

X

ab=n
a,b≥1

fagb for all n ≥ 1.

Use this to establish the four identities in displayed equations in this subsection.

We call ∑

n≥1

f(n)
ns

a Dirichlet series. The product of two Dirichlet series, whose coefficients are given by the
above formula

h(n) =
∑

ab=n
a,b≥1

f(a)g(b) =
∑

d|n
f(d)g(n/d),

is known as a (Dirichlet) convolution, and is often denoted by h = f ∗ g.
Exercise. Prove that if f is multiplicative and |f(n)| ¿ε nε then

X

n≥1

f(n)

ns
=

Y

p prime

„
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

«

for any s for which Re(s) > 1.
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1.4. Dirichlet’s hyperbola trick. Divisors of an integer come in pairs. That is {a, b}
where ab = n. Evidently the smaller of the two is ≤ √

n and therefore

τ(n) =
∑

d|n
1 = 2

∑

d|n
d<
√
n

1 + δn,

where δn = 1 if n is a square, and 0 otherwise. Therefore

∑

n≤x
τ(n) = 2

∑

n≤x

∑

d|n
d<
√
n

1 +
∑

n≤x
n=d2

1 =
∑

d<
√
x


1 + 2

∑

d2<n≤x
d|n

1


 =

∑

d<
√
x

(2[x/d]− 2d+ 1) ,

and so ∑

n≤x
τ(n) = 2x

∑

d<
√
x

1
d
− x+O(

√
x) = x log x− x+ 2γx+O(

√
x),

by (1.2.1). We deduce, using (1.2.2), that

(1.4.1)
∑

n≤x
(log n+ 2γ − τ(n)) = O(

√
x).

1.5. The prime number theorem and multiplicative functions.
If we sum up the identity (1.3.1) over all n ≤ x we obtain

1 =
∑

ab≤x
µ(a) =

∑

a≤x
µ(a)

[x
a

]
.

Now 0 ≤ x/a− [x/a] < 1 for each a and so

∣∣∣∣∣∣
x

∑

a≤x

µ(a)
a

∣∣∣∣∣∣
≤ 1 +

∑

a≤x
|µ(a)| ≤ x,

for x ≥ 4. Therefore, verifying the cases x = 1, 2, 3 by hand, we have

(1.5.1)

∣∣∣∣∣∣
∑

a≤x

µ(a)
a

∣∣∣∣∣∣
≤ 1

for all x ≥ 1. With this tool in hand we shall prove:
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Theorem 1.1. The estimates (1.1.1) and (1.1.5) are equivalent. That is ψ(x)−x = o(x)
if and only if M(x) = o(x).

Summing the identities in (1.3.3), (1.3.2) and (1.3.1) over all n ≤ x, yields

ψ(x)− x =
∑

n≤x
(Λ(n)− 1) =

∑

ab≤x
µ(a)(log b− τ(b) + 2γ)− 2γ.

We separate this sum into two parts. Those b ≤ B, and the rest. By (1.4.1), the rest yields

¿
∑

a≤x/B
|µ(a)|

√
x/a¿ x/

√
B,

and so

(1.5.2) ψ(x)− x =
∑

b≤B
(log b− τ(b) + 2γ)M(x/b) +O

(
x√
B

)
.

We deduce that if M(x) = o(x) then for any fixed B we have ψ(x) − x ¿ x/
√
B, and so

ψ(x)− x = o(x) letting B →∞ slowly enough with x.
Summing (1.3.4) over all n ≤ x yields

∑

n≤x
µ(n) log 1/n =

∑

ab≤x
µ(a)Λ(b).

By (1.2.6) and (1.5.1), we deduce that

(1.5.3) M(x) log x = −
∑

a≤x
µ(a)

(
ψ

(x
a

)
− x

a

)
+O(x).

Now, by (1.1.3),
∑

A<a≤x
µ(a)

(
ψ

(x
a

)
− x

a

)
¿

∑

A<a≤x

x

a
¿ x log(x/A).

We deduce that if ψ(x)−x = o(x) then by splitting the sum in (1.5.3) into those a ≤ A :=
x/ log x, and those a > A (as in the line above), we have M(x) = o(x).

Remark. It is worth noting that the identity at the beginning of this proof can be seen to
be the sum of the coefficients of the Dirichlet series

∑

n≥1

Λ(n)− 1
ns

=
ζ ′(s)
ζ(s)

− ζ(s) =
1
ζ(s)

(−ζ ′(s)− ζ(s)2) =
∑

a≥1

µ(a)
as

∑

b≥1

log b− τ(b)
bs

.

Exercises. Modify the above proof to show that

i) If M(x) ¿ x

(log x)A
then ψ(x)− x¿ x

(log x)A
(log log x)2;

ii) If ψ(x)− x¿ x

(log x)A
then M(x) ¿ x

(log x)min{1,A} .
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1.6. Other equivalent forms of the prime number theorem. We have seen that the
estimate ψ(x) ∼ x is equivalent to M(x) = o(x). In [TM, Theorem 5] two more equivalent
forms are given:11 ∑

n≥1

µ(n)
n

= 0

which is stronger than (1.5.1). Also, that

∑

n≤x

Λ(n)
n

= log x− γ + o(1),

a strong form of (1.2.3). Note that Merten’s Theorem, (1.2.5) yields

(1.6.1)
∑

n≤x

Λ(n)
n logn

= log log x+ γ + o(1).

11With elegant elementary proofs of their equivalence.
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2. Sieving

2.1. Integers coprime to m. One first encounters a multiplicative function when count-
ing the integers in an interval that are coprime with a given integer m, for this is the sum
of f(n) where f(p) = 1 unless p|m, in which case f(p) = 0.

The classic way to work on this is via the inclusion-exclusion formula:
∑

n≤x
(n,m)=1

1 =
∑

n≤x

∑

d|(m,n)

µ(d) =
∑

d|m
µ(d)

[x
d

]
;

and then approximating [x/d] = x/d+O(1) we obtain

∏

p|m

(
1− 1

p

)
x+O(τ(m)).

The problem is that if m has À log x prime factors then the error term here is much larger
than the main term, so we need to be more subtle about how we apply inclusion-exclusion.
The trick is to use the inequalities:

∑

d|m
ω(d)≤2k

µ(d) ≥
∑

d|m
µ(d) ≥

∑

d|m
ω(d)≤2k+1

µ(d),

which are valid for all k ≥ 0 (Exercise). Hence we have the approximation

J−1∑

j=0

∑

d|m
ω(d)=j

µ(d)
[x
d

]
=
J−1∑

j=0

∑

d|m
ω(d)=j

µ(d)
x

d
+O




∑

d|m
ω(d)≤J−1

1




for the number of integers ≤ x that are coprime with m, with error

(2.1.1) ≤
∑

d|m
ω(d)=J

[x
d

]
≤

∑

d|m
ω(d)=J

x

d
≤ x

J !


∑

p|m

1
p



J

.

If we repeat this argument with x = m then we find that

∏

p|m

(
1− 1

p

)
=
J−1∑

j=0

∑

d|m
ω(d)=j

µ(d)
d

+O


 1
J !


∑

p|m

1
p



J

 .

Combining these estimates we obtain

(2.1.2)
∑

n≤x
(n,m)=1

1− x
∏

p|m

(
1− 1

p

)
¿

J−1∑

i=1

ω(m)i

i!
+
x

J !


∑

p|m

1
p



J

.
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where ω(m) denotes the number of distinct prime factors of m. So if all prime factors of
m are ≤ y = x1/u then, selecting J = [u] we obtain, by (1.2.4) and then (1.2.2),

(2.1.3)
∑

n≤x
(n,m)=1

1 = x
∏

p|m

(
1− 1

p

)
+O

(
x

(
e log log y

u

)u−1
)
.

This generalizes to give the Fundamental Lemma of the Sieve (see any book on
sieves)...

2.2. Mean values of multiplicative functions: Heuristic. Given a multiplicative
function f with |f(n)| ≤ 1 for all n, we are interested in the mean-value of f up to x, that
is 1

x

∑
n≤x f(n). A simple heuristic suggests that

(2.2.1)
1
x

∑

n≤x
f(n) → Prod(f,∞) as x→∞.

where

Prod(f, x) :=
∏

p≤x

(
1 +

f(p)
p

+
f(p2)
p2

+ . . .
)(

1− 1
p

)
.

Erdős and Wintner conjectured that is true when f is real-valued, which was proved by
Wintner in 1944 when Prod(f,∞) 6= 0, and Wirsing in 1967 when Prod(f,∞) = 0).

The heuristic goes as follows: Define g so that f(n) =
∑
d|n g(d), and therefore g(n) =∑

d|n µ(n/d)f(d). Then

∑

n≤N
f(n) =

∑

n≤N

∑

d|n
g(d) =

∑

d≤N
g(d)

∑

n≤N
d|n

1 =
∑

d≤N
g(d)

[
N

d

]
.

Now each [N/d] = N/d+O(1) so this becomes

N
∑

d≤N

g(d)
d

+O


∑

d≤N
|g(d)|


 .

One can easily invent restrictive hypotheses to ensure that this tends to a limit; and note
that ∑

d≥1
p|d =⇒ p≤N

g(d)
d

= Prod(f,N),

so we can hope to obtain (2.2.1). It turns out that such a heuristic is easiest to turn into a
justified argument when f is real-valued (or is “close” to a real-valued function); and the
example of section 0.5 (the mean-value of nit) shows that (2.2.1) is certainly not always
true.
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Proposition 2.2.1. (i) If
∑
p
|1−f(p)|

p converges then (2.2.1) holds. In particular
(ii) If f is real-valued and Prod(f ;x) converges then (2.2.1) holds.
(iii) If 0 ≤ f(n) ≤ 1 for all n then (2.2.1) holds in all cases.
(iv) If f is real-valued and 1 ≤ f(p) ≤ f(p2) ≤ . . . for all primes p ≤ x, then∑

n≤x f(n) ≤ xProd(f ;x).

Erdős and Wintner conjectured (2.2.1) when f is real-valued, which was proved by
Wintner in 1944 when Prod(f,∞) 6= 0 (that is, Proposition 2.2.1(ii)), and by Wirsing in
1967 when Prod(f,∞) = 0 (which is a little more than Proposition 2.2.1(iii)).

Proof. Fix ε > 0 and select y so that
∑
p>y

|1−f(p)|
p < ε. Let g(pa) = f(pa) if p ≤ y, and

g(pa) = 1 if p > y. We observe that

Prod(g, x) = Prod(g, y) = Prod(f, y) = Prod(f, x)eO(ε) = Prod(f, x) +O(ε).

Let f = g ∗ h so that
∑

n≤x
(f(n)− g(n)) =

∑

dm≤x
h(d)g(m)−

∑

m≤x
g(m) =

∑

1<d≤x
h(d)

∑

m≤x/d
g(m).

Taking absolute values this is

≤
∑

1<d≤x
|h(d)|x

d
≤ x

∏

p≤x

(
1 +

|h(p)|
p

+
|h(p2)|
p2

+ . . .

)
− x

¿ x


exp


 ∑

y<p≤x

|1− f(p)|
p

+O

(
1
p2

)
− 1


 ¿ εx.

Hence
∑
n≤x f(n) =

∑
n≤x g(n) +O(εx).

Now let g = 1 ∗ ` so that

∑

n≤x
g(n) =

∑

n≤x

∑

d|n
`(d) =

∑

d≤x
`(d)

[x
d

]
= x

∑

d≤x

`(d)
d

+O


∑

d≤x
|`(d)|




= x
∑

d≥1

`(d)
d

+O


∑

d≤x
|`(d)|+ x

∑

d>x

|`(d)|
d




since `(pa) = g(pa)− g(pa−1). The main term here is xProd(g, x) = xProd(f, x) +O(εx).
Now notice that if `(d) 6= 0 then d is y-smooth; that is all prime factors of d are ≤ y. Now
if 0 < α < 1 then (x/d)α ≥ 1 if d ≤ x, and (d/x)1−α ≥ 1 if d > x so that

∑

d≤x
|`(d)|+ x

∑

d>x

|`(d)|
d

≤
∑

d≤x
|`(d)|

(x
d

)α
+ x

∑

d>x

|`(d)|
d

(
d

x

)1−α

= xα
∏

p≤y

(
1 +

|`(p)|
pα

+
|`(p2)|
p2α

+ . . .
)



THE DISTRIBUTION OF PRIME NUMBERS 21

Let x = yu and select α = 1 − A
log y for some A > 1 with α > 2/3 so that the above is

¿ (x/eAu) exp
(
2

∑
p≤y

1
pα

)
, and the sum over prime numbers is, by (1.2.4) and (1.1.4),

≤
∑

p≤y1/A

1
p

+
∑

y1/A<p≤y

1
pα

≤ log
(

log y
A

)
+O(1) + (log 4 + o(1))

eA

A
.

We select A = log(u log u) and therefore our error term is

¿
(

4 + o(1)
u log u

)u
x log y.

We pick x big enough so that this is ≤ εx. Collecting the above estimates we deduce that∑
n≤x f(n) = xProd(f, y) + O(εx) = xProd(f, x)eO(ε) + O(εx) = xProd(f, x) + O(εx),

which yields the first two parts of the result.
Suppose that 0 ≤ f(n) ≤ 1 for all n, and that Prod(f ;∞) = 0. Select y so that

Prod(f, y) < ε, and then select g(n) as above. As 0 ≤ f(n) ≤ g(n) for all n we have
0 ≤ ∑

n≤x f(n) ≤ ∑
n≤x g(n) ≤ xProd(f, y) +O(εx) ¿ εx, and thus the third part of the

result is proved.
Let g = f ∗ µ, so that f = 1 ∗ g. The hypothesis of iv) implies that g(n) ≥ 0 for all n.

Therefore

∑

n≤x
f(n) =

∑

n≤x

∑

d|n
g(d) =

∑

d≤x
g(d)

[x
d

]
≤ x

∑

d≤x

g(d)
d

≤ x
∏

p≤x

(
1 +

g(p)
p

+
g(p2)
p2

+ . . .

)
= xProd(f ;x).(2.2.2)

2.3. The Brun-Titchmarsh Theorem.

The Brun-Titchmarsh Theorem. If (a, q) = 1 then we have, uniformly,

∑

x<p≤x+yq
p≡a (mod q)

1 ≤ {2 + o(1)} q

ϕ(q)
y

log y
.

Let m be a given integer. Let A denote the integers n ≡ a (mod q) for which x < n ≤
x+ yq. Selberg observed that if λd, d ≥ 1 are real and λ1 = 1 then


 ∑

d|(m,n)

λd




2

≥
{

1 if (n,m) = 1
0 otherwise,
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no matter what the choice of the λd’s (where we suppose that m is the product of some
primes ≤ z, with (m, q) = 1). Hence

N : =
∑

n∈A
(n,m)=1

1 ≤
∑

n∈A


 ∑

d|(m,n)

λd




2

=
∑

d1,d2|m
λd1λd2

∑

n∈A
[d1,d2]|n

1

≤
∑

d1,d2|m
λd1λd2

y

[d1, d2]
+

∑

d1,d2|m
|λd1 | |λd2 |.(2.3.1)

Now 1
[d1,d2]

= (d1,d2)
d1d2

= 1
d1d2

∑
r|(d1,d2) ϕ(r) so the first term is

y
∑

d1,d2|m

λd1λd2
d1d2

∑

r|(d1,d2)
ϕ(r) = y

∑

r|m
ϕ(r)




∑

d|m
r|d

λd
d




2

We now define λd = 0 if d > z and d - m; with

Gk(x) :=
∑

n≤x
n|m

(n,k)=1

µ2(n)
ϕ(n)

, and λd =
µ(d)d
ϕ(d)

Gd(z/d)
G(z)

if d ≤ z and d|m, and G(x) = G1(x). If d|m then

d

ϕ(d)
Gd(z/d) =

∑

g|d

µ2(g)
ϕ(g)

∑

n≤z/d
n|m

(n,d)=1

µ2(n)
ϕ(n)

≤
∑

r≤z
r|m

µ2(r)
ϕ(r)

= G(z)

writing r = gn, and noting that there is at most one such factorization of r. Hence |λd| ≤ 1,
and the second term in (2.3.1) is ≤ z2.

The choice of the λd gives that if r|m and r ≤ z then

∑

d|m
r|d

λd
d

=
1

G(z)

∑

d|m
r|d

µ(d)
ϕ(d)

∑

n≤z/d
n|m

(n,d)=1

µ2(n)
ϕ(n)

=
1

G(z)

∑

`≤z
`|m

µ2(`)
ϕ(`)

∑

d: r|d|`
µ(d) =

1
G(z)

µ(r)
ϕ(r)

,
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writing ` = dn. Hence the first term in (2.3.1) is

y

G(z)2
∑

r≤z
r|m

µ2(r)
ϕ(r)

=
y

G(z)
.

Let Q be the product of the primes ≤ z that do not divide m. Now n
ϕ(n) =

∑
`

1
` , where

the sum is over all integers ` whose prime factors all divide n, and so

Q

ϕ(Q)
G(z) =

∑
r

1
r

∑

`

1
`
≥

∑

n≤z

1
n
≥ log z

by exercise 1.2.1. where our sums over all integers r whose prime factors all divide Q, and
all integers ` whose largest squarefree divisor divides m and is ≤ z. We deduce that

N ≤ Q

ϕ(Q)
y

log z
+ z2.

The Brun-Titchmarsh Theorem follows by taking Q = q so that m is the product of all
of the primes ≤ z that do not divide q and z = y1/2/ log y. More generally, by (1.2.5) we
deduce that if (m, q) = 1 then

(2.3.2)
∑

x<n≤x+yq
n≡a (mod q)

(n,m)=1

1 ≤ {eγ + o(1)}y
∏

p≤√y
p|m

(
1− 1

p

)
.

Exercise: For any given η, 1
log y

¿ η < 1, show that

(2.3.3)
X

p≤y

1

p1−η
≤ log(1/η) +O

„
yη

log(yη)

«
.

(Hint: Compare the sum for the primes with pη ¿ 1 to the sum of 1/p in the same range. Use upper

bounds on π(x) for those primes for which pη À 1.)

3. Multiplicative functions

3.1. Mean values of multiplicative functions. In general one has

(3.1.1) S(x) log x =
∑

p≤x
f(p) log p S

(
x

p

)
+O(x).

where
S(x) :=

∑

n≤x
f(n),



24 ANDREW GRANVILLE AND K. SOUNDARARAJAN

for any multiplicative f for which |f(n)| ≤ 1. To prove this we use (1.2.6) to show that

(3.1.2) S(x) log x+O(x) =
∑

n≤x
f(n) log n =

∑

n≤x
f(n)

∑

d|n
Λ(d) =

∑

d≤x
Λ(d)

∑

n≤x
d|n

f(n).

This last sum has size ≤ x/d. We discard the terms with d = pb, b ≥ 2; and replace the
terms f(n) by f(pn/pk) when d = p is prime and pk‖n where k ≥ 2. These operations
yield an error of ¿ x/p2, and hence (3.1.1) follows.

Now, for z = y + y/ log2 y, using the Brun-Titchmarsh theorem,

∑

y<p≤z
log p

∣∣∣∣S
(
x

p

)∣∣∣∣ ≤
∑

y<p≤z
log p max

y≤u≤z

∣∣∣S
(x
u

)∣∣∣ ¿ (z − y) max
y≤u≤z

∣∣∣S
(x
u

)∣∣∣

≤
∫ z

y

∣∣∣S
(x
t

)∣∣∣ dt+ (z − y) max
y≤t,u≤z

∣∣∣S
(x
t

)
− S

(x
u

)∣∣∣ ,

and ∣∣∣S
(x
t

)
− S

(x
u

)∣∣∣ ≤
∣∣∣x
t
− x

u

∣∣∣ = x · |u− t|
tu

≤ x · z − y

y2
.

Summing over such intervals between y and 2y we obtain

∑

y<p≤2y

log p
∣∣∣∣S

(
x

p

)∣∣∣∣ ¿
∫ 2y

y

∣∣∣S
(x
t

)∣∣∣ dt+
x

log2 y
,

which implies, by (3.1.1), that

|S(x)| ¿ 1
log x

∫ x

1

∣∣∣S
(x
t

)∣∣∣ dt+
x

log x

=
x

log x

∫ x

1

|S (t)| dt
t2

+
x

log x
.(3.1.3)

Note that if f(.) ≥ 0 then

∫ x

1

|S (t)| dt
t2

=
∫ x

1

∑

n≤t
f(n)

dt

t2
=

∑

n≤x
f(n)

∫ x

n

dt

t2
=

∑

n≤x

f(n)
n

− 1
x

∑

n≤x
f(n),

which can be inserted into (3.1.3), though we will do better in the next subsection.

3.2. Upper bounds by averaging further. Suppose that 0 ≤ h(pa) ¿ Ca for all
prime powers pa, where C < 2.

Exercise: Use this hypothesis to show that
P

pa≤x h(p
a) log pa ¿ x. Give an example to show that this

fails for C = 2.
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Therefore

∑

n≤x
h(n) log n =

∑

n≤x
h(n)

∑

pa‖n
log pa =

∑

m≤x
h(m)

∑

pa≤x/m
p-m

h(pa) log pa ¿ x
∑

m≤x

h(m)
m

,

by the Brun-Titchmarsh theorem. Moreover, since log(x/n) ≤ x/n whenever n ≤ x, hence

∑

n≤x
h(n) log(x/n) ≤ x

∑

m≤x

h(m)
m

and adding these together gives

(3.2.1)
∑

n≤x
h(n) ¿ x

log x

∑

m≤x

h(m)
m

.

Using partial summation we deduce from (3.2.1) that for 1 ≤ y ≤ x1/2,

(3.2.2)
∑

x/y<n≤x

h(n)
n

¿
{

1
log x

− log
(

1− log y
log x

)} ∑

n≤x

h(n)
n

.

3.3. Smooth numbers, I. In section 1 1
2 .1 we discussed the most basic multiplicative

functions, the integers coprime to given integer m. Here we introduce a function that
occurs all over analytic number theory, which counts the integers that only have “small”
prime factors; that is

Ψ(x, y) :=
∑

n≤x
p|n =⇒ p≤y

1.

We call an integer y-smooth if all of its prime factors are ≤ y. We can recover the above
as a question about multiplicative functions by taking f(p) = 1 if p ≤ y, and f(p) = 0
otherwise. The key result is that Ψ(x, x1/u)/x tends to a (non-zero) limit as x → ∞, for
any fixed u: Define the Dickman-de Bruijn function, ρ(u), as follows: ρ(u) = 1 if 0 ≤ u ≤ 1,
and ρ(u) = 1− log u if 1 ≤ u ≤ 2. In fact, for any u > 1, ρ(u) can be defined as an average
of its recent history:

ρ(u) =
1
u

∫ u

u−1

ρ(t)dt.

Theorem 3.3.1. We have

Ψ(x, y) = xρ(u) +O

(
x

log x

)

where x = yu, and ρ(.) is the Dickman-de Bruijn function.
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Proof. If 0 ≤ u ≤ 1 then Ψ(x, y) = Ψ(x, x) = [x] = x + O(1) and the result follows. Any
integer counted by [x]−Ψ(x, y) has a prime factor > y, and so if 1 ≤ u ≤ 2 then each such
integer can be written uniquely as mp where p is a prime > y. Therefore

Ψ(x, y) = [x]−
∑

y<p≤x
p prime

∑

m≤x/p
1 = [x]−

∑

y<p≤x
[x/p] = x


1−

∑

y<p≤x

1
p


 +O (π(x)) .

By exercise 1.2.4, and the bound (1.1.4) for the error term we deduce that

Ψ(x, y) = x (1− log u) +O

(
x

log y

)
,

as desired, since ρ(u) = 1− log u in this range.
Now if f is the characteristic function for the y-smooth integers, then (3.1.1) yields

(3.3.1) Ψ(x, y) log x =
∑

p≤y
log p Ψ

(
x

p
, y

)
+O(x)

By partial summation we have, letting E(t) :=
∑
p≤t

log p
p − log t,

∑

yα<p≤yβ
log p

x

p
ρ

(
log(x/p)

log y

)
= x

∫ yβ

yα
ρ

(
u− log t

log y

)
d(log t+ E(t)).

The first part of the integral equals, writing t = yν ,

x log y
∫ β

α

ρ (u− ν) dν.

Now E(t) ¿ 1 by (1.2.3) and so the second part is, after integrating by parts,

x

[
ρ

(
u− log t

log y

)
E(t)

]yβ

yα
− x

∫ yβ

yα

d

dt
ρ

(
u− log t

log y

)
E(t)dt¿ xρ(u− α)

since ρ(.) is monotonically decreasing. Now if we write Ψ(x, y) = xρ(u)(1 + ε(u)) then
substituting the above into (3.3.1) yields

(3.3.2) xρ(u)ε(u) log x =
∑

p≤y
(x/p) log p ρ(up)ε(up) +O(x)

where x/p = yup , using the integral equation defining ρ(u).
We shall prove our theorem by induction on n ≥ 1, for n/2 < u ≤ (n + 1)/2. The

result is already proved for n ≤ 3, so now assume that the result is proved for n− 1. Let



THE DISTRIBUTION OF PRIME NUMBERS 27

κ(n) := maxn/2≤v≤(n+1)/2 |Ψ(yv, y)/yvρ(v)− 1|, and select u where this maximum occurs.
Hence for x = yu, we can deduce from (3.3.2) that

κ(n)xρ(u) log x ≤
∑

p<x/yn/2

(x/p) log p ρ(up)ε(up) +
∑

x/yn/2≤p≤y
(x/p) log p ρ(up)ε(up) +O(x)

≤ κ(n)x log y
∫ u

n/2

ρ (ν) dν + κ(n− 1)x log y
∫ n/2

u−1

ρ (ν) dν +O(x).

Moving the first term from the right side to the left side, using the functional equation for
ρ(u), and noting that

∫ n/2
u−1

ρ (ν) dν ≥ ∫ u−1/2

u−1
ρ (ν) dν ≥ uρ(u)/2, we now have

κ(n) ≤ κ(n− 1) +O(1/uρ(u) log y),

and the result follows, by induction.

There is a very nice technique, due to Rankin, to find an upper bound on Ψ(x, y) as
follows: Select any σ > 0, so that

Ψ(x, y) =
∑

n≤x
P (n)≤y

1 ≤
∑

n≤x
P (n)≤y

(x
n

)σ
= xσ

∏

p≤y

(
1− 1

pσ

)−1

.

This can be extended to consider, for 0 < σ < 1

x

∫ ∞

x

Ψ(t, y)
t2

dt =
∑

n≤x
P (n)≤y

1 +
∑
n>x

P (n)≤y

x

n

≤
∑

n≤x
P (n)≤y

(x
n

)σ
+

∑
n>x

P (n)≤y

x

n
·
(n
x

)1−σ
= xσ

∏

p≤y

(
1− 1

pσ

)−1

.

Let σ = 1− log(u log u)
log y , and use (2.3), to deduce that

(3.3.3)
∫ ∞

x

Ψ(t, y)
t2

dt ≤
(

C

u log u

)u
log y

for a certain constant C > 0.
For small u we get a better bound for Ψ(x, y), by using (3.2.1): Let X ≤ x and

use the upper bound 1 ≤ (n/X)η for n ≥ X, with η = c/ log y and c < log 2, so that
pη ≤ yη = ec < 2. Hence, by (3.2.1) we have

Ψ(x, y) ≤ X +
∑

n≤x
P (n)≤y

(n/X)η ¿ X +
x

Xη log x

∑

m≤x
P (m)≤y

1
m1−η
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Since η is a far smaller than 1/2, we have

log




1
log y

∑

m≤x
P (m)≤y

1
m1−η


 ≤ O(1) +

∑

p≤y

(
1

p1−η −
1
p

)
≤ η

∑

p≤y

log p
p

+O(1) ¿ 1.

Therefore choosing X = x1−η, we have the upper bound Ψ(x, y) ¿ x1−η+η2 ¿ x/e2u/3,
and also ∫ ∞

x

Ψ(t, y)
t2

dt¿
∫ ∞

x

dt

t1+η−η2 ¿
1

ηxη−η2 ¿ e−2u/3

3.4. Bounding the tail of a sum.

Lemma 3.4.1. If f and g are totally multiplicative, with 0 ≤ f(p) ≤ g(p) ≤ p for all
primes p, then

∏

p≤y

(
1− f(p)

p

) ∑

n≤x
P (n)≤y

f(n)
n

≤
∏

p≤y

(
1− g(p)

p

) ∑

n≤x
P (n)≤y

g(n)
n

Proof. We prove this in the case that f(q) < g(q) and g(p) = f(p) otherwise, since then the
result follows by induction. Define h so that g = f ∗h, so that h(qb+1) = (g(q)−f(q))g(qb)
for all b ≥ 0, and h(pa) = 0 otherwise. The left hand side above equals

∏
p≤y

(
1− g(p)

p

)

times ∑

m≥1

h(m)
m

∑

n≤x
P (n)≤y

f(n)
n

≥
∑

N≤x
P (N)≤y

∑

mn=N

h(m)
m

· f(n)
n

=
∑

n≤x
P (n)≤y

g(n)
n

,

as desired.

Corollary 3.4.2. Suppose that f is a totally multiplicative function, with 0 ≤ f(p) ≤ 1
for all primes p. Then

∏

p≤y

(
1− f(p)

p

) ∑
n>x

p|n =⇒ p≤y

f(n)
n

¿
(

C

u log u

)u
,

where x = yu.

Proof. If take x = ∞, both sides equal 1 in the Lemma. Hence if we subtract both sides
from 1, and let g = 1, we obtain

∏

p≤y

(
1− f(p)

p

) ∑
n>x

p|n =⇒ p≤y

f(n)
n

≤
∏

p≤y

(
1− 1

p

) ∑
n>x

p|n =⇒ p≤y

1
n
.

By Mertens’ theorem and this is

. e−γ

log y

∫ ∞

x

dΨ(t, y)
t

≤ e−γ

log y

∫ ∞

x

Ψ(t, y)
t2

dt,

and the result follows from (3.3.3).
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3.5. Elementary proofs of the prime number theorem.
Selberg’s formula (as discussed in (0.3.1)) can be written as

(3.5.1) (ψ(x)− x) log x = −
∑

p≤x
log p

(
ψ

(
x

p

)
− x

p

)
+O(x).

There is an analogous formula for µ(n), derived from (3.1.1):

M(x) log x = −
∑

p≤x
log p M

(
x

p

)
+O(x).

Exercise: Show that if F (x) is any function for which

F (x) log x = −
X

p≤x

log p F

„
x

p

«
+O(x).

holds for all x, then

lim inf
x→∞

F (x)

x
+ lim sup

x→∞
F (x)

x
= 0,

and so if limx→∞ F (x)/x exists then it equals 0. Note that these deductions apply to M(x) and ψ(x)−x,
given the formulas in the last two displayed equations.

Proof of Selberg’s formula. Let Λ2(n) := Λ(n) log n+
∑
`m=n Λ(`)Λ(m), so that

∑

d|n
Λ2(n) =

∑

`|n
Λ(`) log `+

∑

`m|n
Λ(`)Λ(m)

=
∑

`|n
Λ(`)


log `+

∑

m|(n/`)
Λ(m)


 = (log n)2,

and therefore
Λ2(n) =

∑

d|n
µ(d)(log n/d)2

by Möbius inversion.
Now

∑

m≤x

∑

n≤x/m
Λ2(n) =

∑

mn≤x

∑

dr=n

µ(d)(log r)2 =
∑

dmr≤x
µ(d)(log r)2

=
∑

Nr≤x
(log r)2

∑

d|N
µ(d) =

∑

r≤x
(log r)2

= x(log2 x− 2 log x+ 2) +O(log2 x).

Moreover by (1.2.1) we obtain

2
∑

m≤x

x

m
log

x

m
= 2x

∫ x

1

∑

m≤t

1
m

dt

t
= x(log2 x+ 2γ log x+ c0) +O(1),
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for some constant c0, and

∑

m≤x

(
c1
x

m
+ c2

)
= x(c1 log x+ 2− c0) +O(1),

with c1 = −2(1 + γ) and c2 = 2− c0 − c1γ.
Therefore if A(x) :=

∑
n≤x Λ2(n)− 2x log x− c1x− c2, and then

B(x) :=
∑

m≤x
A(x/m) ¿ log2 x,

so that
A(x) =

∑

n≤x
µ(n)B(x/n) ¿

∑

n≤x
log2(x/n) ¿ x.

Therefore we have proved ∑

n≤x
Λ2(n) = 2x log x+O(x).

The result, (0.3.1) or (3.5.1), follows from (1.2.3) and the bounds

∑

n≤x
Λ(n) log x/n¿ x and

∑

`≤x
`=pb, b≥2

Λ(`)ψ
(x
`

)
¿ x,

which follow from (1.1.4).
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4. Distances

4.1. Distance functions. Throughout we define

U := {|z| ≤ 1} and UN = {z = (z1, z2, . . . ) : Each zi ∈ U}.

Lemma 4.1.1. The function η : U→ R≥0 given by η(z)2 = 1− Re(z) satisfies

η(yz) ≤ η(y) + η(z) for all y, z ∈ U.

Proof. Let y = e2iπϕ and z = e2iπθ. Since 1 − Re(e2iπα) = 2 sin2(πα), for any real α we
deduce that

η(yz)/
√

2 = | sin(π(θ + ϕ))| ≤ | sin(πθ) cos(πϕ)|+ | sin(πϕ) cos(πθ)|
≤ | sin(πθ)|+ | sin(πϕ)| = (η(y) + η(z))/

√
2.

This settles the case where |z| = |w| = 1, and (Exercise) one can extend this to all pairs
z, w ∈ U.

We can define a product in UN by multiplying componentwise: that is,

y × z = (y1z1, y2z2, . . . ).

Lemma 4.1.2. Suppose we have a sequence of functions

ηj : U→ R≥0 for which ηj(yz) ≤ ηj(y) + ηj(z) for any y, z ∈ U.

Then we may define a ‘norm’ on UN by setting

‖z‖ =
( ∞∑

j=1

ηj(zj)2
) 1

2
,

assuming that the sum converges. This norm satisfies the triangle inequality

(4.1.1) ‖y × z‖ ≤ ‖y‖+ ‖z‖.

Proof. Indeed we have

‖y × z‖2 =
∞∑

j=1

ηj(yjzj)2 ≤
∞∑

j=1

(ηj(yj)2 + ηj(zj)2 + 2ηj(yj)ηj(zj))

≤ ‖y‖2 + ‖z‖2 + 2
( ∞∑

j=1

ηj(yj)2
) 1

2
( ∞∑

j=1

ηj(zj)2
) 1

2
= (‖y‖+ ‖z‖)2,

using the Cauchy-Schwarz inequality, which implies (4.1.1).
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A nice class of examples is provided by taking ηj(zj)2 = aj(1−Re(zj)) (as in Lemma
4.1.1) where the aj are non-negative constants with

∑∞
j=1 aj < ∞. This last condition

ensures the convergence of the sum in the definition of the norm. A specific case of this,
for a multiplicative function f(n), is to define the coefficient aj = 1/p and let zj = f(p)
for each prime p ≤ x. We therefore have the norm

‖fx‖2 :=
∑

p≤x

1− Re(f(p))
p

,

where fx corresponds to f truncated at x. We can extend this to define the distance (up
to x) between the multiplicative functions f and g as

D(f, g;x)2 =
∑

p≤x

1− Re f(p)g(p)
p

.

By Lemmas 4.1.1 and 4.1.2 this satisfies the triangle inequality

(4.1.2) D(f1, g1;x) + D(f2, g2;x) ≥ D(f1g1, f2g2;x).

(We might alternately use D+(f, g;x)2 =
∑
pk≤x

1−Re f(pk)g(pk)
pk

, though this can lead to
complications.)

For x ≥ 3 and T ≥ 1 define t(x, T ) = tf (x, T ) to be a value of t with |t| ≤ T for which
D(f(n), nit;x)2 is minimized; and then define

M(x, T ) = Mf (x, T ) := min
|t|≤T

D(f(n), nit;x)2 = D(f(n), nit(x,T );x)2

Now

M(x, T ) =
∑

p≤x

1− Re f(p)p−it(x,T )

p
≤

∑

p≤x

1− Re f(p)p−it

p

for all t with |t| ≤ T . Therefore if x > y then
∑

y<p≤x

1− Re f(p)p−it(x,T )

p
≤M(x, T )−M(y, T ) ≤

∑

y<p≤x

1− Re f(p)p−it(y,T )

p
,

and so, by (1.2.4),

(4.1.3) |M(x, T )−M(y, T )| ≤ 2 log
(

log x
log y

)
+O(1).

We will need some further definitions for a given multiplicative function f : For any
complex number s with Re(s) > 0, let

F (s) = F (s;x) :=
∏

p≤x

(
1 +

f(p)
ps

+
f(p2)
p2s

+ . . .
)
.

Exercise: Show that |F (1, x)| ³ (log x)e−‖fx‖2 ; and that |F (1 + it, x)| ³ (log x)e−D(f(n),nit;x)2 .

Now define
L = L(x, T ) :=

1
log x

(
max
|t|≤T

|F (1 + it)|
)
.

Exercise: Show that M(x, T ) = log(1/L(x, T )) +O(1).
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4.2. A lower bound on a key distance.

Lemma 4.2.1. If |t| ≤ xo(1) then

D2(µ(n), nit;x) ≥
{

1− 2
π

+ o(1)
}

log
(

log x
log(2 + |t|)

)
.

Proof. Fix α ∈ [0, 1) and ε > 0. Let P be the set of primes for which there exists an integer
n such that p ∈ In := [e2π(n+α)/|t|, e2π(n+α+ε)/|t|), so that Re(pit) lies between cos(2πα)
and cos(2π(α + ε)). We partition the intervals In into subintervals of the form [y, y + z],
where z = o(y) and log z ∼ log y, which is possible provided |t| = o(n/ logn) (Exercise).
The Brun-Titchmarsh Theorem implies that the number of primes in each such interval is
≤ {2 + o(1)}z/ log y, and so

∑
p∈In 1/p ≤ {2 + o(1)} log(1 + ε

n+α ), from which we deduce

∑

x0<p≤x
p∈In for some n

1
p
≤ {2ε+ o(1)} log

(
log x
log x0

)
+O(ε),

where x0 := (2 + |t|)log ue2π/|t| and 2 + |t| = x1/u, as u→∞. Combining this with (1.2.4),
we deduce (exercise) that

∑

x0<p≤x

1 + cos(t log p)
p

≥ {2 + o(1)} log
(

log x
log x0

) ∫ 3/4

1/4

(1 + cos(2πα))dα+O(1)

≥
{

1− 2
π

+ o(1)
}

log
(

log x
log x0

)
+O(1).

The result follows if |t| ≥ 1. If |t| < 1 then log
(

log x
log x0

)
∼ log(|t| log x). However, we also

have

∑

p≤e2π/3|t|

1 + cos(t log p)
p

≥ (1 + cos(2π/3))
∑

p≤e2π/3|t|

1
p
≥ 1

2
log

1
|t| +O(1),

by (1.2.4), and then adding these lower bounds gives the result.

5. Zeta Functions and Dirichlet series: A minimalist discussion

5.1. Dirichlet characters and Dirichlet L-functions.

This section maybe may be mostly discarded, though we may have to wait to see how other things

pan out.

Define the Dirichlet characters, especially the role of primitive characters, and L-functions to the
right of the 1-line. Note that

(5.1.1)
1

ϕ(q)

X

χ (mod q)

χ(m) =

(
1 if m = 1,

0 otherwise,
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and

(5.1.2)
1

ϕ(q)

X

b (mod q)

χ(b) =

(
1 if χ = χ0,

0 otherwise,

where χ0 is the principal character mod q.
We will need to add a proof of Dirichlet’s class number formula, perhaps a uniform version? (Since

this can be used to establish the connection between small class number and small numbers of primes in
arithmetic progressions). We also need to discuss the theory of binary quadratic forms, at least enough
for the class number formula and to understand prime values of such forms.

Lemma 5.1.1. For any non-principal Dirichlet character χ (mod q) and any complex number s with
real part > 0, we can define

L(s, χ) = lim
N→∞

NX

n=1

χ(n)

ns
,

since this limit exists.

The content of this result is that the right-side of the equation converges. One usually uses the idea
of analytic continuation to state that this equals the left-side.

Proof sketch. We will prove this by suitably bounding

∞X

n=N+1

χ(n)

ns
,

for N ≥ (q(1+ |s|))2/σ , where s = σ+ it. If n = N+j we replace the n in the denominator by N , incurring
an error of ˛̨

˛̨ 1

(N + j)s
− 1

Ns

˛̨
˛̨¿ 1

Nσ

|s|j
N

¿ |s|q
N1+σ

,

for 1 ≤ j ≤ q. Summing this over all n in the interval (N,N + q], gives N−s
P

n χ(n) +O(|s|q2/N1+σ) ¿
|s|q2/N1+σ. Summing now over N,N + q,N + 2q, . . . , we obtain a total error of ¿ |s|q/σNσ, which
implies the result.

Exercise. Actually this proof is not complete. Find the error and correct it.

Lemma 5.1.2. For any complex number s with real part > 0 we can define

ζ(s) =
1

s− 1
− s

Z ∞

1

{t}
ts+1

dt,

where {t} is the fractional part of t, since this integral is absolutely convergent.

Proof. We simply use partial summation so that for Re(s) > 1 we have

ζ(s) =
X

n≥1

1

ns
=

Z ∞

1

d[t]

ts
=

Z ∞

1

d(t− {t})
ts

=
1

s− 1
−
Z ∞

1

d{t}
ts

.

Integrating by parts Z ∞

1

d{t}
ts

=

»{t}
ts

–∞

1

+ s

Z ∞

1

{t}
ts+1

dt = s

Z ∞

1

{t}
ts+1

dt,

and the result follows.

5.2. Dirichlet series just to the right of the 1-line.
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Lemma 5.2.1. For x ≥ 2 we have

exp


∑

p≤x

f(p)
p1+it


 ³

∑

n≥1

f(n)

n1+ 1
log x+it

Proof. Let s = 1 + 1
log x + it. By (1.2.3) we deduce that

∣∣∣∣∣
∑
p>x

f(p)
ps

∣∣∣∣∣ ≤
∑
p>x

1
p1+1/ log x

¿ 1,

and ∣∣∣∣∣∣
∑

p≤x

(
f(p)
ps

− f(p)
p1+it

)∣∣∣∣∣∣
≤

∑

p≤x

1
p
(1− p−1/ log x) ¿ 1

log x

∑

p≤x

log p
p

¿ 1,

and so ∑

p≤x

f(p)
p1+it

=
∑

p prime

f(p)
ps

+O(1).

The result follows by, adding the relevant terms for pk, k ≥ 2 to the right side, which
converge, and then taking the exponential of each side.

Corollary 5.2.2. Suppose that there exists an integer k ≥ 1 such that f(p)k = 1 for all
primes p. Then D(f(n), nit;∞) = ∞ for every non-zero real t.

Examples of this include f = µ the Möbius function, χ a Dirichlet character, and even µχ.

Proof. Suppose that there exists a real number t 6= 0 such that D(f(n), nit;∞) < ∞.
Then D(1, nikt;∞) ≤ kD(f(n), nit;∞) < ∞ by the triangle inequality (4.1.2). Let s =
1 + 1

log x + ikt. By Lemma 5.2.1, we have

log ζ(s) =
∑

p≤x

1
p1+ikt

+O(1),

and so

log |ζ(s)| = Re(log ζ (s)) =
∑

p≤x

Re(pikt)
p

+O(1)

=
∑

p≤x

1
p
− D(1, nikt;x) +O(1) = log log x+Ot(1),

and therefore |ζ(s)| À log x. However Lemma 5.1.2 yields that

ζ(s) =
1

s− 1
+O(1 + |t|) =

1
it

+O

(
1 + |t|+ 1

|t|2 log x

)
,

a contradiction.
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Lemma 5.2.3. Let an be a sequence of complex numbers such that
∑∞
n=1

|an|
n < ∞, so

that A(s) =
∑∞
n=1 ann

−s is absolutely convergent in Re(s) ≥ 1. For all real numbers
T ≥ 1, and all 0 ≤ α ≤ 1 we have

(5.2.1) max
|t|≤T

|A(1 + α+ it)| ≤ max
|u|≤2T

|A(1 + iu)|+O
(α
T

∞∑
n=1

|an|
n

)
.

Exercise. Prove that, for any integer n ≥ 1, we have

n−α =
1

π

Z T

−T

α

α2 + ξ2
n−iξdξ +O

“α
T

”
.

(Hint: Show that 2α
α2+ξ2 is the Fourier transform of e−α|z|.)

Proof. Multiplying the result in this exercise through by an/n1+it, and summing over all
n, we obtain

A(1 + α+ it) =
1
π

∫ T

−T

α

α2 + ξ2
A(1 + it+ iξ)dξ +O

(α
T

∞∑
n=1

|an|
n

)

which yields the result when |t| ≤ T , since then |u| ≤ |t| + |ξ| ≤ 2T for u = t + ξ, and as
1
π

∫ T
−T

α
α2+ξ2 dξ ≤ 1

π

∫∞
−∞

α
α2+ξ2 dξ = 1 by the exercise with n = 1.

Lemma 5.2.4. If χ is a character mod q, with x ≥ y ≥ q and |t| ≤ yO(1), then
∣∣∣∣L

(
1 +

1
log x

+ it, χ

)∣∣∣∣ ¿
∣∣∣∣L

(
1 +

1
log y

+ it, χ

)∣∣∣∣

It would be good to have a proof of this that stays to the right of the 1-line, and does not use

the analytic continuation. Here are two proofs with not too much in them.

Proof # 1. Note that 1 < 1+ 1
log x ≤ 1+ 1

log y ≤ 1+ 1
log q . By (2) and the next two displayed

equations of Chapter 14 of Davenport, we know that for s = σ+ it where σ > 1, we have12

(5.2.2) −Re
L′(s, χ)
L(s, χ)

¿ log(q(2 + |t|)).

Therefore

log

∣∣∣∣∣∣
L

(
1 + 1

log x + it, χ
)

L
(
1 + 1

log y + it, χ
)

∣∣∣∣∣∣
= Re


log


L

(
1 + 1

log x + it, χ
)

L
(
1 + 1

log y + it, χ
)







= −
∫ 1/ log y

1/ log x

Re
L′(1 + v + it, χ)
L(1 + v + it, χ)

dv ¿ log(q(2 + |t|))
log y

¿ 1.

12This is the proof from Lemma 1 [Elliott6]. The key is (5.2.2) – can we prove it without zeros? In
Lemma 14 he gives a proof with limited analytic continuation.
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Proof # 2. It is well-known that the completed Dirichlet L-function has a Hadamard
factorization; that is if δ = (1− χ(−1))/2 then

Λ(s, χ) :=
(
π

q

)− s+δ
2

Γ
(
s+ δ

2

)
L(s, χ) = eA+Bs

∏

ρ: Λ(ρ,χ)=0

(
1− s

ρ

)
es/ρ

where Re(B +
∑
ρ 1/ρ) = 0 (as in Chapter 12 of Davenport). Since all zeros ρ of L(s, χ)

have Re(ρ) ≤ 1 we see that
∣∣∣1 + 1

log y + it− ρ
∣∣∣ ≥

∣∣∣1 + 1
log x + it− ρ

∣∣∣, by applying the

triangle inequality. Hence
∣∣∣Λ(1 + 1

log y + it, χ)
∣∣∣ ≥

∣∣∣Λ(1 + 1
log x + it, χ)

∣∣∣ by multiplying over
all zeros. Inserting this into the definition of Λ(s, χ), we deduce the result from the fact
that Γ′(s)/Γ(s) = log s + O(1/|s|) (as in (6) of Chapter 10 of Davenport), which implies
that the ratio of the Gamma factors is ¿ log |t|/ log y ¿ 1.
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6. Halász’s Theorem

6.1. Halász’s Theorem in context. In §1 1
2 .2 we gave a simple heuristic that for any

real-valued multiplicative function f with |f(n)| ≤ 1 for all n, we have

(2.2.1)
1
x

∑

n≤x
f(n) → Prod(f,∞) as x→∞.

However, not all complex valued multiplicative functions have a mean value tending to a
limit. For example, the function f(n) = nit, with t ∈ R \ {0}, since

1
x

∑

n≤x
nit =

1
x

∫ x

u=1

uitdu+O(1) ∼ xit

1 + it
.

Notice that for large x this mean value rotates around a path getting closer and closer to
the circle of radius 1/(1 + t2)1/2. And it is not only the functions nit whose mean value
does not tend to a limit – indeed you might expect a similar phenomena if you make some
minor alterations to nit. For example, if we take f(2) = −2it and f(p) = pit for all odd
primes p, then the mean-value up to x is ∼ xit/3(1 + it). So we find that any f that is
“close” to nit also has this property. We measure “close” by using the distance function,
that is D(f(n), nit;∞) is bounded. In this case we say that f(n) is nit-pretentious. Are
there any non-pretentious multiplicative functions whose mean values do not exist?

In the early seventies, Gábor Halász [8,9] brilliantly proved that the answer is “no”:

Halász’s Theorem. Suppose that f(.) is a multiplicative function with |f(n)| ≤ 1 for
all n. If limx→∞ 1

x

∑
n≤x f(n) does not exist then f(n) is nit-pretentious for some real

number t. That is,
D(f(n), nit;∞) is bounded.

Halász’s theorem gives more, both qualitatively and quantitatively:
limx→∞ 1

x

∣∣∣∑n≤x f(n)
∣∣∣ exists.

If f(n) is not nit-pretentious then limx→∞ 1
x

∑
n≤x f(n) = 0.

Exercise: Prove that there can be at most one value of t for which f(n) is nit-pretentious.

In fact, if f(n) is nit-pretentious then

1
x

∑

n≤x
f(n) ∼ xit

1 + it
Prod(ft, x)

where ft(n) := f(n)/nit. This converges in absolute value, and the angle varies slowly.13

Although Halász’s result is a little technical, it does indicate how rapidly mean values
converge: We have

(6.1.2)
1
x

∣∣∣
∑

n≤x
f(n)

∣∣∣ ¿ (1 +Mf (x, T ))e−Mf (x,T ) +
1
T

+
log log x

log x

13That is the argument for the mean values at x and at xc, differ by < ε, once x is sufficiently large.
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This can be formulated a little differently. At the end of section 4.1 we saw thatMf (x, T ) =
log(1/L(x, T )) +O(1), so that (6.1.2) is equivalent to

(6.1.3)
1
x

∣∣∣
∑

n≤x
f(n)

∣∣∣ ¿ L log
2
L

+
1
T

+
log log x

log x
,

where L = L(x, T ).
Exercise: Taking f(n) = χ(n), a Dirichlet character, deduce the following: For 0 < ε < log log x/ log x we
have ˛̨

˛
X

n≤x

χ(n)
˛̨
˛ ≤ εx

except perhaps if |L(1 + it, χ)| À ε′ log x for some t, |t| ¿ 1/ε where ε′ = ε/ log(1/ε).

6.2. Inverse and Hybrid results, etc.

Theorem 6.2. There exists a constant c > 0 such that there exists y in the range
xη/| log η| ≤ y ≤ x for which

∣∣∣∣∣∣
∑

n≤y
f(n)

∣∣∣∣∣∣
> ηy,where η = η(x, T ) :=

cL(x, T )
1 + |t| .

and t = t(x, T ).

Proof. Let ϕ = log(1/η), τ = η/ϕ and δ = ϕ/ log x. Now
∣∣∣∣∣∣
∑

n≥1

f(n)
n1+δ+it

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

p≤x

(
1− f(p)

p1+δ+it

)−1
∣∣∣∣∣∣

³
∏

p≤x

(
1− 1

p1+δ

)−1

exp


−

∑

p≤x

1− Re(f(p)/pit)
p1+δ




³ log x
ϕ

e−M(x,T ) ³ log x
ϕ

L(x, T ),

by the prime number theorem. On the other hand
∑

n≥1

f(n)
n1+δ+it

= (1 + δ + it)
∫ ∞

1

1
y2+δ+it

∑

n≤y
f(n)dy.

Assuming that |∑n≤y f(n)| ≤ ηy for all xη/ϕ ≤ y ≤ x, and using the the trivial bound
|∑n≤y f(n)| ≤ y otherwise, we find that the integral here is

≤
∫ xη/ϕ

1

dy

y1+δ
+ η

∫ x

xη/ϕ

dy

y1+δ
+

∫ ∞

x

dy

y1+δ

=
log x
ϕ

(
(1− e−η) + η(e−η − e−ϕ) + e−ϕ

) ≤ 3η
log x
ϕ

,

which yields a contradiction if c is chosen sufficiently small.

There is a version of Halász’s theorem that takes into account the point 1 + it:
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Theorem 6.3. Let t = t(x, log x) and let L = L(x, log x). Then

1
x

∣∣∣
∑

n≤x
f(n)

∣∣∣ ¿ L

1 + |t| log
2
L

+
log log x

(log x)2−
√

3
.

We require the following lemma, which relates the mean value of f(n) to the mean-value
of f(n)nit.

Lemma 6.4. Suppose f(n) is a multiplicative function with |f(n)| ≤ 1 for all n. Then
for any real number t we have

∑

n≤x
f(n) =

xit

1 + it

∑

n≤x

f(n)
nit

+O

(
x

log x
log(2 + |t|) exp

(
D(f(n), nit;x)

√
2 log log x

))
.

Corollary 6.5. Suppose f(n) is a multiplicative function with |f(n)| ≤ 1 for all n. If
t = tf (x, log x) then

∑

n≤x
f(n) =

xit

1 + it

∑

n≤x

f(n)
nit

+O

(
x log log x

(log x)2−
√

3

)
.

Proof of Lemma 6.4. Let g and h denote the multiplicative functions defined by g(n) =
f(n)/nit, and h(pk) = g(pk)− g(pk−1), so that g(n) =

∑
d|n h(d). Then

(6.2.1)
∑

n≤x
f(n) =

∑

n≤x
g(n)nit =

∑

n≤x
nit

∑

d|n
h(d) =

∑

d≤x
h(d)dit

∑

m≤x/d
mit.

By partial summation it is easy to see that

∑

m≤z
mit =

{
z1+it

1+it +O(1 + t2)

O(z).

We use the first estimate above in (6.2.1) when d ≤ x/(1 + t2), and the second estimate
when x/(1 + t2) ≤ d ≤ x. This gives

∑

n≤x
f(n) =

x1+it

1 + it

∑

d≤x

h(d)
d

+O

(
(1 + t2)

∑

d≤x/(1+t2)
|h(d)|+ x

∑

x/(1+t2)≤d≤x

|h(d)|
d

)
.

Applying (2.4.5) and (2.4.6) we deduce that

∑

n≤x
f(n) =

x1+it

1 + it

∑

d≤x

h(d)
d

+O

(
x

log x
log(2 + |t|)

∑

d≤x

|h(d)|
d

)

=
x1+it

1 + it

∑

d≤x

h(d)
d

+O

(
x

log x
log(2 + |t|) exp

(∑

p≤x

|1− g(p)|
p

))
.
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We use this estimate twice, once as it is, and then with f(n) replaced by f(n)/nit, and t
replaced by 0, so that g and h are the same in both cases.

Then, by the Cauchy-Schwarz inequality,


∑

p≤x

|1− g(p)|
p




2

≤ 2
∑

p≤x

1
p
·
∑

p≤x

1− Re(g(p))
p

≤ 2D(g(n), 1;x)2(log log x+O(1)),

and the result follows, since D(f(n), nit;x)2 = D(g(n), 1;x)2 ¿ log log x.

Proof of Corollary 6.5 and Theorem 6.3. We may assume that M := Mf (x, log x) >

(2 − √3) log log x else Corollary 6.5 follows immediately from Lemma 6.4. Moreover, in
this case

∑
n≤x f(n) ¿ x log log x/(log x)2−

√
3 by (6.1.2). Now let g(n) = f(n)/nit. If

|t| > 1
2 log x then |(xit/(1 + it))

∑
n≤x g(n)| ≤ x/(1 + |t|) ¿ x/ log x and Corollary 6.5

follows. But if |t| > 1
2 log x then tg(x, 1

2 log x) = 0, so that Mg(x, 1
2 log x) = M , and

Corollary 6.5 follows from (6.1.2) applied to g.
Finally Theorem 6.3 follows from Corollary 6.5 by the definition of L.

6.4. Halász’s key Proposition. The main result is the following:

Proposition 1. Let f be a multiplicative function with |f(n)| ≤ 1 for all n. Let x ≥ 3
and T ≥ 1 be real numbers. F be as in Theorem 1. Then

1
x

∣∣∣
∑

n≤x
f(n)

∣∣∣ ¿ 1
log x

∫ 1

1/ log x

max
|t|≤T

|F (1 + α+ it)| dα
α

+
1
T

+
log log x

log x
.

To evaluate the integral we use Lemma 2.7.

Proof of (6.1.3). We will bound the terms in the integral in Proposition 1 using Lemma
2.7. Let an be the multiplicative function with apk = f(pk) if p ≤ x and apk = 0 so that∑
n |an|/n ≤

∏
p≤x(1− 1/p)−1 ¿ log x

Let M = max|t|≤2T |F (1 + it)| so that M = L log x. If M < 1 then (6.1.3) follows
immediately by Proposition 1 and Lemma 2.7. If M > 1 then, by Lemma 2.7, for 1/ log x ≤
α ≤ 1/M , we have

max
|t|≤T

|F (1 + α+ it)| ≤M +O
(α log x

T

)
.

Moreover, for any real t and 1/M < α ≤ 1, we have

|F (1 + α+ it)| ≤ ζ(1 + α) =
1
α

+O(1) ¿ 1
α
,

by taking the absolute value of each summand. The result follows from Proposition 1.
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6.5. The proof of Proposition 1.

Proof of Proposition 1. By (1.2.6) we know that

S(N) :=
∑

n≤N
f(n) =

1
logN

∑

n≤N
f(n) log n+O

(
N

logN

)

¿
∫ 1

1/ log x

∣∣∣∣∣∣
∑

n≤N
f(n) log n

∣∣∣∣∣∣
dα

N2α
+

N

logN

whenever x ≥ max{N, 4}. Therefore

∫ x

2

|S(y)|
y2

dy ¿
∫ 1

1/ log x




∫ x

2

∣∣∣
∑

n≤y
f(n) log n

∣∣∣ dy

y2+2α


 dα+ log log x.

Applying Cauchy’s inequality twice we obtain, for α ≥ 1/ log x,




∫ x

2

∣∣∣
∑

n≤y
f(n) log n

∣∣∣ dy

y2+2α




2

≤
(∫ x

1

dy

y1+2α

)( ∫ x

2

∣∣∣
∑

n≤y
f(n) log n

∣∣∣
2 dy

y3+2α

)

¿ 1
α

∫ ∞

1

∣∣∣
∑

n≤y
f(n) log n

∣∣∣
2 dy

y3+2α

=
1
α

∫ ∞

0

∣∣∣
∑

n≤et
f(n) log n

∣∣∣
2

e−2(1+α)tdt

=
1

2πα

∫ ∞

−∞

∣∣∣F
′(1 + α+ iy)
1 + α+ iy

∣∣∣
2

dy,

by Plancherel’s formula.
The integral in the region |y| ≤ T is evidently

≤ max
|y|≤T

|F (1 + α+ iy)|2
∫ T

−T

∣∣∣ (F
′/F )(1 + α+ iy)

1 + α+ iy

∣∣∣
2

dy.

This integral is, by Plancherel,

≤
∫ ∞

−∞

∣∣∣ (F
′/F )(1 + α+ iy)

1 + α+ iy

∣∣∣
2

dy =
∫ ∞

1

∣∣∣
∑

n≤y
f(n)Λ(n)

∣∣∣
2 dy

y3+2α
¿

∫ ∞

1

dy

y1+2α
¿ 1

α
.

For |y| > T , we expand the integral to obtain

(6.5.1)
∑

m,n≥1

f(m)f(n) logm log n
(mn)1+α

∫

|y|>T

1
|1 + α+ iy|2(m/n)iy

dy.
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If m = n the integral is ¿ 1/T . Otherwise, partitioning the range into intervals of length
2π/| log(m/n)| we deduce that the integral is ¿ 1/T 2| log(m/n)|. Hence the above is

¿ 1
T

∑

n≥1

(log n)2

n2+2α
+

1
T 2

∑

m>n≥1

logm log n
(mn)1+α log(m/n)

.

The first sum is bounded. For the second sum we consider the sum over m for n fixed,
breaking the sum into those with m = n + j, 1 ≤ j ≤ n, then m = in + `, 1 ≤ ` ≤ n, and
finally m ≥ n2:

∑

m>n≥1

logm
m1+α log(m/n)

¿
n∑

j=1

logn
jnα

+ n

n∑

i=1

log n
(in)1+α log 2i

+
∑

m>n2

1
m1+α

¿ (log n)2

nα
+

1
αn2α

.

Hence in total we have

(6.5.2) ¿
∑

n≥1

(logn)3

n1+2α
+

log n
αn1+3α

¿ 1
α4
,

yielding a bound of ¿ 1
T + 1

α4T 2 for (6.5.1).
Substituting this all in above yields

∫ x

2

|S(y)|
y2

dy ¿
∫ 1

1/ log x

max
|t|≤T

|F (1 + α+ it)| dα
α

+
(log x)3/2

T
+ log log x,

which implies Proposition 1, with (log x)1/2

T in place of 1
T , using (2.4.4).

To improve the error term in Proposition 1 from (log x)1/2

T to 1
T , we now improve (6.5.2)

to ¿ 1/α3

Strong Hilbert’s Inequality. If a1, a2, . . . is a sequence of complex numbers, and x1, x2, . . .
are distinct real numbers then

∣∣∣∣∣∣
∑

r 6=s

aras
xr − xs

∣∣∣∣∣∣
¿

∑
r

|ar|2
mins 6=r |xs − xr| ,

provided the right side converges.
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Corollary. If a1, a2, . . . is a sequence of complex numbers then

∫ T

0

∣∣∣∣∣∣
∑

n≥1

an
nit

∣∣∣∣∣∣

2

dt¿
∑

n≥1

(T + n)|an|2,

provided the right side converges.

Proof. If we expand the left side we get

T
∑
n

|an|2 +
∑

r 6=s
aras

∫ T

0

(s/r)itdt.

The second term equals

∑

r 6=s

aras
i log(s/r)

((s/r)iT − 1) = i
∑

r 6=s

aras
log s− log r

− i
∑

r 6=s

arr
−iTass−iT

log s− log r
.

Applying the Strong Hilbert’s Inequality to each sum yields our result.

Reworking the last part of the proof of Proposition 1. By the Corollary above we have

∫

kT≤|y|≤(k+1)T

∣∣∣F
′(1 + α+ iy)
1 + α+ iy

∣∣∣
2

dy ¿ 1
1 + k2T 2

∞∑
n=1

|f(n)|2 log2 n

n2+2α
(T + n).

Summing over all k ≥ 1 gives, in total,

¿ 1
T

∞∑
n=1

log2 n

n2+2α
+

1
T 2

∞∑
n=1

p|n =⇒ p≤x

log2 n

n1+2α
¿ 1

T
+

1
α3T 2

.

Proposition 1 now follows by substituting this into the argument above.
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7. The prime number theorem

7.1. Pretentious proofs of the prime number theorem.

Proof of the Prime Number Theorem. Take f = µ and T = log x in (6.1.2). By Lemma
2.2 we deduce that ∣∣∣

∑

n≤x
µ(n)

∣∣∣ ¿ x

(log x)1−
2
π+o(1)

;

and then

(7.1) ψ(x) = x+O

(
x

(log x)1−
2
π+o(1)

)

by exercise (i) of §1.5.

The classical proof of the Prime Number Theorem yields a much better error term
than in (7.1); indeed something like

ψ(x) = x+O
(
x exp

(
−(log x)3/5+o(1)

))
.

There are elementary proofs of the prime number theorem that yield an error term of
O

(
x exp

(−(log x)1/2+o(1)
))

. We believe that some of the ideas that come up below indicate
that we will not able to improve the exponent 1− 2

π in (7.1) even to 1. That is our methods
are very far, quantitatively, from what can be obtained by several other methods. Hence
to get good error terms with our methods one will need to incorporate unpretentious ideas.

7.2. Lower bounds on distances, II.

Lemma 7.2.1. For any f , and any real numbers t1, t2 with |t1 − t2| ≤ log x we have

max
j=1,2

D(f, nitj ;x)2 ≥
(

1− 2
π

)(
log log x− log

( 1
|t1 − t2| + 1

))
+O(1).

Proof. We may assume β := |t1 − t2|/2 > 1/ log x, else the result is trivial. Then

max
j=1,2

D(f, nitj ;x)2 ≥ 1
2

2∑

j=1

D(f, nitj ;x)2 =
∑

p≤x

1− Re f(p)(p−it1 + p−it2)/2
p

≥ log log x−
∑

p≤x

| cos(β log p)|
p

+O(1).

By partial summation this equals

(7.2.1) log log x−
∫ β log x

β

| cosu|
u

du+O

(
1 +

∫ x

2

|ψ(v)− v|
v2 log v

dv

)
,

and the error term here is O(1), by the prime number theorem (7.1).
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Exercise: Show that
R t+2π

t
| cos u|

u
du = 2

π

R t+2π
t

du
u

+O
“

1
t2

”
for any t ≥ 1.

Show that
R 1

β
| cos u|

u
du = log(1/β) +O(1). (Hint: Compare the left side to

R 1
β

1
u
du.)

Hence, if β ≥ 1 then
∫ β log x

β
| cosu|
u du = 2

π

∫ β log x

β
du
u + O(1) = 2

π log log x + O(1), and the
result follows.

If β < 1 then
∫ β log x

β
| cosu|
u du =

∫ β log x

1
| cosu|
u du +

∫ 1

β
| cosu|
u du = 2

π log(β log x) +
log(1/β)+O(1), so that (7.2.1) becomes

(
1− 2

π

)
log(β log x)+O(1) and the result follows.

7.3. Ellenberg’s problem. Suppose that f is a multiplicative function, with |f(n)| = 1
for all n ≥ 1. Define

Rf (N,α, β) :=
1
N

#
{
n ≤ N :

1
2π

arg(f(n)) ∈ (α, β]
}
.

We say that the f(n) are uniformly distributed on the unit circle if Rf (N,α, β) → β−α for
all 0 ≤ α < β < 1. Ellenberg asked whether the values f(n) are necessarily equidistributed
on the unit circle according to some measure, and if not whether their distribution is
entirely predictable. We prove the following response.

Distribution Theorem. Let f be a completely multiplicative function such that each
f(p) is on the unit circle. Either the f(n) are uniformly distributed on the unit circle, or
there exists a positive integer k for which (1/N)

∑
n≤N f(n)k 6→ 0. If k is the smallest

such integer then
R(N,α+ 1

k , β + 1
k )−R(N,α, β) → 0 for all 0 ≤ α < β < 1.

Moreover Rf (N,α, β)− 1
kRfk(N, kα, kβ) → 0 for 0 ≤ α < β < 1

The last parts of the result tell us that if f is not uniformly distributed on the unit
circle, then its distribution function is k copies of the distribution function for fk, a
multiplicative function whose mean value does not → 0. It is easy to construct examples
of such functions fk = g whose distribution function is not uniform: Let g(p) = 1 for all
odd primes p and g(2) = e(

√
2), where g is completely multiplicative.

To prove the distribution theorem we use

Weyl’s equidistribution theorem. Let {ξn : n ≥ 1} be any sequence of points on the
unit circle. The set {ξn : n ≥ 1} is uniformly distributed on the unit circle if and only if
(1/N)

∑
n≤N ξ

m
n exists and equals 0, for each non-zero integer m.

We warm up for the proof of the distribution theorem by proving the following result:

Corollary. Let f be a completely multiplicative function such that each f(p) is on the
unit circle. The following statements are equivalent:

(i) The f(n) are uniformly distributed on the unit circle.
(ii) Fix any t ∈ R. The f(n)nit are uniformly distributed on the unit circle.
(iii) For each fixed non-zero integer k, we have

∑
n≤N f(n)k = o(N).

Proof. That (i) is equivalent to (iii) is given by Weyl’s equidistribution theorem. By (3.1.2)
we find that (iii) does not hold for some given k 6= 0 if and only if f(n)k is niu-pretentious
for some fixed u. But this holds if and only if (f(n)nit)k is ni(u+kt)-pretentious for some
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fixed u. But then, by Theorem 6.2, we see that (iii) does not hold with f(n) replaced by
f(n)nit, and hence the f(n)nit are not uniformly distributed on the unit circle.

Proof of the distribution theorem. The first part of the result follows from the above Corol-
lary. If k is the smallest positive integer for which

∑
n≤N f(n)k À N then, by Halasz’s

Theorem we know that there exists uk ¿ 1 such that D(f(n)k, nikuk ,∞) < ∞, and that
D(f j , niu,∞) = ∞ for 1 ≤ j ≤ k − 1, whenever |u| ¿ 1.14 Write f(p) = r(p)piukg(p),
where r(p) is chosen to be the nearest kth root of unity to f(p)p−iuk , so that | arg(g(p))| ≤
π/k, and hence 1 − Re(g(p)) ≤ 1 − Re(g(p)k). Therefore D(1, g,∞) ≤ D(gk, 1,∞) =
D(f(n)k, nikuk ,∞) <∞.

By further use of the triangle inequality, D(fmk, nikmuk ,∞) ≤ mD(fk, nikuk ,∞) <∞,
and D(fmk+j , niu,∞) ≥ D(f j , niv∞)−D(fmk, nikmuk ,∞) = ∞, where v = u− kmuk for
1 ≤ j ≤ k − 1 and any |u| ¿ 1, and so

∑
n≤N f(n)` = o`(N) if k - `.

The characteristic function of the interval (α, β) is

∑

m∈Z

e(mα)− e(mβ)
2iπm

e(mt).

We can take this sum in the range 1 ≤ |m| ≤M with an error ≤ ε. Hence

R(N,α, β) =
∑

1≤|m|≤M

e(mα)− e(mβ)
2iπm

1
N

∑

n≤N
f(n)m +O(ε)

=
∑

1≤|r|≤R

e(krα)− e(krβ)
2iπkr

1
N

∑

n≤N
f(n)kr +O(ε)

writing m = kr (since the other mean values are 0) and R = [M/k]. This formula does
not change value when we change {α, β} to {α+ 1

k , β + 1
k}, nor when we change {f, α, β}

to 1
k times the formula for {fk, kα, kβ} and hence the results.

14Note that the sum for −k is the complex conjugate of the sum for k, so we can restrict attention
to positive integers k.
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8. The large sieve

Let a1, a2, . . . be a sequence of complex numbers. We are interested in how they are
distributed in arithmetic progressions. By (2.2.2), when (b, q) = 1, we have

∑

n≡b (mod q)

an =
1

ϕ(q)

∑

χ (mod q)

χ(b)
∑
n

anχ(n),

Therefore, by using (2.2.3), we deduce that

(8.1)
∑

(b,q)=1

∣∣∣∣∣∣
∑

n≡b (mod q)

an

∣∣∣∣∣∣

2

=
1

ϕ(q)

∑

χ (mod q)

∣∣∣∣∣
∑
n

anχ(n)

∣∣∣∣∣

2

.

Now

∑

(b,q)=1

∣∣∣∣∣∣∣∣

∑

n≤N
n≡b (mod q)

an

∣∣∣∣∣∣∣∣

2

≤
∑

(b,q)=1

(
N

q
+ 1

) ∑

n≤N
n≡b (mod q)

|an|2

=
(
N

q
+ 1

) ∑
n

|an|2,

so by (8.1) we deduce that

(8.3)
q

ϕ(q)

∑

χ (mod q)

∣∣∣∣∣∣
∑

n≤N
anχ(n)

∣∣∣∣∣∣

2

≤ (q +N)
∑

n≤N
|an|2.

Note that if an = χ(n) for all n, then the term on the left-side of (8.3) corresponding to the
character χ has size ϕ(q)

q N2, whereas the right-side of (8.3) is about (q+N)ϕ(q)
q N . Hence

if q = o(N) and then (8.3) is best possible and any of the terms on the left-side could be
as large as the right side. It thus makes sense to remove the largest term on the right side
(or largest few terms) to determine whether we can get a significantly better upper bound
for the remaining terms.

The same argument used to prove (8.1) yields, for any choice of χ1, . . . , χk,
(8.2)

∑

(b,q)=1

∣∣∣∣∣∣
∑

n≡b (mod q)

an − 1
ϕ(q)

k∑

i=1

χ(b)
∑
n

anχi(n)

∣∣∣∣∣∣

2

=
1

ϕ(q)

∑

χ 6=χ1,... ,χk

∣∣∣∣∣
∑
n

anχ(n)

∣∣∣∣∣

2

.

Summing the left-side of (8.3) over q ≤ Q is important in applications, which yields a
right-side with coefficient Q2/2 + QN . Using some simple linear algebra we will improve
this to

(8.4)
∑

q≤Q

q

ϕ(q)

∑

χ (mod q)
χ primitive

∣∣∣∣∣
M+N∑

n=M+1

anχ(n)

∣∣∣∣∣

2

≤ (N + 3Q2 logQ)
M+N∑

n=M+1

|an|2.

This is also known to be true with 3Q2 logQ replaced by Q2 − 1, and we will (?) use
Hilbert’s inequality to do this.
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The Duality Principle. Let xm,n ∈ C for 1 ≤ m ≤M, 1 ≤ n ≤ N . For any constant c
we have

∑
n

∣∣∣∣∣
∑
m

amxm,n

∣∣∣∣∣

2

≤ c
∑
n

|an|2

for all am ∈ C, 1 ≤ m ≤M if and only if

∑
m

∣∣∣∣∣
∑
n

bnxm,n

∣∣∣∣∣

2

≤ c
∑
m

|bm|2

for all bn ∈ C, 1 ≤ n ≤ N .

Proof. Assume that the first inequality is true. Given bn ∈ C, 1 ≤ n ≤ N define am =∑
n bnxm,n, so that

∑
m

∣∣∣∣∣
∑
n

bnxm,n

∣∣∣∣∣

2

=
∑
m

am
∑
n

bnxm,n =
∑
n

bn
∑
m

amxm,n,

so by the Cauchy-Schwarz inequality, the above squared is

(∑
n

|an|2
)2

≤
∑
n

|bn|2 ·
∑
n

∣∣∣∣∣
∑
m

amxm,n

∣∣∣∣∣

2

≤
∑
m

|bm|2 · c
∑
n

|an|2,

using the hypothesis, and the result follows. The reverse implication is completely analo-
gous.

Proposition 8.1. Let an,M + 1 ≤ n ≤M +N be a set of complex numbers, and xr, 1 ≤
r ≤ R be a set of real numbers. Let δ := minr 6=s ‖xr − xs‖ ∈ [0, 1/2], where ‖t‖ denotes
the distance from t to the nearest integer. Then

∑
r

∣∣∣∣∣
M+N∑

n=M+1

ane(nxr)

∣∣∣∣∣

2

≤
(
N +

log(e/δ)
δ

) M+N∑

n=M+1

|an|2

where e(t) = e2iπt.

Proof. For any br ∈ C, 1 ≤ r ≤ R, we have

∑
n

∣∣∣∣∣
∑
r

bre(nxr)

∣∣∣∣∣

2

=
∑
r,s

brbs

M+N∑

n=M+1

e(n(xr − xs)) = N‖b‖2 + E,

since the inner sum is N if r = s, where, for L := M + 1
2 (N + 1),

E ≤
∑

r 6=s
brbse(L(xr − xs))

sin(πN(xr − xs))
sin(π(xr − xs))

.
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Taking absolute values we obtain

|E| ≤
∑

r 6=s

|brbs|
| sin(π(xr − xs))| ≤

∑

r 6=s

|brbs|
2‖xr − xs‖ ≤

∑
r

|br|2
∑

s 6=r

1
2‖xr − xs‖

since 2|brbs| ≤ |br|2 + |bs|2. Now, for each xr the nearest two xs are at distance at least δ
away, the next two at distance at least 2δ away, etc, and so

|E| ≤
∑
r

|br|2
[1/δ]∑

j=1

2
2jδ

≤ log(e/δ)
δ

∑
m

|bm|2,

so that
∑
n

∣∣∣∣∣
∑
r

bre(nxr)

∣∣∣∣∣

2

≤
(
N +

log(e/δ)
δ

) ∑
m

|bm|2.

The result follows by the duality principle.

We should improve the result, getting a constant N+O(1/δ) by using the strong Hilbert inequal-

ity in the proof above.

For a character χ (mod q), let the Gauss sum g(χ) be defined as

g(χ) :=
∑

a (mod q)

χ(a)e
(
a

q

)
.

For fixed m with (m, q) = 1 we change the variable a to mb, as b varies through the residues
mod q, coprime to q, so that

(8.5) χ(m)g(χ) = g(χ,m), where g(χ,m) :=
∑

a (mod q)

χ(a)e
(
am

q

)
.

It is known that if χ is primitive then |g(χ)| = √
q, Using this we can establish (8.4):

Proof. By (8.5) we have

M+N∑

n=M+1

anχ(n) =
1

g(χ)

∑

b (mod q)

χ(b)
M+N∑

n=M+1

ane

(
bn

q

)
.

Therefore, using (8.1)

∑

χ (mod q)
χ primitive

∣∣∣∣∣
M+N∑

n=M+1

anχ(n)

∣∣∣∣∣

2

≤ 1
q

∑

χ (mod q)
χ primitive

∣∣∣∣∣∣
∑

b (mod q)

χ(b)
M+N∑

n=M+1

ane

(
bn

q

)∣∣∣∣∣∣

2

≤ ϕ(q)
q

∑

b (mod q)
(b,q)=1

∣∣∣∣∣
M+N∑

n=M+1

ane

(
bn

q

)∣∣∣∣∣

2

.
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We deduce that the left side of (8.4) is

∑

q≤Q

∑

b (mod q)
(b,q)=1

∣∣∣∣∣
M+N∑

n=M+1

ane

(
bn

q

)∣∣∣∣∣

2

We now apply Proposition 8.1 with {xr} = {b/q : (b, q) = 1, q ≤ Q}, so that

δ ≥ min
q,q′≤Q

min
b,b′

b/q 6=b′/q′

∣∣∣∣
b

q
− b′

q′

∣∣∣∣ ≥ min
q 6=q′≤Q

1
qq′

≥ 1
Q(Q− 1)

,

and (8.4) follows.

8.2. Other forms of the large sieve. Needs verifying
Hildebrand used the large sieve in the form (?):

∑

p≤Q
p prime

∣∣∣∣∣∣∣∣

∑

n≤N
n≡0 (mod p)

an − 1
p

∑

n≤N
an

∣∣∣∣∣∣∣∣
≤??

∑

n≤N
|an|2

Elliott [MR962733] proved that for Q < x1/2−ε, and f multiplicative with |f(n)| ≤ 1,

′∑

p≤Q
(p− 1)max

y≤x
max

(a,p)=1

∣∣∣∣∣∣∣∣

∑

n≤y
n≡a (mod p)

f(n)− 1
p− 1

∑

n≤y
(n,p)=1

f(n)

∣∣∣∣∣∣∣∣

2

¿ x

logA x
,

where the sum is over all p except one where there might be an exceptional character.

8.3. Consequences of the large sieve.
1/ Barban-Dav-Halb
2/ Bombieri-Vinogradov
3/ Least quadratic non-residue.



52 ANDREW GRANVILLE AND K. SOUNDARARAJAN

9. The Small Sieve

9.1. Shiu’s Theorem and the proof of Lemma 9.1.
We wish to prove that if 0 ≤ f(n) ≤ 1 and (a, q) = 1 then

∑

x<n≤x+qy
n≡a (mod q)

f(n) ¿ y exp


−

∑

p≤y
p-q

1− f(p)
p




For now assume that f is totally multiplicative. Write n = p1p2 . . . with p1 ≤ p2 ≤ . . . ,
and let d = p1p2 . . . pk where d ≤ y1/2 < dpk+1. Therefore n = dm where the smallest
prime factor of m is at least max{P (d), y1/2/d}, where P (d) is the largest prime factor
of d, and so equals pk. For any such d we have m in an interval (x/d, x/d + qy/d] of an
arithmetic progression a/d (mod q) containing y/d + O(1) terms. By the small sieve the
number of such m is ¿ qy/d

ϕ(q) log(P (d)+y1/2/d)
. Since f(n) ≤ f(d) we deduce that

∑

x<n≤x+qy
n≡a (mod q)

f(n) ≤ qy

ϕ(q)

∑

d≤y1/2

(d,q)=1

f(d)
d log(P (d) + y1/2/d)

.

If we consider just those terms with d ≤ y1/2−ε or P (d) > yε, so that log(P (d)+ y1/2/d) ≥
ε log y, then we get

(9.1) ¿ qy

ϕ(q)

∏

p≤y

(
1− 1

p

) ∑

d≤y1/2

(d,q)=1

f(d)
d

¿ y
∏

p≤y
p-q

(
1− 1

p

)(
1− f(p)

p

)−1

,

the upper bound claimed above. We are left with the d > y1/2−ε with P (d) ³ 2r for some
1 ≤ r ≤ k = [ε log y]. Hence we obtain an upper bound:

qy

ϕ(q)

k∑
r=1

1
r

∑

d>y1/2−ε

(d,q)=1
P (d)³2r

f(d)
d

¿ qy

ϕ(q)




1
k

∑

d>y1/2−ε

(d,q)=1

P (d)≤2k

f(d)
d

+
k∑
r=1

1
r2

∑

d>y1/2−ε

(d,q)=1
P (d)≤2r

f(d)
d



.

For the first term we proceed as above. For the remaining terms we use Corollary 3.4.2 to
obtain

¿ qy

ϕ(q)

k∑
r=1

1
r2

∏

p≤2r

p-q

(
1− f(p)

p

)−1 1
uur+1
r

,
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where ur := (1/2− ε) log y/(r log 2). Now this is (9.1) times

¿
∏

p≤y

(
1− 1

p

)−1 k∑
r=1

1
r2uur+1

r

∏

2r<p≤y
p-q

(
1− f(p)

p

)
¿

k∑
r=1

1
ruurr

¿ εO(1/ε).

To prove this last step, consider those r in an interval R < r ≤ 2R and write u =
(1/2− ε) log y/(R log 2) so that u is in a dyadic interval also. Hence this sum is about 1/uu

and we sum over u = u0, 2u0, 4u0, . . . with u0 = 1/ε.

9.2. Small sieve type results. Define

ρq(f) :=
∏

p≤q
p-q

(
1− 1

p

)(
1 +

|f(p)|
p

)
and ρ′q(f) =

ϕ(q)
q

ρq(f).

We also define
logS(n) :=

∑

d∈S
d|n

Λ(d),

where S might be an interval [a, b], and we might write “≤ Q” in place of “‘[2, Q]”, or
“≥ R” in place of “‘[R,∞)”. Note that log n = log[2,n] n.

Lemma 9.1. Suppose that x ≥ Q2+ε and Q ≥ q. Then, for any character χ (mod q),
∣∣∣∣∣∣∣∣

∑

n∈N
n≡a (mod q)

f(n)χ(n)L(n)

∣∣∣∣∣∣∣∣
¿ ρq(f)

x

q
= ρ′q(f)

x

ϕ(q)
,

where L(n) = 1, log(x/n), log≤Q n
logQ or

log≥x/Q n
logQ , and N = {n : Y < n ≤ Y + x} for Y = 0

in the second and fourth cases, and for any Y in the other two cases.

Proof. For the first estimate, the small sieve (reference?) yields that if x ≥ q1+ε then
∣∣∣∣∣∣∣∣

∑

n∈N
n≡a (mod q)

f(n)χ(n)

∣∣∣∣∣∣∣∣
≤

∑

n∈N
n≡a (mod q)

|f(n)| ¿ ρq(f)
x

q
.

The second estimate follows similarly. If d is a power of the prime p then let fd(n) denote
f(n/pa) where pa‖n, so that if n = dm then |f(n)| ≤ |fd(m)|. Therefore if x > Qq1+ε

then, for the third estimate, times logQ, we have

≤
∑

Y <md≤Y+x
md≡a (mod q)

d≤Q

|f(md)|Λ(d) ≤
∑

d≤Q
(d,q)=1

Λ(d)
∑

Y/d<m≤(Y+x)/d
m≡a/d (mod q)

|fd(m)|

¿
∑

d≤Q
(d,q)=1

Λ(d)
d

ρq(fd)
x

q
¿ ρq(f)

x

q
logQ.
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In the final case, if x > Q(q1+ε + logQ) + q2 then writing n = mp where p is a prime
> x/Q, we have

≤
∑

m≤Q
(m,q)=1

|f(m)|
∑

x/Q<p≤x/m
p≡a/m (mod q)

log p+
∑

x/Q<p≤√x

∑

n≤x
n≡a (mod q)

p2|n

log n

¿
∑

m≤Q
(m,q)=1

|f(m)| x/m
ϕ(q)

+ log x
∑

x/Q<p≤√x

(
x

qp2
+ 1

)

¿ x

q
ρq(f) logQ+

Q

q
log x+

√
x¿ ρq(f)

x

q
logQ.

by the Brun-Titchmarsh theorem.

By (8.1) we immediately deduce

Corollary 9.2. Suppose that x ≥ Q2+ε and Q ≥ q. Then

∑

χ (mod q)

∣∣∣∣∣∣
∑

n≤x
f(n)χ(n)L(n)

∣∣∣∣∣∣

2

¿ (ρ′q(f)x)2,

where L(n) = 1, log(x/n), log≤Q n
logQ or

log≥x/Q n
logQ , and N = {n : Y < n ≤ Y + x} for Y = 0

in the second and fourth cases, and for any Y in the other two cases.

Lemma 9.3. If ∆ > q1+ε then for any D ≥ 0 we have

∑

χ (mod q)

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)

∣∣∣∣∣∣

2

¿ ∆2.

Proof. By (8.1), when we expand the sum on the left hand side we obtain ϕ(q) times

∑

(b,q)=1

∣∣∣∣∣∣∣∣

∑

d≡b (mod q)
D≤d≤D+∆

f(d)Λ(d)

∣∣∣∣∣∣∣∣

2

≤
∑

(b,q)=1

∣∣∣∣∣∣∣∣

∑

d≡b (mod q)
D≤d≤D+∆

Λ(d)

∣∣∣∣∣∣∣∣

2

¿ ϕ(q)
(

∆
ϕ(q)

)2

by the Brun-Titchmarsh theorem, and the result follows.



THE DISTRIBUTION OF PRIME NUMBERS 55

10. The Pretentious Large Sieve

10.1. Mean values of multiplicative functions, on average. Our goal is to produce
an averaged version of (3.1.3) for f twisted by all the characters χ (mod q), but with a
better error term. Define

Sχ(x) :=
∑

n≤x
f(n)χ(n).

Throughout we let Cq be any subset of the set of characters (mod q), and define

L = L(Cq) :=
1

log x
max
χ∈Cq

max
|t|≤log2 x

|Fχ(1 + it)|,

where

Fχ(s) :=
∏

p≤x

(
1 +

f(p)χ(p)
ps

+
f(p2)χ(p2)

p2s
+ . . .

)
.

We will let Lk(x; q) be the minimum of L(Cq) as we vary over all sets Cq of k distinct
characters modulo q. Our main result is the following:

Theorem 10.1. Suppose that x ≥ Q2+ε and Q ≥ q2+ε log x. Then

∑

χ∈Cq

∣∣∣∣
1
x
Sχ(x)

∣∣∣∣
2

¿
((

L(Cq) + ρ′q(f)
logQ
log x

)
log

(
log x
logQ

))2

.

Lemma 10.2. Suppose that x ≥ Q2+ε and Q ≥ q2+ε log x. Then

log2 x
∑

χ∈Cq

∣∣∣∣
1
x
Sχ(x)

∣∣∣∣
2

¿
∑

χ∈Cq

(∫ x

Q

∣∣∣∣
1
t
Sχ(t)

∣∣∣∣
dt

t

)2

+ ρ′q(f)2
(

logQ+ log
(

log x
logQ

))2

.

Proof. We set z = x
Q , h = x logQ

log x and T = x
(

logQ
log x

)2

. By Corollary 9.2 we have

∑

χ (mod q)

∣∣∣∣∣∣
∑

n≤x
f(n)χ(n) log(x/n)

∣∣∣∣∣∣

2

¿ (ρ′q(f)x)2,

and
∑
χ

∣∣∣∣∣∣
∑

n≤x
f(n)χ(n) log>z n

∣∣∣∣∣∣

2

¿ (ρ′q(f)x logQ)2.

For g = fχ we have

(10.1)

∣∣∣∣∣∣
∑

n≤x
g(n) log≤z n

∣∣∣∣∣∣
≤ 1
h

∫ x+h

x

∣∣∣∣∣∣
∑

n≤t
g(n) log≤z n

∣∣∣∣∣∣
dt+

1
h

∫ x+h

x

∣∣∣∣∣∣
∑

x<n≤t
g(n) log≤z n

∣∣∣∣∣∣
dt,
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by the triangle inequality. When we square and sum over characters χ, with g = fχ, the
sum of the second terms on the right side of (10.1) is

≤ 2
∑
χ

∣∣∣∣∣∣
1
h

∫ x+h

x

∣∣∣∣∣∣
∑

x<n≤t
f(n)χ(n) log≤z n

∣∣∣∣∣∣
dt

∣∣∣∣∣∣

2

≤ 2
h

∫ x+h

x

∑
χ

∣∣∣∣∣∣
∑

x<n≤t
f(n)χ(n) log≤z n

∣∣∣∣∣∣

2

dt¿ (ρ′q(f)h log z)2 = (ρ′q(f)x logQ)2,

by Corollary 9.2. For the first term on the right side of (10.1) we have

∑

n≤x
g(n) log≤z n =

∑

md≤x
d≤z

g(m)g(d)Λ(d) ≤
∑

d≤z
Λ(d)

∣∣∣∣∣∣
∑

m≤x/d
g(m)

∣∣∣∣∣∣
,

and so

1
h

∫ x+h

x

∣∣∣∣∣∣
∑

n≤t
g(n) log≤z n

∣∣∣∣∣∣
dt ≤ 1

h

∫ x+h

x

∑

d≤z
Λ(d)

∣∣∣∣∣∣
∑

m≤t/d
g(m)

∣∣∣∣∣∣
dt

≤
∑

d≤z
dΛ(d)

1
h

∫ (x+h)/d

x/d

∣∣∣∣∣∣
∑

m≤t
g(m)

∣∣∣∣∣∣
dt.

Note that t ≥ x/d ≥ x/z = Q. We split the integral into two parts. The first part of the
integral is where Q ≤ t ≤ T , and we get

1
h

∫ T

Q

∣∣∣∣∣∣
∑

m≤t
g(m)

∣∣∣∣∣∣
∑

x/t≤d≤(x+h)/t
d≤z

dΛ(d)dt¿ x

∫ T

Q

∣∣∣∣∣∣
∑

m≤t
g(m)

∣∣∣∣∣∣
log(x/t)
log(h/t)

dt

t2

¿ x

∫ T

Q

∣∣∣∣∣∣
∑

m≤t
g(m)

∣∣∣∣∣∣
dt

t2

by the Brun-Titchmarsh theorem, as h/T = (x/T )1/2. To obtain the result we will extend
the upper limit of the integral from T to x which is okay since the integrand is non-negative.
For the second part we have

∑

d≤(x+h)/T

dΛ(d)
1
h

∫ (x+h)/d

max{T,x/d}

∣∣∣∣∣∣
∑

m≤t
g(m)

∣∣∣∣∣∣
dt;
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and when we square and sum over characters χ, with g = fχ, the sum of the second parts
is, Cauchying twice,

¿
∑

d≤(x+h)/T

Λ(d)
d

∑

d≤(x+h)/T

d3Λ(d)
∑
χ


 1
h

∫ (x+h)/d

x/d

∣∣∣∣∣∣
∑

m≤t
f(m)χ(m)

∣∣∣∣∣∣
dt




2

¿ log(x/T )
∑

d≤(x+h)/T

d2Λ(d)
1
h

∫ (x+h)/d

x/d

∑
χ

∣∣∣∣∣∣
∑

m≤t
f(m)χ(m)

∣∣∣∣∣∣

2

dt

¿ log(x/T )
∑

d≤(x+h)/T

d2Λ(d)
1
h

∫ (x+h)/d

x/d

(ρ′q(f)t)2dt

¿ ρ′q(f)2 log(x/T )
∑

d≤(x+h)/T

dΛ(d)(x/d)2 ¿ (ρ′q(f)x log(x/T ))2 ¿
(
ρ′q(f)x log

(
log x
logQ

))2

,

by Corollary 9.2. The result follows from collecting up the estimates given, using that
log x = log(x/n) + log≤z n+ log>z n.

Lemma 10.3. Suppose that x ≥ Q2+ε and Q ≥ q2+ε log x. Then

∑

χ∈Cq

(∫ x

Q

∣∣∣∣
1
t
Sχ(t)

∣∣∣∣
dt

t

)2

¿
∑

χ∈Cq




∫ x

Q

∣∣∣∣∣∣
∑

n≤t
f(n)χ(n) log>Q/q n

∣∣∣∣∣∣
dt

t2 log t




2

+
(
ρ′q(f) logQ · log

(
log x
logQ

))2

.

Proof. We expand using the fact that log t = log(t/n) + log≤Q/q n + log>Q/q n; and the
Cauchy-Schwarz inequality so that, for any function cχ(t),

∑
χ

(∫ x

Q

cχ(t)
dt

t2 log t

)2

≤
∫ x

Q

dt

t log t
·
∫ x

Q

∑
χ

cχ(t)2
dt

t3 log t

By Corollary 9.2 we then have

∫ x

Q

∑
χ

∣∣∣∣∣∣
∑

m≤t
f(m)χ(m) log(t/m)

∣∣∣∣∣∣

2

dt

t3 log t
¿ ρ′q(f)2

∫ x

Q

dt

t log t
¿ ρ′q(f)2 log

(
log x
logQ

)

and

∫ x

Q

∑
χ

∣∣∣∣∣∣
∑

m≤t
f(m)χ(m) log≤Q/qm

∣∣∣∣∣∣

2

dt

t3 log t
¿

∫ x

Q

(
ρ′q(f)t log(Q/q)

)2 dt

t3 log t
,

and the result follows.
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Proposition 10.4. If x > Q1+ε and Q ≥ q1+ε then

∑

χ∈Cq




∫ x

Qq

∣∣∣∣∣∣
∑

Q≤n≤t
f(n)χ(n) log>Q n

∣∣∣∣∣∣
dt

t2 log t




2

¿ log
(

log x
logQ

) (
M2 log

(
log x
logQ

)
+
ϕ(q)
T

logQ
Q

+
log3 x

T 2

)

where M := maxχ∈Cq max|u|≤2T |Fχ(1 + iu)|.
Proof, by revisiting the proof of Proposition 1. For a given g = fχ and Q we define

h(n) =
∑

md=n
d>Q

g(m)g(d)Λ(d),

so that G(s)(G′>Q(s)/G>Q(s)) = −∑
n≥1 h(n)/ns for Re(s) > 1. Now

∣∣∣∣∣∣
∑

n≤t
g(n) log>Q n−

∑

n≤t
h(n)

∣∣∣∣∣∣
≤ 2

∑

pb>Q

log p
∑

n≤t
pb+1|n

1 ≤ 2t
∑

b≥1

∑

pb>Q

pb+1≤t

log p
pb+1

¿ t log t
Q

,

by the prime number theorem. This substitution leads to a total error, in our estimate, of

¿ |Cq|
(∫ x

Qq

t log t
Q

dt

t2 log t

)2

¿ q

Q2
log2

(
log x
logQ

)
¿ 1

q
log2

(
log x
logQ

)
,

which is smaller than the first term in the given upper bound, since M À 1/ log q.
Now we use the fact that

1
log t

¿
∫ 1/ logQ

1/ log x

dα

t2α

whenever x ≥ t ≥ Q, as x > Q1+ε, so that

∫ x

2

∣∣∣∣∣∣
∑

n≤t
h(n)

∣∣∣∣∣∣
dt

t2 log t
¿

∫ 1/ logQ

1/ log x




∫ x

2

∣∣∣
∑

n≤t
h(n)

∣∣∣ dt

t2+2α


 dα.

Now, Cauchying, but otherwise proceeding as in the proof of Proposition 1 (with h(n) here
replaced by f(n) log n there), the square of the left side is

¿
∫ 1/ logQ

1/ log x

dα

α
·
∫ 1/ logQ

1/ log x

α · 1
2πα

∫ ∞

−∞

∣∣∣
G(G′>Q/G>Q)(1 + α+ it)

1 + α+ it

∣∣∣
2

dtdα.
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The integral in the region with |t| ≤ T is now

≤ max
|t|≤T

|G(1 + α+ it)|2
∫ ∞

1

∣∣∣
∑

Q<n≤t
g(n)Λ(n)

∣∣∣
2 dt

t3+2α
.

If we take g = fχ and sum this over all characters χ ∈ Cq then we obtain an error

≤ max
|t|≤T
χ∈Cq

|Fχ(1 + α+ it)|2
∫ ∞

Q

∑

χ (mod q)

∣∣∣
∑

Q<n≤t
f(n)χ(n)Λ(n)

∣∣∣
2 dt

t3+2α

¿ max
|t|≤T
χ∈Cq

|Fχ(1 + α+ it)|2
∫ ∞

Q

dt

t1+2α
¿ 1

α
max
|t|≤T
χ∈Cq

|Fχ(1 + α+ it)|2,

by Lemma 9.3 as t ≥ Q ≥ q1+ε.
For that part of the integral with |t| > T , summed over all twists of f by characters χ

(mod q), we now proceed as in the proof of Proposition 1. We obtain ϕ(q) times (3.5.1),
with f(`) log ` replaced by h(`) for ` = m and n, but now with the sum over m ≡ n
(mod q) with m,n ≥ Q. Observing that |h(`)| ≤ log `, we proceed analogously to obtain,
in total

¿ ϕ(q)
T

(logQ)2

Q
+
ϕ(q)
q

· 1
α4T 2

.

The result follows by collecting the above, and by Lemma 2.7.

Proof of Theorem 10.1. By combining the last three results, one immediately deduces that

log2 x
∑

χ∈Cq

∣∣∣∣
1
x
Sχ(x)

∣∣∣∣
2

¿ log
(

log x
logQ

) (
M2 log

(
log x
logQ

)
+

1
T

+
log3 x

T 2

)

+ ρ′q(f)2
(

logQ log
(

log x
logQ

))2

where M := max|u|≤2T
χ∈Cq

|Fχ(1 + iu)|. Now letting T = 1
2 log2 x gives the result as ρ′q(f) À

1/ log q.
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10.2. Lower bounds on distances, II.

Lemma 10.5. Order the characters ψj (mod q) so that the Mfψj
(x, T ) are organized in

ascending order. If Q ≥ q then

exp
(
−Mfψj

(x, T )
)
¿ eO(

√
k)ρ′q(f)

(
logQ
log x

)1− 1√
k

,

where the implicit constants are independent of f . If f is real and ψ1 is not then we can
extend this to k = 1 with exponent 1− 1√

2
on the right side of the equation.

We shall order the characters mod q in two different ways:
Order the characters χj (mod q) so that the Sχj (x) are organized in descending order.

Define Cχ,k = {χj : j ≥ k}.
Order the characters ψj (mod q) so that the max|t|≤log2 x |Fχj (1+it)| are in descending

order. Define Cψ,k = {ψj : j ≥ k}.
Combining this with Theorem 10.1 we obtain the following:

Corollary 10.6. Suppose that x ≥ Q2+ε and Q ≥ q2+ε log x. For any fixed k ≥ 1, we
have

∑

χ (mod q)
χ 6=χ1,χ2,... ,χk−1

∣∣∣∣
1
x
Sχ(x)

∣∣∣∣
2

¿
(
eO(

√
k)ρ′q(f)

(
logQ
log x

)1− 1√
k

log
(

log x
logQ

))2

,

where the implicit constants are independent of f . If f is real and ψ1 is not then in the
case k = 1 we can replace the exponent 0 with 1− 1√

2
on the right side of the equation.

Proof. Since
∑
χ∈Cχ,k |Sχ(x)|2 ≤ ∑

χ∈Cψ,k |Sχ(x)|2 we apply Theorem 10.1, and then
Lemma 10.5 (since M = log(1/L) +O(1) – see section 3.1).

Proof of Lemma 10.5. We begin by noting that if Q = q log x then

exp


−

∑

p<Q

1− Re(f(p)ψ(p)/pit)
p


 ≤ exp

(
−

∑
p<q

1− |f(p)|
p

)
³ ρ′q(f).

Let tj = tfψj (x, T ) for each j. Moreover

∣∣∣∣∣∣

k∑

j=1

∑

Q<p≤x

f(p)ψj(p)
p1+itj

∣∣∣∣∣∣

2

≤

 ∑

Q<p≤x

1
p

∣∣∣∣∣∣

k∑

j=1

ψj(p)
pitj

∣∣∣∣∣∣




2

≤
∑

Q<p≤x

1
p
·

k

∑

Q<p≤x

1
p

+
∑

1≤i 6=j≤k

∑

Q<p≤x
Re

(
ψi(p)ψj(p)
p1+i(ti−tj)

)
 ,
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by Cauchying. Now by Lemma 2.4,

∑

Q<p≤x

ψ(p)
p1+iτ

= log


 L

(
1 + 1

log x + iτ, ψ
)

L
(
1 + 1

logQ + iτ, ψ
)


 +O(1) ¿ 1

by Lemma 10.7, taking Q = (q log x)O(1). Hence the above is

≤
(

log
(

log x
logQ

)
+ o(1)

)(
k log

(
log x
logQ

)
+O

(
k2

))
,

Taking the square root we deduce that

∑

Q<p≤x
Re

(
f(p)ψk(p)
p1+itk

)
≤ 1√

k
log

(
log x
logQ

)
+O

(√
k
)
,

and hence, exponentiating, gives the first result. If f is real-valued and ψ1 is not, then
Re(f(p)ψ1(p)/pit1) = Re(f(p)ψ1(p)/p−it1) and ψ1 = ψj for some j ≥ 2, and the final part
of the result follows.

10.3. Linear averaging. By (2.1.3) we can generalize Corollary 10.6 to

Corollary 10.8. Order the characters χj (mod q) so that the Sχj (x) are organized in
descending order. Fix ε > 0. There exists an integer k ¿ 1/ε2 such that if x ≥ q4+5ε then

(10.3.1)
∑

χ (mod q)
χ 6=χ1,χ2,... ,χk

∣∣∣∣
1
y
Sχj (y)

∣∣∣∣
2

¿ eO(1/ε)

(
ρ′q(f)

(
log q + log log y

log y

)1−ε)2

,

for any y in the range

log x ≥ log y ≥ log x
/(

log x
log q + log log x

)ε/2
,

where the implicit constants are independent of f .

Proof. Select k to be the smallest integer for which 1/
√
k < 3ε. Let Cq be the set of all

characters mod q except χ1, χ2, . . . , χk. Let Q = q2+ε log x and write x = QB , so that
y = QC , where B ≥ C ≥ B1−ε/2. We apply Theorem 10.1 with x = y. Noting that

Ly ¿ Lx

(
log x
log y

)2

¿ V O(1/ε)ρ′q(f)
1

B1−3ε
Bε ¿ eO(1/ε)ρ′q(f)

1
C1−2ε

by (2.1.3) and Lemma 10.5, and the result follows. Note that we bound Ly by a function
of Lx so that we can have the same exceptional characters χ1, χ2, . . . , χk for each y in our
range.

We use this to deduce the following technical tool.
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Proposition 10.9. Fix ε > 0. For given x = qA there exists K ¿ ε−3 log logA such that
if x ≥ X ≥ x1/2 and X/q4+5ε ≥ U > L ≥ q2+ε log x then

1
log x

∑

χ (mod q)
χ 6=χj , j=1,... ,K

∣∣∣∣∣∣
1
X

∑

n≤X
f(n)χ(n) log[L,U ] n

∣∣∣∣∣∣
¿ eO(1/ε)ρ′q(f)

(
log q + log log x

log x

)1−ε
.

Remark. Note that the ordering of the χj is defined by the values of the sums Sχj (x), and
in this result we are using the same order for each X in our range.

Proof. We may assume that
(

log x
log q+log log x

)ε/2
≥ 4 else the result is trivial. We apply

Corollary 10.8 with x = xi, where log xi = 2(1+ε/3)i+1 log q for 0 ≤ i ≤ I ¿ (1/ε) log logA,
with I chosen to be the smallest integer for which yI > x/L. The characters excluded
from the sum will be, say, χj,i, 1 ≤ j ≤ k for 1 ≤ i ≤ I: Let χ1, χ2, . . . , χK be the union
of these sets of characters, so that K ≤ k(I + 1) ¿ ε−3 log logA. Hence (10.3.1) holds for
all y ∈ [x/U, x/L].

We can rewrite the sum in the Proposition as

∑

χ (mod q)
χ6=χj , j=1,... ,K

∣∣∣∣∣∣∣∣

∑

dm≤X
L≤d≤U

f(m)χ(m)f(d)χ(d)Λ(d)

∣∣∣∣∣∣∣∣
.

We split this into subsums, depending on the size of d. For a given D in the range
L ≤ D ≤ U let ∆ = D log(q log(X/D))

q log(X/D) . Then we get an upper bound of a sum of sums of
the form

(10.3.2)
∑

χ (mod q)
χ6=χj , j=1,... ,K

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)
∑

m≤X/d
f(m)χ(m)

∣∣∣∣∣∣
.

If we approximate the final sum by the sum with m ≤ X/D then the new version of (10.3.2)
is the square root of




∑

χ (mod q)
χ 6=χj , j=1,... ,K

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)
∑

m≤X/D
f(m)χ(m)

∣∣∣∣∣∣




2

≤
∑

χ (mod q)

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)

∣∣∣∣∣∣

2
∑

χ (mod q)
χ 6=χj , j=1,... ,k−1

∣∣∣∣∣∣
∑

m≤X/D
f(m)χ(m)

∣∣∣∣∣∣

2

¿ eO(1/ε)

(
∆ · ρ′q(f)

X

D

(
log(q logX)
log(X/D)

)1−ε)2

,

(10.3.4)



THE DISTRIBUTION OF PRIME NUMBERS 63

by Lemma 9.3 and Corollary 10.8. The error in the approximation of the dth term is
∣∣∣∣∣∣

∑

X/d<m≤X/D
f(m)χ(m)

∣∣∣∣∣∣
¿ ρ′q(f)X

∆
D2

by Lemma 9.1, yielding a total error of the square root of

∑

χ (mod q)

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)

∣∣∣∣∣∣

2

· ϕ(q)
(
ρ′q(f)

X

D

∆
D

)2

¿ ϕ(q)
(

∆ · ρ′q(f)
X

D

∆
D

)2

,

which is negligible compared to the bound in (10.3.4). Hence (10.3.2) is

¿ eO(1/ε)∆ρ′q(f)
X

D

(
log(q log x)
log(X/D)

)1−ε
.

Summing over ³ D/∆ intervals [D,D + ∆) that give a partition of [D, 2D] yields

¿ eO(1/ε)ρ′q(f)X
(

log(q log x)
log(X/D)

)1−ε
.

Finally, summing over D of the form U/2j with L ≤ D ≤ U yields

¿ eO(1/ε)ρ′q(f)X log x
(

log(q log x)
log x

)1−ε
,

and the result follows.

10.4. Multiplicative functions in arithmetic progressions.
Define

E
(k)
f (y; q, a) :=

∑

n≤y
n≡a (mod q)

f(n)− 1
ϕ(q)

k∑

j=1

χj(a)
∑

n≤y
f(n)χj(n).

By bounding each term in these sums, we have |E(k)
f (y; q, a)| ¿ (k+ 1)ρ′q(f)y/ϕ(q) which

we now improve.

Theorem 10.10. For any given k ≥ 2 and sufficiently large x, if x ≥ X ≥ max{x1/2, q6+7ε}
then

|E(k−1)
f (X; q, a)| ¿ eC

√
k
ρ′q(f)X
ϕ(q)

(
log(q log x)

log x

)1− 1√
k

log
(

log x
log(q log x)

)
,

where the implicit constants are independent of f and k. If f is real and χ1 is not then we
can extend this to k = 1 with exponent 1− 1√

2
.
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Remark. Note that the ordering of the χj is defined by the values of the sums Sχj (x), and
in this result we are using the same order for each X in our range.

Proof. Fix ε > 0 sufficiently small with 1/
√
k > ε. Let L = q2+ε log x and U = x/q4+5ε.

By applying Lemma 9.1, with χ = χ0 we have

log x
∑

n≤x
n≡a (mod q)

f(n) =
∑

n≤x
n≡a (mod q)

f(n) log[L,U ] n+O

(
ρ′q(f)

x

ϕ(q)
log(q log x)

)
.

Then by (2.2.2), and Lemma 9.1 summed over all a (mod q), we obtain

E
(K)
f (x; q, a) =

1
ϕ(q)

ϕ(q)∑

j=K+1

χj(a)
∑

n≤x
f(n)χj(n)

log[L,U ] n

log x
+O

(
Kρ′q(f)

x

ϕ(q)
log(q log x)

log x

)

¿ eO(1/ε)
ρ′q(f)x
ϕ(q)

(
log(q log x)

log x

)1−ε
,

by Proposition 10.9, where K ¿ ε−3 log logA. By Cauchying and then Corollary 10.6 with
Q = L, we obtain

|E(k)
f (x; q, a)− E

(K)
f (x; q, a)| ≤ 1

ϕ(q)

K∑

j=k+1

∣∣∣∣∣∣
∑

n≤x
f(n)χj(n)

∣∣∣∣∣∣

≤ 1
ϕ(q)


(K − k)

K∑

j=k+1

∣∣∣∣∣∣
∑

n≤x
f(n)χj(n)

∣∣∣∣∣∣

2



1/2

¿ eO(
√
k)ρ′q(f)

x

ϕ(q)

(
log(q log x)

log x

)1− 1√
k

,

since K ¿ log logA, and 1√
k+1

< 1√
k
. Applying the same argument again, we also obtain

|E(k−1)
f (x; q, a)− E

(k)
f (x; q, a)| ¿ eC

√
k
ρ′q(f)x
ϕ(q)

(
log(q log x)

log x

)1− 1√
k

log
(

log x
log(q log x)

)
.

The result follows from using the triangle inequality and adding the last three inequalities.
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11. Primes in arithmetic progression

Theorem 11.1. For any k ≥ 2 and x ≥ q2 there exists an ordering χ1, . . . of the charac-
ters χ (mod q) such that

∑

n≤y
n≡a (mod q)

Λ(n)− 1
ϕ(q)

∑

n≤y
Λ(n)− 1

ϕ(q)

k−1∑

j=1

χj(a)
∑

n≤y
Λ(n)χj(n)

¿ eC
√
k x

ϕ(q)

(
log(q log x)

log x

)1− 1√
k

log3

(
log x

log(q log x)

)
.

Remark. Note that we can take χϕ(q) to be χ0 the principal character since the distance
function

Corollary 11.2. There exists a character χ (mod q) such that if x ≥ q2 then

∑

n≤x
n≡a (mod q)

Λ(n)− 1
ϕ(q)

∑

n≤x
Λ(n)− χ(a)

ϕ(q)

∑

n≤x
Λ(n)χ(n) ¿ x

ϕ(q)

(
log(q log x)

log x

)1− 1√
2
−ε
.

We may remove the χ term unless χ is a real-valued character.

Remark. It would be nice to obtain the error in term of |L(1 + it, χ)−1|/ log x, which is
probably possible. In the case that χ is real one can then probably deduce that t = 0.

Proof of Corollary 11.2. We let k = 2 in Theorem 11.1 to deduce the first part. If χ is not
real valued, then we know that

∣∣∣∣∣∣
∑

n≤x
Λ(n)χ(n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

n≤x
Λ(n)χ(n)

∣∣∣∣∣∣
≤ |E(3)

Λ (x; q, a)−E
(2)
Λ (x; q, a)|

and the result follows from Theorem 11.1.

Proof of Theorem 11.1. We may assume that x ≥ qB for B sufficiently large, else the result
follows from the Brun-Titchmarsh Theorem.

Let χ0 be the principal character (mod q). Let Q = q log x and ν = log
(

log x
logQ

)
. Let

f be the totally multiplicative function for which f(p) = 0 for p ≤ Q, f(p) = −1 for p > Q
and f(pb) = 0 for all b ≥ 2, and let g(.) be the totally multiplicative function for which
g(p) = 0 for p ≤ Q and g(p) = 1 for p > Q. We use the following variant of von Mangoldt’s
formula (1.3.3),

ΛQ(n) :=
∑

dm=n

f(d)g(m) logm =
{

Λ(n) if p|n =⇒ p > Q,

0 otherwise.
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Now ∑

n≤x
n≡b (mod q)

(Λ(n)− ΛQ(n)) ≤
∑

n≤x
p|n =⇒ p≤Q

Λ(d) ¿
∑

p≤Q
log x¿ Q

log x
logQ

.

by the Brun-Titchmarsh theorem. Denote the left side of the equation in the Theorem
as E(k−1)

Λ,+ (x; q, a), and note that all of these sums can be expressed as mean-values of∑
n≤x

n≡b (mod q)

Λ(n), as b varies. Hence

E
(k−1)
Λ,+ (x; q, a)− E

(k−1)
ΛQ,+

(x; q, a) ¿ Q
log x
logQ

.

Now

(11.1.1)
∑

n≤x
n≡a (mod q)

ΛQ(n) =
∑

d≤x
f(d)

∑

m≤x/d
m≡a/d (mod q)

g(m) logm.

By the fundamental lemma of the sieve (see §1 1
2 ) the sum

∑

m≤M
m≡b (mod q)

g(m) logm,

equals a main term that is independent of b plus an error term that is

(11.1.2) ¿ M logM
ϕ(q) logQ

· 1
uu+2

+
M

q
e−c

√
log(M/q),

where M/q = Qu. Decomposing the other terms of E(k−1)
ΛQ

similarly, leads to inner sums

1
ϕ(q)

∑

m≤x/d
g(m) logm =

1
ϕ(q)

∑

(b,q)=1

∑

m≤x/d
m≡b (mod q)

g(m) logm,

and
1

ϕ(q)

∑

m≤x/d
g(m)χj(m) logm =

1
ϕ(q)

∑

(b,q)=1

χj(m)
∑

m≤x/d
m≡b (mod q)

g(m) logm,

and so we may apply the same sieve estimate to all of these inner sums, and thus the main
terms cancel and we end up with an error term of k times (11.1.2) for M = x/d. We sum
this up over all d in a range x/Q2u < d ≤ x/Qu with f(d) 6= 0, to get

¿ x

ϕ(q)
· 1
uu

+
x

q
· e−c

√
v logQ.
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When we sum this up to get a bound over all d ≤ x/Qν with f(d) 6= 0, we obtain

(11.1.3) ¿ x

q

(
logQ
log x

)2

.

We are left with those d > x/Qν so that m < Qν . The remaining sum in (11.1.1) is

∑

m<Qν

(m,q)=1

g(m) logm
∑

x/Qν<d≤x/m
d≡a/m (mod q)

f(d).

There are analogous sums for the remaining terms in E
(k−1)
ΛQ,+

(x; q, a) and so we need to
bound ∑

m<Qν

g(m) logm |E(k−1)
f,+ (x/m; q, a/m)− E

(k−1)
f,+ (x/Qν ; q, a/m)|,

where

E
(k−1)
f,+ (y; q, a) :=

∑

n≤y
n≡a (mod q)

f(n)− 1
ϕ(q)

∑

n≤y
f(n)− 1

ϕ(q)

k−1∑

j=1

χj(a)
∑

n≤y
f(n)χj(n).

This is, in absolute value, ≤ |E(k−1)
f (y; q, a)| plus 1

ϕ(q)

∣∣∣∑n≤y f(n)
∣∣∣. Now 1

ϕ(q)

∣∣∣∑n≤y f(n)
∣∣∣

is appropriately small by Halász’s theorem. For the remaining terms we use Theorem 10.10
to obtain the bound

∑

m<Qν

g(m) logm |E(k−1)
f (x/m; q, a/m)− E

(k−1)
f (x/Qν ; q, a/m)|

¿ eC
√
k
ρ′q(f)x
ϕ(q)

(
logQ
log x

)1− 1√
k

log
(

log x
logQ

) ∑

m<Qν

g(m)
logm
m

¿ eC
√
k ν2x

ϕ(q)

(
logQ
log x

)1− 1√
k

log
(

log x
logQ

)
.

since ρ′q(f) ¿ 1/ logQ. The result follows.
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11.2. Linnik’s Theorem.

Proposition 11.3. Suppose that x ≥ qA where A is chosen sufficiently large. If
∣∣∣∣∣∣∣∣

∑

n≤x
n≡a (mod q)

Λ(n)− x

ϕ(q)

∣∣∣∣∣∣∣∣
À x

ϕ(q)

/
logB

(
log x
logQ

)

for some B ≥ 0 where Q = q log x, then there exists a real character χ (mod q) such that

∑

Q<p≤x

1 + χ(p)
p

¿ log log
(

log x
logQ

)
.

Corollary 11.4. If there are no primes ≤ x that are ≡ a (mod q), where x ≥ qA and A is
chosen sufficiently large, then there exists a real character χ (mod q) such that χ(a) = −1,
and

(11.1.4)
∑

q<p≤x
χ(p)=1

1
p
¿ 1.

Proof of Proposition 11.3. By Corollary 11.2 we immediately deduce from the hypothesis
that

(11.1.5)

∣∣∣∣∣∣
∑

n≤x
Λ(n)χ(n)

∣∣∣∣∣∣
À x

ϕ(q)

/
logB

(
log x
logQ

)
.

If we trace through the proof of Theorem 11.1, then we see that this implies that there
exists y in the range x1/2 < y ≤ x for which

∣∣∣∣∣∣
∑

n≤y
f(n)χ(n)

∣∣∣∣∣∣
À y

logQ

(
logQ
log x

)κ /
logB+2

(
log x
logQ

)
,

for some y in the range x1/2 < y ≤ x. We observe that there are ³ y
logQ non-zero terms

in the sum on the right, so we see that f(n)χ(n) = 1 for significantly more than half the
values of n ≤ y for which f(n)χ(n) 6= 0 .

We do not get a useful bound on the sum from Halász’s Theorem, but we can improve
(3.1.2) by taking into account the fact that f(p) = 0 if prime p ≤ Q. First note that
S(N) = 1 for all N ≤ Q, so we can reduce the range in the integral for α, throughout the
proof of Proposition 1, to 1

log x ≤ α ≤ 1
logQ . Moreover in the first displayed equation we can

change the error term from ¿ N
logN to ¿ 1

logQ
N

logN for N ≥ Q. This allows us to replace
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the error term in the second displayed equation from ¿ log log x to ¿ 1+ 1
logQ log

(
log x
logQ

)
.

Hence we can restate Proposition 1 with the range for α and the log log x changed in this
way. Now we use the bound |F (1 + α + it)| ≤ |F (1 + iu)| + O

(
α
T

log x
logQ

)
throughout this

range, as in Lemma 2.7, to obtain

∣∣∣
∑

n≤y
f(n)χ(n)

∣∣∣ ¿ y

logQ
log

(
log x
logQ

)
exp


− min

|u|≤log2 x

∑

Q<p≤x

1− Re (f(p)χ(p)p−iu)
p


 .

Combining the last two displayed equations yields that

∑

Q<p≤x

1 + Re (χ(p)piu)
p

¿ log log
(

log x
logQ

)
.

Note that if |u| À 1/ log x then this sum is À log
(

log x
logQ

)
, and hence we may assume that

u = 0. The result follows.

Proof of Corollary 11.4. By Corollary 11.2 we know that for all y in the range Q := qA ≤
y ≤ x we have ∑

n≤y
Λ(n)χ(n) = −χ(a)y +O

(
y

(
log(q log y)

log y

)κ)

where 0 < κ < 1− 1√
2
. By partial summation, we deduce that

∑

Q<p≤x

χ(a) + χ(p)
p

¿ 1.

Comparing this to the conclusion of Proposition 11.3, we deduce the result.

Proposition 11.5. If (11.1.4) holds for x = qA where A is sufficiently large, and if
χ(a) = 1 then there are primes ≤ x that are ≡ a (mod q).
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12. Exponential Sums

Proposition 12.1.

∑

n≤x
(n,q)=1

f(n)e
(
an

q

)
− 1
ϕ(q)

k−1∑

i=1

χi(a)g(χi)
∑

n≤x
f(n)χi(n)

¿
√
q

ϕ(q)
eO(

√
k)ρ′q(f)x

(
logQ
log x

)1− 1√
k

+ ρ′q(f)x
logQ
log x

.

Note that the second error term dominates unless q ¿ (log x)2+o(1), a fact that is
well-known from the paper of Montgomery and Vaughan. We will therefore assume that

Corollary 12.2. If q ≤ (log x)2+o(1) then there exists a primitive character ψ (mod r)
for some r|q such that

∑

n≤x
f(n)e

(
an

q

)
=
ψ(a)g(ψ)
ϕ(r)

ψ(qr)
∑

n≤x
f(n)ψ(nr)h(n)

+O


 1√

q

∏

p|q

(
1 +

3√
p

)
ρ′q(f)x

(
log log x

log x

)1− 1√
2

+
(

q

ϕ(q)

)2

ρ′q(f)x
log log x

log x


 .

where nr is the largest divisor of n that is coprime to r, and h is the multiplicative function
with h(pb) = 1 if p - q, and

h(pb) =





1 if rp ≥ 1 and b = qp − rp;
1 if rp = 0 and b ≥ qp;
−1/(p− 1) if rp = 0 and b = qp − 1;
0 otherwise

where pqp‖q and prp‖r. If f is real then we may assume that ψ is real.

Proof of Proposition 12.1. The same proof as in Lemma 9.1 yields that if x ≥ Q2+ε and
Q ≥ q then ∣∣∣∣∣∣∣∣

∑

n≤x
n≡a (mod q)

f(n)χ(n)e(αn)L(n)

∣∣∣∣∣∣∣∣
¿ ρ′q(f)

x

ϕ(q)
,

where L(n) = 1, log(x/n), log≤Q n
logQ or

log≥x/Q n
logQ , and then summing over all a that

∣∣∣∣∣∣
∑

n≤x
f(n)χ(n)e(αn)L(n)

∣∣∣∣∣∣
¿ ρ′q(f)x.
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Let U = X/q4+5ε, L = q2+ε log x and Q = q log x. Therefore

(12.1) log x
∑

n≤x
f(n)χ(n)e(αn) =

∑

n≤x
f(n)χ(n)e(αn) log[L,U ] n+O

(
ρ′q(f)x logQ

)
.

Taking α = a/q and χ = χ0 in (12.1), we obtain.

log x
∑

n≤x
(n,q)=1

f(n)e
(
an

q

)
=

∑

n≤x
(n,q)=1

f(n)e
(
an

q

)
log[L,U ] n+O

(
ρ′q(f)x logQ

)
.

Using the expansion

e

(
b

q

)
=

1
ϕ(q)

∑

χ mod q

χ(b)g(χ)

when (b, q) = 1, we deduce that

∑

n≤x
(n,q)=1

f(n)e
(
an

q

)
log[L,U ] n =

1
ϕ(q)

∑

χ mod q

χ(a)g(χ)
∑

n≤x
f(n)χ(n) log[L,U ] n.

Taking α = 0 in (12.1) yields

log x
∑

n≤x
f(n)χ(n) =

∑

n≤x
f(n)χ(n) log[L,U ] n+O

(
ρ′q(f)x logQ

)
.

Combining the last three displayed equations yields that

∑

n≤x
(n,q)=1

f(n)e
(
an

q

)
− 1
ϕ(q)

K∑

i=1

χi(a)g(χi)
∑

n≤x
f(n)χi(n)

≤
√
q

ϕ(q)
1

log x

∑

χ mod q
χ 6=χ1,... ,χK

∣∣∣∣∣∣
∑

n≤x
f(n)χ(n) log[L,U ] n

∣∣∣∣∣∣
+O

(
ρ′q(f)x

logQ
log x

)
,

(12.2)

as each |g(χ)| ≤ √
q, assuming K ≤ q1/3.

We now proceed much as in the proof of Theorem 10.10. First apply Proposition 10.9.
Let x = qA and K ³ ε−3 log logA, so that the first part of (12.2) is

¿
√
q

ϕ(q)
eO(1/ε)ρ′q(f)x

(
logQ
log x

)1−ε
.

For the terms with k + 1 ≤ i ≤ K we use Cauchy-Schwarz and then Corollary 10.6 to get

¿
√
q

ϕ(q)
eO(

√
k)
√
Kρ′q(f)x

(
logQ
log x

)1− 1√
k+1

.
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If K > q1/3 we use this same method to bound all the terms with k + 1 ≤ i ≤ ϕ(q), so
we would replace K1/2 in this upper bound by K3/2. We bound the kth directly using
Halász’s theorem. This then implies the result.

Proof of Corollary 12.2. We take k = 2 in Proposition 12.1, with χ = χ1, to obtain
∑

n≤x
(n,q)=1

f(n)e
(
an

q

)
− χ(a)g(χ)

ϕ(q)

∑

n≤x
f(n)χ(n)

¿
√
q

ϕ(q)
eO(1)ρ′q(f)x

(
log log x

log x

)1− 1√
2

+ ρ′q(f)x
log log x

log x
.

Now if d|q then, writing n = mq/d when (q/d)|n,
∑

n≤x
(n,q)=q/d

f(n)e
(
an

q

)
=

∑

m≤x/(q/d)
(m,d)=1

f(mq/d)e
(am
d

)
.

We apply (12.3) to this and sum over all d|q. We claim that each χ can be assumed to
be the same, for if we have ψ (mod d), and the character induced by ψ (mod q) is not χ,
then we can use the lower bound on Mfψ(x, T ) implicit from the proof, to get a good lower
bound on Mfψ(x/d, T ) (note that we can ignore the prime factors of q in this calculation
since they are ≤ Q). To calculate the main term, note that if χ (mod d) is induced from
a character ψ (mod r) where r|d|q, then g(χ) = µ(d/r)ψ(d/r)g(ψ). The first part of the
result follows.

Finally if f is real then
∣∣∣∑n≤x f(n)χ(n)

∣∣∣ =
∣∣∣∑n≤x f(n)χ(n)

∣∣∣, so this is only bigger
than the error term if χ is real.

Evaluation. By Theorem 4 of [Decay] and Corollary 3.5, we deduce that

ψ(qr)
ϕ(r)

∑

n≤x
f(n)ψ(nr)h(n) =

κ

ϕ(q)
xit

1 + it

∑

n≤x
(n,q)=1

f(n)ψ(n)
nit

+O

(
2ω(q)−ω(r)

ϕ(q)
x log log x

(log x)2−
√

3

)

where

κ :=
1

(q/r)it
∏

pqp |q/r
p|r

f(pqp)
∏

pqp |q/r
p-r


∑

j≥0

Fp(pj)− Fp(pj−1)
pj




and Fp(pj) = f(pqp+j)ψ(pj)/pijt. Now, since 2 − √3 < 1 − 1√
2

we deduce from this and

Corollary 12.2 that if q ≤ (log x)2+o(1) then
∑

n≤x
f(n)e

(
an

q

)
= κ

ψ(a)g(ψ)
ϕ(q)

xit

1 + it

∑

n≤x
(n,q)=1

f(n)ψ(n)
nit

+O

(
3ω(q)

√
q

x log log x
(log x)2−

√
3

+
(

q

ϕ(q)

)2

ρ′q(f)x
log log x

log x

)
.

If f is real then we may assume that ψ is real.



THE DISTRIBUTION OF PRIME NUMBERS 73

13. Primes in progressions, on average

Suppose that the character χ (mod q) is induced from the primitive character ψ
(mod r). Then we write cond χ = q and cond∗χ = r.

13.1. The Barban-Davenport-Halberstam-Montgomery-Hooley Theorem. We
begin with a technical lemma; most of the proof is left as an exercise.

Lemma 13.1. Let c :=
∏
p

(
1 + 1

p(p−1)

)
and γ, := γ −∑

p
log p

p2−p+1 . Then

∑

r≤R

1
ϕ(r)

= c logR+ cγ′ +O

(
logR
R

)
,

∑

r≤R

r

ϕ(r)
= cR+O(logR),

∑

r≤R

r2

ϕ(r)
=
c

2
R2 +O(R logR).

Also

∑

r≤R
m|r

1
ϕ(r)

=
1

ϕ(m)

∏

p-m

(
1 +

1
p(p− 1)

) 
log

R

m
+ γ −

∑

p-m

log p
p2 − p+ 1


 +O

(
logR/m

R

)
.

Proof. We can write r/ϕ(r) =
∑
d|r µ

2(d)/ϕ(d) to obtain in the first case

∑

r≤R

1
ϕ(r)

=
∑

r≤R

1
r

∑

d|r

µ2(d)
ϕ(d)

=
∑

d≤R

µ2(d)
ϕ(d)

∑

r≤R
d|r

1
r

=
∑

d≤R

µ2(d)
dϕ(d)

(log
R

d
+ γ +O(

d

R
))

= c(logR+ γ′) +O

(
logR
R

)
,

by (1.2.1). The next two estimates follow analogously but more easily. The last estimate
is an easy generalization of the first.

Proposition 13.2.

∑

q≤Q

1
ϕ(q)

∑

χ (mod q)
cond∗χ≥R

∣∣∣∣∣
X+N∑

n=X+1

anχ(n)

∣∣∣∣∣

2

¿
(
N

R
logQ+Q

)
log logQ

X+N∑

n=X+1

|an|2.

Proof. Suppose that the character χ (mod q) is induced from the primitive character ψ
(mod r). Let m be the product of the the primes that divide q but not r and write q = rm`
so that (r,m) = 1, and p|` =⇒ p|rm. Hence ϕ(q) = ϕ(r)ϕ(m)` and

∑
n

anχ(n) =
∑

n: (n,m)=1

anψ(n);
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and therefore the left side of the above equation equals

∑

m≤Q

µ2(m)
ϕ(m)

∑

R≤r≤Q/m
(r,m)=1

1
ϕ(r)

∗∑

ψ (mod r)

∣∣∣∣∣∣∣∣

∑

X<n≤X+N
(n,m)=1

anψ(n)

∣∣∣∣∣∣∣∣

2

∑

`≤Q/rm
p|` =⇒ p|rm

1
`
.

The last sum is ≤ r
ϕ(r) · m

ϕ(m) . We partition the sum over r into dyadic intervals y < r ≤ 2y;

in such an interval we have r
ϕ(r)2 ¿ r

ϕ(r) · log log y
y , and so by (8.4) the above becomes

¿ log logQ
∑

m≤Q

µ2(m)m
ϕ(m)2

∑

y=2iR, i=0,...I

2IR:=Q/m

1
y
(N + y2)

X+N∑

n=X+1

|an|2

¿ log logQ
∑

m≤Q

µ2(m)m
ϕ(m)2

(
N

R
+
Q

m

) X+N∑

n=X+1

|an|2,

which implies the result.

Let
ψ(R)(x; q, a) = ψ(x; q, a)− 1

ϕ(q)

∑

r≤R
r|q

∑

χ (mod q)
cond∗χ=r

χ(a)
∑

n≤x
χ(n)Λ(n),

so that ψ(1)(N ; q, a) = ψ(N ; q, a)− ψ(N)
ϕ(q) .

Corollary 13.3. For logN ≤ R ≤ √
Q with Q ≤ N we have

∑

q≤Q

∑

(a,q)=1

∣∣∣∣ψ(N ; q, a)− ψ(N)
ϕ(q)

∣∣∣∣
2

¿ logQ
logR

∑

q≤R2

∑

(a,q)=1

∣∣∣∣ψ(N ; q, a)− ψ(N)
ϕ(q)

∣∣∣∣
2

+O

(
N2 log3N

R
+QN logN log logN

)
.

Proof. By (8.2), and taking an = Λ(n), X = 0 in Proposition 13.2, we deduce that

∑

q≤Q

∑

(a,q)=1

∣∣∣ψ(R)(N ; q, a)
∣∣∣
2

¿
(
N

R
logN +Q

)
N logN log logN.

by using the prime number theorem. Now, if χ (mod q) is induced from ψ (mod r) then

∑

n≤N
χ(n)Λ(n) =

∑

n≤N
ψ(n)Λ(n)−

∑

pa≤N
p|q, p-r

ψ(pa) log p,
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hence the error term in replacing χ by ψ is ¿ (ω(q)− ω(r))N logN , and so in total is

¿
∑

r≤R

∑

q≤Q
r|q

ω(q)− ω(r)
ϕ(q)

N logN ¿ N logN logQ logR log logQ¿ N(logN)2+ε,

which is smaller than the above.
What remains is, by (8.2),

∑

q≤Q

1
ϕ(q)

∑

r≤R
r|q

∗∑

ψ (mod r)

∣∣∣∣∣∣
∑

n≤N
ψ(n)Λ(n)

∣∣∣∣∣∣

2

=
∑

r≤R

1
ϕ(r)

∗∑

ψ (mod r)

∣∣∣∣∣∣
∑

n≤N
ψ(n)Λ(n)

∣∣∣∣∣∣

2
∑

q≤Q
r|q

ϕ(r)
ϕ(q)

.

By Lemma 13.1 this last sum is ³ log 2Q/r. Replacing Q here by R2, we see that this
quantity is

³ logQ
logR

∑

q≤R2

1
ϕ(q)

∑

r≤R
r|q

∗∑

ψ (mod r)

∣∣∣∣∣∣
∑

n≤N
ψ(n)Λ(n)

∣∣∣∣∣∣

2

and our result follows, by replacing Q with R2 in the arguments above.

The Siegel-Walfisz Theorem states that for any fixed A,B > 0 one has

ψ(N ; q, a)− ψ(N)
ϕ(q)

¿ N

ϕ(q) logB N
,

uniformly for q ¿ logA x and (a, q) = 1.

Proposition 13.4. Assume the Siegel-Walfisz Theorem. If N/(logN)C ≤ Q ≤ N then

∑

q≤Q

∑

(a,q)=1

∣∣∣∣ψ(N ; q, a)− ψ(N)
ϕ(q)

∣∣∣∣
2

= NQ logN +O (NQ log(N/Q)) .

Proof. Let Q′ = Q/ log2N and R = (N log3N)/Q, and assume the Siegel-Walfisz Theorem
with A = 2C + 6 and B = C + 1 so that Corollary 13.3 yields

∑

q≤Q′

∑

(a,q)=1

∣∣∣∣ψ(N ; q, a)− ψ(N)
ϕ(q)

∣∣∣∣
2

¿ QN.

We are left with the sum for Q′ < q ≤ Q, which we will treat as the sum for Q′ < q ≤ N ,
minus the sum for Q < q ≤ N . We describe only how we manipulate the second sum, as
the first is entirely analogous.
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Now the qth term in our sum equals

(13.5)
∑

p≤N
log2 p+ 2

∑

p1<p2≤N
p2≡p1 (mod r)

log p1 log p2 − ψ(N)2

ϕ(q)
,

plus a small, irrelevant error term made up of contributions from prime powers that divide
q. We will sum the middle sum over all q in the range Q < q ≤ N and then subtract this
from the sum for Q′ < q ≤ N . We write p2 = p1 + qr then r ≤ N/q < N/Q, so that
p2 ≡ p1 (mod r) with N ≥ p2 ≥ p1 +Qr, and therefore the sum equals

∑

r≤N/Q

∑

p≤N−Qr
{ψ(N ; r, p)− ψ(p+Qr; r, p)} log p

=
∑

r≤N/Q

1
ϕ(r)

∑

p≤N−Qr
(N − p−Qr) log p+O


 ∑

r≤N/Q

N2

ϕ(r) logB N




=
1
2

∑

r≤N/Q

(N −Qr)2

ϕ(r)
+O (NQ) ,

by the Siegel-Walfisz theorem. We now subtract this from the same expression with Q
replaced by Q′, add the sum, for Q′ < q ≤ Q, of the outer terms in (13.5), which are both
evaluated using the prime number theorem. By estimating the various sums that arise
using Lemma 13.1, we obtain our result, after some remarkable cancelations.

Remark. We really could do with Siegel’s theorem and then the Siegel Walfisz theorem.
These probably can all be expressed as theorems about L(1, χ) so it should be doable.

We can surely incorporate the discussion on binary quadratic forms in my Italy paper.
We can get a good prime number theorem from the elementary proofs since they

helpfully avoid any zeros! We could just quote this or we could find our own version.

13.2. The Bombieri-Vinogradov Theorem.

Proposition 13.5.

∑

q≤Q

1
ϕ(q)

∑

χ (mod q)
cond∗χ≥R

∣∣∣∣∣
X+M∑

m=X+1

amχ(m)

∣∣∣∣∣

∣∣∣∣∣
Y+N∑

n=Y+1

bnχ(n)

∣∣∣∣∣

¿
(√

MN

R
logQ+Q+ (

√
M +

√
N) log2Q

)
log logQ

√√√√
X+M∑

m=X+1

|am|2 ·
Y+N∑

n=Y+1

|bn|2.

Proof. We proceed analogously to the proof of Proposition 13.2 to obtain

¿ log logQ
∑

`≤Q

µ2(`)`
ϕ(`)2

∑

y=2iR, i=0,...I

2IR:=Q/`

1
y

∑

y<r≤2y

r

ϕ(r)

∗∑

ψ (mod r)

∣∣∣∣∣∣∣∣

X+M∑

m=X+1
(m,`)=1

amχ(m)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

Y+N∑

n=Y+1
(n,`)=1

bnχ(n)

∣∣∣∣∣∣∣∣
.
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The square of the sum over r may be bounded, after Cauchying, by

∑

y<r≤2y

r

ϕ(r)

∗∑

ψ (mod r)

∣∣∣∣∣∣∣∣

X+M∑

m=X+1
(m,`)=1

amχ(m)

∣∣∣∣∣∣∣∣

2

·
∑

y<r≤2y

r

ϕ(r)

∗∑

ψ (mod r)

∣∣∣∣∣∣∣∣

Y+N∑

n=Y+1
(n,`)=1

bnχ(n)

∣∣∣∣∣∣∣∣

2

¿ (M + y2)
X+M∑

m=X+1

|am|2 · (N + y2)
Y+N∑

n=Y+1

|bn|2

by applying (8.4). Hence the above is
√∑X+M

m=X+1 |am|2 ·
∑Y+N
n=Y+1 |bn|2 times

¿ log logQ
∑

`≤Q

µ2(`)`
ϕ(`)2

∑

y=2iR, i=0,...I

2IR:=Q/`

(√
MN

y
+
√
M +

√
N + y

)
,

and the result follows.

Proposition 13.6. Suppose that an, bn are given sequences with an, bn = 0 for n ≤ R2,
and |an| ≤ a0, |bn| ≤ b0 for all n ≤ x. If cN :=

∑
mn=N ambn then

∑

q≤Q

1
ϕ(q)

∑

χ (mod q)
cond∗χ≥R

∣∣∣∣∣∣
∑

N≤x
cNχ(N)

∣∣∣∣∣∣
¿ a0b0

( x
R

log2 x+Q
√
x log x logR

)
log log x.

Proof. We begin by noting that

∑

N≤x
cNχ(N) =

∑

mn≤x
amχ(m) · bnχ(n).

We will partition the pairs m,n with mn ≤ x in order to apply Proposition 13.5 to many
different sums. For the intervals X < m ≤ X + M, Y < n ≤ Y + N , Proposition 13.5
yields the upper bound

a0b0
√
MN

(√
MN

R
logQ+Q+ (

√
M +

√
N) log2Q

)
log logQ

We now describe the partition for m in the range X < m ≤ 2X. Let Y = x/X. We
begin with all X < m ≤ 2X, n ≤ Y/2. Then in step k, with k = 1, 2, . . .K, we take

(
1 +

2j
2k

)
X < m ≤

(
1 +

2j + 1
2k

)
X, Y

/(
1 +

2j + 2
2k

)
< n ≤ Y

/(
1 +

2j + 1
2k

)
,
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for 0 ≤ j ≤ 2k−1 − 1. The total upper bound from all these is a0b0 log logQ times

√
XY

(√
XY

R
logQ+Q+ (

√
X +

√
Y ) log2Q

)
+

K∑

k=1

2k−1 ·
√
XY

2k

(√
XY

2kR
logQ+Q+

(
√
X +

√
Y )

2k/2
log2Q

)

¿
√
XY

(√
XY

R
logQ+KQ+ (

√
X +

√
Y ) log2Q

)
.

Now, for each such m the number of n not yet accounted for is ¿ Y/2K , thus contributing
a total of ¿ a0b0XY/2K . This is negligible compared to the main term, taking 2K ≈ R.
We now sum up the upper bound over X = 2jR2 for j = 0, 1, 2, . . . , J where 2J = x/R2

(since if m < R2 then bm = 0, and if m > x/R2 then n < R2 and so cn = 0), to obtain
the claimed upper bound.

Corollary 13.7a. If R ≤ x1/4 and Q ≤ x1/2 then

∑

q≤Q

1
ϕ(q)

∑

χ (mod q)
cond∗χ≥R

|ψ(x, χ)−G(x, χ)| ¿
( x
R

log x+Q
√
x logR

)
log2 x log log x,

where G(x, χ) :=
∑′
n≤x χ(n) log n, the sum over integers whose prime factors are all > R2.

Proof. Let a1 = 0 with an = f(n) for n > 1 and bm = g(m) logm in Proposition 13.6, where
f and g are as in the proof of Theorem 11.1, for the decomposition of ΛR2 . The missing
contribution of the powers of the primes ≤ R2 is ≤ Q

∑
p≤R2 log x¿ QR2 log x/ logR.

Remark. We should be able to get rid of the sum of the |G(x, χ)|, surely! Each G(x, χ)
with χ non-principal is a sum over ϕ(q) arithmetic progressions, where the main term
cancels. Hence by (11.1.2) we have

|G(x, χ)| ¿ x log x
logR

· 1
uu+2

+ xe−8c
√

log(x/q)

which is not small enough. Another idea is to write G(x, χ) as a convolution: G(x, χ) =∑
bd≤x µ(d)χ(bd) log bd, where the d are restricted to integers that are R2-smooth. We can

again apply Proposition 13.6, so we need only worry about the b, d ≤ R2. If d ≤ R2 we
are taking sums like

∑
b≤x/d χ(b) log bd which is ¿ √

q log q log x by the Polya-Vinogradov
Theorem (and partial summation). We sum this up to get ¿ Q3/2R2 log2 x which is
¿ x3/4+ε so easily acceptable. It is when b ≤ R2 that we have problems, that is with sums∑
d≤x/b µ(d)χ(d) log bd; you would think it would be easy! We again get the sort of terms

we have in the previous display.
We now prove a version of the Bombieri-Vinogradov Theorem:

Corollary 13.7b. If R ≤ ec
√

log x and Q ≤ x1/2 then

∑

q≤Q
max

(a,q)=1
|ψ(R)(x; q, a)| ¿

( x
R

log x+Q
√
x logR

)
log2 x log log x.
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Proof. The estimate in (11.1.2) yields

∑

q≤Q
max

(a,q)=1
|G(R)(x; q, a)| ¿

∑

q≤Q


1 +

∑

r≤R
r|q

ϕ∗(r)




(
x log x

ϕ(q) logR
· 1
uu+2

+
x

q
e−8c

√
log(x/q)

)

¿ R logQ
(
x log x
logR

· 1
uu+2

+ xe−4c
√

log x

)
¿ x

R
,

where x1/2 = R2u, since x/q ≥ x/Q ≥ x1/2, and ϕ∗(r) is the number of primitive characters
of conductor r (here ϕ∗(p) = p − 2 and ϕ∗(pb) = pb−2(p − 1)2). Combining this with
Corollary 13.7a gives the result.

Remark. We should try to improve the small sieve argument for the contribution of g.
If we can then we can get some amazing consequences for moduli q without small prime
factors (e.g. prime q), because if q has no prime factor ≤ R then ψ(R)(x; q, a) = ψ(x; q, a)−
ψ(x)/ϕ(q). At the moment we can claim that for primes q in the range ec

√
log x < q <√

x/ec
√

log x we win in the error term by a factor of ec
√

log x.

Corollary 13.8. Assume the Siegel-Walfisz Theorem. Fix A > 0. If x1/2/ logA x < Q ≤
x1/2 then ∑

q≤Q
max

(a,q)=1

∣∣∣∣ψ(x; q, a)− ψ(x)
ϕ(q)

∣∣∣∣ ¿ Q
√
x(log x log log x)2

Proof. Let R = logA+1 x in Corollary 13.7b.

Corollary 13.9. Assume the Siegel-Walfisz Theorem. If x1/2/e(c/2)
√

log x < Q ≤ x1/2

then ∑

q≤Q
max

(a,q)=1

∣∣∣∣ψ(x; q, a)− ψ(x)
ϕ(q)

− χ1(a)
ψ(x, χ1)
ϕ(q)

∣∣∣∣ ¿ Q
√
x log3 x log log x,

which χ1 (mod m) is the most pretentious character for all conductors ≤ Q (and the term
is only included if m|q.
Proof. [Da] §20, (8) states that there exists a constant c > 0 such that for all χ (mod q)
with q ≤ ec

√
log x, except when χ = χ0 and perhaps χ = χ1 for some exceptional χ1, we

have ψ(x, χ) ¿ x/ec
√

log x. This implies, dealing with the prime powers dividing q as we
did in the proof of Corollary 13.7a,

∑

q≤Q

1
ϕ(q)

∑

χ (mod q)
1<cond∗χ≤R

χ6=χ1

|ψ(x, χ)| ¿
∑

1<r≤R

1
ϕ(r)

∑

condχ=r
χ 6=χ1

|ψ(x, χ)| logQ+R log x log logQ

¿ Rx logQ
ec
√

log x
.

Letting R ≤ √
x/Q, and combining this with Corollary 13.7b, yields the result.
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Using [Da], §19, (13) with T = R2 we have that ψ(x, χ) ¿ x
R2 log2 x provided χ 6∈ ΞR,

where ΞR is the set of characters χ with conductors ≤ R for which L(s, χ) has no zeros ρ
with |Im(ρ)| ≤ R2 and Re(ρ) > 1− 2 logR

log x . Now the remark to Theorem 14 of [Bo] implies

that |ΞR| ¿ exp
(
23 log2 R

log x

)
. Hence by Corollary 13.7a we have that if R ≤ x1/4 then

∑

q≤x1/2/R

1
ϕ(q)

∑

χ (mod q)
χ 6∈ΞR

|ψ(x, χ)| ¿ x

R
log3 x log log x,

provided that we can obtain an appropriate estimate for

∑

q≤Q

1
ϕ(q)

∑

χ (mod q)
cond∗χ≥R

|G(x, χ)| .

14. The Polya-Vinogradov Theorem

15. Burgess’s Theorem

Proof of B’s Theorem via additive combinatorics
Strange results using Halasz.
The number of chi for which the chaa=racter sum is large.

16. Subconvexity

17. Explicit sieve constructions

17.1. Long gaps between primes (Erdös-Rankin).

17.2. Short gaps between primes (Erdös-Rankin).

17.3. Daniel Shiu’s Theorem.

18. Mean-values of multiplicative functions

This should include the decomposition theorem into small and large primes.
A study of differential delay equations, especially Buchstab’s function.
A discussion of Spectra

19. Limitations to Equi-distribution

19.1. Maier’s Theorem.

19.2. G-S generalization.

Ideas?

Compare ζ(1 + it)−1 for |t| ≤ T = xc — can we replace RH by a hypothesis on this?
ie to get an error term of O(

√
x).
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